(完整word版)实验5 最小生成树算法的设计与实现(报告)

合集下载

最小生成树 实验报告

最小生成树 实验报告

最小生成树实验报告最小生成树实验报告一、引言最小生成树是图论中的一个重要概念,它在实际问题中有着广泛的应用。

本次实验旨在通过编程实现最小生成树算法,并通过实验数据对算法进行分析和评估。

二、算法介绍最小生成树算法的目标是在给定的带权无向图中找到一棵生成树,使得树上所有边的权重之和最小。

本次实验我们选择了两种经典的最小生成树算法:Prim 算法和Kruskal算法。

1. Prim算法Prim算法是一种贪心算法,它从一个顶点开始,逐步扩展生成树的规模,直到包含所有顶点为止。

算法的具体步骤如下:(1)选择一个起始顶点,将其加入生成树中。

(2)从与生成树相邻的顶点中选择一个权重最小的边,将其加入生成树中。

(3)重复上述步骤,直到生成树包含所有顶点。

2. Kruskal算法Kruskal算法是一种基于并查集的贪心算法,它首先将图中的边按权重从小到大进行排序,然后逐个加入生成树中,直到生成树包含所有顶点为止。

算法的具体步骤如下:(1)将图中的边按权重从小到大进行排序。

(2)逐个加入边,如果该边的两个顶点不在同一个连通分量中,则将其加入生成树中。

(3)重复上述步骤,直到生成树包含所有顶点。

三、实验过程本次实验我们使用C++语言实现了Prim算法和Kruskal算法,并通过随机生成的图数据进行了测试。

1. Prim算法的实现我们首先使用邻接矩阵表示图的结构,然后利用优先队列来选择权重最小的边。

具体实现过程如下:(1)创建一个优先队列,用于存储生成树的候选边。

(2)选择一个起始顶点,将其加入生成树中。

(3)将与生成树相邻的顶点及其边加入优先队列。

(4)从优先队列中选择权重最小的边,将其加入生成树中,并更新优先队列。

(5)重复上述步骤,直到生成树包含所有顶点。

2. Kruskal算法的实现我们使用并查集来维护顶点之间的连通关系,通过排序后的边序列来逐个加入生成树中。

具体实现过程如下:(1)将图中的边按权重从小到大进行排序。

最小生成树 实验报告

最小生成树 实验报告

最小生成树(Minimum Spanning Tree)实验报告1. 实验目的本实验旨在通过实践掌握最小生成树算法的基本原理和实现方法。

最小生成树是图论中的一个重要概念,用于解决具有权重的连通图的最优路径问题。

通过本实验,我们将学习如何使用最小生成树算法找到一棵连接图的所有节点且总权重最小的树。

2. 实验原理最小生成树是一个连通图的一种生成树,它的所有边的权重之和最小。

最小生成树的求解算法有多种,其中两种常用的算法是 Prim 算法和 Kruskal 算法。

2.1 Prim 算法Prim 算法是一种贪心算法,从一个节点开始,逐步扩展最小生成树的边。

具体步骤如下: 1. 选择一个起始节点作为最小生成树的根节点。

2. 在当前最小生成树的所有节点中选择一个与该树相连接的权重最小的边,将其加入最小生成树。

3. 将该节点标记为已访问。

4. 重复步骤 2 和步骤 3,直到所有节点都被访问。

2.2 Kruskal 算法Kruskal 算法也是一种贪心算法,通过不断选择权重最小的边来构建最小生成树。

具体步骤如下: 1. 对所有边按照权重进行排序。

2. 依次选择权重最小的边,如果该边的两个端点不在同一个连通分量中,则将该边加入最小生成树,并将这两个端点合并到同一个连通分量中。

3. 重复步骤 2,直到所有节点都在同一个连通分量中,即最小生成树构建完成。

3. 实验步骤本实验将使用 Prim 算法和 Kruskal 算法分别求解给定图的最小生成树。

3.1 数据准备首先,我们需要准备一个具有权重的连通图作为实验数据。

假设该图有 n 个节点和 m 条边,我们可以使用邻接矩阵或邻接表来表示这个图。

3.2 Prim 算法求解最小生成树1.首先,选择一个起始节点作为最小生成树的根节点,并将该节点标记为已访问。

2.初始化一个空的最小生成树,用于存储最终的结果。

3.重复以下步骤,直到所有节点都被访问:1.在当前最小生成树的所有节点中选择一个与该树相连接的权重最小的边,将其加入最小生成树。

求最小生成树(Kruskal算法)实验报告

求最小生成树(Kruskal算法)实验报告

求最小生成树(Kruskal算法)实验报告一、实验目的通过本次实验,掌握Kruskal算法的基本原理,能够使用该算法求解最小生成树问题,并能够进行实际应用。

同时,为学习算法的设计和分析打下基础。

二、实验内容1. 理解Kruskal算法的基本原理。

2. 实现Kruskal算法,并将其应用于求解最小生成树问题。

3. 设计实验测试用例,验证程序正确性并进行性能分析。

三、实验原理Kruskal算法是最小生成树问题的一种解决方法。

该算法基于贪心策略,通过不断选择最短的边来构造最小生成树。

实现步骤如下:1. 将所有边按权重从小到大进行排序。

2. 遍历所有边,每次选择一条没有出现在生成树中的最短边,并将该边所连接的两个顶点合并到同一连通分量中。

3. 直到所有的边都被遍历过,即可得到最小生成树。

四、实验设计本次实验的主要任务是实现Kruskal算法,并运用到最小生成树问题中。

为了测试算法的正确性和性能,需要设计适当的测试用例。

具体的实验步骤如下:1. 设计数据结构在Kruskal算法中,需要维护边的信息,并对边进行排序,同时需要维护顶点的信息。

为方便实现,可以使用C++语言的STL库中的vector和set数据结构。

vector用于存储顶点信息,set用于存储排序后的边信息。

其中,顶点包含顶点编号和连通分量编号,边包含起点、终点和边权重。

为了方便生成测试数据,定义两个常量:MAX_VERTEX和MAX_EDGE。

MAX_VERTEX表示最大顶点数量,MAX_EDGE表示最大边数量。

2. 生成测试数据为了测试算法的正确性和性能,需要生成不同大小的测试数据。

可以随机生成若干个顶点和相应的边,其中顶点编号从1开始连续编号,边的起点和终点使用随机数生成,边的权重也使用随机数生成。

3. 实现Kruskal算法根据算法原理,可以实现基本的Kruskal算法。

具体实现过程如下:1. 首先将所有的边按照权重从小到大排序,并分别初始化每个顶点的连通分量编号。

最小生成树算法实验报告

最小生成树算法实验报告

最小生成树算法实验报告【实验报告】最小生成树算法实验一、实验目的本次实验旨在研究最小生成树算法,通过对比不同的算法,并对实验结果进行分析,探索最小生成树算法的优劣势和适应场景。

二、实验过程1.算法介绍本次实验中我们将使用两种最小生成树算法:普里姆算法和克鲁斯卡尔算法。

- 普里姆算法(Prim算法):从一个顶点开始,不断在剩下的顶点中选择到当前已有的最小生成树的距离最小的边,将该边的另一个顶点加入树中,直到所有的顶点都加入树中。

- 克鲁斯卡尔算法(Kruskal算法):首先将所有边按照权值从小到大进行排序,然后以最小权值的边开始,依次选择权值最小且不会形成环路的边,直到找到n-1条边为止,其中n为顶点数。

2.实验步骤首先,我们使用Python语言实现了普里姆算法和克鲁斯卡尔算法。

然后,我们构造了一些测试用例,包括不同规模的图和不同权值分布的图。

最后,我们对实验结果进行对比分析。

三、实验结果1.测试用例设计我们设计了三个测试用例,分别为小规模图、中规模图和大规模图,具体如下:-小规模图:顶点数为5的图,权值随机分布。

-中规模图:顶点数为50的图,权值随机分布。

-大规模图:顶点数为100的图,权值随机分布。

2.实验结果分析我们的实验结果如下表所示:算法,小规模图,中规模图,大规模图:-------:,:------:,:------:,:------:普里姆算法,13,455,703从实验结果可以看出,对于小规模图和中规模图,普里姆算法的运行时间明显低于克鲁斯卡尔算法。

但是对于大规模图,克鲁斯卡尔算法的运行时间与普里姆算法的运行时间差距不大,甚至略小于普里姆算法。

这是因为克鲁斯卡尔算法中排序边的时间复杂度为O(ElogE),而普里姆算法中筛选最小距离的边的时间复杂度为O(V^2)。

综上所述,普里姆算法适用于较小规模的图,而克鲁斯卡尔算法适用于较大规模的图。

四、实验总结本次实验研究了最小生成树算法,通过对比实验结果,我们发现不同算法在不同规模的图上的表现有所差异。

(完整word版)数据结构课程设计_最小生成树

(完整word版)数据结构课程设计_最小生成树

《最小生成树的两种算法》数据结构课程设计报告题目:最小生成树的两种算法姓名:张芹芹学号:2008082238专业:计算机科学与技术班级:2008级(1)班指导老师:高攀二零一零年三月二十五日目录1.课程设计要求及实现目标 (3)2.程序运行环境 (3)3.程序的主要功能及模块设计与分析 (3)4.运行结果 (8)5.系统使用说明 (9)6.程序特色 (9)7.收获及体会 (10)8.参考书籍 (10)9.源程序 (11)一.课程设计要求及实现目标能够完成最小生成树的两种算法二、程序运行环境1.硬件环境微处理器(cpu):233MHZ Pentium或更高(或与之相当的处理器)内存:建议大于1 GB(RAM最小64MB,最大4GB)磁盘:5GB以上2.软件环境操作系统:Microsoft Windows 2003/xp使用软件: VC6系列三、程序的主要功能及模块设计与分析(一)模块主要功能介绍:此程序主要用于图问题中求最小生成树的运算,包含生成最小生成数的两种方法:PRIM算法和KRUSKAL算法。

PRIM算法包括图的矩阵存储,以及生成算法。

KRUSKAL算法包括:无向图的生成、按权值排序、以及生成算法。

矩阵存储:用于实现对图的存储PRIM生成算法:用于按照权值对图求最小生成树无向图的生成:用于构造吐的存储,能够利用KRUSKAL算法进行求解最小生成树按权值排序:用于对图中各边按照权值进行排序KRUSKAL算法:用于对图进行求解,生成最小生成树(二)、程序模块设计:(三)、程序模块流程图:(1)主函数void main()0 1 2(2)构造图的存储结构CreateES()(3)排序SortGE( )(4)图的矩阵存储CreateAM( )。

实验5最小生成树算法的设计与实现(报告)

实验5最小生成树算法的设计与实现(报告)

实验5 最小生成树算法的设计与实现一、实验目的1、根据算法设计需要, 掌握连通图的灵活表示方法;2、掌握最小生成树算法,如Prim、Kruskal算法;3、基本掌握贪心算法的一般设计方法;4、进一步掌握集合的表示与操作算法的应用。

二、实验内容1、认真阅读算法设计教材和数据结构教材内容, 熟习连通图的不同表示方法和最小生成树算法;2、设计Kruskal算法实验程序。

有n个城市可以用(n-1)条路将它们连通,求最小总路程的和。

设计测试问题,修改并调试程序, 输出最小生成树的各条边, 直至正确为止。

三、Kruskal算法的原理方法边权排序:1 3 14 6 23 6 41 4 52 3 53 4 52 5 61 2 63 5 65 6 61. 初始化时:属于最小生成树的顶点U={}不属于最小生成树的顶点V={1,2,3,4,5,6}2. 根据边权排序,选出还没有连接并且权最小的边(1 3 1),属于最小生成树的顶点U={1,3},不属于最小生成树的顶点V={2,4,5,6}3. 根据边权排序,选出还没有连接并且权最小的边(4 6 2),属于最小生成树的顶点U={{1,3},{4,6}}(还没有合在一起,有两颗子树),不属于最小生成树的顶点V={2,5}4. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,3,4,6}(合在一起),不属于最小生成树的顶点V={2,5}5. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,2,3,4,6},,不属于最小生成树的顶点V={5}6. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,2,3,4,5,6}此时,最小生成树已完成四、实验程序的功能模块功能模块:bool cmp(Edge a,Edge b); //定义比较方法x);//在并查集森林中找到x的祖先int g etfa(intint s ame(int x,int y); //判断祖先是否是同一个,即是否联通 void merge(int x,int y); //合并子树,即联通两子树sort(e+1,e+m+1,cmp); //对边按边权进行升序排序详细代码:#include <iostream>#include <cstdio>#include <cstring>#include <algorithm>#define M AXN_E 100000#define M AXN_V 100000using namespace std;struct Edge{int f m,to,dist;//边的起始顶点,边的到达顶点,边权}e[MAXN_E];int f a[MAXN_V],n,m; //顶点数组,顶点总数,边总数 //定义比较,只是边权比较bool cmp(Edge a,Edge b){return a.dist < b.dist;}//查找x的祖先是在并查集森林中找到x的祖先x){//getfaint g etfa(intreturn fa[x];if(fa[x]==x)else r eturn fa[x] = getfa(fa[x]);}//判断祖先是否是同一个,即是否联通int s ame(int x,int y){return getfa(x)==getfa(y);}//合并两棵树void merge(int x,int y){int f ax=getfa(x),fay=getfa(y);fa[fax]=fay;}int m ain(){int i;cout<<"请输入顶点数目和边数目:"<<endl;cin>>n>>m;//n为点数,m为边数//输出顶点信息cout<<"各个顶点值依次为:"<<endl;for(i=0;i<n;i++){fa[i]=i;if(i!=0)cout<<fa[i]<<" ";}cout<<endl;cout<<"请输入边的信息(例子:1 4 5 从顶点1到顶点4的边权为5)"<<endl;for(i=1;i<=m;i++)用边集数组存放边,方便排序和调用 cin>>e[i].fm>>e[i].to>>e[i].dist;//sort(e+1,e+m+1,cmp); //对边按边权进行升序排序表示目前的点共存在于多少个集合中,初始情况是每 int r st=n,ans=0;//rst个点都在不同的集合中for(i=1;i<=m && rst>1;i++){int x=e[i].fm,y=e[i].to;函数是查询两个点是否在同一集合中 if(same(x,y))continue;//sameelse{函数用来将两个点合并到同一集合中 merge(x,y);//mergerst--;//每次将两个不同集合中的点合并,都将使rst值减1这条边是最小生成树中的边,将答案加上边权 ans+=e[i].dist;//}}cout<<ans;return 0;}五、测试数据和相应的最小生成树Input:6 101 2 61 3 11 4 52 3 52 5 63 4 53 5 63 6 44 6 25 6 6Putout:18生成树为:七、思考题1、微软面试题一个大院子里住了50户人家,每家都养了一条狗,有一天他们接到通知说院子里有狗生病了,并要求所有主人在发现自己家狗生病的当天就要把狗枪杀掉。

数据结构实验报告-最小生成树(精选5篇)

数据结构实验报告-最小生成树(精选5篇)

数据结构实验报告-最小生成树(精选5篇)第一篇:数据结构实验报告-最小生成树电子科技大学实验报告学生姓名:XXX 学号:20***指导教师:刘峤实验地点:信软楼306实验时间:5月17日一、实验室名称:软件实验室二、实验项目名称:数据结构与算法—图三、实验学时:4四、实验原理:Kruskal 算法是一种按照图中边的权值递增的顺序构造最小生成树的方法。

其基本思想是:设无向连通网为G=(V,E),令G 的最小生成树为T,其初态为T=(V,{}),即开始时,最小生成树T 由图G 中的n 个顶点构成,顶点之间没有一条边,这样T 中各顶点各自构成一个连通分量。

然后,按照边的权值由小到大的顺序,考察G 的边集E 中的各条边。

若被考察的边的两个顶点属于T 的两个不同的连通分量,则将此边作为最小生成树的边加入到T 中,同时把两个连通分量连接为一个连通分量;若被考察边的两个顶点属于同一个连通分量,则舍去此边,以免造成回路,如此下去,当T 中的连通分量个数为1 时,此连通分量便为G 的一棵最小生成树。

如教材153页的图4.21(a)所示,按照Kruskal 方法构造最小生成树的过程如图4.21 所示。

在构造过程中,按照网中边的权值由小到大的顺序,不断选取当前未被选取的边集中权值最小的边。

依据生成树的概念,n 个结点的生成树,有n-1 条边,故反复上述过程,直到选取了n-1 条边为止,就构成了一棵最小生成树。

五、实验目的:本实验通过实现最小生成树的算法,使学生理解图的数据结构存储表示,并能理解最小生成树Kruskal 算法。

通过练习,加强对算法的理解,提高编程能力。

六、实验内容:(1)假定每对顶点表示图的一条边,每条边对应一个权值;(2)输入每条边的顶点和权值;(3)输入每条边后,计算出最小生成树;(4)打印最小生成树边的顶点及权值。

七、实验器材(设备、元器件):八、数据结构及程序#include #include #include typedefstruct {intvex;intgno;}TVex,*TpVex;typedefstruct {intvhead, vtail;intwght;intflag;}TEdge,*TpEdge;typedef struct{TpVex VexList;TpEdge EdgeList;int nvex, nedge;}TGraph, *TpGraph;void begin(TpGraph G){ int i;for(i=1;i<=G->nvex;i++){G->VexList[i-1].gno=i;G->EdgeList[i-1].flag=0;} } int findmin(TpGraph G){ int i,j;int minwght=G->EdgeList[0].wght;for(i=0,j=-1;inedge;i++){ PC机一台,装有C/C++语言集成开发环境。

最小生成树实验报告

最小生成树实验报告

一、实验目的1. 通过上机程序,进一步加深对最小生成树的理解。

2. 掌握Kruskal算法。

3. 学会用程序解决离散数学中的问题。

4. 增强我们编写程序的能力。

二、实验内容求带权无向联通平面图的最小生成树三、实验环境我的实验依旧是在实验环境下完成的,而所设计的程序也在这个环境下通过了编译,运行和测试。

四、实验原理和实现过程利用Kruskal算法求最小生成树,原理如下:1.选取最小权边e1,置边数j 1.2.i=n-1结束,否则转c。

3.设已经选择的边为e1,e2,......,ei,在G中选取不同于e1,e2, (i)边,使{e1,e2,……,ei,ei+1}中无回路且ei+1是满足此条件的最小边。

4.i i+1,转b。

根据这个,还有以下思路:由G生成的最小生成树T所包含的边的集合1.按非降序权重将E中的边排序2.建立n个单元素集(每个顶点一个)3.最小生成树的边集合T初始为空4 .while |T|<n-15. 令e(x,y)为E中的下一条边6. if包含x的集合不是与包含y的集合不是同一个集合 then7. 将e(x,y)加入到T8. 将包含x的集合和包含y的集合合并9. end ifwhile五、实验源代码及分析#include<>struct Edge{int from, to, weight; rom); o);if(x!=y) rom, edge[k].to, edge[k].weight); rom, &edge[i].to, &edge[i].weight); eight>edge[j].weight){temp=edge[i];edge[i]=edge[j];edge[j]=temp;}printf("The minimum spanning tree is:\n");Kruskal(); //调用Kruskal算法return 0;}其中运用seek函数找出当前端点所在集合编号。

数据结构实验报告最小生成树

数据结构实验报告最小生成树

数据结构实验报告最小生成树实验目的:掌握最小生成树的概念和算法,培养分析和解决实际问题的能力。

实验内容:利用Kruskal算法求解带权无向连通图的最小生成树。

实验原理:最小生成树是指一个连通图的生成树,其中所有边的权值和最小。

最小生成树问题在图论中有着重要的应用,如网络设计、集成电路布线等领域。

本次实验使用Kruskal算法求解最小生成树。

Kruskal算法基于一个贪心的思想:每次选择权值最小的边,直到生成树中包含所有的节点。

具体算法如下:1.根据给定的连通图构造一个边的集合E,E中包含图中所有的边。

2.将E中的边按照权值从小到大排序。

3.依次遍历排序后的边,如果该边的两个节点不在同一个连通分量中,则选择该边,并将这两个节点合并到一个连通分量中。

4.重复第3步,直到生成树中包含所有的节点。

实验步骤及结果:1.根据给定的连通图构造边的集合E,并将E中的边按照权值从小到大排序。

2.初始化一个空的集合T作为最小生成树的边集合。

3.依次遍历排序后的边,如果该边的两个节点不在同一个连通分量中,则选择该边,并将这两个节点合并到一个连通分量中,同时将该边添加到集合T中。

4.重复第3步,直到生成树中包含所有的节点。

实验结果分析:通过Kruskal算法,可以得到带权无向连通图的最小生成树。

最小生成树具有多个优点,如能够保证连通、权值最小、无回路。

在实际应用中,最小生成树常常用于网络设计、集成电路布线等领域。

实验总结:通过本次实验,我掌握了最小生成树的概念和Kruskal算法的原理和实现方法。

实验中,我通过定义边的数据结构和构造边的集合,实现了Kruskal算法求解最小生成树。

通过实验,我深刻认识到数据结构在解决实际问题中的重要性和实用性。

最小生成树作为一种常用的图论算法,在实际应用中具有广泛的应用和重要的价值。

掌握了最小生成树的概念和算法,我相信能够在今后的学习和工作中更好地应用数据结构算法解决实际问题。

计算机算法设计与分析 最小生成树 实验报告

计算机算法设计与分析 最小生成树 实验报告

×××学院实验报告纸计算机科学与工程学院(院、系)网络工程专业071班组计算机算法设计与分析课学号200710224133 姓名121实验日期2010.教师评定最小生成树问题1、实验目的:通过简单的实际应用例子,了解和掌握最小生成树问题的要点和方法。

2、算法分析:设计思想:图的存储使用数组表示法,即邻接矩阵存储,结构体包含图的邻接矩阵,当前顶点数和弧数。

图的初始化使用二重循环得到顶点和表的权值,邻接矩阵的打印使用二重for循环。

然后把图各边的权值按从小到大排序;然后依次把最小边加入进来,即生成最小生成树。

克鲁斯卡尔算法:假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,按照构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。

依次类推,直至只有一棵树,也即子图中含有 n-1条边为止。

1、设定图的抽象数据类型:ADT Graph{数据对象V:V是具有相同特性的数据元素的集合,称为点集.数据关系R:R={VR}VR={(v,w)|v,w属于V,(v,w)表示v和w之间存在的路径} 基本操作P:CreatGraph(&G,V,VR)初始条件:V是图的顶点集,VR是图中弧的集合.操作结果:按V和VR是定义构造图G.Sort(edge* ,MGraph *)初始条件: 图G存在,各边权值已知;操作结果:对权值进行排序;Find(int *, int )初始条件:前者为已存在的集合,后者为集合中的元素;操作结果:查找函数,确定后者所属子集;MiniSpanTree(MGraph *)初始条件: 图G存在,各边权值已知;操作结果:生成最小树;Swapn(edge *, int, int)初始条件: 图G存在,各边权值已知;操作结果:交换某两个边的权值;2 图的存储结构typedef struct{int adj;int weight;}AdjMatrix[MAX][MAX];typedef struct{AdjMatrix arc;int vexnum, arcnum;}MGraph;typedef struct{int begin;int end;int weight;}edge;3 本程序包含的模块}1)初始化操作,结构体定义;2)函数声明模块;3)函数定义模块;4)主程序模块Main(){调用函数生成图;判断图是否为空;(空则从新输入)调用函数生成最小生成树;退出;3、程序代码:#include<stdio.h>#include<stdlib.h>#define M 20#define MAX 20typedef struct{int begin;int end;int weight;}edge;typedef struct{int adj;int weight;}AdjMatrix[MAX][MAX];typedef struct{AdjMatrix arc;int vexnum, arcnum;}MGraph;void CreatGraph(MGraph *);void sort(edge* ,MGraph *);void MiniSpanTree(MGraph *);int Find(int *, int );void Swapn(edge *, int, int);void CreatGraph(MGraph *G){int i, j,n, m;printf("请输入边数和顶点数:");scanf("%d %d",&G->arcnum,&G->vexnum);for (i = 1; i <= G->vexnum; i++){for ( j = 1; j <= G->vexnum; j++){G->arc[i][j].adj = G->arc[j][i].adj = 0;}}for ( i = 1; i <= G->arcnum; i++){printf("\n请输入有边的2个顶点");scanf("%d %d",&n,&m);while(n < 0 || n > G->vexnum || m < 0 || n > G->vexnum) {printf("输入的数字不符合要求请重新输入:");scanf("%d%d",&n,&m);G->arc[n][m].adj = G->arc[m][n].adj = 1; getchar();printf("\n请输入%d与%d之间的权值:", n, m); scanf("%d",&G->arc[n][m].weight);}printf("邻接矩阵为:\n");for ( i = 1; i <= G->vexnum; i++){for ( j = 1; j <= G->vexnum; j++){printf("%d ",G->arc[i][j].adj);}printf("\n");}}void sort(edge edges[],MGraph *G){int i, j;for ( i = 1; i < G->arcnum; i++){for ( j = i + 1; j <= G->arcnum; j++){if (edges[i].weight > edges[j].weight){Swapn(edges, i, j);}}printf("权排序之后的为:\n");for (i = 1; i < G->arcnum; i++){printf("<< %d, %d >> %d\n", edges[i].begin, edges[i].end, edges[i].weight); }}void Swapn(edge *edges,int i, int j){int temp;temp = edges[i].begin;edges[i].begin = edges[j].begin;edges[j].begin = temp;temp = edges[i].end;edges[i].end = edges[j].end;edges[j].end = temp;temp = edges[i].weight;edges[i].weight = edges[j].weight;edges[j].weight = temp;}void MiniSpanTree(MGraph *G){int i, j, n, m;int k = 1;int parent[M];edge edges[M];for ( i = 1; i < G->vexnum; i++){for (j = i + 1; j <= G->vexnum; j++) {if (G->arc[i][j].adj == 1){edges[k].begin = i;edges[k].end = j;edges[k].weight = G->arc[i][j].weight;k++;}}}sort(edges, G);for (i = 1; i <= G->arcnum; i++){parent[i] = 0;}printf("最小生成树为:\n");for (i = 1; i <= G->arcnum; i++){n = Find(parent, edges[i].begin);m = Find(parent, edges[i].end);if (n != m){parent[n] = m;printf("<< %d, %d >> %d\n", edges[i].begin, edges[i].end, edges[i].weight); }}}int Find(int *parent, int f){while ( parent[f] > 0){f = parent[f];}return f;}int main(void){MGraph *G;G = (MGraph*)malloc(sizeof(MGraph));if (G == NULL){printf("memory allcation failed,goodbye");exit(1);}CreatGraph(G);MiniSpanTree(G);system("pause");return 0;}4、时间复杂度分析:由于在图的初始化以及邻接矩阵的打印时均使用了循环的嵌套,故其时间复杂度为O(n2 )的;其他操作的时间复杂度均为O(1)。

最小生成树-实验报告

最小生成树-实验报告

实验五最小生成树一、需求分析1、本程序的目的是要建设一个最经济的网,,输出相应的最小生成树。

在这里都用整型数来代替。

2、测试数据见下程序。

二、概要设计主程序:int main(){初始化;while (条件){接受命令;处理命令;}return 0;}三、详细设计#include<iostream>//头文件using namespace std;#define MAX_VERTEX_NUM 20//最大结点数#define MAX 200typedef struct Close//结构体{char adjvex;int lowcost;}Close,close[MAX_VERTEX_NUM];typedef struct ArcNode{int adjvex;ArcNode *nextarc;int info;}ArcNode;typedef struct VNode{char data;ArcNode *firstarc;}VNode,AdjList[MAX_VERTEX_NUM];typedef struct{AdjList verties;int vexnum,arcnum;}ALGraph;ALGraph G;//对象Gint LocateVek(ALGraph ,char );//返回结点位置int minimum(close);//返回最小数void MinSpanTree_PRIM(ALGraph,char);//最小生成树void Create(ALGraph &);//创建邻接表int main(){char a;int i=1;Create(G);/*for(int i=1;i<=G.vexnum;i++){for(s=G.verties[i].firstarc;s!=NULL;s=s->nextarc)cout<<G.verties[i].data<<"---"<<G.verties[s->adjvex].data<<"===="<<s->info<<endl; }*/while(i){cout<<"输入起点 : ";cin>>a;MinSpanTree_PRIM(G,a);cout<<"如果结束输入'0',否则输入'1':";cin>>i;}return 0;}int LocateVek(ALGraph G,char u){int i;for(i=1;i<=G.vexnum;i++)if(u==G.verties[i].data)return i;return -1;}int minimum(close m)//返回最小数{int i=0,j,n=200;for(i=1;i<=G.vexnum;i++)if(m[i].lowcost<n&&m[i].lowcost!=0){n=m[i].lowcost;j=i;}return j;}void MinSpanTree_PRIM(ALGraph G,char u){int j,k,a;close closedge;ArcNode *s,*p,*q;for(j=1;j<=MAX_VERTEX_NUM;j++)closedge[j].lowcost=MAX;//把所有值都赋为最大k=LocateVek(G,u);for(j=1;j<=G.vexnum;j++)if(j!=k){closedge[j].adjvex=u;for(s=G.verties[k].firstarc;s!=NULL;s=s->nextarc)if(j==s->adjvex){closedge[j].lowcost=s->info;break;}}closedge[k].lowcost=0;cout<<"最小生成树 : "<<"{";//查找并输出最小生成树for(j=1;j<G.vexnum;j++){k=minimum(closedge);cout<<"("<<closedge[k].adjvex<<","<<G.verties[k].data<<")";closedge[k].lowcost=0;for(int i=1;i<=G.vexnum;i++){for(p=G.verties[k].firstarc;p!=NULL;p=p->nextarc)if(p->info<closedge[i].lowcost&&i==p->adjvex){closedge[i].adjvex=G.verties[k].data;closedge[i].lowcost=p->info;}}}cout<<"}"<<endl;cout<<"边及对应权值: "<<endl;//输出边及对应权值for(j=G.vexnum;j>=1;j--){if(closedge[j].lowcost==0&&G.verties[j].data!=u){ cout<<"("<<closedge[j].adjvex<<","<<G.verties[j].data<<") ==";a=closedge[j].adjvex;for(q=G.verties[j].firstarc;q!=NULL;q=q->nextarc)if(a-64==q->adjvex)cout<<q->info<<endl;}}}void Create(ALGraph &G){int i,j,k,x;char a,b;ArcNode *s;cout<<"输入顶点数(1-20):";cin>>G.vexnum;cout<<"输入边数:";cin>>G.arcnum;cout<<"输入顶点信息:"<<endl;for(i=1;i<=G.vexnum;i++){cin>>G.verties[i].data;G.verties[i].firstarc=NULL;}for(i=1;i<=G.arcnum;i++){cout<<"输入相邻两结点和权值 ";cin>>a>>b;cin>>x;j=a-64;k=b-64;//将字符型转化成整数型s=new ArcNode;s->info=x;s->adjvex=k;s->nextarc=G.verties[j].firstarc;G.verties[j].firstarc=s;s=new ArcNode;s->info=x;s->adjvex=j;s->nextarc=G.verties[k].firstarc;G.verties[k].firstarc=s;}}四、调试分析1、在写程序时遇到很多有关专业名词的C语言编译,没有完全套用书上的固有解释,而是按照自己有限的英语词汇的理解去编译的。

最小生成树实验报告

最小生成树实验报告

数据结构课程设计报告题目:最小生成树问题院(系):计算机工程学院学生姓名:班级:学号:起迄日期:指导教师:2011—2012年度第 2 学期一、需求分析1.问题描述:在n个城市之间建设网络,只需保证连通即可,求最经济的架设方法。

存储结构采用多种。

求解算法多种。

2.基本功能在n个城市之间建设网络,只需要架设n-1条线路,建立最小生成树即可实现最经济的架设方法。

程序可利用克鲁斯卡尔算法或prim算法生成最小生成树。

3.输入输出以文本形式输出最小生成树,同时输出它们的权值。

通过人机对话方式即用户通过自行选择命令来输入数据和生成相应的数据结果。

二、概要设计1.设计思路:因为是最小生成树问题,所以采用了课本上介绍过的克鲁斯卡尔算法和 prim算法两种方法来生成最小生成树。

根据要求,需采用多种存储结构,所以我选择采用了邻接表和邻接矩阵两种存储结构。

2.数据结构设计:图状结构:ADT Graph{数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。

数据关系R:R={VR}VR={<v,w>|v,w∈V且P(v,w),<v,w>表示从v到w的弧,谓词P(v,w)定义了弧<v,w>的意义或信息}基本操作:CreateGraph( &G, V, VR )初始条件:V是图的顶点集,VR是图中弧的集合。

操作结果:按V和VR的定义构造图G。

DestroyGraph( &G )初始条件:图G存在。

操作结果:销毁图G。

LocateVex( G, u )初始条件:图G存在,u和G中顶点有相同特征。

操作结果:若G中存在顶点u,则返回该顶点在图中位置;否则返回其它信息。

GetVex( G, v )初始条件:图G存在,v是G中某个顶点。

操作结果:返回v的值。

PutVex( &G, v, value )初始条件:图G存在,v是G中某个顶点。

操作结果:对v赋值value。

求最小生成树(Kruskal算法)实验报告【范本模板】

求最小生成树(Kruskal算法)实验报告【范本模板】

学生实验报告学院:软件与通信工程学院课程名称:离散数学(软件)专业班级:12软件2班姓名:杨滨学号:0123707学生实验报告(2) 学生姓名杨滨 学号 0123707 同组人 实验项目 求最小生成树(Kruskal 算法)□必修 □选修 □演示性实验 □验证性实验 □操作性实验 □综合性实验 实验地点W101 实验仪器台号 指导教师 赵晓平 实验日期及节次 2013。

12。

12(四) 89A 节一、实验综述1、实验目的及要求(1)了解求最优化问题的贪心算法,了解贪心法的基本要素,学会如何使用贪心策略设计算法;(2)掌握Prim 算法和Kruskal 算法的思想及两者之间的区别;(3)编写程序,分别利用Prim 算法和Kruskal 算法实现,求出最小代价生成树,输出构成最小代价生成树的边集.实验要求:给出如右图的边权图,求最小生成树.认真完成实验题,能正确运行,提交实验报告并上传程序,实验报告要求写出操作步骤、结果、问题、解决方法、体会等.2、实验仪器、设备或软件计算机、VC++6。

0、office 、相关的操作系统等.二、实验过程(实验步骤、记录、数据、分析)#include<stdio.h 〉#define VERTS 6struct edge {int from ,to; //起顶点,终顶点int find ,val ; //标记,顶点间边长struct edge *next; };typedef struct edge node;node *find_min_cost(node *);void min_tree(node *);√ √int v[VERTS+1]={0};//记录顶点即下标,值即出现过的次数void main(){int data[10][3]={{1,0,6},{0,3,5},{3,5,2},{5,4,6},{4,1,3},{2,1,5},{2,0,1},{2,3,5},{2,5,4},{2,4,6}};//表示有10条线,例如{1,0,6}表示1和0距离为6node *head,*ptr,*new_node;head=NULL;printf(”Add graph:\n”);for (int i=0; i<10; i++){for (int j=1;j<=VERTS;j++){if (data[i][0]==j){new_node=new node;new_node—>from=data[i][0];new_node—〉to=data[i][1];new_node—〉val=data[i][2];new_node—>find=0;new_node-〉next=NULL;if (head==NULL){head=new_node;head-〉next=NULL;ptr=head;}else{ptr-〉next=new_node;ptr=ptr-〉next;}}}}for (ptr=head; ptr!=NULL; ptr=ptr—>next)printf("Begin[%d]\tEnd[%d]\t\tPath[%d]\n”,ptr-〉from,ptr—〉to,ptr-〉val);printf("\nAdd Min Tree:\n”);min_tree(head);putchar('\n');}void min_tree(node *head) //建立最小生成树{node *ptr,*tmptr;int result=0;//布尔值,是否做出输出结果for (ptr=head;ptr!=NULL;ptr=ptr—〉next) //遍历十条边{tmptr=find_min_cost(head); //找出最小边顶点v[tmptr-〉from]++;//当前起点已选自加1次v[tmptr—〉to]++; //当前终点已选自加1次if (v[tmptr—>from]〉1 &&v[tmptr->to]>1){/*这个IF语句就是一个防止生成树中有回路;因为v[tmptr->from]与v[tmptr—〉to]都出现过一次,这棵树的叶子结点都为1,所以当两个结点同时为2时,就形成回路*/v[tmptr—〉from]——;v[tmptr—>to]--;result=1;}else result=0;if (result==0)printf("Begin[%d]\tEnd[%d]\t\tPath[%d]\n",tmptr—〉from,tmptr->to,tmptr—〉val);}}node *find_min_cost(node *head) //最小边查找{int min_val=100;node *ptr,*tmptr;for (ptr=head;ptr!=NULL;ptr=ptr-〉next){if (ptr->val<min_val && ptr-〉find==0) //当当前边最小时并当前顶点没有被选择过{min_val=ptr->val;tmptr=ptr;}} //整个循环遍历完毕找到最小连min_valtmptr->find=1; //并标记该顶的边已选择return tmptr;}三、结论1、实验结果2、分析讨论在编写这个程序时,我们先要非常熟悉kruskal算法,kruskal算法总共选择n—1条边,所使用的贪婪准则是:从剩下的边中选择一条不会产生环路的具有最小耗费的边加入已选择的边的集合内。

最小生成树数据结构实验报告【范本模板】

最小生成树数据结构实验报告【范本模板】

数据结构实验报告名称:最小生成树班级:122姓名:*****学号:***********指导老师:********一、设计目的与任务1。

1课程设计目的本课程设计的目的是了解并掌握数据结构与算法的设计方法,具备初步的独立分析和设计能力;初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能;提高综合运用所学的理论知识和方法独立分析和解决问题的能力;训练用系统的观点和软件开发一般规范进行软件开发。

1。

2课程设计的任务问题描述:已知一个无向连通网表示n个城市以及城市间可能设置的通信线路,其中网的顶点表示城市,边表示两个城市之间的线路,赋于边上的权值表示相应的代价.对于n个点的连通网能建立许多不同的生成树,每一棵生成树都可以是一个通信网。

我们要选择一棵生成树,使总的耗费最小。

二、设计方案2。

1需求分析(1)建立一个图,其存储方式可以采用邻接矩阵形式或者邻接表;(2)利用普利姆算法或者克鲁斯卡尔算法求出网的最小生成树;(3)输入各城市的数目以及各个城市之间的距离。

将城市之间的距离当做网中各点之间的权值。

按顺序输出生成树中各条边以及它们的权值。

2.2数据结构分析构造最小生成树的方法:最初生成树为空,即没有一个结点和一条边,首先选择一个顶点作为生成树的根,然后每次从不在生成树中的边中选择一条权值尽可能小的边,为了保证加入到生成树中的边不会造成回路,与该边邻接的两个顶点必须一个已经在生成树中,一个则不在生成树中,若网中有n个顶点(这里考虑的网是一个连通无向图),则按这种条件选择n—1边就可以得到这个网的最小生成树了。

详细的过程可以描述为:设置2个集合,U集合中的元素是在生成树中的结点,V—U集合中的元素是不在生成树中的顶点。

首先选择一个作为生成树根结点的顶点,并将它放入U集合,然后在那些一端顶点在U集合中,而另一端顶点在V-U集合中的边中找一条权最小的边,并把这条边和那个不在U集合中的顶点加入到生成树中,即输出这条边,然后将其顶点添加到U集合中,重复这个操作n-1次。

最小生成树实验报告

最小生成树实验报告

最小生成树实验报告1.引言最小生成树(Minimum Spanning Tree,简称MST)是图论中的重要概念,在各个领域都有广泛的应用。

最小生成树是指在给定的加权连通图中,选择一个子集,使得该子集包含了所有的顶点,并且所有边的权值之和最小。

本实验主要目的是探讨最小生成树的算法并比较它们的效率和准确性。

2.实验方法本次实验使用Python编程语言实现了两种著名的最小生成树算法:Prim算法和Kruskal算法。

Prim算法是一种贪心算法,从一个顶点开始不断扩张集合,直到包含所有顶点,生成最小生成树。

Kruskal算法则是基于并查集的算法,将边按照权值排序后逐一加入生成树,同时要保证加入的边不会产生环路。

3.实验过程首先,我们从文件中读取了一张加权无向图的数据。

图的表示采用邻接矩阵的方式,即用一个二维数组来存储顶点之间的连接关系和权值。

读取完图的数据后,我们分别使用Prim算法和Kruskal算法求解最小生成树。

在Prim算法中,我们使用一个辅助数组来记录顶点是否已被访问过,然后从任意一个顶点开始,依次将与当前集合相邻的顶点加入,并选择权值最小的边。

直到所有顶点都被访问过,并形成了一个最小生成树。

在Kruskal算法中,我们首先将所有边按照权值从小到大进行排序。

然后,从权值最小的边开始,逐一将边加入生成树。

加入时,需要判断两个顶点是否在同一个连通分量中,以避免产生环路。

实验中,我们使用了Python中的heapq库来实现了堆排序,以加快Prim算法的运行速度。

4.实验结果经过实验,我们得到了图的最小生成树以及对应的权值。

实验数据显示,当图中顶点较少时,Prim算法和Kruskal算法几乎没有明显的差别。

但当图的规模增大时,Prim算法明显比Kruskal算法更快。

5.实验分析从实验结果可以看出,Prim算法和Kruskal算法都可以求解最小生成树,但在不同情况下它们的性能表现并不相同。

Prim算法适用于稠密图,因为它的时间复杂度与顶点的平方成正比;而Kruskal算法适用于稀疏图,因为它的时间复杂度与边的数量成正比。

数据结构-最小生成树实验报告

数据结构-最小生成树实验报告

#include<stdio.h>#include<stdlib.h>#define MAXLEAF 100#define INF 100000#define EDGENUMBER MAXLEAF*MAXLEAF/2typedef int EdgeType;typedef int VertexType;typedef struct{EdgeType val[MAXLEAF][MAXLEAF];VertexType ves[MAXLEAF];int v;int e;}MGraph;typedef struct{int vex1,vex2;int w;}kedge;void creat_MGraph(MGraph *M){int i,j,k;int w;printf("请输入图的顶点个数及边数:\n");scanf("%d%d",&(M->v),&(M->e));printf("请依次填充顶点信息:\n");for(i=0;i<M->v;i++)scanf("%d",&(M->ves[i]));for(i=0;i<M->v;i++)for(j=0;j<M->v;j++)if(i==j) M->val[i][j]=0;else M->val[i][j]=INF;printf("请依次输入图的边两个顶点顶点的权值:(格式:a b c)\n");for(k=0;k<M->e;k++){scanf("%d%d%d",&i,&j,&w);M->val[i-1][j-1]=w;M->val[j-1][i-1]=w;}}VertexType kruskal(MGraph M){int tag[MAXLEAF];kedge Ke[EDGENUMBER];int i,j;VertexType length=0;int n=0;for(i=0;i<M.v;i++) tag[i]=i;for(i=0;i<M.v;i++)for(j=i+1;j<M.v;j++)if(M.val[i][j]!=INF){Ke[n].vex1=i;Ke[n].vex2=j;Ke[n++].w=M.val[i][j];}kedge temp;for(i=0;i<n-1;i++)for(j=0;j<n-i-1;j++)if(Ke[j].w>Ke[j+1].w){temp=Ke[j+1];Ke[j+1]=Ke[j];Ke[j]=temp;}for(i=0;i<n;i++){int first,second;first = tag[Ke[i].vex1];second = tag[Ke[i].vex2];if(first!=second){length+=Ke[i].w;printf("%d->%d: %d\n",Ke[i].vex1,Ke[i].vex2,Ke[i].w);tag[Ke[i].vex2]=first;for(j=0;j<M.v;j++){if(second==tag[j])tag[j]=first;}}}return length;}int main(){MGraph M;int len;creat_MGraph(&M);printf("最小生成树:\n");len=kruskal(M);printf("最小成本:%d",len);return 0;}。

【报告】最小生成树算法实验报告

【报告】最小生成树算法实验报告

【关键字】报告最小生成树算法➢问题描述设G=(V,E)是一个无向连通带权图,E中每条边(v,w)的权为c(v,w)。

如果G的一个子图G`是一棵包含G的所有顶点的书,则称G`为G的生成树。

生成树上各边权的总和称为该生成树的耗费,在G的所有生成树中,耗费最小的生成树就称为G的最小生成树。

给定一个无向连通带权图,构造一个最小生成树。

➢设计思想利用Prim算法求最小生成树,Prim算法是利用贪心策略设计的算法。

设G=(V,E)是一个连通带权图,V={1,2,…,n}。

构造G的一棵最小生成树的Prim算法的基本思想是:首先置U={1},然后,只要U是V的真子集,就做如下的贪心选择:选取满足条件i∈U,j∈V-U,且使c(i,j)达到最小的边(i,j),并将顶点j添加到U中。

这个过程一致进行到U=V时为止。

在这个过程中选取到的所有边恰好构成G的一棵最小生成树。

➢时间复杂度Prim算法的Pascal语言描述如下:Procedure PRIM(c:array[1..n,1..n] of real);Varlowcost:array[1..n] of real;closest:array[1..n] of integer;i,j,k,min,integer;begin(1)for i:=2 to n do(2)begin{初始化,此时U只含有顶点1}(3)lowcost[i]:=c[1,i];(4)Closest[i]:=1;(5)end;(6)for i:=2 to n do(7)begin {寻找顶点分别在V-U与U中边权最小的边}(8)min:=lowcost[i];(9)j:=i;(10)For k:=2 to n do(11)If lowcost[k]<min then(12)Begin(13)Min:=lowcost[k];(14)j:=k;(15)End;(16)print(j,closest[j]);{输出找到的边}(17)Lowcost[j]:=∞;{将j添加到U}(18)For k:=2 to n do {调整lowcost和closest}(19)if(c[j,k]<lowcost[k])and(lowcost[k]< ∞)then(20)Begin(21)Lowcost[k]:=c[j,k];(22)Closest[k]:=j;(23)End(24)End(25)End;{PRIM}上述过程中第(6)~(24)行的for循环要执行n-1次,每次执行时,第(10)~(15)行和第(18)~(23)行的for循环都要O(n)时间,所以Prim算法所需的计算时间为O(n)。

最小生成树实验报告

最小生成树实验报告

最小生成树实验报告最小生成树(Minimum Spanning Tree,MST)是图论中的一个重要概念,用于在一个连通带权无向图中找到一个子图,使得这个子图是一个树(即无环连通图),并且所有边的权值之和最小。

最小生成树在诸多领域有着广泛的应用,如网络设计、电力传输等。

在本次实验中,我们实现了最小生成树算法,并将其运用到多个实际问题上。

下面将依次介绍算法原理、实现过程、实验结果以及对实验的进一步改进。

1.算法原理Kruskal算法的基本思想是,首先将所有边按照权值从小到大排序,然后从最小的边开始,逐一加入生成树,直到生成树包含了所有的顶点。

在加入一条边时,需要判断这条边将两个顶点连通起来是否会形成环,如果不会则加入生成树。

Prim算法的基本思想是,从一个顶点开始,逐步加入生成树的顶点,每次加入一个顶点时,选择一个离生成树最近的点,并将这个点加入生成树。

通过不断的选择顶点和加入边,最终得到最小生成树。

2.实现过程首先,我们实现了图的数据结构和边的数据结构。

在图的数据结构中,我们定义了图的顶点数和边数,并用邻接矩阵来表示图的连接情况。

边的数据结构包含了两个顶点和边的权值。

其次,我们实现了两种算法。

对于Kruskal算法,我们首先将所有边按照权值从小到大进行排序。

然后,逐个加入边,判断是否形成环。

如果不会形成环,则将该边加入生成树。

最后,我们使用并查集数据结构来判断两个顶点是否连通。

对于Prim算法,我们首先选择一个起点作为生成树的初始顶点,并将其加入生成树。

然后,每次选择一个离生成树最近的顶点,并将其加入生成树,同时更新其他顶点到生成树的距离。

最后,所有顶点都被加入生成树后,得到最小生成树。

3.实验结果我们在实验中选择了不同大小的图进行测试。

经过对比,我们发现Kruskal算法和Prim算法得到的最小生成树结果是一致的,但是Kruskal 算法的时间复杂度要稍高于Prim算法。

具体的结果如下:对于一个边数为10的图,我们得到了如下最小生成树:1-2-4-5-3总权重为12对于一个边数为20的图,我们得到了如下最小生成树:2-1-4-5-3总权重为16对于一个边数为30的图2-1-4-5-6-7-3总权重为22从实验结果来看,无论是规模较小的图还是规模较大的图,我们都能够得到最小生成树,并且所得到的结果是正确的。

最小生成树prim算法实验报告

最小生成树prim算法实验报告

最小生成树prim算法实验报告最小生成树Prim算法实验报告引言:最小生成树(Minimum Spanning Tree,简称MST)是图论中的一个重要概念,意为在一个连通图中找到一棵生成树,使得树上所有边的权值之和最小。

Prim算法是一种常用的解决MST问题的贪心算法。

本实验旨在通过实际操作和观察,深入理解Prim算法的原理与过程。

实验目的:1. 理解Prim算法的基本原理;2. 掌握Prim算法的具体实现过程;3. 利用Prim算法求解最小生成树问题;4. 分析Prim算法的时间复杂度。

实验过程:1. 实验环境搭建:在实验开始前,我们需要搭建合适的实验环境。

首先,我们选择一种编程语言,如Python或C++,来实现Prim算法。

其次,我们需要准备一个图的数据集,可以是随机生成的或者是从现实问题中提取的。

最后,我们需要一个用于可视化的工具,以便观察Prim算法的执行过程和结果。

2. Prim算法实现:Prim算法的核心思想是从一个顶点开始,逐步扩展生成树,直到包含所有顶点为止。

具体实现过程如下:a. 初始化一个空的生成树,选择一个起始顶点;b. 在剩余的顶点中,选择与生成树距离最近的顶点,并将其加入生成树;c. 更新生成树与剩余顶点的距离,如果存在更短的路径,则更新;d. 重复步骤b和c,直到生成树包含所有顶点。

3. Prim算法求解最小生成树问题:利用Prim算法求解最小生成树问题的步骤如下:a. 根据实验环境搭建中准备的图数据集,构建图的邻接矩阵或邻接表表示;b. 选择一个起始顶点,将其加入生成树;c. 重复以下步骤,直到生成树包含所有顶点:i. 从生成树中选择一个顶点v,找到与v相连的顶点中距离最小的顶点u; ii. 将顶点u加入生成树,并将(u, v)边加入生成树的边集;iii. 更新生成树与剩余顶点的距离,如果存在更短的路径,则更新。

实验结果与分析:我们通过实验环境搭建和Prim算法实现,成功求解了多个最小生成树问题。

最小生成树算法实验报告_2

最小生成树算法实验报告_2

作业1最小生成树的生成算法1.1算法应用背景在实际生活中, 图的最小花费生成树问题有着广泛的应用。

例如, 用图的顶点代表城市, 顶点与顶点之间的边代表城市之间的道路或通信线路, 用边的权代表道路的长度或通信线路的费用, 则最小花费生成树问题, 就表示为城市之间最短的道路或费用最小的通信线路问题。

其中普里姆算法是使用贪婪法策略设计的典型算法。

1.2算法原理在一给定的无向图G = (V, E) 中, (u, v) 代表连接顶点u 与顶点v 的边(即), 而w(u, v) 代表此边的权重, 若存在T 为E 的子集(即)且为无循环图, 使得的w(T) 最小, 则此T 为G 的最小生成树。

许多应用问题都是一个求无向连通图的最小生成树问题。

例如:要在n个城市之间铺设光缆, 主要目标是要使这n 个城市的任意两个之间都可以通信, 但铺设光缆的费用很高, 且各个城市之间铺设光缆的费用不同;另一个目标是要使铺设光缆的总费用最低。

这就需要找到带权的最小生成树。

1.3算法描述1)最小生成树之普里姆算法描述:令G=(V,E,W), 为简单期间, 令顶点集为V={0,1,2…, n-1}。

假定与顶点i, j相关联的边为ei, j, ei, j的权用c[i][j]表示, T是最小花费生成树的边集。

这个算法维护两个顶点集合S 和N, 开始时: 令T=Ф,S={0},N=V-S。

然后, 进行贪婪选择, 选取i∈S, j∈N, 并且c[i][j]最小的i和j;并使S=S∪S{j},N=N-{j},T=T∪{ei, j}.重复上述步骤, 直到N为空, 或找到n-1条边为止。

此时, T中的边集, 就是所要求取的G中的最小花费生成树。

由此, 可描述普里姆算法的步骤如下:(1)T=Ф, S={0},N=V-S。

(2)如果N为空, 算法结束;否则, 转步骤(3)。

(3)寻找使i∈S, j∈N, 并且c[i][j]最小的i和j。

(4)S=S∪S{j},N=N-{j},T=T∪{ei, j};转步骤(2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验5 最小生成树算法的设计与实现
一、实验目的
1、根据算法设计需要, 掌握连通图的灵活表示方法;
2、掌握最小生成树算法,如Prim、Kruskal算法;
3、基本掌握贪心算法的一般设计方法;
4、进一步掌握集合的表示与操作算法的应用。

二、实验内容
1、认真阅读算法设计教材和数据结构教材内容, 熟习连通图的不同表示方法和最小生成树算法;
2、设计Kruskal算法实验程序。

有n个城市可以用(n-1)条路将它们连通,求最小总路程的和。

设计测试问题,修改并调试程序, 输出最小生成树的各条边, 直至正确为止。

三、Kruskal算法的原理方法
边权排序:
1 3 1
4 6 2
3 6 4
1 4 5
2 3 5
3 4 5
2 5 6
1 2 6
3 5 6
5 6 6
1. 初始化时:属于最小生成树的顶点U={}
不属于最小生成树的顶点V={1,2,3,4,5,6}
2. 根据边权排序,选出还没有连接并且权最小的边(1 3 1),属于最小生成树
的顶点U={1,3},不属于最小生成树的顶点V={2,4,5,6}
3. 根据边权排序,选出还没有连接并且权最小的边(4 6 2),属于最小生成树的顶点U={{1,3},{4,6}}(还没有合在一起,有两颗子树),不属于最小生成树的顶点V={2,5}
4. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,3,4,6}(合在一起),不属于最小生成树的顶点V={2,5}
5. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,2,3,4,6},,不属于最小生成树的顶点V={5}
6. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,2,3,4,5,6}此时,最小生成树已完成
四、实验程序的功能模块
功能模块:
bool cmp(Edge a,Edge b);//定义比较方法
int getfa(int x);//在并查集森林中找到x的祖先
int same(int x,int y);//判断祖先是否是同一个,即是否联通void merge(int x,int y); //合并子树,即联通两子树
sort(e+1,e+m+1,cmp); //对边按边权进行升序排序
详细代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define MAXN_E 100000
#define MAXN_V 100000
using namespace std;
struct Edge{
int fm,to,dist; //边的起始顶点,边的到达顶点,边权}e[MAXN_E];
int fa[MAXN_V],n,m; //顶点数组,顶点总数,边总数
//定义比较,只是边权比较
bool cmp(Edge a,Edge b){
return a.dist < b.dist;
}
//查找x的祖先
int getfa(int x){//getfa是在并查集森林中找到x的祖先if(fa[x]==x) return fa[x];
else return fa[x] = getfa(fa[x]);
}
//判断祖先是否是同一个,即是否联通
int same(int x,int y){
return getfa(x)==getfa(y);
}
//合并两棵树
void merge(int x,int y){
int fax=getfa(x),fay=getfa(y);
fa[fax]=fay;
}
int main(){
int i;
cout<<"请输入顶点数目和边数目:"<<endl;
cin>>n>>m;//n为点数,m为边数
//输出顶点信息
cout<<"各个顶点值依次为:"<<endl;
for(i=0;i<n;i++)
{
fa[i]=i;
if(i!=0)
cout<<fa[i]<<" ";
}
cout<<endl;
cout<<"请输入边的信息(例子:1 4 5 从顶点1到顶点4的边权为5)"<< endl;
for(i=1;i<=m;i++)
cin>>e[i].fm>>e[i].to>>e[i].dist;//用边集数组存放边,方便排序和调用sort(e+1,e+m+1,cmp); //对边按边权进行升序排序
int rst=n,ans=0;//rst表示目前的点共存在于多少个集合中,初始情况是每个点都在不同的集合中
for(i=1;i<=m && rst>1;i++)
{
int x=e[i].fm,y=e[i].to;
if(same(x,y)) continue;//same函数是查询两个点是否在同一集合中
else
{
merge(x,y);//merge函数用来将两个点合并到同一集合中
rst--;//每次将两个不同集合中的点合并,都将使rst值减1
ans+=e[i].dist;//这条边是最小生成树中的边,将答案加上边权}
}
cout<<ans;
return 0;
}
五、测试数据和相应的最小生成树
Input:
6 10
1 2 6
1 3 1
1 4 5
2 3 5
2 5 6
3 4 5
3 5 6
3 6 4
4 6 2
5 6 6
Putout:
18
生成树为:
七、思考题
1、微软面试题
一个大院子里住了50户人家,每家都养了一条狗,有一天他们接到通知说院子里有狗生病了,并要求所有主人在发现自己家狗生病的当天就要把狗枪杀掉。

然而所有主人和他们的狗都不能够离开自己的房子,主人与主人之间也不能通过任何方式进行沟通,他们能做的只是通过窗户观察别人家的狗是否生病从而判断自己的狗病否。

(就是说,每个主人只能看出其他49家的狗是不是生病,单独看自己的狗是看不出来的)第一天没有枪声,第二天还是没有枪声,第三天传出一阵枪声,问有多少条狗被枪杀。

答:3只
假如只有一只病狗,那么当该病狗主人第一天发现其他49家都是好狗时就会判断出自己家狗是病狗,那么第一天就会有枪声。

假如有两只病狗A和B,那么当两只狗主人对望时,看到了对方家里是病狗,那么他们也不会判断出自己家狗狗是否生病,当然第一天第二天第三天以及以后都不会有枪声。

假如有三只病狗A和B和C,那么其他47个主人都会看到3只病狗,而他们三家却互相看到两只病狗,第一天没有枪声是因为ABC三家都看到了其他的病狗,没有判断初自己家狗是否生病,第二天没有枪声则验证了A确定BC两家和他一样也发现了两只病狗,同理BC也是。

那么第三天ABC就会判断出自己家的狗是病狗了。

提示:上面的大字
2、针对连通图初始边集最小堆表示,设计Kruskal算法。

详情请看文件实验五:最小堆Kruskal.cpp。

相关文档
最新文档