运动控制课程设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
第1章概述
直流电机双闭环(电流环、转速环)调速系统是一种当前应用广泛,经济,适用的电力传动系统。它具有动态响应快、抗干扰能力强优点。我们知道反馈闭环控制系统具有良好的抗扰性能,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,例如要求起制动、突加负载动态速降小等等,单闭环系统就难以满足要求。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的。但它只是在超过临界电流值以后,强烈的负反馈作用限制电流得冲击,并不能很理想的控制电流的动态波形。在实际工作中,我们希望在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过度过程中始终保持电流(转矩)为允许最大值,使电力拖动系统尽可能用最大的加速度起动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。这时,启动电流成方波形,而转速是线性增长的。这是在最大电流(转矩)首相的条件下调速系统所能得到的最快的起动过程。
实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值得恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不在电流负反馈发挥主作用,因此我们采用双闭环调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用不同的阶段。
在设计过程中,为了实现转速和电流两种负反馈分别起作用,需要设置两个调节器,分别调节转速和电流,二者之间实行串级连接,即把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置从闭环结构上看,电流调节环在里面,叫内环;转速环在外面,叫外环。这样就形成了转速、电流双闭环调速系统。
第2章 系统总体方案确定
2.1 双闭环直流调速系统的组成
为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串级连接,如下图所示,即把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置。从闭环结构上看,电流调节环在里面,叫做内环;转速环在外面,叫做外环。这样就形成了转速、电流双闭环调速系统。
该双闭环调速系统的两个调节器ASR 和ACR 一般都采用PI 调节器。因为PI 调节器作为校正装置既可以保证系统的稳态精度,使系统在稳态运行时得到无静差调速,又能提高系统的稳定性;作为控制器时又能兼顾快速响应和消除静差两方面的要求。一般的调速系统要求以稳和准为主,采用PI 调节器便能保证系统获得良好的静态和动态性能。
图中U *
n 、U n —转速给定电压和转速反馈电压;U *i 、U i —电流给定电压和电流
反馈电压;
转速、电流双闭环直流调速系统结构
ASR —转速调节器 ACR —电流调节器 TG —测速发电机
TA —电流互感器 UPE —电力电子变换器
外环
内环
2.2 直流电机调速方法
2.2.1 转速方程
根据直流电机转速方程 Φ-=K IR
U n
式中 n — 转速(r/min );
U — 电枢电压(V );
I — 电枢电流(A );
R — 电枢回路总电阻(Ω);
Φ— 励磁磁通(Wb );
K — 由电机结构决定的电动势常数。
由上式可以看出,有三种调节电动机转速的方法:
(1)调节电枢供电电压 U ;
(2)改变电枢回路电阻 R ;
(3)减弱励磁磁通Φ。
2.2.2 三种调速方法
1、 降压调速
在保持励磁Φ=ΦN ,电阻R =R a 的条件下,改变电压U N ,使之减小,则使转速
n 下降,从而影响理想空载转速n 0。整体表现为转速下降,机械特性曲线平行下
移。
2、 调阻调速
在保持励磁Φ=Φ
,电压U=U N的条件下,改变电阻R a,使之增大,则使转速
N
n下降,但理想空载转速n
保持不变。整体表现为转速下降,机械特性曲线变软。
3、调磁调速
在保持电压U=U N,电阻R=R a的条件下,改变励磁ΦN,使之减小,则使转速n 增大,且理想空载转速n0随之增大。整体表现为转
速上升,机械特性曲线变
软。
2.2.3 三种调速方法的性能与比较
对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。改变电阻只能有级调速;减弱磁通虽然能够平滑调速,但调速范围不大,往往只是配合调压方案,在基速(即电机额定转速)以上作小范围的弱磁升速。
因此,自动控制的直流调速系统往往以调压调速为主。
第3章主电路设计
本设计采用的转速电流反馈控制直流调速系统可分为三个部分:主电路和控制电路以及保护电路和反馈环节。主电路主要包括整流变压器和电力电子变换装置,起到将交流变换成直流,从而为直流电动机提供电源电压的作用。控制电路主要包括电流调节器和转速调节器以及触发器,其中电流调节器与电流反馈环构成电流环,起到稳定电流的作用;转速调节器和转速反馈环构成转速环,使转速稳态无静差;触发器则用于为整流晶闸管组提供触发脉冲。保护电路主要为晶闸管保护电路,包括由整流变压器交流侧的快速熔断器组构成的保护电路,以及与晶闸管并联的阻容电路构成的保护电路。保护电路的设置使得晶闸管免受过电压以及过电流的影响,从而使系统工作可靠。反馈环节包括电流反馈环节和转速反馈环节。前者由电流互感器进行电流检测,再进行整流滤波得到电流反馈信号,后者则使用测速发电机来得到实际转速信号。
3.1主电路结构设计
主电路主要由整流变压器和整流晶闸管组构成。整流变压器将公共电网的交流电压变换成整流桥可用的电源电压,而整流晶闸管组构成三相全控桥,将交流电变换成直流电,从而作为直流电动机的电源电压。
直接整流得到的电流和电压往往有较大的脉动,若直接作为直流电动机的电源电压,将会引起电机振动及噪声。为此,需要在主电路的直流侧加入平波电抗器和滤波大电容,从而减小整流器输出电流脉动以及输出电压脉动。
由于三相半波可控整流电路在其变压器的二次电流中含有直流分量,不适合变压器的长期运行,所以不予采用。本设计采用三相桥式全控整流电路。