文物展柜地震响应被动控制方法研究

结构地震反应分析与抗震验算计算题【最新版】

结构地震反应分析与抗震验算计算题 3.1 单自由度体系,结构自振周期T=0.5S,质点重量G=200kN,位于设防烈度为8 度的Ⅱ类场地上,该地区的设计基本地震加速度为0.30g,设计地震分组为第一组,试计算结构在多遇地霞作用时的水平地震作用。 3.2 结构同题3.1,位于设防烈度为 8度的Ⅳ类场地上,该地区的设计基 本地震加速度为0.20g,设计地设分 组为第二组,试计算结构在多遇地震 作用时的水平地震作用。 3.3 钢筋混凝土框架结构如图所示, 横梁刚度为无穷大,混凝土强度等级 均为C25,一层柱截面450mm#215;450mm,二、三层柱截面均

为400mm#215;400mm,试用能量法计算结构的自振周期T1。 3.4 题3.2的框架结构位于设防烈度为8度的Ⅱ类场地上,该地区的设计基本地震加速度为0.20g,设计地震分组为第二组,试用底部剪力法计算结构在多遇地震作用时的水平地震作用。 3.5 三层框架结构如图所示,横梁刚度为无穷大,位于设防烈度为8度的Ⅱ类场地上,该地区的设计基本地震加速为0.30g, 设计地震分组为第一组。结构各层 的层间侧移刚度分别为k1=7.5#215; 105kN/m,k2=9.1#215;105kN/m,

k3=8.5#215;105 kN/m,各质点的质 量分别为m1=2#215;106kg, m2=2#215; 106kg, m3=1.5#215;105kg,结构的自 震频率分别为ω1=9.62rad/s, ω2=26.88 rad/s, ω3=39.70 rad/s, 各振型分别为: 要求: ①用振型分解反应谱法计算结构在多遇地震作用时各层的层间地震力; ②用底部剪力法计算结构在多遇地震作用时各层的层间地震剪力。 3.6 已知某两个质点的弹性体系(图3-6),其层间刚度为

地震动力响应问题方法研究进展

地震动力响应问题方法研究进展 随着科学技术的不断发展,国内外学者和研究人员对边坡问题的认识也不断 完善,特别是近几十年来,国内外对土石坝地震动力响应问题的研究取得了比较 丰硕的成果,而且关于边坡地震动力响应问题的研究方法也逐渐完善。目前,最 常采用的研究方法是拟静力法、Newmark 滑块位移法和动力有限法。 静力计算的基础上,将地震作用简化为一个惯性力系,将 其所产生的惯性力假定为一个恒定的静力,并将其作用在边坡潜在的不稳定滑体 上,然后根据极限平衡理论,求出边坡的抗震安全系数,其核心是设计地震加速 度的确定问题;随着对边坡动力问题认识的不断深入,最早把坝坡认为是变形体 的是Mononobe HA 等人,并开始了以变形体的观点来探究土质边坡的动力反应 问题,并首次提出了剪切楔法模型的概念,发明了边坡地震反应分析的新方法- 剪切楔法;随着边坡地震响应分析方法不断发展,到20 世纪中期,Newmark 通 过假定滑移面的方法来确定变形体的屈服加速度值,并采用动力分析手段来判定 是否产生滑移,并估算其永久位移,然后根据潜在变形来评价土坝坝坡的动力稳 定性,这就是非常有名的有限滑块位移法;周健、徐志英等发展了基于粘弹性本 构关系的动力有限单元法,黄建梁等借用Sarma 法进行了地震稳定性的动态理论 分析,在同时考虑水平和竖向地震动基础上,给出了坡体临界加速度计算公式, 建立了根据水平和铅直地震加速度时程估计坡体失稳的加速度、速度和位移时程 的方法,解决了地震加速度时程的确定问题、地震过程中坡体抗滑强度的衰减问题和孔隙的动态响应问题及坡体稳定性的评价问题;薄景山建立了计算土质边坡 地震反应及评价其动力稳定性的数值分析模型;我国学者王思敬较早的研究了岩 体边坡的动力问题,通过振动模拟试验探索并建立了边坡块体运动的动力微分方 程,通过数值积分求得块体滑动的动力学特征,即块体运动加速度和块体相对基 岩的运动加速度、运动速度和位移曲线 多种动力响应分析方法,大致可分为3 种(贾俊) [10] :a.解析方法;b.物理模 拟方法;c.数值模拟方法。 l)解析方法 边坡根据临空面的数目可以分为单面坡和双面坡(比如坝坡)。双面坡有两个 自由面,它的动力反应三量(速度、加速度和应力)的分布规律可以采用解析的方 法—剪切楔法来获得。一维剪切楔法是1936 年由Mononobe 等提出的,随后大 量的文献对该法进行了改进,并把它推广到三维情形。对于顺层岩质边坡,大多 只有一个自由面,因此其基本属于单面坡,解析的方法对单面坡是无能为力的。 (2)物理方法 物理模拟是科学研究的重要手段,能较为合理的揭示事物的本质,但是由于 受实验材料、实验设备以及实验技术等限制,物理模拟无法保证模型与原型的真 正相似。同时,物理模拟会存在尺寸效应问题,要研究边坡在整个剖面上的动力 响应规律,在动力作用过程中必须在边坡体内布置大量的监测点。这对于物理模 拟来说是非常困难的。 (3)数值模拟

地震勘探的一些基础知识.doc

接收条件received condition:指地震勘探中接收地震波的仪器的工作状态和条件。广义地说, 接收条件包括地震检波器的安置情况、组合个数与方式,以及地震仪的各种因素等。但通常将接收条件狭义地指地震检波器的安置情况。地震资料的质量与接收条件有密切关系。陆地工作中埋置检波器,海洋工作中使检波器处于水面下一定深度,都是为了避免风、浪等影响而改善接收条件。 界面速度interface velocity:指折射波沿折射界面滑行的速度。界面速度主要反映折射界面以下地层中岩石的物理性质。由于组成地层的岩石颗粒排列有方向性,通常界而速度大于层速度。界面速度可通过折射波测得。 加速度检波器accelerometer:即“压电地震检波器”。 激发条件excited condition:地震勘探中将震源种类、能最、周围介质的情况总称为激发条件。对于炸药震源来说,激发条件一般包括炸药量大小、药包形状,个数,分布方式及埋置岩性和沉放深度等。对于非炸药震源,激发条件则包括装置的种类、能量、参数选择及安置情况等。激发条件的选择是否适当,对地震勘探原始资料质量的影响很大。一般认为,陆地工作中, 风化层下的含水可塑性岩层是有利的激发条件,因此往往采用井中爆炸,在海洋工作小,主要是以减小气泡影响作为合适的激发条件。 海洋地震勘探marine seismic survey:是利用勘探船在海洋上进行地震勘探的方法°其特点是在水中激发,水中接收,激发,接收条件均一;可进行不停船的连续观测。震源多使用非炸药震源,接收常用压电地震检波器,工作时,将检波器及电缆拖曳于船后一定深度的海水中由于上述特点,使海洋地震勘探具有比陆地地震勘探高得多的生产效率,更需要用数字电子计算机处理资料。海洋地震勘探中常遇到一些特殊的干扰波,如鸣震和交混问响,以及与海底有关的底波干扰。海洋地震勘探的原理,使用的仪器,以及处理资料的方法都和陆地地震勘探基本相同。由于在大陆架地区发现大量的石汕和天然气,因此.海洋地震勘探有极为广阔的前景。 高频地震high frequency seismic survey:在水文地质、工程地质调杏和金属矿床勘探中,勘测深度只在儿米到儿百米之间,需要精细分层和精确地测定波的传播时间。为了提高仪器的分辨能力,要用专门的高频地震仪,记录震波的高频分量。高频地震仪的通频带?般在60-350周 /秒之间,专门测定岩石波速时需提高到500-600周/秒。为了压制低频干扰,仪器频率特性的低频一边应有较大的陡度。 干扰波noise:地震勘探中妨碍分辨有效波的振动都属于干扰波。干扰波大体上可分为两种:其中具有明显传播规律的称为规则干扰或干扰波,如声波、面波,多次波等等;没有明显传播规律性的振动称为随机干扰,或简称干扰,如微震等。抗干扰的问题是关系到地震勘探中提高勘探的质量和能力的极其重要的问题。因此,在野外工作和资料处理上采用多种措施,以提高有效波而压制干扰波。干扰波有时也是相对的概念,如在反射法中,折射波就常

各种地震监测方法内容简介

附件2 各种监测方法内容简介 目前监测手段总体分为两类:测震(地震监测和强震)、前兆(形变、地磁、地电、流体、电磁波等),这里介绍潼南拟上的监测项目或手段。 地震监测和强震监测属于地震已经发生后监测地震发 生的时间、地点、震级、强度等,是人们常说的“事后诸葛亮”类型的监测,主要是为了确定地震发生的上述几要素,为政府抗震救灾和应急救援提供决策依据,否则,不知地震发生的一切信息,救灾就无从谈起。因此这一监测手段也是目前各国、各地区发展最早、技术最为先进和完善的监测方法。其他的监测手段统称为前兆手段,主要是通过各种方法的监测数据来预测预报地震。 一、地震监测、GPS监测 地球动力学是从地球的整体运动出发,由地球内部和表层的构造运动来探讨其动力演化过程,进而寻求其驱动机制。其基本问题是研究地球的变形及其变形机理。 板块构造概念带动了地学的一次重大革命,板间构造和板块运动理论能否成立或被人接受,均需得到全球板块运动的最新直接测量结果的支持。此外,板块运动的动力学机制、板内和板缘运动的复杂性的精细描述等方面,有待更多测量结果去完善。 中国大陆东部受西太平洋洋型板块俯冲、削减的影响,造成了一系列与弧后扩张有关的陆缘海伸展和断陷盆地;西部和西南受印度板

块与青藏块体陆壳碰撞后的构造效应,形成不同地质构造时期的推覆构造带。现代地壳运动则以青藏高原的快速隆起和沿巨型活动带的走滑或逆走滑的强烈变动为特征。据有限的观测,其水平运动速率每年高达l~4cm,垂直运动速率每年达1cm。这说明同时存在当代板块构造学说两种最具代表性的边界,即陆-陆壳相碰撞型和洋 陆壳俯冲型边界,既具有主要的全球构造意义,又具有独特的演化特征。这里的现代地壳运动类型多样,性质复杂,地貌清晰,是全球动力学研究中具有重要特殊地位的实验场。 因此,不论从地球动力学、板块运动还是青藏高原隆起,运用高精度、高时空分辨率、动态实时定量的观测技术,建立符合实际的地球动力学基础的全国统一的观测网络,势在必行。 对于地震监测预报而言,这种紧迫性尤为显著,因为我国地震台网,尤其是地震前兆网,存在着严重的三个主要缺陷: 第一,自1988~1999年,我国大陆共发生6级以上地震53次,其中7级以上地震9次,若以东经105°为界,西部地区发生8次,东部地区为1次,为8∶1。可是,在东经105°以西,由于人烟稀少,交通不便,台网布局极为稀少。一个释放地震能量90%以上的地区,台网过稀,无疑浪费了宝贵的地震信息的天然资源,大大延迟了人类的实践,从而延缓了提高地震预报水平的进程。 第二,全国地震前兆台网都是以“点测”形式进行相对变化量的日常观测,各台站的观测数据都是相对独立的,台站之间数据没有相

大间距双柱墩接盖梁桥墩横向地震反应研究

大间距双柱墩接盖梁桥墩横向地震反应研究 发表时间:2019-09-21T12:35:09.547Z 来源:《基层建设》2019年第19期作者:黄海峰 [导读] 摘要用有限元方法对大间距双柱墩盖梁的简支梁桥横向地震反应进行了全桥模型计算分析,并与我国城市桥梁规范方法的结果进行了比较。 中国市政工程西北设计研究院有限公司广东分公司广东东莞 523900 摘要用有限元方法对大间距双柱墩盖梁的简支梁桥横向地震反应进行了全桥模型计算分析,并与我国城市桥梁规范方法的结果进行了比较。讨论了墩高等因素对简支梁桥横向地震反应的影响。研究表明:对于大间距双柱简支梁桥的横向抗震计算应该采用全桥模型计算;我国现行城市桥梁抗震规范中的简化计算方法误差较大。 关键词:简支梁桥;横向地震力;规范 1 工程背景 随着城市化快速发展,城市土地资源越来越稀有,在城市桥梁建设中也要尽可能利用桥下空间,因此桥梁结构越来越多地采用大间距双柱墩。对于普通的公路简支梁桥,一般认为,结构横向刚度比纵向刚度大的多,故横桥向不控制设计。因此人们对横桥向地震反应研究比较少,对横桥向地震力的计算方法及其沿各墩的分配认识也不够。大间距双柱墩,自振周期较小,地震力往往比顺桥向地震力大。近来的震害经验也表明,横桥向的地震问题应引起足够的重视。 由于桥梁上部结构的质量远大于桥墩的质量,因此上部结构的地震力是桥梁的主要地震荷载,正确计算上部结构的地震力、合理确定各墩分担的上部结构地震力是桥梁抗震设计的重要内容。我国城市桥梁抗震设计规范中均规定,对于简支梁桥,横桥向各墩的地震荷载,均按单墩模型用反应谱方法计算,即把一个墩相邻两跨质量的一半集中在墩顶,不计各墩之间由于上部结构所产生的联系,以及上部结构的变形。文献[5]中根据大量的现场振动测量结果指出:梁的振动所产生的惯性力,引起了梁与墩的耦联振动,在大多数情况下,相对于墩的横向刚度来说,梁是一个比较柔性的结构,在研究桥梁的横向地震力时,梁的横向振动通常是不可忽略的。由于上部结构地震力沿各墩的分配,主要由上部结构的基本横向振型确定,因此忽略梁的变形按单墩模型计算桥梁的横向地震力必然存在误差。 本文重点讨论了设计中按单墩计算简支梁桥墩横桥向地震力与建立全桥模型计算出的简支梁桥横桥向地震的差别。 2 计算方法及模型 本文选择4x30混凝土简支小箱梁桥计算讨论,上部结构采用小箱梁、桥墩均为大间距双柱墩,各墩横向抗弯惯性矩相同,计算中主梁的横截面面积及质量保持不变。 对上述结构,按有限元方法,把上部梁及桥墩简化为三维梁单元,周期及振型用子空间迭代法计算,地震力按反应谱方法计算,反应谱取文献[3]中的Ⅲ类场地反应谱,水平地震系数为0.1。支座是桥墩与上部结构的联结件,它确立了梁与墩顶之间的位移关系。本文主要研究双柱墩接盖梁简支小箱梁抗震计算,上部小箱梁按梁格法进行模拟,支座按实际模拟,墩底约束采用出口刚度模拟,其三维计算模型如下所示: 4x30m简支小箱梁全桥三维计算模型 3 计算结果及分析 3.1 各墩高相同时的计算结果 首先以4跨简支箱梁桥为研究对象,假设各墩高度相同,通过调整墩高讨论了有限元模型计算出的上部结构横向地震力与规范方法计算结果的差别。 本文计算中,墩高分别取6m,8m,10m,12m,14m (此时横向第一周期由0.33s增大到0.74s)。根据墩高不同的情况,有5种计算工况。由于假定桥的跨径及梁的线密度不变,因此按城市抗震规范[3]计算的各墩地震力及周期只与墩高有关,与其它因素无关,其计算结果如表1所示,采用MIDAS模型计算结果如表2所示。 表1 按规范不同高度桥墩自震周期和地震力对比 表2 MIDAS模型计算不同高度桥墩自震周期和地震力对比 横向第一周期、2号墩剪力的有限元计算结果与规范方法计算结果的比较如图2所示。其中相对误差按下式计算:相对误差=(有限计算结果-规范结果)/(规范结果)x100%。

TMD多点控制体系随机地震响应分析的虚拟激励法_朱以文

收稿日期:2003-10-26; 修回日期:2003-11-22 基金项目:国家电力公司资助项目(KJ 00-03-26-01) 作者简介:朱以文(1945-),男,教授,主要从事计算力学和结构防灾减灾研究 文章编号:1000-1301(2003)06-0174-05 TM D 多点控制体系随机地震响应 分析的虚拟激励法 朱以文,吴春秋 (武汉大学土木建筑工程学院,湖北武汉430072) 摘要:对于频率分布密集或受频带较宽的地震激励的结构,其响应不再以某一单一振型为主,须考虑采用多点控制。本文对受T M D 多点控制的结构进行了研究。文中建立了带有多个子结构系统的以模态坐标和子结构自由度为未知量的统一运动方程。针对所得方程为非对称质量、非对称刚度、非经典阻尼的情况,本文给出了使用直接法求解的格式。地震随机响应分析采用了虚拟激励法,可以考虑各振型之间的耦合项,计算量小且精度高。本文的方法适用于带有多个子结构的系统的一般性问题,具有广泛的应用价值。 关键词:多点控制;主结构;子结构;随机地震响应中图分类号:P315.96 文献标识码: A Pseudo -excitation method for random earthquake response analysis of control system with MTMD ZH U Yi -wen ,WU Chun -qiu (Civil and structural engineering school ,W uhan university ,Wuhan 430072,China ) A bstract :The response of the structure is no t constituted with one sing le mode shape w hen the frequency distri -bution is dense o r the earthquake excitation 's frequency band is w ide .At this time ,it is necessary to adopt the multi -point control sy stem .The study on the structures w ith M TMD is carried out in this paper .The uniform dynamic equation w ith mode coordinate and slave system 's DOF as variables is established fo r the system w ith multi slave sy stem .The equatio n has asy mmetric mass m atrix ,asymmetric stiffness matrix and nonclassical damping m atrix ,and the direct solving format is given in this paper .The random earthquake response is studied by using pseudo -excitation method ,thus the coupling items between modes can be considered .The calculation is cheap and precision is high .The method in this paper is adaptable to the general case of the sy stem with multi -slave structures and has broad application wo rth .Key words :multi -point control ;master structure ;slave structure ;random earthquake response 1 引言 对于高层建筑、大跨桥梁、高耸塔架等高柔结构采用TMD (Tuned Mass Damper )减小风振及地震响应是有效的,这一点得到了人们的普遍认同。TMD 对建筑结构的功能影响较小,便于安装、维修和更换控制元 第23卷第6期2003年12月地 震 工 程 与 工 程 振 动EA RT HQ UAK E ENG IN EERI NG A ND ENG IN EERIN G V IBRA T ION V ol .23,No .6 Dec .,2003DOI :10.13197/j .eeev .2003.06.028

论地震勘探中几种主要地震波

论地震勘探中的几种主要地震波 论文提要 地震勘探,就是通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下地质构造,为寻找油气田或其它勘探目的服务的一种方法。也可以理解为就是利用地震子波从地下地层界面反射回地面时带回来的旅行时间和形状变化的信息,用以推断地下的底层构造和岩性。地震勘探在勘探已有的各种物探方法中,是最有效地方法。在地震勘探中用炸药激发时,一声炮响之后会产生各种各样的地震波。按波在传播过程中质点震动的方向来区分,可以纵波和横波;根据波动所能传播的空间范围而言,地震波又可以分为体波和面波;按照波在传播过程中的传播路径的特点,又可以把地震波分为直达波、反射波、透射波、折射波,等等。地震勘探在石油勘探中除了能产生来自地层界面有用的反射波外,还会产生各种各样的干扰波。因此,我们要更好的了解各种波的产生、特点、用途,等等。下面简单介绍几种地震勘探中产生的地震波。 正文 一、反射波 (一)反射波的形成 1、几何地震学的观点 当炸药在井中爆炸激发地震波时,在雷管引爆几百微妙之内爆炸便完成了,在接近爆炸点的压强是一个延续时间很短的尖脉冲,爆炸脉冲向外传播,压强逐渐减少,地层开始产生弹性形变,形成地震波。地震波继续传播,由于介质对高频的吸收,地震波信号减小。当波入射到两种介质的分界面时(当上层介质波阻抗与下层介质波阻抗不等时,弹性地震波才会发生反射;上层介质波阻抗与下层介质波阻抗差别越大,反射波越强——反射波条件),一部分波回到第一种介质中,这就是所谓的反射波。如图所示 2、物理地震学观点 地震波从震源出发以球面波的方式向下传播,到达反射界面S,S可以就看成有许多

TMD对结构地震响应控制效果的研究

第26卷,第1期 2010年3月 世 界 地 震 工 程W ORLD E ARTHQUAKE ENGI NEER I N G V o.l 26N o .1 M ar .2010 收稿日期:2009-01-07; 修订日期:2010-01-07 基金项目:湖北省教育厅中青年项目(Q20092501);襄樊学院青年项目(2009YB020) 作者简介:秦 丽(1976-),女,讲师,博士,主要从事工程抗震方面的教学和研究.E m ai:l gracieq1@e m ails .b j u t .edu .cn 文章编号:1007-6069(2010)01-0202-05 TMD 对结构地震响应控制效果的研究 秦 丽1,2 ,李业学1 ,徐福卫 1 (1.襄樊学院建筑工程学院,湖北襄樊441021; 2.北京工业大学建筑工程学院,北京100022) 摘 要:TMD 对简谐激励和风荷载引起振动的控制效果得到了一致的肯定,然而关于T M D 地震控制的效果还没有一致的结论。文中比较了几种有代表性的T M D 参数优化方法所确定的T M D 参数;利用MAT LAB 编制了计算程序,分析了不同方法所确定的TMD 参数用于地震控制时,控制效果的差别;从反应谱的概念出发,研究TMD 对单自由度结构的地震控制效果。结果表明,TMD 总体上对于单自由度结构的地震响应是有控制效果的,结构本身响应越大,控制效果越好;结构本身响应很小的时候,T M D 有放大结构响应的现象,但由于结构本身响应很小,放大后的结构响应也不会导致结构有破坏的危险。关键词:TM D;地震响应;反应谱;单自由度主结构中图分类号:TU 435;P315 966 文献标志码:A R esearch on control effectiveness of TM D to structural seis m ic res ponse Q IN L i 1,2 ,L I Yexue 1 ,XU Fuw ei 1 (1.C oll ege of Arc h itecture and C i vilEng i neeri ng ,X iangf an Un ivers i ty ,X iangf an 441021,Ch i na ;2.C ollege of Arch i tecture and C i v ilEng i neeri ng ,B eiji ng Un ivers i ty of Techn ol ogy ,Beiji ng 100022,Ch ina) Abst ract :The contro l effecti v eness of T MD to v i b rati o n caused by har m onic excitation and w ind is affir m ed by all t h e researchers ,w hile there is no t co inc i d ent conclusion about the contro l effectiveness ofTMD to m iti g ate structura l seis m i c response .In th is paper ,t h e differentm ethods for TMD para m eter opti m izati o n are co m pared and their seis m ic control effectiveness is co m pared .Based on the concept o f response spectra ,t h e control e ffectiveness of T MD for a SDOF syste m seis m ic response is st u died .The resu lts de m onstrate thatTMD is effective to m itigate seis m ic re sponse of t h e SDOF in genera.l K ey w ords :T MD;se is m ic response ;response spectrum;SDOF struct u re 引言 T MD 作为一种减振消能装置,安装和维护价格很低,性能稳定可靠,适用范围广泛。在结构减振控制中受到较多的关注,目前已经有不少高层建筑成功运用TMD 来控制结构的风振。 T MD 的控制效果取决于它的参数,质量比(TMD 质量与结构质量之比)、阻尼比、频率比(T M D 频率与结构基频之比)。因此很多相关的理论研究都致力于T MD 的参数优化。最经典的是Den H artog [1] 提出的利用无阻尼单自由度结构-TMD 系统的主结构位移的传递函数来确定的T MD 的最优参数。此后,很多学者提出了不同的确定T MD 最优参数的方法,限于篇幅在此只介绍与文中内容相关的有代表性的研究。W arbur ton (1982) [2] 总结了无阻尼结构简谐和白噪声激励下,以结构的位移响应最小化为目标时,T MD 的最优参

地震监测系统

GIS地震探测系统 一、概述 地震又称地动、地振动,是地壳快速释放能量过程中造成振动,期间会产生地震波的一种自然现象。全球每年发生地震约五百五十万次。地震常常造成严重人员伤亡,能引起火灾、水灾、有毒气体泄漏、细菌及放射性物质扩散,还可能造成海啸、滑坡、崩塌、地裂缝等次生灾害。 地球的构造分为三层:即中心层地核、中间层地幔、外层地壳; 1.地壳:分为上地壳和下地壳。是岩石圈上部次极圈层。 2.地幔:分为上地幔和下地幔。岩石圈是它的一部分,软流层以上。地幔多以流体形式的岩浆等物质存在 3.地核:分为外核和内核。外核是液体的,所以又称外核液体圈。内核,是固体的,主要由铁、镍组成,又称内核固体圈。 地壳与地幔之间由莫霍面界开,地幔于地核之间由古登堡面界开。地震一般发生在地壳之中。地壳内部在不停地变化,由此而产生力的作用,使地壳岩层变形、断裂、错动,于是便发生地震。超级地震指的是指震波极其强烈的大地震。但其发生占总地震7%~21%,破坏程度是原子弹的数倍,所以超级地震影响十分广泛,也是十分具破坏力。 下图为全球板块构造运动图:

地震是地球内部介质局部发生急剧的破裂,产生的震波,从而在一定范围内引起地面振动的现象,地震就是地球表面的快速振动,在古代又称为地动,他就像海啸、龙卷风、冰冻灾害一样,是地球上经常发生的一种自然灾害,大地振动是地震最直观、最普遍的表现;在海底或滨海地区发生的强烈地震,能引起巨大的海浪,称为海啸。地震是极其频繁的,全球每年发生地震约550万次。 地震波发源的地方,称为震源。震源在地面上的垂直投影,地面上离震源最近的一点称为震中,它是接受振动最早的部位,震中到震源的深度叫做震源深度。通常将震源深度小于70公里的叫做浅源地震,深度在70~~300公里的叫做中源地震,深度大于300公里的叫做深源地震。对于同样大小的地震,由于震源深度不一样,对地面造成的破坏程度也不一样;震源越浅,破坏越大,但波及范围也越小,反之亦然。 破坏性地震一般是浅源地震。如1976年的唐山大地震的震源深

横向减震体系作用下斜拉桥的地震反应分析

独塔双索面铁路斜拉桥抗震性能分析 近些年,随着桥梁设计和建造水平的提高,桥梁不断向轻型大跨方向发展。由于地震作用对桥梁安全性产生重大影响,因此需采取必要措施和技术提高桥梁结构的抗震性能。一般来说,传统意义上人们采用增大结构强度和刚度的方法来提高结构的整体性和抗震能力,但这种方法不能真正起到耗能的作用且在一定程度上不符合安全经济的要求[1~2]。在实际的桥梁工程中,通常采用更加合理的减震技术达到耗能减震的目的,常用的减震方法主要有三种:基础隔震、耗能减震和被动调谐减震[3]。 本文以穗盐特大铁路斜拉桥为例,对其安装E型钢阻尼支座和横向约束作用的减震体系结构抗震性能进行分析,并与无减震支座体系作用下的反应比较,讨论和分析减震措施的有效性。 1工程概况 穗盐路特大铁路斜拉桥是新建铁路贵阳至广州线上引入广州枢纽工程的一座四线铁路桥,即为引入新广州站客运专线场的四线客运专线桥,该桥处于R=1150m的曲线区段。该桥为四线铁路独塔双索面钢箱弯斜拉桥,其跨径分布为:32.6m+175m+175m+32.6m,桥宽24m(见图1)。该独塔斜拉桥设有一辅助墩,主梁与桥塔的连接处采用固结方式,主桥结构约束体系为:边墩设置两个纵向活动E型钢抗震阻尼支座,一个横向约束销钉;辅助墩设置三个双向活动支座,两个横向约束销钉。主塔、辅助墩和边墩下均为桩基础。主梁断面有钢箱梁和混凝土箱梁两种,两辅助墩之间采用钢箱梁,辅助墩与边墩之间则为混凝土箱梁。穗盐路铁路斜拉桥桥址所处地区的地震基本烈度为7度,峰值加速度为0.1g,特征周期为0.35s,场地类别为II类[4]。

图1 主桥总体布置图 穗盐路斜拉桥工程是一个大型的桥梁工程,投资很大,在政治经济上具有非常重要的地位,一旦遭到地震破坏,可能导致的生命财产以及间接经济损失将会非常巨大。因此,进行正确的抗震研究,确保其抗震安全性具有非常重要的意义。 2抗震设防标准和地震动输入 2.1抗震设防标准 确定工程的抗震设防标准需要在经济与安全之间进行合理平衡,这是桥梁抗震设防的合理原则。根据前期研究结果,穗盐路特大铁路斜拉桥采用100年10%(地震水平I,简称P1概率)和100年4%(地震水平II,简称P2概率)两种超越概率地震动进行抗震设防。具体性能目标可参见表1 表1 设防标准与相应的性能目标 2.2地震动输入 根据中国地震局地壳应力研究所提供的《贵广铁路贺州至广州段重点工程场地地震安全性评价报告》,得到100 年超越概率10%、4%两个概率水平的场址地表水平向加速度峰值 A、地震动反应谱特征周期g T等参数如下表2。 m 表2 场地设计地震动水平向峰值加速度及加速度反应谱(5%阻尼比)参数值 表的场地设计地震动水平向峰值加速度( A)及加速度反应谱参数值。竖向设计地震动参数 m 按相应的水平地震动的2/3取值。 在进行地震反应分析时,采用100年10%和100年4%的超越概率,阻尼比为5%的场地反应谱输入,如图2所示。考虑到斜拉桥作为柔性结构(阻尼比通常取3%),具体计算时,对反应谱进行阻尼调整,阻尼调整系数 C应按下式取 d 值:

地震勘探原理及方法

、地震勘探基本原理 1. 地震地质模型基本分类 2?均匀、理想弹性介质中的三维波动方程 3.无限大均匀各向同性介质中的弹性波场及特征 4.地震波的反射、透射和折射 5.多层黏弹性介质中的弹性波场及特征 6.几何地震学原理 7.地震波速度及地震地质条件 1.1地震地质模型基本分类 1.地震地质模型 2.固体成为弹性介质的条件 3.人工激发震源与岩层的弹性 4.常用的弹性介质模型 1.3无限大均匀各向同性介质中的弹性波场及特征 1.3.1无限大均匀各向同性介质中的平面波 1.3.2无限大均匀各向同性介质中的球面波 1.3.3地震波的动力学特征 1.3.4地震波的运动学特征 小结: 1、动力学特征(动力学参数) 2、运动学特征(运动学参数) 3、动力学特征的体现:远近震源处的位移波形变化 球面扩散、振动图和波剖面谱分析 4、运动学的原理和定理:Huygens、Fermat、Snell 5、时间场和射线的关系

6、基本概念:射线、视速度、频波关系、波数、波长动力学信息(反映动力学特征的信息)振幅、频率、波形、吸收衰减、极化特点、连续性等特征。 运动学信息(反映运动学特征的信息) 传播时间(旅行时间)、传播时间-空间距离的关系、波的传播路径、地震速度等特征 1.4地震波的反射、透射和折射 1.平面波的反射和透射 2.弹性分界面上的波型转换和能量分配 3?球面波的反射、透射和折射 4.地震面波 小结 1、斯奈尔定理(包括反射定理、透射定理) 2、波的转换(同类波、转换波) 3、能量分配Zoeppritz方程 (法线入射、入射自由表面、反射产生条件) 4、倾斜入射及折射波的产生(产生条件、原因) 5、折射波的特点 (波前为圆锥台、射线为直线、能量扩散比反射波慢、折射盲区、屏蔽现象) 6、AVA曲线 (临界入射前、临界入射、过临界入射) 7、面波的特点 (传播速度、质点位移、频散现象) 1.5多层黏弹性介质中的弹性波场及特征 1.黏弹性介质中弹性波的传播和大地滤波作用 2.多层介质中弹性波的传播特性 3.地震波的簿层效应 4.地震绕射波 5.地震波的波导效应 6.反射波地震记录道形成的物理机制 黏弹性介质中弹性波的传播基本概念

解释及分析地震数据体一般步骤

解释及分析地震数据体一般步骤: 1、合成人工记录和层位标定 2、追层位,注意闭合 3、解释断层 3、平面成图 在解释过程中可能用到的五种技术方法: 1.层位标定技术 2.三维体构造精细解释技术 3.相干数据体分析技术 4.低序级断层识别技术 5.断点组合技术 其中各项技术的具体用法自己去查资料 若遇到潜山和特殊岩性体时,在成图前增加1项,速度场分析即第6项技术变速成图技术;若有储层描述部分,还需增加反演处理。 1、反演工区建立 2、地震子波提取 3、井地标定 4、初始模型建立 5、反演参数选取 6、反演处理 7、砂体追踪描述 8、成图 在三维地震构造解释的基础上,对有井斜资料的井,分层段进行了井深校正,将测井井深校正为垂直井深。通过钻井资料的校正,利用校正数据表的数据,对断层的断点位置和断距进行归一化处理,对三维地震所做的构造图与钻井数据相矛盾的地方进行反复推敲,分析油藏油水关系,对一些四、五级断层进行组合、修正,反复修改构造,最后编制研究区构造图。静校正statics:地震勘探解释的理论都假定激发点与接收点是在一个水平面上,并且地层速度是均匀的。但实际上地面常常不平坦,各个激发点深度也可能不同,低速带中的波速与地层中的波速又相差悬殊,所以必将影响实测的时距曲线形状。为了消除这些影响,对原始地震数据要进行地形校正、激发深度校正、低速带校正等,这些校正对同一观测点的不同地震界面都是不变的,因此统称静校正。广义的静校正还包括相位校正及对仪器因素影响的校正。随着数字处理技术的发展,已有多种自动静校正的方法和程序。 [深度剖面]depth record section;据磁带地震记录的时间剖面或普通光点记录,用一般方法所作出的地震剖面只是表示界面的法线深度,而不是真正的铅垂深度。经过偏移校正和深度校正之后,得到界面的铅垂深度剖面才叫做深度剖面,它是地质解释的重要资料。用数字电子计算机处理磁带地震记录,能自动得出深度剖面 [同相轴]lineups;地震记录上各道振动相位相同的极值(俗称波峰成波谷)的连线称为同相轴。在解释地震勘探资料时,常常根据地震记录上有规律地出现的形状相似的振动画出不同的同相轴,它们表示不同层次的地震波。 [速度界面]velocity interface;是指对地震波传播速度不同的、相邻的两层介质的公共接触面。信噪比signal-to-noise ratio:信噪比有多种定义。通常将地震仪器的输出端上,有效信号的功率与噪声(干扰)的功率之比称为信噪比。信噪比既与输入信号本身有关,更决定于仪器的特性,它也被用来衡量资料处理的效果。因此,提高信噪比是提高地震工作质量的关键问题之一。信噪比愈大愈好,可以通过改进仪器性能或选择工作方法提高信噪比。 子波wavelet:从震源发出的原始地震脉冲在介质中传播时,由于介质对地震脉冲有滤波作用,并且地层界面使波产生反射和折射,因此,自距震源一定距离起,脉冲波形便发生变化而与原始波形不同,但在一定传播范围内其形状甚本保持不变,这时的地震脉冲便称为子波。子波的形状决定于震源和介质的滤波性质,其频率随传播距离的增大而有所降低,振幅也逐渐减小。不同的界面各自的子波不同,每一道的地震记录可以认为是由一系列的子波构成的。子波不仅用于制作理论地震记录,而且在断层对比和反褶积处理等方面都需要它。 [有效速度] effective velocity; 把覆盖层看作均匀介质而从实际观测所得的反射波或从折射波时距曲线求得的波速,统称为有效速度。由于在层状地层中存在层理,介质并不真正是均匀的,再加上界面的弯曲,使有效速度不同于平均速度,往往是比平均速度大的一种近似速度,但在各层速度的差别不很大和界面弯曲不大时,两者的差别很小。 [有效波]effective wave; 指能用来解决某些地质问题的人工激发的地震波。有效波是个相对的

国内外微地震检测技术现状与应用

国内外微地震检测技术现状与应用 一、国内技术应用现状 基于微震监测的裂缝评价技术正发展成为油层压裂生产过程中直观而又可靠的技术。近几年来,国内众多油气田纷纷投入人力、物力和资金,积极开展该技术的应用与研究工作,广泛用于油气勘探开发工作。 1、2011年,东方物探公司投入专项资金,积极开展压裂微地震监测技术研究,压裂微地震监测技术水平得到快速提升。截止2011年11月,东方物探公司已成功对11口钻井实施了压裂微地震监测。 2、同年,华北油田物探公司针对鄂尔多斯工区大力推广水平井分段压裂技术、不断提高储量动用率及单井产量的要求,2011年年初就对微地震检测技发展状况进行调研,并对检波器、记录仪器、处理软件进行实际考察。 他们与科研院校合作,在鄂南工区富县牛东4井与洛河4井开展微地震监测裂缝评价技术攻关,采用微地震技术对储层压裂进行监测,结果与人工电位梯度方法(ERT)监测结果一致。该公司还通过组建微地震监测项目组,加强相关专业知识的培训和学习,并与科研院校“高位嫁接”,开发微地震检测特色技术,打造差异化竞争优势。 3、近年来,胜利油田积极开展微地震压裂检测技术应用研究,并把它作为油气勘探开发的重要技术手段和技术储备。 据了解,“十二五”期间,非常规油气藏将成为胜利油田的一个重要接替阵地,而微地震压裂检测技术是非常规油气藏勘探领域中的一项重要新技术。 通过开展对国内外微地震压裂检测技术现状、微地震压裂检测采集方法、数据处理及裂缝预测方法、目前成熟的处理反演软件、微地震压裂检测技术应用实例分析等方面调查研究,全面了解和掌握微地震压裂检测技术的技术特点、技术关键、技术实用性及其发展方向,为胜利油田下一步开展非常规油气资源的勘探开发工作提供先进的技术支持,更好地为油气藏勘探开发工作服务。 二、国外技术研究与应用 在20世纪40年代,美国矿业局就开始提出应用微地震法来探测给地下矿井造成严重危害的冲击地压,但由于所需仪器价格昂贵且精度不高、监测结果不明显而未能引起人们的足够重视和推广。 近10年来,地球物理学的进展,特别是数字化地震监测技术的应用,为小范围内的、信号较微弱的微地震研究提供了必要的技术基础。为了验证和开发微地震监测技术在地下岩石工程(如地热水压致裂、水库大坝、石油、核废料处理等)中所具有的巨大潜力,国外一些公司的研究机构和大学联合,进行了一些重大工程应用实验。如1997年,在美国德州东部的棉花谷进行了一次全面而深入的水压致裂微地震成像现场实验,以验证微地震成像技术的实用价值。该实验取得了巨大成功,证明微地震成像技术相对于其它技术来讲,分辨率高、覆盖范围广、经济实用及可操作性强,很有发展潜力。 美国之所以成为目前世界上页岩油气开发的领跑者,就是因为它已经熟练掌握了利用地面、井下测斜仪与微地震检测技术相结合先进的裂缝综合诊断技术,可直接地测量因裂缝间距超过裂缝长度而造成的变形来表征所产生裂缝网络,评价压裂作业效果,实现页岩气藏管理的最佳化。该技术有以下优点: ①、测量快速,方便现场应用; ②、实时确定微地震事件的位置; ③、确定裂缝的高度、长度、倾角及方位;

监测地震的方法.doc

监测地震的方法 【 - ,因此在这个过程中将出现地球物理学、地质学、大地测量学、 地球化学及至生物学、气象学等多学科领域中的各种异常现象。经过系统的清理和研究,自1966年邢台地震以来,我国已在70 多次中强以上地震前记录到1000多条前兆异常。 这些前兆异常可归为十大类,即地震学、地壳形变、重力 地磁、地电、水文地球化学、地下流体(水、汽、气、油)动态、应力应变、 气象异常以及宏观前兆现象。每一类前兆又包含多种监测手段和异常分析项目。 如地壳形变包含有大面积水准测量、断层位移测量、海平面观测、湖面观测、

地面倾斜观测等手段。地震学前兆分析项目是各大类前兆中最丰富的,包括地 震活动分布的条带、空区集中、地震频度、能量、应变、b 值、震群、前震、 地震波速、波形、应力降等三十多种异常分析项目。 宏观异常项目亦是丰富多 彩,如地声、地光、火球、喷水、喷油、喷气、地气味、地气雾,井水翻花、 冒泡、突升、突降、变色、变味、井孔变形、各种动物行为的反常现象等等。 总之,由于地震孕育和发生过程的复杂性,决定了地震前兆具有丰富,多样和综合的特点。归纳起来,前兆现象可分为十大类,其中包含的异常分析项目和观测手段可达近百项。 目前应用于地震监测的主要手段及方法有以下几种: 1)测震:记录一个区域内大小地震的时空分布和特征,从而预报大地震。人们常说的“小震闹,大震到”,就是以震报震的一种特例。当然,需要注意的是“小震闹”并不一定导致“大震到”。 2)地壳形变观测:许多地震在临震前,震区的地壳形变增大,可以是平时的几倍到几十倍。如测量断层两侧的相对垂直升降或水平位移的参数,是地震预报重要的依据。

抗震设计方法概述

本学期的“工程结构抗震分析”课程首先介绍了地震与地震震害以及结构抗震分析的必要性和其方法的发展过程,然后简单回顾了一下结构动力学基础,接下来认识了地震波与强震地面运动的特性,以及地震作用下结构的动力方程,最后重点讲述了几种抗震设计分析方法——反应谱分析法,时程分析法(弹性和弹塑性),和静力弹塑性分析法。通过一个学期的学习,本人对强震地面运动特征和抗震设计原理和方法有了一定的了解和把握。 在进行建筑、桥梁以及其它结构物的抗震设计时,一般都要遵循以下五个步骤:抗震设防标准选定、抗震概念设计、地震反应分析、抗震性能验算以及抗震构造设计,其流程如图1 所示。 本文将着眼于图1流程中的第3个步骤, 从我国现行规范中的3种最常用的结构响应分 析方法出发,简单介绍一下其各自的基本概念 和适应范围(具体原理和计算过程在此不再详 述,读者可另查阅相关课本和规范),以及现有 抗震设计规范中存在的问题,以便初学者对结 构抗震设计分析方法有个初步的认识,也作为 本人对本课程的学习总结。 一.3种最常用的结构响应分析方法 1.底部剪力法 定义:根据地震反应谱理论,以工程结构 底部的总地震剪力与等效单质点的水平地震作 用相等来确定结构总地震作用的一种计算方 法。 底部剪力法适用于基本振型主导的规则和 高宽比很小的结构,此时结构的高阶振型对于 结构剪力的影响有限,而对于倾覆弯矩则几乎 没有什么影响,因此采用简化的方式也可满足 工程设计精度的要求。 高规规定:高度不超过40m、以剪切变形 为主且质量和刚度沿高度分布比较均匀的高层 建筑结构,可采用底部剪力法。 底部剪力法尚有一个重要的意义就是我们可以用它的理念,简化的估算建筑结构的地震响应,从而至少在静力的概念上把握结构的抗震能力,它还是很有用的。 2.振型分解反应谱法 定义:振型分解反应谱法是用来计算多自由度体系地震作用的一种方法。该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应。振型分解反应谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。 反应谱的振型分解组合法常用的有两种:SRSS和CQC。虽然说反应谱法是将并非同一时刻发生的地震峰值响应做组合,仅作为一个随机振动理论意义上的精确,但是从实际上它对于结构峰值响应的捕捉效果还是很不错的。一般而言,对于那些对结构反应起重要作用的振型所对应频率稀疏的结构,并且地震此时长,阻尼不太小(工程上一般都可以满足)时,SRSS是精确的,频率稀疏表面上的反应就是结构的振型周期拉的比较开;而对于那些结构

相关文档
最新文档