2013年云南省曲靖市中考数学试卷及解析
2013年云南省曲靖市中考试卷答案
解得:b=﹣3,c=4,
∴抛物线的解析式为:y=﹣x2﹣3x+4.
(2)设点C坐标为(m,0)(m<0),则OC=﹣m,AC=4+m.
∵OA=OB=4,∴∠BAC=45°,
∴△ACD为等腰直角三角形,∴CD=AC=4+m,
∴CE=CD+DE=4+m+4=8+m,
∴点E坐标为(m,8+m).
∵点E在抛物线y=﹣x2﹣3x+4上,
∴8+m=﹣m2﹣3m+4,解得m=﹣2.
∴C(﹣2,0),AC=OC=2,CE=6,
S四边形CAEB=S△ACE+S梯形OCEB﹣S△BCO= ×2×6+ (6+4)×2﹣ ×2×4=12.
(3)设点C坐标为(m,0)(m<0),则OC=﹣m,CD=AC=4+m,BD= OC=﹣ m,则D(m,4+m).
1
2
4
乙
1
0
2
1
1
0
2
(2)∵S甲2= ,S乙2= ,
∴S甲2>S乙2,
∴乙出现次品的波动小.
(3)∵乙的平均数是1,
∴30天出现次品是1×30=30(件).
21.
解:(1)设红球有x个,
根据题意 得, ,
解得x=1;
(2)根据题意画出树状图如下:
一共有9种情况,两次摸到的球颜色不同的有6种情况,
所以,P(两次摸到的球颜色不同)= .
去分母得:x+1=﹣x+1,
解得:x=0,
代入原式检验,分母为0,不合题意,
则原式的值不可能为﹣1.
19.
解:设安排x人生产A部件,安排y人生产B部件,由题意,得
云南八地2013年中考数学试卷答案
云南省八地市2013 年中考数学试卷答案一、选择题1-4 BBDB5-8 ACDA二、填空题9、 510、x( x+2)( x﹣2)11、x≥﹣1 且 x≠012、13、44°14、三、解答题15、解:原式 = +1+4﹣=5.16、解答:解:( 1)∵ AB=AD ,∠ A= ∠ A ,∴若利用“AAS ”,能够增添∠ C= ∠ E,若利用“ASA ”,能够增添∠ ABC= ∠ADE ,或∠ EBC= ∠CDE,若利用“SAS ”,能够增添 AC=AE ,或 BE=DC ,综上所述,能够增添的条件为∠C=∠ E(或∠ ABC= ∠ ADE 或∠ EBC= ∠ CDE 或 AC=AE 或 BE=DC );故答案为:∠ C=∠ E;( 2)选∠ C=∠ E 为条件.原因以下:在△ABC 和△ ADE 中,,∴△ ABC ≌△ ADE ( AAS ).17、解答:解:( 1)以下图:.( 2)联合坐标系可得: A' ( 5,2), B'( 0, 6), C'( 1, 0).18、解答:解:( 1) 12÷10%=120(人);来[源 ]( 2) a=120﹣ 12﹣30﹣ 24﹣ 12=42 ;( 3)众数是 12 人;( 4)每日体育锻炼时间许多于1 小时的学生人数是: 2400 × =1560(人).19、解答:解:( 1)列表以下:12 31 ( 1,1) (2,1) ( 3,1)2 ( 1,2) (2,2)( 3,2)3( 1,3)(2,3) ( 3,3)( 2)全部等可能的状况数为 9 种,此中是 x 2﹣3x+2=0 的解的为( 1,2),( 2,1)共2 种,则 P 是方程解= .20、解答:解:过点 A 作 AD ⊥ BC 于 D ,依据题意得∠ ABC=30 °,∠ ACD=60 °, ∴∠ BAC= ∠ ACD ﹣∠ ABC=30 °, ∴ CA=CB .∵ CB=50 ×2=100 (海里), ∴ CA=100 (海里),在直角△ ADC 中,∠ ACD=60 °,∴ CD= AC= ×100=50 (海里).故船持续航行 50 海里与垂钓岛 A 的距离近来.21、解答:解:( 1)∵ AB=AC ,AD 是 BC 的边上的中线,∴ AD ⊥ BC , ∴∠ ADB=90 °,∵四边形 ADBE 是平行四边形.∴平行四边形 ADBE 是矩形;(2)∵ AB=AC=5 , BC=6, AD 是 BC 的中线,∴ BD=DC=6 × =3,在直角△ ACD 中,AD===4,∴S 矩形ADBE =BD ?AD=3 ×4=12.22、解答:解:( 1)设榕树的单价为x 元 /棵,香樟树的单价是y 元 / 棵,根据题意得,,解得,答:榕树和香樟树的单价分别是60 元/棵, 80 元 /棵;( 2)设购置榕树 a 棵,则购置香樟树为(150﹣ a)棵,依据题意得,,解不等式①得,a≥58,解不等式②得,a≤60,所以,不等式组的解集是58≤a≤60,∵ a 只好取正整数,∴a=58、59、 60,所以有 3 种购置方案:方案一:购置榕树58 棵,香樟树92 棵,方案二:购置榕树59 棵,香樟树91 棵,方案三:购置榕树 60 棵,香樟树 90 棵.23、解答:解:( 1)设直线 EC 的分析式为y=kx+b ,依据题意得:,解得,∴y=x+1 ,当 y=0 时, x= ﹣1,∴点 A 的坐标为(﹣1, 0).∵四边形ABCD 是等腰梯形, C( 2, 3),∴点 D 的坐标为( 0,3).( 2)设过A(﹣ 1,0)、D( 0,3)、C( 2,3)三点的抛物线的分析式为y=ax2+bx+c ,则有:,解得,∴抛物线的关系式为:y=x 2﹣ 2x+3 .( 3)存在.①作线段 AC 的垂直均分线,交 y 轴于点 P1,交 AC 于点 F.∵OA=OE ,∴△ OAE 为等腰直角三角形,∠ AEO=45 °,∴∠FEP1=∠AEO=45 °,∴△ FEP1为等腰直角三角形.∵A(﹣ 1, 0), C(2, 3),点 F 为 AC 中点,∴F(,),∴等腰直角三角形△FEP1斜边上的高为,∴EP1=1 ,∴P1( 0, 2);②以点 A 为圆心,线段AC 长为半径画弧,交y 轴于点 P2,P3.可求得圆的半径长AP2=AC=3 .连结 AP 2,则在R t△ AOP2中,OP2= = = ,∴ P2( 0,).∵点 P3与点 P2对于 x 轴对称,∴ P3( 0,﹣);③以点 C 为圆心,线段CA 长为半径画弧,交y 轴于点 P4, P5,则圆的半径长CP4=CA=3 ,在 Rt△CDP4中, CP4=3 , CD=2 ,∴ DP4= = = ,∴ O P4=OD+DP 4 =3+ ,∴ P4( 0, 3+ );同理,可求得: P5( 0, 3﹣).综上所述,知足条件的点P 有 5 个,分别为: P1( 0, 2),P2( 0,), P3( 0,﹣),P4( 0, 3+ ),P5( 0, 3﹣).。
2013年云南省中考数学试卷
-------------------- ( )
D.□ ABCD 是轴对称图形
本试卷满分 100 分,考试时间 120 分钟.
2.考试结束时,请将试题卷、答题卷(答题卡)一并交回。 39x
卷 一、选择题(本大题共 8 小题,每小题只有一个正确选项,每小题 3 分,满分 24 分) A.9 B. 3 C. 3 D.3
7.要使分式 的值为 0,你认为 x 可取的数是 ( )
x
考生号 1
________________ ________________ --------------------
Байду номын сангаас
ab
6.已知 O1 的半径是 3 c m , O2 的半径是 2 c m , OO12 6 c m ,则两圆的位置关系是
-------------
------------- 绝密★启用前 5.如图,平行四边形 ABCD 的对角线 ACBD、 相交于点O ,下列结论正确的是 ( )
卡)相应的位置上,在试题卷、草稿纸上作答无效。
x2 9
-------------------- B. ACBD
数 学 C. ACBD
1. 6 的绝对值是 ( ) 8.若 ab>0 ,则一次函数 yaxb与反比例函数 y 在同一坐标系中的大致图像可
A. SSABCDAOB 4 △
在 云南省 2013 年初中学业水平考试
1.本卷为试题卷。考生解题答题必须在答题卷(答题卡)上,答案书写在答题卷(答题
A.相离 B.外切 C.相交 D.内切
云南省曲靖市年中考数学试卷(解析版)
云南省曲靖市2013年中考数学试卷一、选择题(共8个小题,每小题3分,共24分)1.(3分)(2013•曲靖)某地某天的最高气温是8℃,最低气温是﹣2℃,则该A.﹣10℃B.﹣6℃C.6℃D.10℃考点:有理数的减法.分析:用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.解答:解:8﹣(﹣2)=8+2=10℃.故选D.点评:本题考查了有理数的减法运算法则,熟记减去一个数等于加上这个数的相反数是解题的关键.A.a2•a5=a10B.C.(﹣a3)6=a18D.考点:二次根式的性质与化简;同底数幂的乘法;幂的乘方与积的乘方.分析:利用同底数的幂的乘法法则以及幂的乘方、算术平方根定义即可作出判断.解答:解:A、a2•a5=a7,故选项错误;B、当a=b=1时,≠+,故选项错误;C、正确;D、当a<0时,=﹣a,故选项错误.故选C.点评:本题考查了同底数的幂的乘法法则以及幂的乘方、算术平方根定义,理解算术平方根的定义是关键.3.(3分)(2013•曲靖)如图是某几何体的三视图,则该几何体的侧面展开图是()A.B.C.D.考点:由三视图判断几何体;几何体的展开图分析:由三视图可以看出,此几何体是一个圆柱,指出圆柱的侧面展开图即可.4.(3分)(2013•曲靖)某地资源总量Q一定,该地人均资源享有量与人口数....根据题意有:=;故y与x之间的函数图象双曲线,且根据,n的实际意义,n应大于0;其图象在第一象限.n∴=,∴是又∵>5.(3分)(2013•曲靖)在平面直角坐标系中,将点P(﹣2,1)向右平移36.(3分)(2013•曲靖)实数a、b在数轴上的位置如图所示,下列各式成立的是().选项分析判断后利用排除法求解.A、<0,正确,故本选项正确;7.(3分)(2013•曲靖)如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是(),8.(3分)(2013•曲靖)如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是(),二、填空题(共8个小题,每小题3分,共24分)。
云南曲靖中考《数学》试.doc
2013云南曲靖中考《数学》试题-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
云南省八地市2013年中考数学试卷
云南省八地市2013年中考数学试卷为了让大家在中考前做做真题,为大家提供《云南省八地市2013年中考数学试卷》,希望大家在考前认真复习,考出好成绩!相关链接:如何稳拿中考数学基础分中考数学中,试卷上不是会做的题目就一定能得到分。
很多同学会在基础题上失分甚多。
那么如何将“会做”转化为“得分”呢?要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。
如立体几何论证中的“跳步”,使很多人丢失1/3以上得分,代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分少得可怜;再如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。
只有重视解题过程的语言表述,“会做”的题才能“得分”。
填空题与选择题同属客观性试题的填空题,具有客观性试题的所有特点,即题目短小精干,考查目标集中明确,答案唯一正确,答卷方式简便,评分客观公正等。
但是它又有本身的特点,即没有备选答案可供选择,这就避免了选择项所起的暗示或干扰的作用,及考生存在的瞎估乱猜的侥幸心理,从这个角度看,它能够比较真实地考查出学生的真正水平。
近几年全国20多个省市中考试题,发现它与选择题一样,都是分量不轻的常见题型。
考查内容多是“双基”方面,知识复盖面广。
但在考查同样内容时,难度一般比选择题略大。
一是定量型填空题,二是定性型填空题,前者主要考查计算能力的计算题,同时也考查考生对题目中所涉及到数学公式的掌握的熟练程度,后者考查考生对重要的数学概念、定理和性质等数学基础知识的理解和熟练程度。
当然这两类填空题也是互相渗透的,对于具体知识的理解和熟练程度只不过是考查有所侧重而已。
选择填空题与大题有所不同,只求正确结论,不用遵循步骤,因此应试时可走捷径,运用一些答题技巧,在这一类题中大致总结出三种答题技巧。
2013年云南省中考数学试卷及答案
数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前云南省2013年初中学业水平考试数学 .................................................................................. 1 云南省2013年初中学业水平考试数学答案解析 (4)云南省2013年初中学业水平考试数学本试卷满分100分,考试时间120分钟.注意事项:1.本卷为试题卷。
考生解题答题必须在答题卷(答题卡)上,答案书写在答题卷(答题卡)相应的位置上,在试题卷、草稿纸上作答无效。
2.考试结束时,请将试题卷、答题卷(答题卡)一并交回。
一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分) 1.6-的绝对值是( ) A .6-B .6±C .6D .16-2.下列运算,结果正确的是( )A .632m m m ÷=B .223333mn m n m n =C .222()m n m n +=+D .22235mn mn m n +=3.下图是某个几何体的三视图,则该几何体是( )4.2012年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为( )A .91.50510⨯元B .101.50510⨯元C .110.150510⨯元D .915.0510⨯元5.如图,平行四边形ABCD 的对角线AC BD 、相交于点O ,下列结论正确的是 ( )A .4ABCDAOB SS =△B .AC BD =C .AC BD ⊥D .□ABCD 是轴对称图形6.已知1O 的半径是3cm ,2O 的半径是2cm ,126cm O O =,则两圆的位置关系是( )A .相离B .外切C .相交D .内切 7.要使分式2939x x -+的值为0,你认为x 可取的数是( )A .9B .3±C .3-D .3 8.若0ab >,则一次函数y ax b =+与反比例函数aby x =在同一坐标系中的大致图像可能是( )ABCD二、填空题(本大题共6小题,每小题3分,满分18分) 9.25的算术平方根是 .10.分解因式:34x x -= .11.在函数1x y x+=中,自变量x 的取值范围是 .12.已知扇形的面积为2π,半径为3,则该扇形的弧长为 (结果保留π).13.如图,已知,,68AB CD AB AC ABC ==∥∠,则ACD =∠ .ABCD毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)14.下面是按一定规律排列的一列数:14,37,512,719,……那么第n 个数是 .三、解答题(本大题共9小题,满分58分)15.(本小题4分)计算:0211(2)sin3()0122-+-+.16.(本小题5分)如图,点B 在AE 上,点D 在AC 上,AB AD =.请你添加一个适当的条件,使ABC ADE △≌△(只能添加一个).(1)你添加的条件是 ; (2)添加条件后,请说明ABC ADE △≌△的理由.17.(本小题6分)如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上.(1)把“鱼”向右平移5个单位长度,并画出平移后的图形; (2)写出A 、B 、C 三点平移后的对应点A '、B '、C '的坐标.18.(本小题7分)近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不得少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了调查统计.以下是本次调查结果的统计表和统计(1)求出本次被调查的学生数; (2)请求出统计表中a 的值; (3)求各组人数的众数;(4)根据调查结果,请你估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数.数学试卷 第5页(共16页) 数学试卷 第6页(共16页)19.(本小题7分)如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1,2,3三个数字.小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转). (1)请你用画树状图或列表的方法表示出每次游戏可能出现的所有结果; (2)求每次游戏结束得到的一组数恰好是方程2320x x +=-的解的概率.20.(本小题6分)如图,我国的一艘海监船在钓鱼岛A 附近沿正东方向航行,船在B 点时测得钓鱼岛A 在船的北偏东60方向,船以50海里/时的速度继续航行2小时后到达C 点,此时钓鱼岛A 在船的北偏东30方向.请问船继续航行多少海里与钓鱼岛A 的距离最近?21.(本小题7分)已知在ABC △中,5,6,AB AC BC AD ===是BC 边上的中线,四边形ADBE 是平行四边形. (1)求证:四边形ADBE 是矩形; (2)求矩形ADBE 的面积.22.(本小题7分)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元. (1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵数不少于榕树的1.5倍.请你算一算,该校本次购买榕树和香樟树共有哪几种方案.23.(本小题9分)如图,四边形ABCD 是等腰梯形,下底AB 在x 轴上,点D 在y 轴上,直线AC 与y 轴交于点()0,1E ,点C 的坐标为(2,3). (1)求A 、D 两点的坐标;(2)求经过A 、D 、C 三点的抛物线的函数关系式;(3)在y 轴上是否存在点P ,使ACP △是等腰三角形?若存在,请求出满足条件的所有点P 的坐标;若不存在,请说明理由.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
2013年云南省八地州中考数学试卷
云南省八地市2013年中考数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)﹣6的绝对值是()2.(3分)下列运算,结果正确的是()3.(3分)图为某个几何体的三视图,则该几何体是()B4.(3分)2012年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为()5.(3分)如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()6.(3分)已知⊙O1的半径是3cm,⊙2的半径是2cm,O1O2=cm,则两圆的位置关系是()7.(3分)要使分式的值为0,你认为x 可取得数是( )8.(3分)若ab >0,则一次函数y =ax +b 与反比例函数y =在同一坐标系数中的大致图象是( )BC二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)25的算术平方根是 5 .10.(3分)分解因式:x 3﹣4x = x (x +2)(x ﹣2) . 11.(3分)在函数中,自变量x 的取值范围是 x ≥﹣1且x≠0 .12.(3分)已知扇形的面积为2π,半径为3,则该扇形的弧长为(结果保留π).13.(3分)如图,已知AB ∥CD ,AB =AC ,∠ABC =68°,则∠ACD = 44° .14.(3分)下面是按一定规律排列的一列数:,,,,…那么第n 个数是 .三、解答题(本大题共9个小题,满分58分) 15.(4分)计算:sin 30°+(﹣1)0+()﹣2﹣.16.(5分)如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).(1)你添加的条件是∠C=∠E.(2)添加条件后,请说明△ABC≌△ADE的理由.17.(6分)如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上.(1)把“鱼”向右平移5个单位长度,并画出平移后的图形.(2)写出A、B、C三点平移后的对应点A′、B′、C′的坐标.18.(7分)近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了调查统计.以下是本次调查结果的统计表和统计图.(1)求出本次被调查的学生数;(2)请求出统计表中a的值;(3)求各组人数的众数;(4)根据调查结果,请你估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数.19.(7分)如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)求每次游戏结束得到的一组数恰好是方程x2﹣3x+2=0的解的概率.20.(6分)如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?21.(7分)已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.22.(7分)某中学为了绿化校园,计划购买一批棕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.23.(9分)如图,四边形ABCD是等腰梯形,下底AB在x轴上,点D在y轴上,直线AC 与y轴交于点E(0,1),点C的坐标为(2,3).(1)求A、D两点的坐标;(2)求经过A、D、C三点的抛物线的函数关系式;(3)在y轴上是否在点P,使△ACP是等腰三角形?若存在,请求出满足条件的所有点P 的坐标;若不存在,请说明理由.。
年云南省八地市中考数学试题解析版
年云南省八地市中考数学试题解析版云南省八地市2013年中考数学试卷解析版一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分) 1.(3分)(2013•云南)﹣6的绝对值是( ) A . ﹣6 B . 6 C . ±6 D .2.(3分)(2013•云南)下列运算,结果正确的是( )A . m 6÷m 3=m 2B . 3mn 2•m 2n=3m 3n 3C . (m+n )2=m 2+n 2D . 2mn+33.(3分)(2013•云南)图为某个几何体的三视图,则该几何体是( )A .B .C .D .4.(3分)(2013•云南)2012年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为( )元元元元5.(3分)(2013•云南)如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()A.S▱ABCD=4S△AOB B.A C=BDC.A C⊥BD D.▱ABCD是轴对称图形6.(3分)(2013•云南)已知⊙O1的半径是3cm,⊙2的半径是2cm,O1O2=cm,则两圆的位置关系是()A.相离B.外切C.相交D.内切7.(3分)(2013•云南)要使分式的值为0,你认为x可取得数是()A.9B.±3 C.﹣3 D.38.(3分)(2013•云南)若ab>0,则一次函数y=ax+b与反比例函数y=在同一坐标系数中的大致图象是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)(2013•云南)25的算术平方根是.10.(3分)(2013•云南)分解因式:x3﹣4x=.11.(3分)(2013•云南)在函数中,自变量x的取值范围是.12.(3分)(2013•云南)已知扇形的面积为2π,半径为3,则该扇形的弧长为13.(3分)(2013•云南)如图,已知AB∥CD,AB=AC,∠ABC=68°,则∠ACD=.14.(3分)(2013•云南)下面是按一定规律排列的一列数:,,,,…那么第n个数是.三、解答题(本大题共9个小题,满分58分)15.(4分)(2013•云南)计算:sin30°+(﹣1)0+()﹣2﹣.16.(5分)(2013•云南)如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).(1)你添加的条件是.(2)添加条件后,请说明△ABC≌△ADE的理由.17.(6分)(2013•云南)如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上.(1)把“鱼”向右平移5个单位长度,并画出平移后的图形.(2)写出A、B、C三点平移后的对应点A′、B′、C′的坐标.18.(7分)(2013•云南)近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了调查统计.以下是本次调查结果的统计表和统计图.组别 A B C D E时间t(分钟)t<40 40≤t<6060≤t<8080≤t<100t≥100 人数12 30 a 24 12 (1)求出本次被调查的学生数;(2)请求出统计表中a的值;(3)求各组人数的众数;(4)根据调查结果,请你估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数.19.(7分)(2013•云南)如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)求每次游戏结束得到的一组数恰好是方程x2﹣3x+2=0的解的概率.20.(6分)(2013•云南)如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B 点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C 点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?21.(7分)(2013•云南)已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.22.(7分)(2013•云南)某中学为了绿化校园,计划购买一批棕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.23.(9分)(2013•云南)如图,四边形ABCD 是等腰梯形,下底AB在x轴上,点D在y轴上,直线AC与y轴交于点E(0,1),点C的坐标为(2,3).(1)求A、D两点的坐标;(2)求经过A、D、C三点的抛物线的函数关系式;(3)在y轴上是否在点P,使△ACP是等腰三角形?若存在,请求出满足条件的所有点P的坐标;若不存在,请说明理由.。
2013云南八地中考数学
云南省八地市2013年中考数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)3.(3分)(2013•云南)图为某个几何体的三视图,则该几何体是()B4.(3分)(2013•云南)2012年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,5.(3分)(2013•云南)如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()6.(3分)(2013•云南)已知⊙O1的半径是3cm,⊙2的半径是2cm,O1O2=cm,则两圆7.(3分)(2013•云南)要使分式的值为0,你认为x 可取得数是( )8.(3分)(2013•云南)若ab >0,则一次函数y=ax+b 与反比例函数y=在同一坐标系数BC二、填空题(本大题共6个小题,每小题3分,满分18分) 9.(3分)(2013•云南)25的算术平方根是 5 .10.(3分)(2013•云南)分解因式:x 3﹣4x= x (x+2)(x ﹣2) .11.(3分)(2013•云南)在函数中,自变量x 的取值范围是 x ≥﹣1且x ≠0 .12.(3分)(2013•云南)已知扇形的面积为2π,半径为3,则该扇形的弧长为(结果保留π). 13.(3分)(2013•云南)如图,已知AB ∥CD ,AB=AC ,∠ABC=68°,则∠ACD= 44° .14.(3分)(2013•云南)下面是按一定规律排列的一列数:,,,,…那么第n个数是 .三、解答题(本大题共9个小题,满分58分)15.(4分)(2013•云南)计算:sin30°+(﹣1)0+()﹣2﹣.16.(5分)(2013•云南)如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).(1)你添加的条件是∠C=∠E.(2)添加条件后,请说明△ABC≌△ADE的理由.17.(6分)(2013•云南)如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上.(1)把“鱼”向右平移5个单位长度,并画出平移后的图形.(2)写出A、B、C三点平移后的对应点A′、B′、C′的坐标.18.(7分)(2013•云南)近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,对部分学(2)请求出统计表中a的值;(3)求各组人数的众数;(4)根据调查结果,请你估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数.19.(7分)(2013•云南)如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)求每次游戏结束得到的一组数恰好是方程x2﹣3x+2=0的解的概率.=20.(6分)(2013•云南)如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?AC=50 CD=×21.(7分)(2013•云南)已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.×==422.(7分)(2013•云南)某中学为了绿化校园,计划购买一批棕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.,,,23.(9分)(2013•云南)如图,四边形ABCD是等腰梯形,下底AB在x轴上,点D在y 轴上,直线AC与y轴交于点E(0,1),点C的坐标为(2,3).(1)求A、D两点的坐标;(2)求经过A、D、C三点的抛物线的函数关系式;(3)在y轴上是否在点P,使△ACP是等腰三角形?若存在,请求出满足条件的所有点P 的坐标;若不存在,请说明理由.,解得,,解得,斜边上的高为.=,),﹣,=3=,=3+),),P4(0,3+),P5(0,3﹣).。
2013学年云南省中考数学年试题
()
效
6.设首项为
1,公比为
2 3
的等比数列 {an }
的前
n
项和为
Sn
,则
A. Sn 2an 1
B. Sn 3an 2
数学试卷 第 1 页(共 6 页)
()
C. Sn 4 3an
D. Sn 3 2an
7.执行如图的程序框图,如果输入的 t [1,3] ,则输
出的 s 属于 A.[3, 4]
数学试卷 第 4 页(共 6 页)
数学试卷 第 5 页(共 6 页)
数学试卷 第 6 页(共 6 页)
18.(本小题满分 12 分) 为了比较两种治疗失眠症的药(分别称为 A 药, B 药)的疗效,随机地选取 20 位患者服 用 A 药,20 位患者服用 B 药,这 40 位患者服用一段时间后,记录他们日平均增加的睡 眠时间(单位: h ).试验的观测结果如下: 服用 A 药的 20 位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用 B 药的 20 位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5 (Ⅰ)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?
15.已知 H 是球 O 的直径 AB 上一点, AH : HB 1: 2 , AB⊥平面 , H 为垂足, 截球 O
所得截面的面积为 π ,则球 O 的表面积为________.
云南省中考数学试题及答案(2)
精品文档云南省2013年中考数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)(2013?云南)-6的绝对值是(B )-6 B . 6 C . D . _ 162. (3分)(2013?云南)下列运算,结果正确的是()A . m6^m3=m2B . 3mn2?m2n=3m3 4n3C . (m+n) 2=m2+n5D . 2mn+3mn=5m2n2点评门本题主要考查了合并冋类项的法则,幕的乘方的性质,单项式的乘法法则,熟练掌握运算法则是解题的关键.3. (3分)(2013?云南)图为某个几何体的三视图,则该几何体是()分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:由主视图和左视图为矩形判断出是柱体,由俯视图是正方形可判断出这个几何体应该是长方体.故选D.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查•主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4(3分)(2013?云南)2012年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为()A . 1.505X109元B . 1.505 XI010元C. 0.1505X1011元 D . 15.05 XI09元考点:科学记数法一表示较大的数.分析:科学记数法的表示形式为a X0n的形式,其中1哼a|v 10, n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n是负数.解答:解:将150.5亿元用科学记数法表示1.505X1010元.故选B.考点:由三视图判断几何体.精品文档点评:此题考查科学记数法的表示方法•科学记数法的表示形式为axio n的形式,其中1弓a|v 10, n为整数,表示时关键要正确确定a的值以及n的值.5. (3分)(2013?云南)如图,平行四边形ABCD的对角线AC、BD相交于点0,下列结论正确的是()A . S?ABCD=4S△ AOB B . AC=BDC. AC 丄BDD. ?ABCD是轴对称图形考点:平行四边形的性质.分析:根据平行四边形的性质分别判断得出答案即可.解答:解:A、•••平行四边形ABCD的对角线AC、BD相交于点O,••• AO=CO , DO=BO ,S A AOD=S A DOC=S A BOC=S△AOB ,• S?ABCD=4S A AOB,故此选项正确;B、无法得到AC=BD,故此选项错误;C、无法得到AC丄BD,故此选项错误;D、?ABCD是中心对称图形,故此选项错误.故选:A .点评:此题主要考查了平行四边形的性质,正确把握平行四边形的性质是解题关键.6. (3分)(2013?云南)已知O O1的半径是3cm, O 2的半径是2cm, O1O2=「,cm,则两圆的位置关系是()A .相离B.外切C.相交D.内切考点:圆与圆的位置关系;估算无理数的大小分析:由O O1与o O2的半径分别为3cm、2cm,且圆心距O1O2=/#cm,根据两圆位置关系与圆心距d, 两圆半径R, r的数量关系间的联系即可得出两圆位置关系.解答:解:TO O1与O O2的半径分别为3cm、2 cm, 且圆心距O1 O2={g cm ,又• 3+2=5 >V6, 3- 2=1^馅,•两圆的位置关系是相交.故选C.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R, r的数量关系间的联系.7. (3分)(2013?云南)要使分式的值为0,你认为x可取得数是(考点:分式的值为零的条件.分析:根据分式的值为零的条件可以求出x的值.解答:解:由分式的值为零的条件得x2- 9=0, 3x+9电由x2- 9=0,得x= ±3,由 3x+9和,得 XM - 3, 综上,得x=3 . 故选D .点评:本题考查了分式的值为零的条件,若分式的值为零,需同时具备两个条件: 母不为0 .这两个条件缺一不可.考点:反比例函数的图象;一次函数的图象.分析: 根据ab >0,可得a 、b 同号,结合一次函数及反比例函数的特点进行判断即可. 解答:解: A 、根据一次函数可判断 a >0, b >0,根据反比例函数可判断 ab >0,故符合题意,本选项正确;B 、 根据一次函数可判断 a v 0, b v 0,根据反比例函数可判断 ab v 0,故不符合题意,本选项错误;C 、 根据一次函数可判断 a v 0, b > 0,根据反比例函数可判断 ab >0,故不符合题意,本选项错误;D 、 根据一次函数可判断 a > 0, b >0,根据反比例函数可判断 ab v 0,故不符合题意,本选项错误; 故选A .点评:〒本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质才能灵活解题.二、填空题(本大题共 6个小题,每小题 3分,满分18分)9. ( 3分)(2013?云南)25的算术平方根是5 .考点:算术平方根.分析:根据算术平方根的定义即可求出结果. 解答:解:T 52=25,25的算术平方根是5.故填5.点评:易错点:算术平方根的概念易与平方根的概念混淆而导致错误.规律总结:弄清概念是解决本题的 关键.310. ( 3 分)(2013?云南)分解因式: x - 4x= x (x+2 ) ( X - 2)考点:提公因式法与公式法的综合运用.分析:应先提取公因式x ,再对余下的多项式利用平方差公式继续分解. 解答:解:x 3 - 4x ,=x (x 2 - 4), =x (x+2) (x — 2).点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解 因式一定要彻底,直到不能再分解为止.(1)分子为0; (2)分&( 3分)(2013?云南)若ab > 0,则一次函数y=ax+b 与反比例函数y —在同一坐标系数中的大致图象考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分. 根据二次根式的意义,被开方数x+1 AJ,根据分式有意乂的条件,x代.就可以求出自变量x的取值范围.解答:解:根据题意得:x+1 A)且x用解得:x A 1且x和.故答案为:x A 1且X老点评:函数自变量的范围一般从一个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.4 7T12. (3分)(2013?云南)已知扇形的面积为2 n半径为3,则该扇形的弧长为上r-_ (结果保留n).故答案为13. (3 分)(2013?云南)如图,已知AB // CD , AB=AC,/ ABC=68 ° 则/ ACD= 44 °考点:等腰三角形的性质;平行线的性质.分析:根据等腰一角形两底角相等求出/ BAC,再根据两直线平行,内错角相等解答.解答:解:••• AB=AC,/ ABC=68 °•••/ BAC=180 °- 2 >8°44° •/ AB // CD,•••/ ACD= / BAC=44 °故答案为:44 °x的取值范围是考点:分析:解答:扇形面积的计算;弧长的计算利用扇形的面积公式S扇形丄IR (其中I为扇形的弧长,R为扇形所在圆的半径)求解即可.解:设扇形的弧长为I,由题意,得二I >3=2 n,2解得1=点评: 2个公式:S扇形嘰为圆心角的度数,R为扇形所在圆的半径,I为扇形的弧长),需根据条件灵活选择公式.本题主要考查了扇形的面积公式,计算扇形的面积有或S扇形¥^1R (其中n 11. (3分)(2013?云南)在函数自变量点评:本题考查了等腰三角形两底角相等的性质,平行线的性质,是基础题,熟记各性质是解题的关键.规律型:数字的变化类.规律型.观察不难发现,分子是连续的奇数,分母减去3都是平方数,根据此规律写出第n个数的表达式即可.解:分子分别为1、3、5、7,…,•••第n个数的分子是2n - 1,•/ 4 - 3=1=12, 7- 3=4=22, 12 - 3=9=32, 19 - 3=16=42,…,•••第n个数的分母为n2+3,•••第n个数是本题是对数字变化规律的考查,从分子与分母两个方面考虑求解是解题的关键.三、解答题(本大题共9个小题,满分58 分)考点:实数的运算;零指数幕;负整数指数幕;特殊角的三角函数值.分析:分别进行零指数幕、负整数指数幕的运算,然后代入特殊角的三角函数值即可.解答:解:原式—+1+4 - —=5 .2 叵点评:本题考查了实数的运算,解答本题的关键是掌握零指数幕、负整数指数幕的运算法则,熟记特殊角的三角函数值.16. (5分)(2013?云南)如图,点B在AE上,点D在AC上,AB=AD .请你添加一个适当的条件,使△ ABC ADE (只能添加一个).(1)你添加的条件是/ C=/ E .(2)添加条件后,请说明厶ABC ADE的理由.14.(3分)(2013?云南)下面是按一定规律排列的一列数: ••那么第n个数是考点:专题:分析:解答:故答案为:2n-ln?+3点评:15. (4 分)(2013?云南)计算: sin30° (.二-1)0+考点:全等三角形的判定.8-专题:开放型.分析:(1)可以根据全等三角形的不同的判定方法选择添加不同的条件;(2)根据全等三角形的判定方法证明即可.解答:解:(1):AB=AD,/ A= / A ,•••若利用AAS ”可以添加/ C= / E,若利用ASA ”,可以添加/ ABC= / ADE,或/ EBC= / CDE ,若利用SAS”可以添加AC=AE,或BE=DC ,综上所述,可以添加的条件为/ C=Z E(或/ ABC= / ADE或/ EBC= / CDE或AC=AE或BE=DC ); 故答案为:/C= / E;(2)选/ C= / E为条件.VA=ZA理由如下:在△ ABC和厶ADE中,(上c二LAB=AD•••△ ABC ◎△ ADE (AAS ).点评:本题主要考查了全等三角形的判定,开放型题目,根据不同的三角形全等的判定方法可以选择添加的条件也不相同.17. ( 6分)(2013?云南)如图,下列网格中,每个小正方形的边长都是上.(1)把鱼”向右平移5个单位长度,并画出平移后的图形.(2)写出A、B、C三点平移后的对应点A'、B '、C'的坐标.考点:利用平移设计图案专题:作图题.分析:()将各能代表图形形状的点向右平移个单位,顺次连接即可;(2)结合坐标系,可得出A '、B '、C '的坐标.解答:解:(1)如图所示:1,图中鱼”的各个顶点都在格点(2)结合坐标系可得:A' ( 5, 2), B' ( 0, 6), C' (1, 0).点评:本题考查了平移作图的知识,解答本题的关键是掌握平移的性质,注意按要求规范作图.18. ( 7分)(2013?云南)近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,落实教育部门在校学生每天体育锻炼时间不少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了组别A B C D E时间t (分钟) t v 4040W v 6060Wv 8080W v 100t》00人数1230a2412求出本次被调查的学生数;(2) 请求出统计表中a的值;(3)求各组人数的众数;2400名学生中每天体育锻炼时间不少于1小时的学生人数.考点:扇形统计图;用样本估计总体;统计表;众数.分析:(1)根据A组有12人,占被调查总数的10%,据此即可求得总人数;(2)总人数减去其它各组的人数即可求得;(3)根据众数的定义即可求解;(4)利用2400乘以对应的比例即可求解.解答:解:(1) 12^10%=120 (人);(2)a=120 - 12 - 30 - 24 - 12=42 ;(3)众数是12人;(4)每天体育锻炼时间不少于1小时的学生人数是:2400冷普翠'=1560 (人).点评:本题考查的是扇形统计图的综合运用. 读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.19. (7分)(2013?云南)如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转)(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)求每次游戏结束得到的一组数恰好是方程x2- 3x+2=0的解的概率.考点:列表法与树状图法;一元二次方程的解. 专题:计算题.分析:(1)列表得出所有等可能的情况数即可;(2)找出恰好是方程x2- 3x+2=0的解的情况数,求出所求的概率即可. 解答:解:(1)列表如下:(2)所有等可能的情况数为种,其中是- 的解的为(, ) , (, )共种,则P是方程解=—.___ [ q ___________________________________________________ 点评:此题考查了列表法与树状图法,以及一元二次方程的解,用到的知识点为:概率=所求情况数与总情况数之比.20. (6分)(2013?云南)如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30。
2013年云南省八地市中考数学试卷
2013年云南省八地市中考数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)﹣6的绝对值是()A.﹣6 B.6 C.±6 D.2.(3分)下列运算,结果正确的是()A.m6÷m3=m2B.3mn2•m2n=3m3n3C.(m+n)2=m2+n2D.2mn+3mn=5m2n23.(3分)图为某个几何体的三视图,则该几何体是()A.B.C.D.4.(3分)2012年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为()A.1.505×109元B.1.505×1010元C.0.1505×1011元D.15.05×109元5.(3分)如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()A.S▱ABCD=4S△AOB B.AC=BDC.AC⊥BD D.▱ABCD是轴对称图形6.(3分)已知⊙O1的半径是3cm,⊙O2的半径是2cm,O1O2=cm,则两圆的位置关系是()A.相离B.外切C.相交D.内切7.(3分)要使分式的值为0,你认为x可取得数是()A.9 B.±3 C.﹣3 D.38.(3分)若ab>0,则一次函数y=ax+b与反比例函数y=在同一坐标系数中的大致图象是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)25的算术平方根是.10.(3分)分解因式:x3﹣4x=.11.(3分)在函数y=中,自变量x的取值范围是.12.(3分)已知扇形的面积为2π,半径为3,则该扇形的弧长为(结果保留π).13.(3分)如图,已知AB∥CD,AB=AC,∠ABC=68°,则∠ACD=.14.(3分)下面是按一定规律排列的一列数:,,,,…那么第n个数是.三、解答题(本大题共9个小题,满分58分)15.(4分)计算:sin30°+(﹣1)0+()﹣2﹣.16.(5分)如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).(1)你添加的条件是.(2)添加条件后,请说明△ABC≌△ADE的理由.17.(6分)如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上.(1)把“鱼”向右平移5个单位长度,并画出平移后的图形.(2)写出A、B、C三点平移后的对应点A′、B′、C′的坐标.18.(7分)近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了调查统计.以下是本次调查结果的统计表和统计图.(1)求出本次被调查的学生数;(2)请求出统计表中a的值;(3)求各组人数的众数;(4)根据调查结果,请你估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数.19.(7分)如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)求每次游戏结束得到的一组数恰好是方程x2﹣3x+2=0的解的概率.20.(6分)如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B 点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?21.(7分)已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.22.(7分)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.23.(9分)如图,四边形ABCD是等腰梯形,下底AB在x轴上,点D在y轴上,直线AC与y轴交于点E(0,1),点C的坐标为(2,3).(1)求A、D两点的坐标;(2)求经过A、D、C三点的抛物线的函数关系式;(3)在y轴上是否在点P,使△ACP是等腰三角形?若存在,请求出满足条件的所有点P的坐标;若不存在,请说明理由.2013年云南省八地市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)(2013•云南)﹣6的绝对值是()A.﹣6 B.6 C.±6 D.【分析】根据绝对值的性质,当a是负有理数时,a的绝对值是它的相反数﹣a,解答即可;【解答】解:根据绝对值的性质,|﹣6|=6.故选B.【点评】本题考查了绝对值的性质,熟记:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2013•云南)下列运算,结果正确的是()A.m6÷m3=m2B.3mn2•m2n=3m3n3C.(m+n)2=m2+n2D.2mn+3mn=5m2n2【分析】依据同底数的幂的除法、单项式的乘法以及完全平方公式,合并同类项法则即可判断.【解答】解:A、m6÷m3=m3,选项错误;B、3mn2•m2n=3m3n3,选项正确;C、(m+n)2=m2+2mn+n2,选项错误;D、2mn+3mn=5mn,选项错误.故选:B.【点评】本题主要考查了合并同类项的法则,幂的乘方的性质,单项式的乘法法则,熟练掌握运算法则是解题的关键.3.(3分)(2013•云南)图为某个几何体的三视图,则该几何体是()A.B.C.D.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:由主视图和左视图为矩形判断出是柱体,由俯视图是正方形可判断出这个几何体应该是长方体.故选D.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4.(3分)(2013•云南)2012年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为()A.1.505×109元B.1.505×1010元C.0.1505×1011元D.15.05×109元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将150.5亿元用科学记数法表示1.505×1010元.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2013•云南)如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()A.S▱ABCD=4S△AOB B.AC=BDC.AC⊥BD D.▱ABCD是轴对称图形【分析】根据平行四边形的性质分别判断得出答案即可.【解答】解:A、∵平行四边形ABCD的对角线AC、BD相交于点O,∴AO=CO,DO=BO,∴S=S△DOC=S△BOC=S△AOB,△AOD∴S▱ABCD=4S△AOB,故此选项正确;B、无法得到AC=BD,故此选项错误;C、无法得到AC⊥BD,故此选项错误;D、▱ABCD是中心对称图形,故此选项错误.故选:A.【点评】此题主要考查了平行四边形的性质,正确把握平行四边形的性质是解题关键.6.(3分)(2013•云南)已知⊙O1的半径是3cm,⊙O2的半径是2cm,O1O2= cm,则两圆的位置关系是()A.相离B.外切C.相交D.内切【分析】由⊙O1与⊙O2的半径分别为3cm、2cm,且圆心距O1O2=cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.【解答】解:∵⊙O1与⊙O2的半径分别为3cm、2cm,且圆心距O1O2=cm,又∵3+2=5>,3﹣2=1,∴两圆的位置关系是相交.故选C.【点评】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.7.(3分)(2013•云南)要使分式的值为0,你认为x可取得数是()A.9 B.±3 C.﹣3 D.3【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x2﹣9=0,3x+9≠0,由x2﹣9=0,得x=±3,由3x+9≠0,得x≠﹣3,综上,得x=3.故选D.【点评】本题考查了分式的值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.8.(3分)(2013•云南)若ab>0,则一次函数y=ax+b与反比例函数y=在同一坐标系数中的大致图象是()A.B.C.D.【分析】根据ab>0,可得a、b同号,结合一次函数及反比例函数的特点进行判断即可.【解答】解:A、根据一次函数可判断a>0,b>0,根据反比例函数可判断ab>0,故符合题意,本选项正确;B、根据一次函数可判断a<0,b<0,根据反比例函数可判断ab<0,故不符合题意,本选项错误;C、根据一次函数可判断a<0,b>0,根据反比例函数可判断ab>0,故不符合题意,本选项错误;D、根据一次函数可判断a>0,b>0,根据反比例函数可判断ab<0,故不符合题意,本选项错误;故选A.【点评】本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质才能灵活解题.二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)(2013•云南)25的算术平方根是5.【分析】根据算术平方根的定义即可求出结果,算术平方根只有一个正根.【解答】解:∵52=25,∴25的算术平方根是5.故答案为:5.【点评】易错点:算术平方根的概念易与平方根的概念混淆而导致错误.规律总结:弄清概念是解决本题的关键.10.(3分)(2016•黔西南州)分解因式:x3﹣4x=x(x+2)(x﹣2).【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.11.(3分)(2014•牡丹江)在函数y=中,自变量x的取值范围是x≥﹣1.【分析】根据二次根式的性质,被开方数大于等于0,列不等式求解.【解答】解:根据题意得:x+1≥0,解得,x≥﹣1.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.(3分)(2013•云南)已知扇形的面积为2π,半径为3,则该扇形的弧长为(结果保留π).【分析】利用扇形的面积公式S=lR(其中l为扇形的弧长,R为扇形所在圆扇形的半径)求解即可.【解答】解:设扇形的弧长为l,由题意,得l×3=2π,解得l=.故答案为π.【点评】本题主要考查了扇形的面积公式,计算扇形的面积有2个公式:S=扇形=lR(其中n为圆心角的度数,R为扇形所在圆的半径,l为扇形或S扇形的弧长),需根据条件灵活选择公式.13.(3分)(2013•云南)如图,已知AB∥CD,AB=AC,∠ABC=68°,则∠ACD= 44°.【分析】根据等腰三角形两底角相等求出∠BAC,再根据两直线平行,内错角相等解答.【解答】解:∵AB=AC,∠ABC=68°,∴∠BAC=180°﹣2×68°=44°,∵AB∥CD,∴∠ACD=∠BAC=44°.故答案为:44°.【点评】本题考查了等腰三角形两底角相等的性质,平行线的性质,是基础题,熟记各性质是解题的关键.14.(3分)(2013•云南)下面是按一定规律排列的一列数:,,,,…那么第n个数是.【分析】观察不难发现,分子是连续的奇数,分母减去3都是平方数,根据此规律写出第n个数的表达式即可.【解答】解:∵分子分别为1、3、5、7,…,∴第n个数的分子是2n﹣1,∵4﹣3=1=12,7﹣3=4=22,12﹣3=9=32,19﹣3=16=42,…,∴第n个数的分母为n2+3,∴第n个数是.故答案为:.【点评】本题是对数字变化规律的考查,从分子与分母两个方面考虑求解是解题的关键.三、解答题(本大题共9个小题,满分58分)15.(4分)(2013•云南)计算:sin30°+(﹣1)0+()﹣2﹣.【分析】分别进行零指数幂、负整数指数幂的运算,然后代入特殊角的三角函数值即可.【解答】解:原式=+1+4﹣=5.【点评】本题考查了实数的运算,解答本题的关键是掌握零指数幂、负整数指数幂的运算法则,熟记特殊角的三角函数值.16.(5分)(2013•云南)如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).(1)你添加的条件是∠C=∠E.(2)添加条件后,请说明△ABC≌△ADE的理由.【分析】(1)可以根据全等三角形的不同的判定方法选择添加不同的条件;(2)根据全等三角形的判定方法证明即可.【解答】解:(1)∵AB=AD,∠A=∠A,∴若利用“AAS”,可以添加∠C=∠E,若利用“ASA”,可以添加∠ABC=∠ADE,或∠EBC=∠CDE,若利用“SAS”,可以添加AC=AE,或BE=DC,综上所述,可以添加的条件为∠C=∠E(或∠ABC=∠ADE或∠EBC=∠CDE或AC=AE 或BE=DC);故答案为:∠C=∠E;(2)选∠C=∠E为条件.理由如下:在△ABC和△ADE中,,∴△ABC≌△ADE(AAS).【点评】本题主要考查了全等三角形的判定,开放型题目,根据不同的三角形全等的判定方法可以选择添加的条件也不相同.17.(6分)(2013•云南)如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上.(1)把“鱼”向右平移5个单位长度,并画出平移后的图形.(2)写出A、B、C三点平移后的对应点A′、B′、C′的坐标.【分析】(1)将各能代表图形形状的点向右平移5个单位,顺次连接即可;(2)结合坐标系,可得出A′、B′、C′的坐标.【解答】解:(1)如图所示:.(2)结合坐标系可得:A'(5,2),B'(0,6),C'(1,0).【点评】本题考查了平移作图的知识,解答本题的关键是掌握平移的性质,注意按要求规范作图.18.(7分)(2013•云南)近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了调查统计.以下是本次调查结果的统计表和统计图.(1)求出本次被调查的学生数;(2)请求出统计表中a的值;(3)求各组人数的众数;(4)根据调查结果,请你估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数.【分析】(1)根据A组有12人,占被调查总数的10%,据此即可求得总人数;(2)总人数减去其它各组的人数即可求得;(3)根据众数的定义即可求解;(4)利用2400乘以对应的比例即可求解.【解答】解:(1)12÷10%=120(人);(2)a=120﹣12﹣30﹣24﹣12=42;(3)众数是12人;(4)每天体育锻炼时间不少于1小时的学生人数是:2400×=1560(人).【点评】本题考查的是扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.19.(7分)(2013•云南)如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)求每次游戏结束得到的一组数恰好是方程x2﹣3x+2=0的解的概率.【分析】(1)列表得出所有等可能的情况数即可;(2)找出恰好是方程x2﹣3x+2=0的解的情况数,求出所求的概率即可.【解答】解:(1)列表如下:(2)所有等可能的情况数为9种,其中是x2﹣3x+2=0的解的为(1,2),(2,1)共2种,则P=.是方程解【点评】此题考查了列表法与树状图法,以及一元二次方程的解,用到的知识点为:概率=所求情况数与总情况数之比.20.(6分)(2013•云南)如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?【分析】过点A作AD⊥BC于D,则垂线段AD的长度为与钓鱼岛A最近的距离,线段CD的长度即为所求.先由方位角的定义得出∠ABC=30°,∠ACD=60°,由三角形外角的性质得出∠BAC=30°,则CA=CB=100海里,然后解直角△ADC,得出CD=AC=50海里.【解答】解:过点A作AD⊥BC于D,根据题意得∠ABC=30°,∠ACD=60°,∴∠BAC=∠ACD﹣∠ABC=30°,∴CA=CB.∵CB=50×2=100(海里),∴CA=100(海里),在直角△ADC中,∠ACD=60°,∴CD=AC=×100=50(海里).故船继续航行50海里与钓鱼岛A的距离最近.【点评】本题考查了解直角三角形的应用﹣方向角问题,难度适中.解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.21.(7分)(2013•云南)已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.【分析】(1)利用三线合一定理可以证得∠ADB=90°,根据矩形的定义即可证得;(2)利用勾股定理求得BD的长,然后利用矩形的面积公式即可求解.【解答】解:(1)∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠ADB=90°,∵四边形ADBE是平行四边形.∴平行四边形ADBE是矩形;(2)∵AB=AC=5,BC=6,AD是BC的中线,∴BD=DC=6×=3,在直角△ACD中,AD===4,=BD•AD=3×4=12.∴S矩形ADBE【点评】本题考查了三线合一定理以及矩形的判定,理解三线合一定理是关键.22.(7分)(2013•云南)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.【分析】(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,然后根据单价之间的关系和340元两个等量关系列出二元一次方程组,求解即可;(2)设购买榕树a棵,则香樟树为(150﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式组,求出a的取值范围,在根据a是正整数确定出购买方案.【解答】解:(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,根据题意得,,解得,答:榕树和香樟树的单价分别是60元/棵,80元/棵;(2)设购买榕树a棵,则购买香樟树为(150﹣a)棵,根据题意得,,解不等式①得,a≥58,解不等式②得,a≤60,所以,不等式组的解集是58≤a≤60,∵a只能取正整数,∴a=58、59、60,因此有3种购买方案:方案一:购买榕树58棵,香樟树92棵,方案二:购买榕树59棵,香樟树91棵,方案三:购买榕树60棵,香樟树90棵.【点评】本题考查了二元一次方程组的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.23.(9分)(2013•云南)如图,四边形ABCD是等腰梯形,下底AB在x轴上,点D在y轴上,直线AC与y轴交于点E(0,1),点C的坐标为(2,3).(1)求A、D两点的坐标;(2)求经过A、D、C三点的抛物线的函数关系式;(3)在y轴上是否在点P,使△ACP是等腰三角形?若存在,请求出满足条件的所有点P的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求出直线EC的解析式,确定点A的坐标;然后利用等腰梯形的性质,确定点D的坐标;(2)利用待定系数法求出抛物线的解析式;(3)满足条件的点P存在,且有多个,需要分类讨论:①作线段AC的垂直平分线,与y轴的交点,即为所求;②以点A为圆心,线段AC长为半径画弧,与y轴的两个交点,即为所求;②以点C为圆心,线段CA长为半径画弧,与y轴的两个交点,即为所求.【解答】解:(1)设直线EC的解析式为y=kx+b,根据题意得:,解得,∴y=x+1,当y=0时,x=﹣1,∴点A的坐标为(﹣1,0).∵四边形ABCD是等腰梯形,C(2,3),∴点D的坐标为(0,3).(2)设过A(﹣1,0)、D(0,3)、C(2,3)三点的抛物线的解析式为y=ax2+bx+c,则有:,解得,∴抛物线的关系式为:y=﹣x2+2x+3;(3)存在.①作线段AC的垂直平分线,交y轴于点P1,交AC于点F.∵OA=OE,∴△OAE为等腰直角三角形,∠AEO=45°,∴∠FEP1=∠AEO=45°,∴△FEP1为等腰直角三角形.∵A(﹣1,0),C(2,3),点F为AC中点,∴F(,),∴等腰直角三角形△FEP1斜边上的高为,∴EP1=1,∴P1(0,2);②以点A为圆心,线段AC长为半径画弧,交y轴于点P2,P3.可求得圆的半径长AP2=AC=3.连接AP2,则在Rt△AOP2中,OP2===,∴P2(0,).∵点P3与点P2关于x轴对称,∴P3(0,﹣);③以点C为圆心,线段CA长为半径画弧,交y轴于点P4,P5,则圆的半径长CP4=CA=3,在Rt△CDP4中,CP4=3,CD=2,∴DP4===,∴OP4=OD+DP4=3+,∴P4(0,3+);同理,可求得:P5(0,3﹣).综上所述,满足条件的点P有5个,分别为:P1(0,2),P2(0,),P3(0,﹣),P4(0,3+),P5(0,3﹣).【点评】本题是二次函数综合题,考查了二次函数的图象与性质、待定系数法、等腰三角形的判定、勾股定理等知识点.难点在于第(3)问,符合条件的点P 有多个,需要分类讨论,避免漏解;其次注意解答中确定等腰三角形的方法,即作垂直平分线、作圆来确定等腰三角形.参与本试卷答题和审题的老师有:wangjc3;zhjh;HJJ;caicl;sd2011;HLing;ln_86;郝老师;bjf;wdxwwzy;蓝月梦;星期八;sks;未来(排名不分先后)菁优网2017年3月13日。
2013年云南省中考数学试卷-答案
云南省2013年初中学业水平考试数学答案解析 一、选择题1.【答案】B【解析】根据绝对值的性质,|66|-=.故选B .【提示】根据绝对值的性质,当a 是负有理数时,a 的绝对值是它的相反数a -,解答即可.【考点】绝对值2.【答案】B【解析】A .633m m m ÷=,选项错误;B .正确;C .222()2m n m mn n +=++,选项错误;D .235mn mn mn +=,选项错误.故选B .【提示】依据同底数的幂的除法、单项式的乘法以及完全平方公式,合并同类项法则即可判断.【考点】单项式乘单项式,合并同类项,同底数幂的除法,完全平方公式3.【答案】D【解析】由主视图和左视图为矩形判断出是柱体,由俯视图是正方形可判断出这个几何体应该是长方体. 故选D .【提示】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【考点】由三视图判断几何体4.【答案】B【解析】将150.5亿元用科学记数法表示101.50510⨯元.故选B .【提示】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于1时,n 是正数;当原数的绝对值小于1时,n 是负数.【考点】科学记数法—表示较大的数5.【答案】A【解析】A .行四边形ABCD 的对角线AC ,BD 相交于点O ,AO CO ∴=,DO BO =,ABCD S =,故此选项错误;.ABCD 是中心对称图形,故此选项错误.【提示】根据平行四边形的性质分别判断得出答案即可.【考点】平行四边形的性质【解析】1O 与2O 的半径分别为又325+=>两圆的位置关系是相交..由1O 与2O 的半径分别为R ,r 的数量关系间的联系即可得出两圆位置关系.【考点】圆与圆的位置关系,估算无理数的大小D【解析】2525=,【提示】根据算术平方根的定义即可求出结果.【考点】算术平方根【解析】AB AC =,AB CD ∥【提示】根据等腰三角形两底角相等求出,再根据两直线平行,内错角相等解答.【考点】等腰三角形的性质,平行线的性质【解析】分子分别为,431-==3n +=)AB AD∠=∠可以添加的条件为C∠.E17.【答案】(1)如图所示:50CB =⨯12CD ∴=故船继续航行50海里与钓鱼岛A的距离最近.=)AB AC,是平行四边形,=)AB AC△中,在直角ACDBD AD=⨯34)利用勾股定理求得BD,a只能取正整数,香樟树91棵;方案三:四边形OA OE =1FEP ∴∠=(1,0)A -,,22F ∴ ⎝点【提示】(1)利用待定系数法求出直线EC的解析式,确定点A的坐标;然后利用等腰梯形的性质,确定点D的坐标;(2)利用待定系数法求出抛物线的解析式;(3)满足条件的点P存在,且有多个,需要分类讨论:①作线段AC的垂直平分线,与y轴的交点,即为所求;②以点A为圆心,线段AC长为半径画弧,与y轴的两个交点,即为所求;②以点C为圆心,线段CA长为半径画弧,与y轴的两个交点,即为所求.【考点】二次函数综合题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南省曲靖市2013年中考数学试卷一、选择题(共8个小题,每小题3分,共24分) 1.(3分)(2013•曲靖)某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是( )A . ﹣10℃B . ﹣6℃C . 6℃D .10℃ 2.(3分)(2013•曲靖)下列等式成立的是( )A. a 2•a 5=a 10 B . C .(﹣a 3)6=a 18D . 3.(3分)(2013•曲靖)如图是某几何体的三视图,则该几何体的侧面展开图是( )A .B .C .D .4.(3分)(2013•曲靖)某地资源总量Q 一定,该地人均资源享有量与人口数n 的函数关系图象是( ) A .B .C .D .5.(3分)(2013•曲靖)在平面直角坐标系中,将点P (﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P ′的坐标是( ) A . (2,4) B . (1,5) C . (1,﹣3) D . (﹣5,5) 6.(3分)(2013•曲靖)实数a 、b 在数轴上的位置如图所示,下列各式成立的是( )A .B . a ﹣b >0C . a b >0D . a ÷b >07.(3分)(2013•曲靖)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,过点O 作EF ⊥AC交BC 于点E ,交AD 于点F ,连接AE 、CF .则四边形AECF 是( )A . 梯形B . 矩形C . 菱形D . 正方形8.(3分)(2013•曲靖)如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB 内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称二、填空题(共8个小题,每小题3分,共24分)。
9.(3分)(2013•曲靖)﹣2的倒数是.10.(3分)(2013•曲靖)若a=1.9×105,b=9.1×104,则a b(填“<”或“>”).11.(3分)(2013•曲靖)如图,直线AB、CD相交于点O,若∠BOD=40°,OA平分∠COE,则∠AOE=.12.(3分)(2013•曲靖)不等式和x+3(x﹣1)<1的解集的公共部分是.13.(3分)(2013•曲靖)若整数x满足|x|≤3,则使为整数的x的值是(只需填一个).14.(3分)(2013•曲靖)一组“穿心箭”按如下规律排列,照此规律,画出2013支“穿心箭”是.15.(3分)(2013•曲靖)如图,将△ABC绕其中一个顶点顺时针连续旋转n′1、n′2、n′3所得到的三角形和△ABC的对称关系是.16.(3分)(2013•曲靖)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,则CD=.三、解答题(共8个小题,共72分)17.(6分)(2013•曲靖)计算:2﹣1+|﹣|++()0.18.(10分)(2013•曲靖)化简:,并解答:(1)当x=1+时,求原代数式的值.(2)原代数式的值能等于﹣1吗?为什么?19.(8分)(2013•曲靖)某种仪器由1种A部件和1个B部件配套构成.每个工人每天可以加工A部件1000个或者加工B部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A部件和B部件配套?20.(8分)(2013•曲靖)甲、乙两名工人同时加工同一种零件,现根据两人7天产品中每天出现的次品数情况绘制成如下不完整的统计图和表,依据图、表信息,解答下列问题:相关统计量表:量数人众数中位数平均数方差甲 2乙 1 1 1次品数量统计表:天 数人12 3 4 5 6 7甲2 2 03 1 24 乙1 02 1 1 0(1)补全图、表.(2)判断谁出现次品的波动小.(3)估计乙加工该种零件30天出现次品多少件?21.(8分)(2013•曲靖)在一个暗箱中装有红、黄、白三种颜色的乒乓球(除颜色外其余均相同).其中白球、黄球各1个,若从中任意摸出一个球是白球的概率是.(1)求暗箱中红球的个数.(2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,求两次摸到的球颜色不同的概率(用树形图或列表法求解). 22.(10分)(2013•曲靖)如图,点E 在正方形ABCD 的边AB 上,连接DE ,过点C 作CF ⊥DE 于F ,过点A 作AG ∥CF 交DE 于点G . (1)求证:△DCF ≌△ADG .(2)若点E 是AB 的中点,设∠DCF=α,求sin α的值.23.(10分)(2013•曲靖)如图,⊙O的直径AB=10,C、D是圆上的两点,且.设过点D的切线ED交AC的延长线于点F.连接OC交AD于点G.(1)求证:DF⊥AF.(2)求OG的长.24.(12分)(2013•曲靖)如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A、B两点,过A、B两点的抛物线为y=﹣x2+bx+c.点D为线段AB上一动点,过点D 作CD⊥x轴于点C,交抛物线于点E.(1)求抛物线的解析式.(2)当DE=4时,求四边形CAEB的面积.(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求此点D坐标;若不存在,说明理由.云南省曲靖市2013年中考数学试卷一、选择题(共8个小题,每小题3分,共24分)1.(3分)考点:有理数的减法.分析:用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.解答:解:8﹣(﹣2)=8+2=10℃.故选D.点评:本题考查了有理数的减法运算法则,熟记减去一个数等于加上这个数的相反数是解题的关键.2.(3分)考点:二次根式的性质与化简;同底数幂的乘法;幂的乘方与积的乘方.分析:利用同底数的幂的乘法法则以及幂的乘方、算术平方根定义即可作出判断.解答:解:A、a2•a5=a7,故选项错误;B、当a=b=1时,≠+,故选项错误;C、正确;D、当a<0时,=﹣a,故选项错误.故选C.点评:本题考查了同底数的幂的乘法法则以及幂的乘方、算术平方根定义,理解算术平方根的定义是关键.3.(3分)考点:由三视图判断几何体;几何体的展开图分析:由三视图可以看出,此几何体是一个圆柱,指出圆柱的侧面展开图即可.解答:解:根据几何体的三视图可以得到该几何体是圆柱,圆柱的侧面展开图是矩形,且高度=主视图的高,宽度=俯视图的周长.故选A.点评:本题考查了由三视图判断几何体及几何体的侧面展开图的知识,重点考查由三视图还原实物图的能力,及几何体的空间感知能力,是立体几何题中的基础题.4.(3分)考点:反比例函数的应用;反比例函数的图象.分析:根据题意有:=;故y与x之间的函数图象双曲线,且根据,n的实际意义,n 应大于0;其图象在第一象限.解答:解:∵由题意,得Q=n,∴=,∵Q为一定值,∴是n的反比例函数,其图象为双曲线,又∵>0,n>0,∴图象在第一象限.故选B.点评:此题考查了反比例函数在实际生活中的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.5.(3分)考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,向上平移纵坐标加求出点P′的坐标即可得解.解答:解:∵点P(﹣2,0)向右平移3个单位长度,∴点P′的横坐标为﹣2+3=1,∵向上平移4个单位长度,∴点P′的纵坐标为1+4=5,∴点P′的坐标为(1,5).故选B.点评:本题考查了坐标与图形变化﹣平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.6.(3分)考点:实数与数轴.分析:根据数轴判断出a、b的取值范围,再根据有理数的乘除法,减法运算对各选项分析判断后利用排除法求解.解答:解:由图可知,﹣2<a<﹣1,0<b<1,A、<0,正确,故本选项正确;B、a﹣b<0,故本选项错误;C、ab<0,故本选项错误;D、a÷b<0,故本选项错误.故选A.点评:本题考查了实数与数轴,有理数的乘除运算以及有理数的减法运算,判断出a、b的取值范围是解题的关键.7.(3分)考点:菱形的判定;平行四边形的性质.分析:首先利用平行四边形的性质得出AO=CO,∠AFO=∠CEO,进而得出△AFO≌△CEO,再利用平行四边形和菱形的判定得出即可.解答:解:四边形AECF是菱形,理由:∵在▱ABCD中,对角线AC与BD相交于点O,∴AO=CO,∠AFO=∠CEO,∴在△AFO和△CEO中,∴△AFO≌△CEO(AAS),∴FO=EO,∴四边形AECF平行四边形,∵EF⊥AC,∴平行四边形AECF是菱形.故选:C.点评:此题主要考查了菱形的判定以及平行四边形的判定与性质,根据已知得出EO=FO是解题关键.8.(3分)考点:作图—基本作图;全等三角形的判定与性质;角平分线的性质.分析:连接CE、DE,根据作图得到OC=OD、CE=DE,利用SSS证得△EOC≌△EOD从而证明得到射线OE平分∠AOB,判断A正确;根据作图得到OC=OD,判断B正确;根据作图得到OC=OD,由A得到射线OE平分∠AOB,根据等腰三角形三线合一的性质得到OE是CD的垂直平分线,判断C正确;根据作图不能得出CD平分OE,判断D错误.解答:解:A、连接CE、DE,根据作图得到OC=OD、CE=DE.∵在△EOC与△EOD中,,∴△EOC≌△EOD(SSS),∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意;B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意;C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线,∴C、D两点关于OE所在直线对称,正确,不符合题意;D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.点评:本题考查了作图﹣基本作图,全等三角形的判定与性质,角平分线的性质,等腰三角形、轴对称的性质,从作图语句中提取正确信息是解题的关键.二、填空题(共8个小题,每小题3分,共24分)。
9.(3分)考点:倒数.分析:根据倒数定义可知,﹣2的倒数是﹣.解答:解:﹣2的倒数是﹣.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.10.(3分)考点:有理数大小比较;科学记数法—表示较大的数.分析:还原成原数,再比较即可.解答:解:a=1.9×105=190000,b=9.1×104=91000,∵190000>91000,∴a>b,故答案为:>.点评:本题考查了有理数的大小比较和科学记数法的应用,注意:科学记数法化成a×10n的形式,其中1≤a<10,n是整数.11.(3分)考点:对顶角、邻补角;角平分线的定义.分析:根据对顶角相等求出∠AOC,再根据角平分线的定义解答.解答:解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠AOE=∠AOC=40°.故答案为:40°.点评:本题考查了对顶角相等的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.12.(3分)考点:解一元一次不等式组.分析:先解两个不等式,再用口诀法求解集.解答:解:解不等式,得x<4,解不等式x+3(x﹣1)<1,得x<1,所以它们解集的公共部分是x<1.故答案为x<1.点评:本题考查一元一次不等式组的解法,求一元一次不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13.(3分)考点:二次根式的定义.分析:先求出x的取值范围,再根据算术平方根的定义解答.解答:解:∵|x|≤3,∴﹣3≤x≤3,∴当x=﹣2时,==3,x=3时,==2.故,使为整数的x的值是﹣2或3(填写一个即可).故答案为:﹣2.点评:本题考查了二次根式的定义,熟记常见的平方数是解题的关键.14.(3分)考点:规律型:图形的变化类.分析:根据图象规律得出每6个数为一周期,用2013除以6,根据余数来决定2013支“穿心箭”的形状.解答:解:根据图象可得出“穿心箭”每6个一循环,2013÷6=335…3,故2013支“穿心箭”与第3个图象相同是.故答案为:.点评:此题主要考查了图象的变化规律,根据已知得出图形变化规律是解题关键.15.(3分)考点:旋转的性质.分析:先根据三角形内角和为180°得出n′1+n′2+n′3=180°,再由旋转的定义可知,将△ABC 绕其中一个顶点顺时针旋转180°所得到的三角形和△ABC关于这个点成中心对称.解答:解:∵n′1+n′2+n′3=180°,∴将△ABC绕其中一个顶点顺时针连续旋转n′1、n′2、n′3,就是将△ABC绕其中一个顶点顺时针旋转180°,∴所得到的三角形和△ABC关于这个点成中心对称.故答案为:关于旋转点成中心对称.点评:本题考查了三角形内角和定理,旋转的定义与性质,比较简单.正确理解顺时针连续旋转n′1、n′2、n′3,就是顺时针旋转180°是解题的关键.16.(3分)考点:直角梯形.分析:过点D作DE⊥BC于E,则易证四边形ABED是矩形,所以AD=BE=1,进而求出CE的值,再解直角三角形DEC即可求出CD的长.解答:解:过点D作DE⊥BC于E.∵AD∥BC,∠B=90°,∴四边形ABED是矩形,∴AD=BE=1,∵BC=4,∴CE=BC﹣BE=3,∵∠C=45°,∴cosC==,∴CD=3.故答案为3.点评:此题考查了直角梯形的性质,矩形的判定和性质以及特殊角的锐角三角函数值,此题难度不大,解题的关键是注意数形结合思想的应用.三、解答题(共8个小题,共72分)17.(6分)考点:实数的运算;零指数幂;负整数指数幂分析:分别进行零指数幂、负整数指数幂的运算,然后合并即可得出答案.解答:解:原式=++2+1=4.点评:本题考查了实数的运算,解答本题的关键是掌握零指数幂、负整数指数幂的运算法则.18.(10分)考点:分式的化简求值;解分式方程.分析:(1)原式括号中两项约分后,利用乘法分配律化简,约分后利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值;(2)先令原式的值为﹣1,求出x的值,代入原式检验即可得到结果.解答:解:(1)原式=[﹣]•=﹣=,当x=1+时,原式==1+;(2)若原式的值为﹣1,即=﹣1,去分母得:x+1=﹣x+1,解得:x=0,代入原式检验,分母为0,不合题意,则原式的值不可能为﹣1.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.19.(8分)考点:二元一次方程组的应用.分析:设安排x人生产A部件,安排y人生产B部件,就有x+y=16和1000x=600y,由这两个方程构成方程组,求出其解即可.解答:解:设安排x人生产A部件,安排y人生产B部件,由题意,得,解得:.答:设安排6人生产A部件,安排10人生产B部件,才能使每天生产的A部件和B 部件配套.点评:本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据条件建立建立反映全题等量关系的两个方程是关键.本题时一道配套问题.20.(8分)考点:折线统计图;用样本估计总体;算术平均数;中位数;众数;方差分析:(1)根据平均数、众数、中位数的定义分别进行计算,即可补全统计图和图表;(2)根据方差的意义进行判断,方差越大,波动性越大,方差越小,波动性越小,即可得出答案;(3)根据图表中乙的平均数是1,即可求出乙加工该种零件30天出现次品件数.解答:解:(1):从图表(2)可以看出,甲的第一天是2,则2出现了3次,出现的次数最多,众数是2,把这组数据从小到大排列为0,1,2,2,2,3,4,最中间的数是2,则中位数是2;乙的平均数是1,则乙的第7天的数量是1×7﹣1﹣0﹣2﹣1﹣1﹣0=2;填表和补图如下:众数中位数平均数方差量数人甲 2 2 2乙 1 1 1次品数量统计表:1 2 3 4 5 6 7天数人甲 2 2 0 3 1 2 4乙 1 0 2 1 1 0 2(2)∵S甲2=,S乙2=,∴S甲2>S乙2,∴乙出现次品的波动小.(3)∵乙的平均数是1,∴30天出现次品是1×30=30(件).点评:此题考查了折线统计图,用到的知识点是平均数、众数、中位数、方差的意义、用样本估计总体;读懂折线统计图和图表,从统计图中得到必要的信息是解决问题的关键.21.(8分)考点:列表法与树状图法;概率公式.专题:图表型.分析:(1)设红球有x个,根据概率的意义列式计算即可得解;(2)画出树状图,然后根据概率公式列式计算即可得解.解答:解:(1)设红球有x个,根据题意得,=,解得x=1;(2)根据题意画出树状图如下:一共有9种情况,两次摸到的球颜色不同的有6种情况,所以,P(两次摸到的球颜色不同)==.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22.(10分)考点:正方形的性质;全等三角形的判定与性质;解直角三角形.分析:(1)根据正方形的性质求出AD=DC,∠ADC=90°,根据垂直的定义求出∠CFD=∠CFG=90°,再根据两直线平行,内错角相等求出∠AGD=∠CFG=90°,从而得到∠AGD=∠CFD,再根据同角的余角相等求出∠ADG=∠DCF,然后利用“角角边”证明△DCF和△ADG全等即可;(2)设正方形ABCD的边长为2a,表示出AE,再利用勾股定理列式求出DE,然后根据锐角的正弦等于对边比斜边求出∠ADG的正弦,即为α的正弦.解答:(1)证明:在正方形ABCD中,AD=DC,∠ADC=90°,∵CF⊥DE,∴∠CFD=∠CFG=90°,∵AG∥CF,∴∠AGD=∠CFG=90°,∴∠AGD=∠CFD,又∵∠ADG+∠CDE=∠ADC=90°,∠DCF+∠CDE=90°,∴∠ADG=∠DCF,∵在△DCF和△ADG中,,∴△DCF≌△ADG(AAS);(2)设正方形ABCD的边长为2a,∵点E是AB的中点,∴AE=×2a=a,在Rt△ADE中,DE===a,∴sin∠ADG===,∵∠ADG=∠DCF=α,∴sinα=.点评:本题考查了正方形的性质,全等三角形的判定与性质,锐角三角函数,同角的余角相等的性质,以及勾股定理的应用,熟练掌握各图形的性质并确定出三角形全等的条件是解题的关键.23.(10分)考点:切线的性质.分析:(1)连接BD,根据,可得∠CAD=∠DAB=30°,∠ABD=60°,从而可得∠AFD=90°;(2)根据垂径定理可得OG垂直平分AD,继而可判断OG是△ABD的中位线,在Rt△ABD中求出BD,即可得出OG.解答:解:(1)连接BD,∵,∴∠CAD=∠DAB=30°,∠ABD=60°,∴∠ADF=∠ABD=60°,∴∠CAD+∠ADF=90°,∴DF⊥AF.(2)在Rt△ABD中,∠BAD=30°,AB=10,∴BD=5,∵=,∴OG垂直平分AD,∴OG是△ABD的中位线,∴OG=BD=.点评:本题考查了切线的性质、圆周角定理及垂径定理的知识,解答本题要求同学们熟练掌握各定理的内容及含30°角的直角三角形的性质.24.(12分)考点:二次函数综合题.分析:(1)首先求出点A、B的坐标,然后利用待定系数法求出抛物线的解析式;(2)设点C坐标为(m,0)(m<0),根据已知条件求出点E坐标为(m,8+m);由于点E在抛物线上,则可以列出方程求出m的值.在计算四边形CAEB面积时,利用S四边形CAEB=S△ACE+S梯形OCEB﹣S△BCO,可以简化计算;(3)由于△ACD为等腰直角三角形,而△DBE和△DAC相似,则△DBE必为等腰直角三角形.分两种情况讨论,要点是求出点E的坐标,由于点E在抛物线上,则可以由此列出方程求出未知数.解答:解:(1)在直线解析式y=x+4中,令x=0,得y=4;令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).∵点A(﹣4,0),B(0,4)在抛物线y=﹣x2+bx+c上,∴,解得:b=﹣3,c=4,∴抛物线的解析式为:y=﹣x2﹣3x+4.(2)设点C坐标为(m,0)(m<0),则OC=﹣m,AC=4+m.∵OA=OB=4,∴∠BAC=45°,∴△ACD为等腰直角三角形,∴CD=AC=4+m,∴CE=CD+DE=4+m+4=8+m,∴点E坐标为(m,8+m).∵点E在抛物线y=﹣x2﹣3x+4上,∴8+m=﹣m2﹣3m+4,解得m=﹣2.∴C(﹣2,0),AC=OC=2,CE=6,S四边形CAEB=S△ACE+S梯形OCEB﹣S△BCO=×2×6+(6+4)×2﹣×2×4=12.(3)设点C坐标为(m,0)(m<0),则OC=﹣m,CD=AC=4+m,BD=OC=﹣m,则D(m,4+m).∵△ACD为等腰直角三角形,△DBE和△DAC相似∴△DBE必为等腰直角三角形.i)若∠BED=90°,则BE=DE,∵BE=OC=﹣m,∴DE=BE=﹣m,∴CE=4+m﹣m=4,∴E(m,4).∵点E在抛物线y=﹣x2﹣3x+4上,∴4=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣3,∴D(﹣3,1);ii)若∠EBD=90°,则BE=BD=﹣m,在等腰直角三角形EBD中,DE=BD=﹣2m,∴CE=4+m﹣2m=4﹣m,∴E(m,4﹣m).∵点E在抛物线y=﹣x2﹣3x+4上,∴4﹣m=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣2,∴D(﹣2,2).综上所述,存在点D,使得△DBE和△DAC相似,点D的坐标为(﹣3,1)或(﹣2,2).点评:本题考查了二次函数与一次函数的图象与性质、函数图象上点的坐标特征、待定系数法、相似三角形、等腰直角三角形、图象面积计算等重要知识点.第(3)问需要分类讨论,这是本题的难点.。