高中数学命题及其关系、充分条件与必要条件
高考数学专题知识突破:考点2 命题及其关系、充分条件与必要条件
考点二命题及其关系、充分条件与必要条件知识梳理1.命题的概念可以判断真假、用文字或符号表述的语句,叫作命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系(1) 四种命题命题表述形式原命题若p,则q逆命题若q,则p否命题若非p,则非q逆否命题若非q,则非p(2) 四种命题间的逆否关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.(3) 如果p q,q p,那么称p是q的充分不必要条件.(4) 如果q p,p q,那么称p是q的必要不充分条件.(5) 如果p q,且q p,那么称p是q的既不充分也不必要条件.典例剖析题型一四种命题及其相互关系例1命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”答案 B解析将原命题的条件与结论互换即得逆命题,故原命题的逆命题为“若一个数的平方是正数,则它是负数”.变式训练命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数答案 C解析由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x +y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.解题要点 1.写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.2.一些常见词语的否定例2有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.答案②③解析①原命题的否命题为“若a≤b,则a2≤b2”,错误.②原命题的逆命题为:“若x,y互为相反数,则x+y=0”,正确.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.变式训练下列有关命题的说法正确的是________.(填序号)①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;②若一个命题是真命题,则其逆命题也是真命题;③命题“存在x∈R,使得x2+x+1<0”的否定是“对任意x∈R,均有x2+x+1<0”;④命题“若x=y,则sin x=sin y”的逆否命题为真命题.答案 ④解析 命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,所以①不正确;原命题与逆命题不等价,所以②不正确;命题“存在x ∈R ,使得x 2+x +1<0”的否定是“对任意x ∈R ,均有x 2+x +1≥0”,所以③不正确;命题“若x =y ,则sin x =sin y ”是真命题,所以逆否命题为真命题,④正确.解题要点 1.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.2.根据“原命题与逆否命题是等价的,逆命题与否命题也是等价的”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.题型二 充分条件与必要条件例3 已知p :“a ,b ,c 成等比数列”,q :“b =ac ”,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 若a ,b ,c 成等比数列,则有b 2=ac ,所以b =±ac ,所以充分性不成立.当a =b =c =0时,b =ac 成立,但此时a ,b ,c 不成等比数列,所以必要性不成立,所以p 是q 的既不充分也不必要条件.变式训练 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件答案 A解析 由正弦定理,知a ≤b ⇔2R sin A ≤2R sin B (R 为△ABC 外接圆的半径)⇔sin A ≤sinB . 例4 设函数f (x )=log 2x ,则“a >b ”是“f (a )>f (b )”的________(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)条件.答案 必要不充分解析 因为f (x )=log 2x 在区间(0,+∞)上是增函数,所以当a >b >0时,f (a )>f (b );反之,当f (a )>f (b )时,a >b .故“a >b ”是“f (a )>f (b )”的必要不充分条件.变式训练 设x ∈R ,则“x >1”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案 A解析 由不等式220x x +->得(2)(1)0x x +->,即2x <-或1x >,所以由1x >可以得到不等式220x x +->成立,故充分性成立;但由220x x +->不一定得到1x >,所以必要性不成立,即“x >1”是“220x x +->”的充分而不必要条件.解题要点 1.充要条件问题应首先弄清问题中条件是什么,结论是什么,再进一步判断条件与结论的关系,解题过程分为三步:①确定条件是什么,结论是什么;②尝试从条件推结论,从结论推条件;③确定条件和结论是什么关系.2.充要条件的三种判断方法(1) 定义法:根据p q ,q p 进行判断; (2) 集合法:根据p 、q 成立的对象的集合之间的包含关系进行判断;(3) 等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.当堂练习1. 设p :1<x <2,q :2x >1,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.设,a b ∈R , 则 “2()0a b a -<”是“a b <”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A .若α,β垂直于同一平面,则α与β平行B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面4.已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +b i)2=2i ”的 条件.5.U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅” 条件.课后作业一、 选择题1.下列语句中命题的个数是( )①2<1;②x <1;③若x <2,则x <1;④函数f (x )=x 2是R 上的偶函数.A.0B.1C.2D.32.“x =1”是“x 2-2x +1=0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件3.“1<x <2”是“x <2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.设p :x <3,q :-1<x <3,则p 是q 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”6.若m ∈R, 命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( )A .若方程x 2+x -m =0有实根,则m >0B .若方程x 2+x -m =0有实根,则m ≤0C .若方程x 2+x -m =0没有实根,则m >0D .若方程x 2+x -m =0没有实根,则m ≤07.已知命题p :若x =-1,则向量a =(1,x )与b =(x +2,x )共线,则在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .2C .3D .48.设α,β是两个不同的平面,m 是直线且m ⊂α.“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题9.x ≠3或y ≠5是x +y ≠8的____________条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)10.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.11.(1)“x >y >0”是“1x <1y”的________条件. (2) 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的________条件.12.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b,则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题,其中是假命题的是________.13.“m <14”是“一元二次方程x 2+x +m =0有实数解”的____________条件.当堂练习答案1. 答案 A解析 当1<x <2时,2<2x <4,∴p ⇒q ;但由2x >1,得x >0,∴q p ,故选A.2答案 A解析 由(a -b )a 2<0⇒a ≠0且a <b ,∴充分性成立;由a <b ⇒a -b <0,当0=a <b 时 (a -b )·a 2<0,必要性不成立;故选A.3.答案 D解析 对于A ,α,β垂直于同一平面,α,β关系不确定,A 错;对于B ,m ,n 平行于同一平面,m ,n 关系不确定,可平行、相交、异面,故B 错;对于C ,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C 错;对于D ,若假设m ,n 垂直于同一平面,则m ∥n ,其逆否命题即为D 选项,故D 正确.4.答案 充分不必要条件解析 当a =b =1时,(a +b i)2=(1+i)2=2i ;当(a +b i)2=2i 时,得⎩⎪⎨⎪⎧a 2-b 2=0,ab =1, 解得a =b =1或a =b =-1,所以“a =b =1”是“(a +b i)2=2i ”的充分不必要条件.5.答案 充要条件解析 若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.课后作业答案二、 选择题1.答案 D2.答案 A解析 解x 2-2x +1=0得x =1,所以“x =1”是“x 2-2x +1=0”的充要条件.3.答案 A4.答案 C解析 ∵x <3-1<x <3,但-1<x <3⇒x <3,∴p 是q 的必要不充分条件,故选C.5.答案 C解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,故选C. 6.答案 D解析 原命题为“若p ,则q ”,则其逆否命题为“若q ,则p ”.∴所求命题为“若方程x 2+x -m =0没有实根,则m ≤0”.7.答案 B解析 向量a ,b 共线⇔x -x (x +2)=0⇔x =0或x =-1,∴命题p 为真,其逆命题为假,故在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为2.8.答案 B解析 m ⊂α,m ∥βα∥β,但m ⊂α,α∥β⇒m ∥β,∴m ∥β是α∥β的必要而不充分条件. 二、填空题9.答案 必要不充分解析 设p :x =3且y =5,q :x +y =8,显然p 是q 的充分不必要条件,∴p 是q 的必要不充分条件,即x ≠3或y ≠5是x +y ≠8的必要不充分条件.10.答案 2解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题.11.答案 (1)充分不必要 (2)充要解析 (1)1x <1y⇒xy ·(y -x )<0, 即x >y >0或y <x <0或x <0<y .所以x >y >0 ⇒1x <1y ,但反过来1x <1y, 所以是充分不必要条件.(2) 构造函数f (x )=x |x |,则f (x )在定义域R 上为奇函数.因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f (x )在R 上单调递增,所以a >b ⇔f (a )>f (b )⇔a |a |>b |b |. 所以是充要条件.12.答案 ①②解析 对于①其否命题为“若k ≤0,则方程x 2+2x +k =0无实根”,为假命题;②的逆命题为“若a <b ,则1a >1b”,为假命题;③中原命题为真命题,故其逆否命题也为真命题. 13.答案 充分不必要解析 x 2+x +m =0有实数解等价于Δ=1-4m ≥0,即m ≤14,因为m <14⇒m ≤14,反之不成立. 故“m <14”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件.。
高考数学考点突破——集合与常用逻辑用语:命题及其关系、充分条件与必要条件
命题及其关系、充分条件与必要条件【考点梳理】1.命题 用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系 ①两个命题互为逆否命题,它们有相同的真假性; ②两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件.(2)如果p ⇔q ,那么p 与q 互为充要条件.(3)如果p q ,且q p ,则p 是q 的既不充分也不必要条件.4.集合与充要条件设集合A ={x |x 满足条件p },B ={x |x 满足条件q },则有:(1)若A ⊆B ,则p 是q 的充分条件,若A ⊂≠B ,则p 是q 的充分不必要条件.(2)若B ⊆A ,则p 是q 的必要条件,若B ⊂≠A ,则p 是q 的必要不充分条件.(3)若A =B ,则p 是q 的充要条件.【考点突破】考点一、四种命题的关系及其真假判断【例1】(1) 命题“若4πα=,则tan 1α=”的逆否命题是( ) A.若4πα≠,则tan 1α≠ B.若4πα=,则tan 1α≠C.若tan 1α≠,则4πα≠ D.若tan 1α≠,则4πα=(2) 给出下列命题:①“∃x 0∈R ,x 20-x 0+1≤0”的否定;②“若x 2+x -6≥0,则x >2”的否命题;③命题“若x 2-5x +6=0,则x =2”的逆否命题.其中真命题的个数是( )A.0B.1C.2D.3 [答案] (1)C (2)C[解析] (1)命题“若p ,则q ”的逆否命题是“若⌝q ,则⌝p ”,显然⌝q :tan 1α≠,⌝p :4πα≠,所以该命题的逆否命题是“若tan 1α≠,则4πα≠”. (2) ①的否定是“∀x ∈R ,x 2-x +1>0”是真命题,①正确;②的否命题是“若x 2+x -6<0,则x ≤2”,由x 2+x -6<0,得-3<x <2,∴x ≤2成立,②正确;③由x 2-5x +6=0,得x =2或x =3,原命题是假命题,因此可知逆否命题为假命题,③错误.综上可知,真命题是①,②.【类题通法】1.写一个命题的其他三种命题时,需注意:(1)对于不是“若p ,则q ”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.2.判断命题真假的2种方法(1)直接判断:判断一个命题是真命题,需经过严格的推理证明;而要说明它是假命题,只需举一反例即可.(2)间接判断(等价转化):由于原命题与其逆否命题为等价命题,如果原命题的真假不易直接判断,那么可以利用这种等价性间接地判断命题的真假.【对点训练】1. 命题“若a >b ,则a +c >b +c ”的否命题是( )A.若a ≤b ,则a +c ≤b +cB.若a +c ≤b +c ,则a ≤bC.若a +c >b +c ,则a >bD.若a >b ,则a +c ≤b +c[答案] A[解析] 将条件、结论都否定.命题“若a >b ,则a +c >b +c ”的否命题是“若a ≤b ,则a +c ≤b +c ”.2. 原命题:设a ,b ,c ∈R ,若“a >b ”,则“ac 2>bc 2”,以及它的逆命题、否命题、逆否命题中,真命题共有( )A.0个B.1个C.2个D.4个[答案] C[解析] 原命题:若c =0,则不成立,由等价命题同真同假知其逆否命题也为假;逆命题为设a ,b ,c ∈R ,若“ac 2>bc 2”,则“a >b ”.由ac 2>bc 2知c 2>0,∴由不等式的基本性质得a >b ,∴逆命题为真,由等价命题同真同假知否命题也为真,∴真命题共有2个.考点二、充分条件与必要条件的判断【例2】(1) 已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≥-1,ln (-x ),x <-1,则“x =0”是“f (x )=1”的( ) A.充要条件 B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件 (2) 设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 [答案] (1)B (2)B[解析] (1)若x =0,则f (0)=e 0=1;若f (x )=1,则e x=1或ln(-x )=1,解得x =0或x =-e.故“x =0”是“f (x )=1”的充分不必要条件.(2)由2-x ≥0,得x ≤2,由|x -1|≤1,得0≤x ≤2.∵0≤x ≤2⇒x ≤2,x ≤2⇒0≤x ≤2,故“2-x ≥0”是“|x -1|≤1”的必要而不充分条件.【类题通法】充分条件、必要条件的三种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断,适用于定义、定理判断性问题.(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母的范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题.【对点训练】1.已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] 因为由“a =3”可以推出“A ⊆B ”,反过来,由A ⊆B 可以得到“a =3或a =2”,不一定推出“a =3”,所以“a =3”是“A ⊆B ”的充分不必要条件.2.已知a ,b 都是实数,那么“a >b ”是“ln a >ln b ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 [答案] B[解析] 由ln a >ln b ⇒a >b >0⇒a >b ,故必要性成立.当a =1,b =0时,满足a >b ,但ln b 无意义,所以ln a >ln b 不成立,故充分性不成立.考点三、充分条件、必要条件的应用【例3】已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.[解析] 由x 2-8x -20≤0得-2≤x ≤10,∴P ={x |-2≤x ≤10}.∵x ∈P 是x ∈S 的必要条件,则S ⊆P ,∴⎩⎪⎨⎪⎧ 1-m ≥-2,1+m ≤10,1-m ≤1+m ,∴0≤m ≤3.综上,可知0≤m ≤3时,x ∈P 是x ∈S 的必要条件.【变式1】本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由.[解析] 由例题知P ={x |-2≤x ≤10}.若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9, 这样的m 不存在.【变式2】本例条件不变,若⌝P 是⌝S 的必要不充分条件,求实数m 的取值范围.[解析] 由例题知P ={x |-2≤x ≤10}.∵⌝P 是⌝S 的必要不充分条件,∴P 是S 的充分不必要条件,∴P ⇒S 且S ⇒/ P .∴[-2,10]⊂≠[1-m ,1+m ].∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10, ∴m ≥9,则m 的取值范围是[9,+∞).【类题通法】充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.(2)要注意区间端点值的检验.【对点训练】已知p :⎪⎪⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0),且⌝p 是⌝q 的必要不充分条件,则实数m 的取值范围是________.[答案] [9,+∞)[解析] 法一:由⎪⎪⎪⎪⎪⎪1-x -13≤2,得-2≤x ≤10,∴⌝p 对应的集合为{x |x >10或x <-2},设A ={x |x >10或x <-2}.由x 2-2x +1-m 2≤0(m >0),得1-m ≤x ≤1+m (m >0),∴⌝q 对应的集合为{x |x >1+m 或x <1-m ,m >0},设B ={x |x >1+m 或x <1-m ,m >0}.∵⌝p 是⌝q 的必要不充分条件, ∴B ⊂≠A ,∴⎩⎪⎨⎪⎧ m >0,1-m <-2,1+m ≥10或⎩⎪⎨⎪⎧ m >0,1-m ≤-2,1+m >10,解得m ≥9,∴实数m 的取值范围为[9,+∞).法二:∵⌝p 是⌝q 的必要不充分条件,∴q 是p 的必要不充分条件.即p 是q 的充分不必要条件,由x 2-2x +1-m 2≤0(m >0),得1-m ≤x ≤1+m (m >0). ∴q 对应的集合为{x |1-m ≤x ≤1+m ,m >0}, 设M ={x |1-m ≤x ≤1+m ,m >0},又由⎪⎪⎪⎪⎪⎪1-x -13≤2,得-2≤x ≤10,∴p 对应的集合为{x |-2≤x ≤10},设N ={x |-2≤x ≤10}.由p 是q 的充分不必要条件知,N ⊂≠M ,∴⎩⎪⎨⎪⎧ m >0,1-m <-2,1+m ≥10或⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m >10,解得m ≥9. ∴实数m 的取值范围为[9,+∞).。
高一数学知识点——命题与其关系、充分条件与必要条件
1.4 命题及其关系、充分条件与必要条件一 . 基本概念1.命题__________________________________________ 叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
2. 四种命题及其关系( 1 )四种命题命题表述形式原命题若 p ,则 q逆命题否命题逆否命题( 2 )四种命题间的相互关系(3)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为命题,它们的真假性没有关系;注:否命题是命题的否定吗?答:不是。
命题的否命题既否定命题的条件,又否定命题的结论,而命题的否定只否定命题的结论。
3.充分条件与必要条件( 1)“若 p ,则 q ”为真命题,记p q ,则 p 是 q 的充分条件, q 是 p 的必要条件。
( 2)如果既有p q ,又有 q p ,记作 p q ,则 p 是 q 的充要条件, q 也是 p 的充要条件。
二.例题1、命题的判定例1、判断下列语句中那些是命题,并判断其真假。
( 1 )一个数不是合数就是质数,( 2 )矩形是平行四边形练习:判断下列语句中那些是命题,并判断其真假。
(1)空集是任何集合的子集,(2)指数函数是增函数吗?2、四种命题之间的关系例 2、写出下列命题的逆命题、否命题、逆否命题并判断其真假。
( 1 )面积相等的两个三角形是全等三角形(2)若 q< 1, ,则方程 x22 x q 0有实根(3)若 x2y 20 ,则实数x, y 全为 0练习:写出下列命题的逆命题、否命题、逆否命题并判断其真假。
(1)实数的平方是非负数(2)若 ab=0 ,则 a=0 或 b=0 。
3、充分必要条件的判定与应用例 3、指出下列各组命题中, p 是 q 的什么条件,q 是 p 的什么条件:⑴p : x=y ; q : x2 =y 2 .⑵ p :三角形的三条边相等;q :三角形的三个角相等.例 4 、(1)已知a,b 是实数,则“a0 且b0 ”是“ab 0 且ab0 ”的 ( )A .充分而不必要条件C.充分必要条件B .必要而不充分条件D.既不充分也不必要条件(2)“”是“且”的()A. 必要不充分条件B. 充分不必要条件C. 充分必要条件D. 既不充分也不必要条件2(2) “a≠ 0 ”的例 6. (1)x>3的一个充分不必要条件是( )”(A) x>2(B) x<1(C) x>4(D)1<x<32 3<0”的一个必要不充分条件是 ( )(2) “2x -5x- (A) -1/2<x<3 (B) -1/2<x<4 (C) -3<x<1/2(D) -1<x<2例 7. 已知 p 、q 都是 r 的必要条件 , s 是 r 的充分条件 , q 是 s 的充分条件 , 那么 s 、 r 、 p 分别是 q 的什么条件 ?例 8*. 求关于 x 的方程 x 2+ ( m - 2)x + 5- m = 0( m ∈ R)有两个都大于2 的实 根 的充要条件 .三 . 课堂练习:用“充分”或“必要”填空,并说明理由:⒈“ a 和 b 都是偶数”是“ a+b 也是偶数”的 _________ 条件; ⒉“四边相等”是“四边形是正方形”的 _________条件; ⒊“ x 3 ”是“ |x| 3”的 _________条件; ⒋“ x- 1=0”是“ x 2- 1=0”的 _________条件;⒌“两个角是对顶角”是“这两个角相等”的 _________条件; ⒍“至少有一组对应边相等” 是“两个三角形全等” 的 _________条件; ⒎对于一元二次方程 ax 2+bx+c=0 (其中 a,b,c 都不为 0 )来说, “ b 2-4ac 0”是“这个方程有两个正根”的 _________条件; ⒏“ a=2 , b=3 ”是“ a+b=5 ”的 _________条件;⒐“ a+b 是偶数”是“ a 和 b 都是偶数”的 _________条件; ⒑“个位数字是 5 的自然数”是“这个自然数能被 5 整除”的 _________条件 .四.小结:判断充分条件与必要条件的依据是: 若 p q ,则 p 是 q 的充分条件; 若 q p ,则 p 是 q 的必要条件五.巩固练习:★ “ a 且 b ”的 条件是 “ a 2 b 2 ”(1) 0 0 0 ★★ 已知 , b ,“ 对一切实数 成立 ”是 “b ”条件(2) a Rax b 0 x 0 ★ “ A B ”的 条件是 “ A ü” (3) A B★ “ A ”的 条件是 “A B ” (4) B A★ (5)“a b 0” 的一个必要非充分条件是 3. 以下 A 分别是 B 的什么条件?★ (1) A: P ∩ Q=P, B: P Q; ★(2)A: a=b, B: ac=bc★(3)A:P Q; B: P =Q; ★ (4)A: P=Q; B : P ∩C=Q ∩C;★ (5) A: x2 2 ★★ (6)A: a ≠ 1 且 b ≠ 2; B:+y =0; B: xy=0;a+b ≠ 3;★ (7) A: x ∈P ∪ Q; B: x ∈ P ∩ Q.4. ★★★已知 M ={( x ,y) | y= - x 2+mx-1, m ∈R} , N={( x , y) | y= - x +3, 0< x < 3} ,求 M ∩ N ≠ 的充要条件。
高中数学《命题及其关系-充分条件与必要条件》教案苏教版选修
教案:高中数学《命题及其关系-充分条件与必要条件》教案苏教版选修一、教学目标1. 理解充分条件和必要条件的概念。
2. 学会判断充分条件和必要条件。
3. 掌握充分条件和必要条件与命题真假之间的关系。
4. 能够运用充分条件和必要条件解决实际问题。
二、教学重点与难点重点:充分条件和必要条件的概念及判断。
难点:充分条件和必要条件与命题真假之间的关系。
三、教学准备1. 教师准备PPT课件,包括充分条件和必要条件的定义、判断方法及应用实例。
2. 准备一些练习题,用于巩固所学知识。
四、教学过程1. 导入:教师通过一个生活实例引入新课,如:“如果一个人每天坚持锻炼身体,他身体健康。
”让学生思考这个实例中的条件和结论之间的关系。
2. 新课讲解:教师讲解充分条件和必要条件的定义,并通过PPT展示相关知识点。
定义:如果一个条件能推出结论,这个条件叫做结论的充分条件;如果结论能推出条件,这个条件叫做结论的必要条件。
教师讲解如何判断充分条件和必要条件,并举例说明。
3. 课堂练习:教师给出一些练习题,让学生判断给出的条件是充分条件还是必要条件,或两者都是。
五、课后作业1. 完成练习册的相关题目。
2. 举出生活中的实例,运用充分条件和必要条件进行分析。
教学反思:教师在课后对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了充分条件和必要条件的概念及判断方法。
如有需要,可在下一节课进行针对性讲解。
六、教学拓展1. 教师通过PPT展示充分条件和必要条件的相关拓展知识,如充分不必要条件、必要不充分条件、既不充分也不必要条件等。
2. 教师举例解释这些概念,并让学生进行判断。
七、课堂小结1. 教师引导学生回顾本节课所学的内容,包括充分条件和必要条件的定义、判断方法及应用。
2. 学生分享自己在课堂练习中的收获和感悟。
八、课后反思1. 教师对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了充分条件和必要条件的概念及判断方法。
高三第一轮复习课件:命题及其关系充分条件与必要条件
4.
[课本改编]设x∈R,则x>2的一个必要不充分条件是
()
A. x>1
B. x<1
C. x>3
D. x<3
解析:x>2⇒x>1,但x>1⇒/ x>2. 答案:A
5. [课本改编]已知下列命题: ①已知集合A,B,若a∈A,则a∈(A∩B);
②若A∪B=B,则A⊆B;
③若a>|b|,则a2>b2;
B. ①③④
C. ②③④
D. ①④
[思维启迪] 解决本题的关键在于找准命题的条件与结论, 判断命题真假性时,要善于运用“等价性”.
[解析] ①原命题的否命题为“若 x2+y2=0,则 x,y 全为 零”,显然是真命题;②原命题的逆命题为“若多边形相似,则 这些多边形为正多边形”,显然是假命题;③原命题的逆否命题 为“若 x2+x-m=0 没有实根,则 m≤0”,由条件可得 m<-14, ∴结论 m≤0 成立,是真命题;④原命题是真命题,所以其逆否 命题也为真命题.故选 B.
A. 充分不必要条件 B. 必要不充分条件
C. 充分必要条件
D. 既不充分也不必要条件
解析:由(2x-1)x=0⇒x=0或x=12,所以应选B.
答案:B
2. [2014·安徽高考]“x<0”是“ln(x+1)<0”的( )
A. 充分不必要条件 B. 必要不充分条件
C. 充分必要条件
D. 既不充分也不必要条件
④3≥2.
其中是真命题的个数是( )
A. 1
B. 2
C. 3
D. 4
解析:①是假命题,因为a∈A⇒/ a∈(A∩B);②是真命题, 因为A∪B=B⇔A⊆B;③是真命题,因为a>|b|≥0,所以a2>b2成 立;④是真命题,因为“3≥2”的意思是3>2或3=2,只要有一 个成立就行,故选C.
第二节 命题及其关系、充分条件与必要条件
栏目索引
考点三
充分、必要条件的应用
典例3 已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是 x∈S的必要条件,则m的取值范围为 答案 [0,3] .
解析 由x2-8x-20≤0得-2≤x≤10, ∴P={x|-2≤x≤10}, 由x∈P是x∈S的必要条件,知S⊆P.
栏目索引
2-3 已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的 ( A.充分不必要条件 C.充要条件 B.必要不充分条件
)
D.既不充分也不必要条件
答案 A 因为p:x+y≠-2,q:x≠-1,或y≠-1, 所以¬ p:x+y=-2,¬ q:x=-1,且y=-1, 易知¬ q⇒¬ p但¬ p⇒/ ¬ q,所以¬ q是¬ p的充分不必要条件,即p是q的充分 不必要条件.
栏目索引
2-2 (2016湖南岳阳平江一中期中)设p:x2-x-20>0,q:log2(x-5)<2,则p是q 的 ( ) B.必要不充分条件
A.充分不必要条件 C.充要条件
D.既不充分也不必要条件
答案 B ∵x2-x-20>0,∴x>5或x<-4,∴p:x>5或x<-4.∵log2(x-5)<2,∴0<x -5<4,即5<x<9,∴q:5<x<9,∵{x|5<x<9}⫋{x|x>5或x<-4},∴p是q的必要不 充分条件.故选B.
栏目索引
2.“(x-1)(x+2)=0”是“x=1”的 ( A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
)
答案 B 若x=1,则(x-1)(x+2)=0显然成立,但反之不一定成立,即若(x-1) (x+2)=0,则x=1或-2.
命题及其关系、充分条件与必要条件
【例2】 若ab≠0,试证a3+b3+ab-a2-b2=0成立的充要条件是a+b=1. 证明:先证必要性:∵a3+b3+ab-a2-b2=0, ∴(a+b)·(a2-ab+b2)-(a2-ab+b2)=0,即(a+b-1)(a2-ab+b2)=0, 又ab≠0, ∴a2-ab+b2= ≠0,因此a+b-1=0,即a+b=1. 再证充分性:∵a+b=1,即a+b-1=0,∴(a+b-1)(a2-ab+b2)=0. 即a3+b3+ab-a2-b2=0.
变式3. 设{an}是公比为q的等比数列,Sn是它的前n项和. 求证:数列{Sn}不是等比数列; 数列{Sn}是等差数列吗?为什么? 解答:(1)证明:证法一:(反证法)若{Sn}是等比数列, 则 =S1S3,即 ∵a1≠0,∴(1+q)2=1+q+q2,即q=0与q≠0矛盾,故{Sn}不是等比数列
01
(了解逻辑联结词“或”“且”“非”的含义/理解全称量词与存在量词的意义/能正确地对含有一个量词的命题进行否定 )
02
逻辑联结词全称量词与存在量词
命题中的“且”、“或”、“非”叫做逻辑联结词. 用来判断复合命题的真假的真值表 真 假 假 假
至少 ∀ 全称 存在
01
02
5.命题的否定 (1)全称命题的否定是 命题;特称命题的否定是 命题. (2)p或q的否定为:非p且非q;p且q的否定为:非p或非q.
否则S1,S2,S3成等差数列,即2S2=S1+S3.∴2a1(1+q)=a1+a1(1+q+q2).
∵a1≠0,∴2(1+q)=2+q+q2,q=q2,∵q≠1,∴q=0与q≠0矛盾.
【方法规律】
1.对命题正误的判断,正确的命题要加以论证;不一定正确的命题要举出反例,这是最基本的数学思维方式.在判断命题正误的过程中,要注意简单 命题与复合命题之间的真假关系;要注意命题四种形式之间的真假关系. 2.在充分条件、必要条件和充要条件的判断过程中,可利用图示这种数形结合的思想方法;在证明充要条件时,首先要弄清充分性和必要性. 3.特殊情况下如果命题以p:x∈A,q:x∈B的形式出现,则有:(1)若A⊆B,则p 是q的充分条件;(2)若B⊆A,则p是q的必要条件;(3)若A=B,则p是q的充要条件.
高考数学总复习命题及其关系充分条件与必要条件PPT课件
[自主解答] (1)“存在集合 C 使得 A ⊆C,B ⊆∁UC”⇔ “A ∩B=∅”.故 C 正确.
(2)当数列{an}的首项 a1<0 时,若 q>1,则数列{an}是递减 数列;当数列{an}的首项 a1<0 时,要使数列{an}为递增数列,则 0<q<1,所以“q>1”是“数列{an}为递增数列”的既不充分也 不必要条件.故选 D.
提示:两者说法不相同.“p 的一个充分不必要条件是 q” 等价于“q 是 p 的充分不必要条件”,显然这与“p 是 q 的充 分不必要条件”是截然不同的.
1.“x<0”是“ln(x+1)<0”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
解析:选 B ln(x+1)<0⇔0<x+1<1⇔-1<x<0,而(-1, 0)是(-∞,0)的真子集,所以“x<0”是“ln(x+1)<0”的必要不 充分条件.
[答案] (1)C (2)D (3)①④
充要条件问题的常见类型及解题策略 (1)判断指定条件与结论之间的关系.解决此类问题应分三 步:①确定条件是什么,结论是什么;②尝试从条件推结论, 从结论推条件;③确定条件和结论是什么关系. (2)探究某结论成立的充要、充分、必要条件.解答此类题 目,可先从结论出发,求出使结论成立的必要条件,然后再验 证得到的必要条件是否满足充分性. (3)充要条件与命题真假性的交汇问题.依据命题所述的充 分必要性,判断是否成立即可.
B.若 x≤1,则 x>0
C.若 x≤1,则 x≤0
D.若 x<1,则 x<0
【高中数学】第2讲 命题及其关系、充分条件与必要条件
第2讲命题及其关系、充分条件与必要条件一、知识梳理1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇒/pp是q的必要不充分条件p⇒/q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇒/q且q⇒/p真命题时,才有“p⇒q”,即“p⇒q”⇔“若p,则q”为真命题.常用结论1.充要条件的两个结论(1)若p是q的充分不必要条件,q是r的充分不必要条件,则p是r的充分不必要条件.(2)若p是q的充分不必要条件,则綈q是綈p的充分不必要条件.2.一些常见词语及其否定词语是都是都不是等于大于否定不是不都是至少一个是不等于不大于1.(选修1-1P8A组T2改编)命题“若x2>y2,则x>y”的逆否命题是() A.“若x<y,则x2<y2”B.“若x>y,则x2>y2”C.“若x≤y,则x2≤y2”D.“若x≥y,则x2≥y2”解析:选C.根据原命题和逆否命题的条件和结论的关系得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.故选C.2.(选修1-1P10练习T3(2)改编)“(x-1)(x+2)=0”是“x=1”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.若x=1,则(x-1)(x+2)=0显然成立,但反之不成立,即若(x -1)(x+2)=0,则x的值也可能为-2.故选B.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)“x2+2x-3<0”是命题.()(2)命题“若p,则q”的否命题是“若p,则綈q”.()(3)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.()(4)当q是p的必要条件时,p是q的充分条件.()(5)q不是p的必要条件时,“p⇒/q”成立.()答案:(1)×(2)×(3)√(4)√(5)√二、易错纠偏常见误区(1)不明确命题的条件与结论;(2)对充分必要条件判断错误;(3)含有大前提的命题的否命题易出错.1.命题“若△ABC有一内角为π3,则△ABC的三个内角成等差数列”的逆命题()A.与原命题同为假命题B.与原命题的否命题同为假命题C.与原命题的逆否命题同为假命题D.与原命题同为真命题解析:选D.原命题显然为真,原命题的逆命题为“若△ABC的三个内角成等差数列,则△ABC有一内角为π3”,它是真命题.2.已知p:a<0,q:a2>a,则綈p是綈q的________条件(填:充分不必要、必要不充分、充要、既不充分也不必要).解析:綈p:a≥0;綈q:a2≤a,即0≤a≤1,故綈p是綈q的必要不充分条件.答案:必要不充分3.已知命题“对任意a,b∈R,若ab>0,则a>0”,则它的否命题是____________.答案:对任意a,b∈R,若ab≤0,则a≤0.四种命题的相互关系及其真假判断(师生共研)(2020·长春质量检测(二))命题“若x2<1,则-1<x<1”的逆否命题是()A.若x2≥1,则x≥1或x≤-1B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1D.若x≥1或x≤-1,则x2≥1【解析】命题的形式是“若p,则q”,由逆否命题的知识,可知其逆否命题为“若綈q,则綈p”的形式,所以“若x2<1,则-1<x<1”的逆否命题是“若x≥1或x≤-1,则x2≥1”.故选D.【答案】 D(1)判断命题真假的两种方法(2)由原命题写出其他三种命题的方法由原命题写出其他三种命题,关键要分清原命题的条件和结论,将原命题的条件与结论互换即得逆命题,将原命题的条件与结论同时否定即得否命题,将原命题的条件与结论互换的同时进行否定即得逆否命题.1.命题“若a2+b2=0,则a=0且b=0”的逆否命题是()A.若a2+b2≠0,则a≠0且b≠0B.若a2+b2≠0,则a≠0或b≠0C.若a=0且b=0,则a2+b2≠0D.若a≠0或b≠0,则a2+b2≠0解析:选D.“若a2+b2=0,则a=0且b=0”的逆否命题是“若a≠0或b≠0,则a2+b2≠0”,故选D.2.(2020·甘肃酒泉敦煌中学一诊)有下列四个命题,其中真命题是()①“若xy=1,则lg x+lg y=0”的逆命题;②“若a·b=a·c,则a⊥(b-c)”的否命题;③“若b≤0,则方程x2-2bx+b2+b=0有实根”的逆否命题;④“等边三角形的三个内角均为60°”的逆命题.A.①②B.①②③④C.②③④D.①③④解析:选B.①“若xy=1,则lg x+lg y=0”的逆命题为“若lg x+lg y=0,则xy=1”,该命题为真命题;②“若a·b=a·c,则a⊥(b-c)”的否命题为“若a·b≠a·c,则a不垂直(b-c)”,由a·b≠a·c可得a(b-c)≠0,据此可知a不垂直(b-c),该命题为真命题;③若b≤0,则方程x2-2bx+b2+b=0的判别式Δ=(-2b)2-4(b2+b)=-4b≥0,方程有实根,为真命题,则其逆否命题为真命题;④“等边三角形的三个内角均为60°”的逆命题为“三个内角均为60°的三角形为等边三角形”,该命题为真命题.综上可得,真命题是①②③④.故选B.充分条件、必要条件的判断(师生共研)(1)(2019·高考天津卷)设x∈R,则“x2-5x<0”是“|x-1|<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件(2)(2019·高考北京卷)设函数f(x)=cos x+b sin x(b为常数),则“b=0”是“f(x)为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】(1)由x2-5x<0可得0<x<5,由|x-1|<1可得0<x<2.由于区间(0,2)是(0,5)的真子集,故“x2-5x<0”是“|x-1|<1”的必要而不充分条件.(2)b=0时,f(x)=cos x,显然f(x)是偶函数,故“b=0”是“f(x)是偶函数”的充分条件;f(x)是偶函数,则有f(-x)=f(x),即cos(-x)+b sin(-x)=cos x+b sin x,又cos(-x)=cos x,sin(-x)=-sin x,所以cos x-b sin x=cos x+b sin x,则2b sin x=0对任意x∈R恒成立,得b=0,因此“b=0”是“f(x)是偶函数”的必要条件.因此“b=0”是“f(x)是偶函数”的充分必要条件,故选C.【答案】(1)B(2)C充分条件、必要条件的三种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据p,q成立的对应的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题.1.设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.由A⊆C,B⊆∁U C,易知A∩B=∅,但A∩B=∅时未必有A⊆C,B⊆∁U C,如图所示,所以“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的充分不必要条件.2.设x∈R,则“2-x≥0”是“(x-1)2≤1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.2-x≥0,则x≤2,(x-1)2≤1,则-1≤x-1≤1,即0≤x≤2,据此可知,“2-x≥0”是“(x-1)2≤1”的必要不充分条件.3.已知p:x+y≠-2,q:x,y不都是-1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.因为p:x+y≠-2,q:x≠-1或y≠-1,所以綈p:x+y=-2,綈q:x=-1且y=-1,因为綈q⇒綈p但綈p⇒/綈q,所以綈q是綈p的充分不必要条件,即p是q 的充分不必要条件.故选A.充分条件、必要条件的应用(典例迁移)已知条件p:集合P={x|x2-8x-20≤0},条件q:非空集合S={x|1-m ≤x ≤1+m }.若p 是q 的必要条件,求m 的取值范围.【解】 由x 2-8x -20≤0,得-2≤x ≤10, 所以P ={x |-2≤x ≤10}, 由p 是q 的必要条件,知S ⊆P .则⎩⎨⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,所以0≤m ≤3. 所以当0≤m ≤3时,p 是q 的必要条件, 即所求m 的取值范围是[0,3].【迁移探究1】 (变结论)若本例条件不变,问是否存在实数m ,使p 是q 的充要条件.解:若p 是q 的充要条件,则P =S , 所以⎩⎨⎧1-m =-2,1+m =10,所以⎩⎨⎧m =3,m =9,即不存在实数m ,使p 是q 的充要条件.【迁移探究2】 (变结论)本例条件不变,若綈p 是綈q 的必要不充分条件,求实数m 的取值范围.解:由例题知P ={x |-2≤x ≤10},因为綈p 是綈q 的必要不充分条件, 所以p ⇒q 且q ⇒p .所以[-2,10][1-m ,1+m ]. 所以⎩⎨⎧1-m ≤-2,1+m >10或⎩⎨⎧1-m <-2,1+m ≥10.所以m ≥9,即m 的取值范围是[9,+∞).已知充分、必要条件求参数取值范围的解题策略(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合的包含、相等关系,然后列出有关参数的不等式(组)求解.(2)涉及参数问题,直接解决较为困难时,可用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决,如将綈p ,綈q 之间的关系转化成p ,q 之间的关系来求解.[注意] (1)注意对区间端点值的处理;(2)注意条件的等价变形.设p :-m +12<x <m -12(m >0);q :x <12或x >1,若p 是q 的充分不必要条件,则实数m 的取值范围为______.解析:因为p 是q 的充分不必要条件,又m >0,所以m -12≤12,所以0<m ≤2. 答案:(0,2]思想方法系列1 等价转化思想在充要条件中的应用等价转化思想就是对原问题换一个方式、换一个角度、换一个观点加以考虑,把要解决的问题通过某种转化,再转化,化归为一类已经解决或比较容易解决的问题,从而使问题得到圆满解决的思维方式.已知条件p :|x -4|≤6;条件q :(x -1)2-m 2≤0(m >0).若綈p 是綈q 的充分不必要条件,则m 的取值范围为______.【解析】 条件p :-2≤x ≤10,条件q :1-m ≤x ≤1+m ,又綈p 是綈q的充分不必要条件,则q 是p 的充分不必要条件.故有⎩⎨⎧m >0,1-m ≥-21+m ≤10,,所以0<m ≤3.【答案】 (0,3]本例涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题化归为简单、熟悉的问题来解决.一般地,在涉及字母参数的取值范围的充分、必要条件问题中,常常要利用集合的包含、相等关系来考虑,这是解此类问题的关键.1.如果x ,y 是实数,那么“x ≠y ”是“cos x ≠cos y ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件解析:选C.法一:设集合A ={(x ,y )|x ≠y },B ={(x ,y )|cos x ≠cos y },则A的补集C={(x,y)|x=y},B的补集D={(x,y)|cos x=cos y},显然C D,所以B A,于是“x≠y”是“cos x≠cos y”的必要不充分条件.法二(等价转化法):因为x=y⇒cos x=cos y,而cos x=cos y⇒/x=y,所以“cos x=cos y”是“x=y”的必要不充分条件,故“x≠y”是“cos x≠cos y”的必要不充分条件.2.(2020·宁夏银川一中模拟)王昌龄的《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的() A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件解析:选B.“攻破楼兰”不一定“返回家乡”,但“返回家乡”一定是“攻破楼兰”,故“攻破楼兰”是“返回家乡”的必要非充分条件.故选B.[基础题组练]1.已知命题p:若x≥a2+b2,则x≥2ab,则下列说法正确的是() A.命题p的逆命题是“若x<a2+b2,则x<2ab”B.命题p的逆命题是“若x<2ab,则x<a2+b2”C.命题p的否命题是“若x<a2+b2,则x<2ab”D.命题p的否命题是“若x≥a2+b2,则x<2ab”解析:选C.命题p的逆命题是“若x≥2ab,则x≥a2+b2”,故A,B都错误;命题p的否命题是“若x<a2+b2,则x<2ab”,故C正确,D错误.2.已知p:a≠0,q:ab≠0,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.a≠0⇒/ab≠0,但ab≠0⇒a≠0,因此p是q的必要不充分条件.3.已知a,b,c是实数,下列结论正确的是()A.“a2>b2”是“a>b”的充分条件B.“a2>b2”是“a>b”的必要条件C.“ac2>bc2”是“a>b”的充分条件D.“|a|>|b|”是“a>b”的充要条件解析:选C.对于A ,当a =-5,b =1时,满足a 2>b 2,但是a <b ,所以充分性不成立;对于B ,当a =1,b =-2时,满足a >b ,但是a 2<b 2,所以必要性不成立;对于C ,由ac 2>bc 2得c ≠0,则有a >b 成立,即充分性成立,故正确;对于D ,当a =-5,b =1时,|a |>|b |成立,但是a <b ,所以充分性不成立,当a =1,b =-2时,满足a >b ,但是|a |<|b |,所以必要性也不成立,故“|a |>|b |”是“a >b ”的既不充分也不必要条件.故选C.4.已知命题α:如果x <3,那么x <5;命题β:如果x ≥3,那么x ≥5;命题γ:如果x ≥5,那么x ≥3.关于这三个命题之间的关系中,下列说法正确的是( )①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A .①③B .②C .②③D .①②③解析:选 A.本题考查命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题中的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定然后互换所得,故①正确,②错误,③正确.5.“(x +1)(y -2)=0”是“x =-1且y =2”的________条件.解析:因为(x +1)(y -2)=0,所以x =-1或y =2,所以(x +1)(y -2)=0⇒/ x =-1且y =2,x =-1且y =2⇒(x +1)(y -2)=0,所以是必要不充分条件.答案:必要不充分6.已知命题p :x ≤1,命题q :1x <1,则綈p 是q 的______.解析:由题意,得綈p :x >1,q :x <0或x >1,故綈p 是q 的充分不必要条件.答案:充分不必要条件7.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________.解析:由题意知ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,得⎩⎨⎧a <0,Δ=4a 2+12a ≤0, 解得-3≤a <0,故-3≤a ≤0.答案:[-3,0]8.已知命题p :(x +3)(x -1)>0;命题q :x >a 2-2a -2.若綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解:已知p :(x +3)(x -1)>0,可知p :x >1或x <-3,因为綈p 是綈q 的充分不必要条件,所以q 是p 的充分不必要条件,得a 2-2a -2≥1,解得a ≤-1或a ≥3,即a ∈(-∞,-1]∪[3,+∞).[综合题组练]1.(创新型)(2020·抚州七校联考)A ,B ,C 三个学生参加了一次考试,A ,B 的得分均为70分,C 的得分为65分.已知命题p :若及格分低于70分,则A ,B ,C 都没有及格.则下列四个命题中为p 的逆否命题的是( )A .若及格分不低于70分,则A ,B ,C 都及格B .若A ,B ,C 都及格,则及格分不低于70分C .若A ,B ,C 至少有一人及格,则及格分不低于70分D .若A ,B ,C 至少有一人及格,则及格分高于70分解析:选C.根据原命题与它的逆否命题之间的关系知,命题p 的逆否命题是若A ,B ,C 至少有一人及格,则及格分不低于70分.故选C.2.(2020·辽宁丹东质量测试(一))已知x ,y ∈R ,则“x +y ≤1”是“x ≤12且y ≤12”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B.当“x +y ≤1”时,如x =-4,y =1,满足x +y ≤1,但不满足“x ≤12且y ≤12”.当“x ≤12且y ≤12”时,根据不等式的性质有“x +y ≤1”.故“x +y ≤1”是“x ≤12且y ≤12”的必要不充分条件.故选B.3.(2020·湖南雅礼中学3月月考)若关于x 的不等式|x -1|<a 成立的充分条件是0<x <4 ,则实数a 的取值范围是( )A .a ≤1B .a <1C .a >3D .a ≥3解析:选D.|x -1|<a ⇒-a <x -1<a ⇒1-a <x <1+a ,因为不等式|x -1|<a 成立的充分条件是0<x <4,所以(0,4)⊆(1-a ,1+a ),所以⎩⎨⎧1-a ≤0,1+a ≥4⇒⎩⎨⎧a ≥1,a ≥3⇒a ≥3.故D 正确.4.下列命题中为真命题的序号是______.①若x ≠0,则x +1x ≥2;②命题:若x 2=1,则x =1或x =-1的逆否命题为:若x ≠1且x ≠-1,则x 2≠1;③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件; ④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”.解析:当x <0时,x +1x ≤-2,故①是假命题;根据逆否命题的定义可知,②是真命题;“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③是假命题;根据否命题的定义知④是真命题.答案:②④。
高考数学(人教版)一轮课件:命题及其关系、充分条件与必要条件
B.若 a+b=1,则 a2+b2<12
C.若 a2+b2<12,则 a+b≠1
D.若 a2+b2≥12,则 a+b=1
(2)已知 p:若 a∈A,则 b∈B,那么命题綈 p 是( )
A.若 a∈A,则 b∉B C.若 a∉A,则 b∈B
B.若 a∉A,则 b∉B D.若 b∈B,则 a∈A
解析:(1)命题“若 p,则 q”的否命题是“若綈 p,则綈 q”, 故该命题的否命题为 A.
C.充分必要条件
D.既不充分也不必要条件
解析:由 φ=π,得 y=sin(2x+π)=-sin 2x,显然过原点.若 曲线 y=sin(2x+φ)过坐标原点,则 0=sin φ,∴φ=kπ(k∈Z),不 一定推出 φ=π,故“φ=π”是“曲线 y=sin(2x+φ)过坐标原 点”的充分不必要条件.
充分条件与必 要条件的判断
1.考查内容:(1)考查命题及其关系、命题真假判断及命题的 四种形式的相互转化.(2)考查充分条件、必要条件的概念.
2.题型:以选择或填空的形式考查命题及其关系;以选择 题的形式考查充分条件、必要条件的概念.
3.命题切入点:以数学相关知识为载体,考查命题真假判 断及充分条件与必要条件.
-m<2,且綈 p 是 q 的充分条件,求实数 m 的取值范围.
[解] 由条件 q 可得mm> <ffxx- +22,. ∵綈 p 是 q 的充分条件,
∴在π4≤x≤π2的条件下,mm> <ffxx- +22, 恒成立.
又 f(x)=2[1-cos(π2+2x)]-2 3cos2x-1 =2sin2x-2 3cos2x+1 =4sin(2x-π3)+1. 由π4≤x≤π2,知π6≤2x-π3≤23π, ∴3≤4sin(2x-π3)+1≤5, 故当 x=51π2时,f(x)max=5, 当 x=π4时,f(x)min=3.
第一章第二节命题及其关系充分条件与必要条件
[归纳领悟]
在有些含字母参数的数学命题中,可以借助p和q间
“条件”的关系,确定相应等式(或不等式),从而建立 关于参数的方程(或不等式),进而求得参数的取值范围.
一、把脉考情 从近两年的高考试题看,充要条件的判定、命题真假的
判断等是高考的热点,题型以选择题、填空题为主,分值为 5分,属中低档题目.本节知识常和函数、不等式、向量、 三角函数及立体几何中直线、平面的位置关系等有关知识相 结合,考查学生对函数的有关性质、不等式的解法及直线与 平面位置关系判定的掌握程度.
3.已知P={x|x2-8x-20≤0},S={x|1-m≤x≤1+m}. (1)是否存在实数m,使x∈P是x∈S的充要条件,若存 在,求出m的范围; (2)是否存在实数m,使x∈P是x∈S的必要条件,若存 在,求出m的范围.
解:(1)由 x2-8x-20≤0 得-2≤x≤10, ∴P={x|-2≤x≤10}, ∵x∈P 是 x∈S 的充要条件,∴P=S, ∴11- +mm= =-102 ,∴mm= =39 . ∴这样的 m 不存在. (2)由题意 x∈P 是 x∈S 的必要条件,则 S⊆P. ∴11- +mm≥ ≤-102 .∴m≤3. 综上,可知 m≤3 时,x∈P 是 x∈S 的必要条件.
(2)等价转化法 条件和结论带有否定性词语的命题,常转化为其逆否命 题来判断. 注意:从集合的角度理解,小范围可以推出大范围,大 范围不能推出小范围.
[题组自测] 1.已知直线l1:x+ay+6=0和l2:(a-2)x+3y+2a=0,
则l1∥l2的充要条件是a=______.
解析:由1×3-a×(a-2)=0得a=3或-1,而a=3时, 两条直线重合,所以a=-1.
[归纳领悟] 1.在判断四种命题之间的关系时,首先要注意分清命题的
高中数学《命题及其关系充分条件与必要条件》教案苏教版选修
一、教材分析本节课选自苏教版高中数学选修2-3《命题及其关系-充分条件与必要条件》。
这部分内容是学生在学习了简单逻辑用语和复合命题之后,对命题及其关系的进一步拓展。
充分条件和必要条件是描述命题之间关系的重要概念,对于学生理解命题的内在联系,提高逻辑思维能力具有重要意义。
二、教学目标1. 理解充分条件和必要条件的概念,掌握判断充分条件和必要条件的方法。
2. 能够运用充分条件和必要条件分析实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力和口头表达能力。
三、教学重点与难点1. 教学重点:充分条件和必要条件的概念及其判断方法。
2. 教学难点:充分条件和必要条件的区分和应用。
四、教学方法采用问题驱动法、案例分析法和小组合作法,引导学生通过自主学习、合作交流,掌握充分条件和必要条件的概念及判断方法。
五、教学过程1. 导入新课:通过一个生活实例,引导学生思考充分条件和必要条件的关系。
2. 自主学习:学生自主阅读教材,理解充分条件和必要条件的概念。
3. 案例分析:分析具体案例,让学生判断其中的充分条件和必要条件。
4. 小组讨论:学生分组讨论,交流判断充分条件和必要条件的心得。
5. 总结提升:教师引导学生总结充分条件和必要条件的判断方法。
6. 课后作业:布置相关练习题,巩固所学知识。
教案连载,请期待后续章节。
六、教学反思在课后,教师应认真反思本节课的教学效果,包括学生的学习兴趣、参与度、理解程度等,以便对教学方法和策略进行调整,提高教学质量。
七、课后作业1. 请用充分条件和必要条件判断下列命题:(1)如果一个人是学生,他一定有身份证。
(2)一个三角形是等边三角形当且仅当它的三条边相等。
2. 结合生活中的实例,运用充分条件和必要条件分析问题。
八、课后辅导针对学生在课后作业中出现的问题,教师应及时给予辅导,帮助学生巩固知识点,提高解题能力。
九、拓展与延伸为了激发学生的学习兴趣,提高学生的综合素质,可以布置一些拓展与延伸的课题,如:1. 研究充分条件和必要条件在实际问题中的应用,举例说明。
【高中数学】命题及其关系、充分条件与必要条件
命题及其关系、充分条件与必要条件一、基础知识1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.一个命题要么是真命题,要么是假命题,不能模棱两可.2.四种命题及其相互关系3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;①A是B的充分不必要条件是指:A⇒B且B A;②A的充分不必要条件是B是指:B⇒A且A B,在解题中要弄清它们的区别,以免出现错误.(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.充要关系与集合的子集之间的关系设A={x|p(x)},B={x|q(x)},①若A⊆B,则p是q的充分条件,q是p的必要条件.②若A B,则p是q的充分不必要条件,q是p的必要不充分条件.③若A=B,则p是q的充要条件.二、常用结论1.四种命题中的等价关系原命题等价于逆否命题,否命题等价于逆命题,所以在命题不易证明时,往往找等价命题进行证明.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于非q是非p的充分不必要条件.其他情况以此类推.考点一四种命题及其真假判断[典例](2019·菏泽模拟)有以下命题:①“若xy =1,则x ,y 互为倒数”的逆命题;②“面积相等的两个三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题;④“若A ∩B =B ,则A ⊆B ”的逆否命题.其中真命题是()A .①②B .②③C .④D .①②③[解析]①原命题的逆命题为“若x ,y 互为倒数,则xy =1”,是真命题;②原命题的否命题为“面积不相等的两个三角形不全等”,是真命题;③若m ≤1,Δ=4-4m ≥0,所以原命题是真命题,故其逆否命题也是真命题;④由A ∩B =B ,得B ⊆A ,所以原命题是假命题,故其逆否命题也是假命题,故①②③正确.[答案]D [题组训练]1.(2019·长春质监)命题“若x 2<1,则-1<x <1”的逆否命题是()A .若x 2≥1,则x ≥1或x ≤-1B .若-1<x <1,则x 2<1C .若x >1或x <-1,则x 2>1D .若x ≥1或x ≤-1,则x 2≥1解析:选D命题的形式是“若p ,则q ”,由逆否命题的知识,可知其逆否命题是“若非q ,则非p ”的形式,所以“若x 2<1,则-1<x <1”的逆否命题是“若x ≥1或x ≤-1,则x 2≥1”.2.已知集合P |x =k +12,k ∈Z|x =k2,k ∈Zx ∈P ,则x ∈Q”,那么,在原命题及其逆命题、否命题、逆否命题中,真命题的个数为()A .0B .1C .2D .4解析:选C 因为P =|x =k +12,k ∈Z=|x =2k +12,k ∈Z ,Q =|x =k2,k ∈Z 所以P Q ,所以原命题“x ∈P ,则x ∈Q”为真命题,则原命题的逆否命题为真命题.原命题的逆命题“x ∈Q ,则x ∈P ”为假命题,则原命题的否命题为假命题,所以真命题的个数为2.考点二充分、必要条件的判断[典例](1)(2019·湖北八校联考)若a ,b ,c ,d ∈R ,则“a +d =b +c ”是“a ,b ,c ,d 依次成等差数列”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)(2018·天津高考)设x ∈R ,则“|x -12|<12”是“x 3<1”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(3)已知p :x +y ≠-2,q :x ,y 不都是-1,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析](1)定义法当a =-1,b =0,c =3,d =4时,a +d =b +c ,但此时a ,b ,c ,d 不成等差数列;而当a ,b ,c ,d 依次成等差数列时,由等差数列的性质知a +d =b +c .所以“a +d =b +c ”是“a ,b ,c ,d 依次成等差数列”的必要不充分条件,故选B.(2)集合法由|x -12|<12,得0<x <1,则0<x 3<1,即“|x -12|<12”⇒“x 3<1”;由x 3<1,得x <1,当x ≤0时,|x -12|≥12,即“x 3<1”“|x -12|<12”.所以“|x -12|<12”是“x 3<1”的充分而不必要条件.(3)等价转化法因为p :x +y ≠-2,q :x ≠-1或y ≠-1,所以非p :x +y =-2,非q :x =-1且y =-1,因为非q⇒非p但非p非q,所以非q是非p的充分不必要条件,即p是q的充分不必要条件.[答案](1)B(2)A(3)A[提醒]判断条件之间的关系要注意条件之间关系的方向,要注意“A是B的充分不必要条件”与“A的充分不必要条件是B”的区别,要正确理解“p的一个充分不必要条件是q”的含义.[题组训练]1.[集合法]已知x∈R,则“x<1”是“x2<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B若x2<1,则-1<x<1,∵(-∞,1)⊇(-1,1),∴“x<1”是“x2<1”的必要不充分条件.2.[定义法](2018·南昌调研)已知m,n为两个非零向量,则“m·n<0”是“m与n的夹角为钝角”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B设m,n的夹角为θ,若m,n的夹角为钝角,则π2<θ<π,则cosθ<0,则m·n<0成立;当θ=π时,m·n=-|m|·|n|<0成立,但m,n的夹角不为钝角.故“m·n<0”是“m与n的夹角为钝角”的必要不充分条件.3.[等价转化法]“xy≠1”是“x≠1或y≠1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A设p:xy≠1,q:x≠1或y≠1,则非p:xy=1,非q:x=1且y=1.可知非q⇒非p,非p非q,即非q是非p的充分不必要条件.故p是q的充分不必要条件,即“xy≠1”是“x≠1或y≠1”的充分不必要条件.考点三根据充分、必要条件求参数的范围[典例]已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x ∈S的必要条件,则m的取值范围是________.[解析]由x2-8x-20≤0,得-2≤x≤10,所以P={x|-2≤x≤10},由x∈P是x∈S的必要条件,知S⊆P.-m≤1+m,-m≥-2,+m≤10,所以0≤m≤3.所以当0≤m≤3时,x∈P是x∈S的必要条件,即所求m的取值范围是[0,3].[答案][0,3][变透练清]1.[变结论]若本例条件不变,问是否存在实数m,使x∈P是x∈S的充要条件.解:若x∈P是x∈S的充要条件,则P=S,所以{1-m=-2,1+m=10,解得{m=3,m=9,即不存在实数m,使x∈P是x∈S的充要条件.2.(变条件)若本例将条件“若x∈P是x∈S的必要条件”变为“若非P是非S的必要不充分条件”,其他条件不变,求实数m的取值范围.解:由例题知P={x|-2≤x≤10},∵非P是非S的必要不充分条件,∴S是P的必要不充分条件,∴P⇒S且S P.∴[-2,10][1-m,1+m].-m≤-2,+m>10-m<-2,+m≥10.∴m≥9,即m的取值范围是[9,+∞).[课时跟踪检测]1.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的()A.逆命题B.否命题C.逆否命题D.否定解析:选B命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.2.命题“若x2+3x-4=0,则x=4”的逆否命题及其真假性为()A.“若x=4,则x2+3x-4=0”为真命题B.“若x≠4,则x2+3x-4≠0”为真命题C.“若x≠4,则x2+3x-4≠0”为假命题D.“若x=4,则x2+3x-4=0”为假命题解析:选C根据逆否命题的定义可以排除A、D,因为x2+3x-4=0,所以x=-4或1,故原命题为假命题,即逆否命题为假命题.3.原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假解析:选B当z1,z2互为共轭复数时,设z1=a+b i(a,b∈R),则z2=a-b i,则|z1|=|z2|=a2+b2,所以原命题为真,故其逆否命题为真.取z1=1,z2=i,满足|z1|=|z2|,但是z1,z2不互为共轭复数,所以其逆命题为假,故其否命题也为假.4.(2018·北京高考)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B a,b,c,d是非零实数,若a<0,d<0,b>0,c>0,且ad=bc,则a,b,c,d不成等比数列(可以假设a=-2,d=-3,b=2,c=3).若a,b,c,d成等比数列,则由等比数列的性质可知ad=bc.所以“ad=bc”是“a,b,c,d成等比数列”的必要而不充分条件.5.已知命题α:如果x<3,那么x<5;命题β:如果x≥3,那么x≥5;命题γ:如果x≥5,那么x≥3.关于这三个命题之间的关系中,下列说法正确的是()①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A.①③B.②C.②③D.①②③解析:选A本题考查命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定然后互换所得,故①正确,②错误,③正确.6.(2018·北京高考)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的() A.充分而不必要条件B.必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C 由|a -3b |=|3a +b |,得(a -3b )2=(3a +b )2,即a 2+9b 2-6a ·b =9a 2+b 2+6a ·b .因为a ,b 均为单位向量,所以a 2=b 2=1,所以a ·b =0,能推出a ⊥b .由a ⊥b 得|a -3b |=10,|3a +b |=10,能推出|a -3b |=|3a +b |,所以“|a -3b |=|3a +b |”是“a ⊥b ”的充分必要条件.7.如果x ,y 是实数,那么“x ≠y ”是“cos x ≠cos y ”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选C设集合A ={(x ,y )|x ≠y },B ={(x ,y )|cos x ≠cos y },则A 的补集C ={(x ,y )|x =y },B 的补集D ={(x ,y )|cos x =cos y },显然C D ,所以BA .于是“x ≠y ”是“cosx ≠cos y ”的必要不充分条件.8.(2019·湘东五校联考)“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是()A .m >14B .0<m <1C .m >0D .m >1解析:选C若不等式x 2-x +m >0在R 上恒成立,则Δ=(-1)2-4m <0,解得m >14,因此当不等式x 2-x +m >0在R 上恒成立时,必有m >0,但当m >0时,不一定推出不等式在R 上恒成立,故所求的必要不充分条件可以是m >0.9.在△ABC 中,“A =B ”是“tan A =tan B ”的________条件.解析:由A =B ,得tan A =tan B ,反之,若tan A =tan B ,则A =B +k π,k ∈Z.∵0<A <π,0<B <π,∴A =B ,故“A =B ”是“tan A =tan B ”的充要条件.答案:充要10.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:若m =2,n =3,则2>-3,但22<32,所以原命题为假命题,则逆否命题也为假命题,若m =-3,n =-2,则(-3)2>(-2)2,但-3<2,所以逆命题是假命题,则否命题也是假命题.故假命题的个数为3.答案:311.已知p (x ):x 2+2x -m >0,若p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.解析:因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3.又p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围为[3,8).答案:[3,8)12.(2019·齐鲁名校调研)给出下列说法:①“若x +y =π2,则sin x =cos y ”的逆命题是假命题;②“在△ABC 中,sin B >sin C 是B >C 的充要条件”是真命题;③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”.以上说法正确的是________(填序号).解析:对于①,“若x +y =π2,则sin x =cos y ”的逆命题是“若sin x =cos y ,则x +y=π2”,当x =0,y =3π2时,有sin x =cos y 成立,但x +y =3π2,故逆命题为假命题,①正确;对于②,在△ABC 中,由正弦定理得sin B >sin C ⇔b >c ⇔B >C ,②正确;对于③,“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③错误;对于④,根据否命题的定义知④正确.答案:①②④13.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.解:(1)逆命题:已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a 2<4b ,则关于x 的不等式x 2+ax +b ≤0没有非空解集,为真命题.。
高中数学《命题及其关系充分条件与必要条件》教案苏教版选修
高中数学《命题及其关系-充分条件与必要条件》教案苏教版选修一、教学目标:1. 理解充分条件和必要条件的概念。
2. 学会判断充分条件和必要条件。
3. 掌握充分条件和必要条件与命题之间的关系。
二、教学内容:1. 充分条件和必要条件的定义。
2. 判断充分条件和必要条件的方法。
3. 充分条件和必要条件与命题之间的关系。
三、教学重点与难点:1. 教学重点:充分条件和必要条件的概念及判断方法。
2. 教学难点:充分条件和必要条件与命题之间的关系。
四、教学方法:1. 采用案例分析法,通过具体例子引导学生理解充分条件和必要条件的概念。
2. 采用小组讨论法,让学生在小组内讨论如何判断充分条件和必要条件。
3. 采用归纳法,引导学生总结充分条件和必要条件与命题之间的关系。
五、教学过程:1. 引入新课:通过一个生活中的例子,引导学生思考什么是充分条件和必要条件。
2. 讲解充分条件和必要条件的定义:给出充分条件和必要条件的定义,让学生理解这两个概念。
3. 判断充分条件和必要条件:通过例子,讲解如何判断充分条件和必要条件。
4. 充分条件和必要条件与命题之间的关系:引导学生总结充分条件和必要条件与命题之间的关系。
5. 课堂练习:给出一些题目,让学生判断充分条件和必要条件。
6. 课堂小结:总结本节课所学内容,让学生巩固知识。
7. 作业布置:布置一些练习题,让学生巩固所学知识。
六、教学评估:1. 课堂问答:通过提问学生,了解学生对充分条件和必要条件的理解和掌握程度。
2. 课堂练习:观察学生在练习题中的表现,判断他们是否能够正确判断充分条件和必要条件。
3. 课后作业:通过批改学生的作业,了解他们对本节课知识的掌握情况。
七、教学反思:1. 反思教学方法:根据学生的反馈,调整教学方法,确保学生能够更好地理解和掌握充分条件和必要条件。
2. 反思教学内容:根据学生的掌握情况,调整教学内容,确保学生能够全面掌握充分条件和必要条件。
八、课后作业:1. 练习题:让学生通过做练习题,巩固对充分条件和必要条件的理解和判断能力。
高中数学命题及其关系_充分条件与必要条件
3.反证法证明命题的一般步骤 (1)否定结论,(2)从假设出发,经过推理论证得出矛盾,(3)断定
假设错误,肯定结论成立. 反证法属于间接证法,当证明一个结论成立,已知条件较少,或
结论的情况较多,或结论是以否定形式出现,如某些结论中 含有“至多”、“至少”、“惟一”、“不可能”、“不都” 等指示性词语时往往考虑采用反证法证明结论成立.
四种命题的结构不明致误
【典例2】 写出命题“若a,b都是偶数,则a+b是偶数”的逆 命题,否命题,逆否命题,并判断它们的真假.
[剖析] 解本题易出现的错误有两个:一是对一个命题的逆命 题、否命题、逆否命题的结构认识模糊出错;二是在否定一 个结论时出错,如对“a,b都是偶数”的否定应该是“a,b 不都是偶数”,而不应该是“a,b都是奇数”.
[正解] 逆命题:“若a+b是偶数,则a,b都是偶数.”它是假命 题;
否命题:“若a,b不都是偶数,则a+b不是偶数.”它是假命题; 逆否命题:“若a+b不是偶数,则a,b不都是偶数.”它是真命题.
[评析]四种命题的结构与等价关系
如果原命题是“若A,则B”,则这个命题的逆命题是“若B,则 A”,否命题是“若¬A,则¬B”,逆否命题是“若¬B,则¬A”. 这里面有两组等价的命题,即“原命题和它的逆否命题等 价,否命题与逆命题等价”.在解答由一个命题写出该命题 的其他形式的命题时,一定要明确四种命题的结构以及它 们之间的等价关系.
x2
x2
1,
2,
m m
2, 3
1,
m
2;
又≥0,即: m2 4m 12≥0;解之得m 6或m≤ 2;
高中数学《命题及其关系充分条件与必要条件》教案苏教版选修
高中数学《命题及其关系-充分条件与必要条件》教案苏教版选修一、教学目标:1. 让学生理解充分条件和必要条件的概念,掌握判断充分条件和必要条件的方法。
2. 培养学生运用充分条件和必要条件分析问题、解决问题的能力。
3. 帮助学生建立充分条件和必要条件之间的联系,理解它们在数学论证中的应用。
二、教学内容:1. 充分条件和必要条件的定义。
2. 判断充分条件和必要条件的方法。
3. 充分条件和必要条件与数学论证的关系。
三、教学重点与难点:重点:充分条件和必要条件的定义及判断方法。
难点:充分条件和必要条件在数学论证中的应用。
四、教学过程:1. 导入:通过生活实例引入充分条件和必要条件的概念。
2. 新课讲解:讲解充分条件和必要条件的定义,举例说明判断方法。
3. 课堂练习:让学生运用充分条件和必要条件判断给出的命题。
4. 案例分析:分析充分条件和必要条件在数学论证中的应用。
5. 总结提升:总结本节课的主要内容,强调充分条件和必要条件的重要性。
五、课后作业:1. 复习本节课的内容,理解充分条件和必要条件的概念及判断方法。
2. 完成课后练习题,巩固所学知识。
3. 思考充分条件和必要条件在实际问题中的应用,准备下一节课的分享。
六、教学策略:1. 采用问题驱动的教学方法,引导学生通过实例发现充分条件和必要条件的规律。
2. 利用逻辑推理和反证法,让学生在实践中掌握充分条件和必要条件的判断方法。
3. 设计具有针对性的练习题,及时巩固所学知识,提高学生的应用能力。
4. 组织小组讨论,鼓励学生分享自己的思路和经验,培养学生的合作意识。
七、教学准备:1. 准备相关的生活实例和数学案例,用于引导学生理解和应用充分条件和必要条件。
2. 设计课后练习题,包括基础题和拓展题,以满足不同层次学生的学习需求。
3. 准备教学PPT,用于辅助讲解和展示教学内容。
八、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组讨论的表现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲命题及其关系、充分条件与必要条件
一、选择题
1.(2015·山东卷)设m∈R, 命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是()
A.若方程x2+x-m=0有实根,则m>0
B.若方程x2+x-m=0有实根,则m≤0
C.若方程x2+x-m=0没有实根,则m>0
D.若方程x2+x-m=0没有实根,则m≤0
解析根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.
答案 D
2.“x=1”是“x2-2x+1=0”的()
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
解析因为x2-2x+1=0有两个相等的实数根为x=1,所以“x=1”是“x2-2x+1=0”的充要条件.
答案 A
3.设α,β是两个不同的平面,m是直线且m⊂α,则“m∥β”是“α∥β”的()
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
解析m⊂α,m∥βα∥β,但m⊂α,α∥β⇒m∥β,∴“m∥β”是“α∥β”的必要不充分条件.
答案 B
4.(2017·安徽江南十校联考)“a=0”是“函数f(x)=sin x-1
x+a为奇函数”的
()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析显然a=0时,f(x)=sin x-1
x为奇函数;
当f(x)为奇函数时,f(-x)+f(x)=0.
又f(-x)+f(x)=sin(-x)-
1
-x
+a+sin x-
1
x+a=0.
因此2a=0,故a=0.
所以“a=0”是“函数f(x)为奇函数”的充要条件.
答案 C
5.下列结论错误的是()
A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”
B.“x=4”是“x2-3x-4=0”的充分条件
C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题
D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”
解析C项命题的逆命题为“若方程x2+x-m=0有实根,则m>0”.若方程有实根,则Δ=1+4m≥0,
即m≥-1
4,不能推出m>0.所以不是真命题.
答案 C
6.设x∈R,则“1<x<2”是“|x-2|<1”的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析由|x-2|<1,得1<x<3,所以1<x<2⇒1<x<3;但1<x<31<x<2.
所以“1<x<2”是“|x-2|<1”的充分不必要条件.
答案 A
7.已知命题p:x2+2x-3>0;命题q:x>a,且綈q的一个充分不必要条件是綈
p,则a的取值范围是()
A.[1,+∞)
B.(-∞,1]
C.[-1,+∞)
D.(-∞,-3]
解析由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈
p ,可知綈p 是綈q 的充分不必要条件,等价于q 是p 的充分不必要条件.故a ≥1. 答案 A
8.(2017·佛山模拟)已知a ,b 都是实数,那么“a >b ”是“ln a >ln b ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件
D.既不充分也不必要条件
解析 由ln a >ln b ⇒a >b >0⇒a >b ,故必要性成立.
当a =1,b =0时,满足a >b ,但ln b 无意义,所以ln a >ln b 不成立,故充分性不成立. 答案 B 二、填空题
9.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.
解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题. 答案 2
10.“sin α=cos α”是“cos 2α=0”的________条件. 解析 cos 2α=0等价于cos 2α-sin 2α=0, 即cos α=±sin α.
由cos α=sin α得到cos 2α=0;反之不成立.
∴“sin α=cos α”是“cos 2α=0”的充分不必要条件. 答案 充分不必要
11.已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是________.
解析 令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}. ∵p 是q 的充分不必要条件,∴M N , ∴⎩⎨⎧a >0,a +1<4,解得0<a <3. 答案 (0,3) 12.有下列几个命题:
①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆
命题;③“若x 2<4,则-2<x <2”的逆否命题. 其中真命题的序号是________.
解析 ①原命题的否命题为“若a ≤b ,则a 2≤b 2”错误.②原命题的逆命题为:“若x ,y 互为相反数,则x +y =0”正确.③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”正确. 答案 ②③
13.(2016·四川卷)设p :实数x ,y 满足x >1且y >1,q :实数x ,y 满足x +y >2,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件
D.既不充分也不必要条件
解析 若x >1且y >1,则x +y >2.所以p ⇒q ;反之x +y >2x >1且y =1,例如x
=3,y =0,所以q
p .
因此p 是q 的充分不必要条件. 答案 A
14.(2017·南昌十所省重点中学联考)已知m ∈R ,“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件
D.既不充分也不必要条件
解析 由y =2x +m -1=0,得m =1-2x ,则m <1. 由于函数y =log m x 在(0,+∞)上是减函数, 所以0<m <1.
因此“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的必要不充分条件. 答案 B 15.已知集合
A =⎩⎨⎧⎭
⎬⎫x ⎪⎪⎪12<2x
<8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成
立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.
解析 A =⎩⎨⎧⎭
⎬⎫
x ⎪⎪⎪12<2x <8,x ∈R ={x |-1<x <3},
∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2.
答案(2,+∞)
16.(2016·临沂模拟)下列四个结论中正确的是________(填序号).
①“x2+x-2>0”是“x>1”的充分不必要条件;②命题:“∀x∈R,sin x≤1”的
否定是“∃x0∈R,sin x0>1”;③“若x=π
4,则tan x=1”的逆命题为真命题;
④若f(x)是R上的奇函数,则f(log32)+f(log23)=0.
解析①中“x2+x-2>0”是“x>1”的必要不充分条件,故①错误.
对于②,命题:“∀x∈R,sin x≤1”的否定是“∃x0∈R,sin x0>1”,故②正确.
对于③,“若x=π
4,则tan x=1”的逆命题为“若tan x=1,则x=
π
4”,其为假
命题,故③错误.
对于④,若f(x)是R上的奇函数,则f(-x)+f(x)=0,∵log32=
1
log23≠-log32,
∴log32与log23不互为相反数,故④错误. 答案②。