最小生成树(最小支撑树)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3 最小生成树问题
给了一个无向图G=(V,E),我们保留G的所有点,而删掉部分G的边或 者说保留一部分G的边,所获得的图G,称之为G的生成子图。在图11-12中, (b)和(c)都是(a)的生成子图。 如果图G的一个生成子图还是一个树,则称这个生成子图为生成树, 在图11-12中,(c)就是(a)的生成树。 最小生成树问题就是指在一个赋权的连通的无向图G中找出一个生成 树,并使得这个生成树的所有边的权数之和为最小。
§3 最小生成树问题
• 树是图论中的重要概念,所谓树就是一个无圈的连通图。
v1 v2 v6 v5 v7 v6 v8 v9 v3 v4 v2 v4 v1 v2 v3 v5 v8 v3 v4 v5 v7 v6 v9 v1 v8
(a)
(b)
v7
(c)
图11-11
图11-11中,(a)就是一个树,而(b)因为图中有圈所以就不 是树, (c)因为不连通所以也不是树。
(a) 1
(b) 1
7 3 4 v7 2 4 5
3
4 v7 2 v5
v3
v4
(c) 1 3
v5
v3
4 (d) 1 3
4 v7 2 v5
7
v4 v1 3 3
7
v7 2
v5
v4
(e)
图11-13
v6
(f)
§3 最小生成树问题
例5、某大学准备对其所属的7个学院办公室计算机联网,这个网络的 可能联通的途径如下图,图中v1,…,v7 表示7个学院办公室,请设计一
Hale Waihona Puke Baidu
§3 最小生成树问题
例4 用破圈算法求图(a)中的一个最小生成树
v2 3 3 1 v3 v2 3 3 v6 v2 v4 v1 3 3 v6 v2 1 v3 v4
v1
10
7 3 4 v7 2 4 5 v5 v3 8
v4
v1
7 3 4 v7 2
4 5 v5 v3 7 8
v6
v2 v1 3 3 v6 v2 v1 3 3 v6
个网络能联通7个学院办公室,并使总的线路长度为最短。
v2 3 1 4 v7 3 v6 5 2 8 v5 v3
7
v4
图11-14
v1 10
3
4
解:此问题实际上是求图11-14的最小生成树,这在例4中已经求得, 也即按照图11-13的(f)设计,可使此网络的总的线路长度为最短,为19 百米。 “管理运筹学软件”有专门的子程序可以解决最小生成树问题。
(a)
图11-12
(b)
(c)
§3 最小生成树问题
一、求解最小生成树的破圈算法 算法的步骤:
1、在给定的赋权的连通图上任找一个圈。
2、在所找的圈中去掉一个权数最大的边(如果有两条或两条 以上的边都是权数最大的边,则任意去掉其中一条)。
3、如果所余下的图已不包含圈,则计算结束,所余下的图即 为最小生成树,否则返回第1步。
相关文档
最新文档