机械可靠性设计的基本方法及其指标体系.pdf
机械工程可靠性工艺规划
机械工程可靠性工艺规划713100【摘要】:随着我国机械制造工业进程的快速发展,对机械工程产品的质量要求也更加具体化,可靠性要求指标更加明确。
从产品的初期可靠性工艺设计规划方案的制定、制造流程及标准执行、可靠性试验和产品使用,它贯穿于产品的整个寿命周期之内。
通过对机械产品各组成零部件进行可靠性试验,结合出现的失效模式及对产品功能的影响进行分析,并把每个潜在失效模式按它的严酷程度予以分类,确定失效源,提出采用的预防改进措施并予以实施,完善可靠性工艺规划,从而降低产品在设计过程的潜在失效风险,使机械产品可靠性逐步得到增长,提高机械产品固有可靠性,最终完成机械工程工艺规划设定的可靠性指标。
关键词:机械工程;可靠性;工艺规划前言机械产品可靠性工艺设计规划及测试方案的制定,是保证产品实现可靠性设计目标的关键要素。
机械产品可靠性设计功能是以使用为目,对产品可靠性工艺设计时,结合产品的使用要求,在满足产品的使用及功能的基础上,保证机械产品可靠性工艺设计规划需求。
为了安全、可靠、高效的生产出所需的机械产品,从设计产品可靠性工艺规划入手,强化测试工艺管理,明确影响机械产品使用质量的理论根源,为提升机械工程产品质量和生产效率创造条件。
在制定可靠性测试方案中,完善可靠性工艺规划,直接影响到机械产品生产工艺预设的固有可靠性指标。
加强可靠性工艺控制,保持工艺规程的稳定性,设置各个工序检验点,有效控制并实施产品工艺设计规划目标,确保产品的可靠性及使用的安全。
1.国内外机械工程可靠性研究现状分析林有志;刘凌霜;宋爱斌;刘明等[1]概述并分析了机械可靠性的设计和研究及其发展,探讨了机械产品设计现状,对可靠性评估方法逐一做了介绍;侯郁[2]综述了国内外可靠性工程的发展概况,李永华;何卫东;[3]对提高机械产品的零部件的稳健性,提出了优化设计方法,通过产品零部件证明其优化设计的有效性和设计的合理性及有效性。
高金梅[4阐述了我国目前机械工程技术的应用,探究了其发展现状及所产生的影响,提出了适合我国目前在机械工程技术的发展模式,从而实现提高机械工程技术设计运用质量水平目的;蒋平[5]对开展机械产品可靠性的保障进行了研究,探讨了机械产品设计工艺可靠性,提出了机械制造过程中的有效控制设计,为完成产品可靠性设定的最终目标提供技术支持。
秋机电一体化系统设计基础形成性考核作业答案
秋机电一体化系统设计基础形成性考核作业答案SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#《机电一体化系统设计基础》形成性考核作业参考答案形成性考核作业1参考答案一、判断题(正确的打√,错误的打×)1.× 2.√ 3.√ 4.× 5.× 6.×7.× 8.× 9.× 10.√ 11.× 12.×二、单选题1.C 2.A 3.B 4.A ,A 5.D 6.B 7.A 8.D三、简答题1.完善的机电一体化系统主要包括哪几部分答:机械本体、动力系统、检测传感系统、执行部件和信息处理及控制系统五部分相互协调,共同完成所规定的目的功能。
通过接口及相应软件有机结合在一起,构成内部匹配合理、外部效能最佳的完整产品。
2.简述机电一体化系统中的接口的作用。
机电一体系统是机械、电子和信息等性能各异的技术融为一体的综合系统,其构成要素和子系统之间的接口极其重要。
从系统外部看,输入/输出是系统与人、环境或其他系统之间的接口;从系统内部看,机电一体化系统是通过许多接口将各组成要素的输入/输出联系成一体的系统。
3.机械运动中的摩擦和阻尼会降低效率,但是设计中要适当选择其参数,而不是越小越好。
为什么阻尼比公式:02mK B =ξ,由公式可知阻比除了与机械系统的粘性阻尼系数B 有关外,还与系统刚度K 0和质量m 有关。
因此,在机械结构设计时,应当通过对刚度、质量和摩擦系数等参数的合理匹配,得到机械系统阻尼比ξ的适当取值,以保证系统的良好动态特性。
4.简述机械系统的刚度对系统动态特性的影响。
机械系统的刚度对系统的主要影响表现为以下几方面:(1)失动量 系统刚度越大,因静摩擦力的作用所产生的传动部件的弹性变形越小,系统的失动量也越小;(2)固有频率 机械系统刚度越大,固有频率越高,可远离控制系统或驱动系统的频带宽度,从而避免产生共振;(3)稳定性 刚度对开环伺服系统的稳定性没有影响,而对闭环伺服系统的稳定性有很大影响,提高刚度可增加闭环系统的稳定性。
秋机电一体化系统设计基础形成性考核作业答案
机电一体化系统设计基础形成性考核作业参考答案形成性考核作业1参考答案一、判断题正确的打√,错误的打×1.× 2.√ 3.√ 4.× 5.× 6.×7.× 8.× 9.× 10.√ 11.× 12.×二、单选题1.C 2.A 3.B 4.A,A 5.D 6.B 7.A 8.D三、简答题1.完善的机电一体化系统主要包括哪几部分答:机械本体、动力系统、检测传感系统、执行部件和信息处理及控制系统五部分相互协调,共同完成所规定的目的功能;通过接口及相应软件有机结合在一起,构成内部匹配合理、外部效能最佳的完整产品;2.简述机电一体化系统中的接口的作用;机电一体系统是机械、电子和信息等性能各异的技术融为一体的综合系统,其构成要素和子系统之间的接口极其重要;从系统外部看,输入/输出是系统与人、环境或其他系统之间的接口;从系统内部看,机电一体化系统是通过许多接口将各组成要素的输入/输出联系成一体的系统;3.机械运动中的摩擦和阻尼会降低效率,但是设计中要适当选择其参数,而不是越小越好;为什么阻尼比公式:02mK B =ξ,由公式可知阻比除了与机械系统的粘性阻尼系数B 有关外,还与系统刚度K 0和质量m 有关;因此,在机械结构设计时,应当通过对刚度、质量和摩擦系数等参数的合理匹配,得到机械系统阻尼比ξ的适当取值,以保证系统的良好动态特性;4.简述机械系统的刚度对系统动态特性的影响;机械系统的刚度对系统的主要影响表现为以下几方面:1失动量 系统刚度越大,因静摩擦力的作用所产生的传动部件的弹性变形越小,系统的失动量也越小;2固有频率 机械系统刚度越大,固有频率越高,可远离控制系统或驱动系统的频带宽度,从而避免产生共振;3稳定性 刚度对开环伺服系统的稳定性没有影响,而对闭环伺服系统的稳定性有很大影响,提高刚度可增加闭环系统的稳定性;四、计算题1.解:2.解:该系统的最大转角误差: Δφmax Δφmax =∑=∆Φn k kn k i 1)/(=△φ1/i 1 i 2 i 3 i 4+△φ2+△φ3/ i 2 i 3 i 4+ △φ4+△φ5/i 3 i 4+△φ6+△φ7/i 4+△φ8=3×3×3×3++/3×3×3+ +/3×3+ +/3+ =五、综合题1.答:图中所示的双螺母螺纹预紧调整齿侧间隙,双螺母中的一个外端有凸缘,一个外端无凸缘,但制有螺纹,它伸出套筒外用两个螺母固定锁紧,并用键来防止两螺母相对转动;旋转圆螺母可调整消除间隙并产生预紧力,之后再用锁紧螺母锁紧;2.答:当传动负载大时,可采用双齿轮调整法;消除齿侧间隙的原理:小齿轮1,6分别与齿条7啮合,与小齿轮1,6同轴的大齿轮2,5分别与齿轮3啮合,通过预载装置4向齿轮3上预加负载,使大齿轮2,5同时向两个相反方向转动,从而带动小齿轮1,6转动,其齿面便分别紧贴在齿条7上齿槽的左、右侧,从而消除了齿侧间隙;形成性考核作业2参考答案一、判断题正确的打√,错误的打×1.× 2.√ 3.× 4.× 5.√ 6.×7.√ 8.√ 9.× 10.√ 11.× 12.×二、单选题1.B 2.C 3.B 4.B 5.D 6.B 7.D 8.B三、简答题1.什么是传感器的静态特性和动态特性传感器的静态特性是指传感器的输入信号不随时间变化或变化非常缓慢时,所表现出来的输出响应特性;需要了解的主要参数有:线性范围、线性度、灵敏度、精确度、分辨力、迟滞、稳定性;传感器的动态特性是指其输出对随时间变化的输入量的响应特性;需要了解的主要参数有:幅频特性和相频特性;2.什么是伺服系统伺服系统的一般组成有哪几个部分伺服系统是指以机械位置、速度和加速度为控制对象,在控制命令的指挥下,控制执行元件工作,使机械运动部件按控制命令的要求进行运动,并具有良好的动态性能;1控制器:伺服系统中控制器的主要任务是根据输入信号和反馈信号决定控制252t m 3.16610kg m 2G J π-⎛⎫==⨯⋅ ⎪⎝⎭策略,控制器通常由电子线路或计算机组成;2功率放大器:伺服系统中功率放大器的作用是将信号进行放大,并用来驱动执行机构完成某种操作,功率放大装置主要由各种电力电子器件组成;3执行机构:执行机构主要由伺服电动机或液压伺服机构和机械传动装置等组成;4检测装置:检测装置的任务是测量被控制量,实现反馈控制;无论采用何种控制方案,系统的控制精度总是低于检测装置的精度,因此要求检测装置精度高、线性度好、可靠性高、响应快;3.简述直流伺服电动机脉宽调制的工作原理;直流伺服电动机脉宽调制PWM 的工作原理:假设输入直流电压U ,可以调节导通时间得到一定宽度的与U 成比例的脉冲方波,给伺服电动机电枢回路供电,通过改变脉冲宽度来改变电枢回路的平均电压,从而输出不同大小的电压a U ,使直流电动机平滑调速;4.比较直流伺服电动机和交流伺服电动机的适用环境差别;直流伺服电动机有较高的响应速度和精度以及优良的控制特性,但由于使用电刷和换向器,故寿命较低,需定期维护;适用于数控机床、工业机器人等机电一体化产品中;交流伺服电动机具有调速范围宽、转子惯性小、控制功率小、过载能力强、可靠性好的特点;适用于数控机床进给传动控制、工业机器人关节传动,及运动和位置控制场合;四、计算题1.解:307200÷1024=30转∵ 每转丝杠走2mm,∴刀架位移量为30×2=60mmN=30转/10秒=3转/秒2.解:1步进电机的步距角︒=⨯⨯︒=⋅⋅︒=5.132********N K z α 2减速齿轮的传动比55.1360005.063600=︒︒=︒=αδl i 五、综合题1.答:该传感器为一种角位移式的光电传感器,用于测量角位移,将传感器的输入轴接测量元件;当测量元件转动时,带动输入轴上的开空圆盘;每个开空圆盘对应一个角度;可将圆盘均分最小单位为测量的最小角度;圆盘旋转时,开空与缝隙板对准时,光源将光直射到光敏元件上,将得到一个光电信号脉冲,将脉冲信号输入计数器可记录圆盘转过的角度,也就是测量元件转过角度;2.答:方案a :结构简单、易实现;绳的位移可以很大,但绳在滚筒方向会产生横向位移;需要采用制动器或者止逆型减速器才能防止绳对电机的反向驱动;方案b:结构较简单,成本与方案a相当;绳的位移要受到丝杠长度的限制;普通丝杠具有止逆功能,无需增加制动器即可防止绳对电机的反向驱动;无横向位移;2.方案的测量方法1电机轴安装编码器直接测量绳的位移2滚筒轴安装编码器间接测量绳的位移;形成性考核作业3参考答案一、判断题正确的打√,错误的打×1.√ 2.√ 3.√ 4.√ 5.× 6.×7.× 8.√ 9.× 10.√ 11.× 12.√二、单选题1.D 2.B 3.C 4.D 5.D 6.D三、简答题1.机电一体化系统仿真在系统设计过程中所起的作用是什么在系统实际运行前,也希望对项目的实施结果加以预测,以便选择正确、高效的运行策略或提前消除设计中的缺陷,最大限度地提高实际系统的运行水平,采用仿真技术可以省时省力省钱地达到上述目的;计算机仿真包括三个基本要素,即实际系统、数学模型与计算机,联系这三个要素则有三个基本活动:模型建立、仿真实验与结果分析;2.机电一体化系统仿真的模型主要有哪几种分别应用于系统设计的哪个阶段机电一体化系统仿真的模型主要有:物理模型、数学模型和描述模型;当仿真模型是物理模型时,为全物理仿真;是数学模型时,称之为数学计算机仿真;用已研制出来的系统中的实际部件或子系统代替部分数学模型所构成的仿真称为半物理模型;计算机仿真、半物理仿真、全物理仿真分别应用于分析设计阶段软件级、部件及子系统研制阶段软件—硬件级实时仿真、系统研制阶段硬件级实时仿真阶段;3.PID控制算法中比例、积分、微分部分各起何作用答:P 比例I 积分D 微分调节器是将偏差的比例、积分、微分通过线性组合构成控制量;其中比例调节起纠正偏差的作用,其反应迅速;积分调节能消除静差,改善系统静态特性;微分调节有利于减少超调,加快系统的过渡过程;此三部分作用配合得当,可使调节过程快速、平稳、准确,收到较好的效果;4.系统采样周期的选择时,主要考虑的影响因素主要有哪些应主要考虑以下几方面:从对调节品质的要求来看,应将采样周期取得小些,这样,在按连续系统PID 调节选择整定参数时,可得到较好的控制效果;从执行元件的要求来看,有时需要输出信号保持一定的宽度;如:当通过数模转换带动步进电动机时,输出信号通过保持器达到所要求的控制幅度需要一定的时间,在这段时间内,要求计算机的输出值不应变化,因此,采样周期必须大于这一时间;从控制系统随动和抗干扰的性能要求来看,要求采样周期短些;从计算机的工作量和每个调节回路的计算成本来看,一般要求采样周期大些;从计算机的精度来看,过短的采样周期不合适;因此,各方面因素对采样周期的要求各不相同,有时互相矛盾,所以,确定采样周期时须根据具体情况和主要要求作出折中选择;5.简述下图所示梯形图的工作过程及逻辑关系,图中接线为:开关1,开关2,开关3,红灯,绿灯;答:、:两个常开触点开关; :常闭触点开关; 、、:常开触点继电器; T0:通电延时闭合继电器;工作过程:当、、均闭合时,继电器带电使红灯亮,当闭合后启动定时器T0继电器延时3s 后,闭合;当仍然闭合,T0继电器线圈带电,当它闭合绿灯亮;当断开时,小灯全灭;四、计算题1.解:方案1:高速端转角测量传感器与电机连接,通过对电机转角的测量对工作台位移进行间接测量,测量原理如下图所示; 图 梯形图 T03s T0设传感器的每转脉冲数为,则传感器的每个脉冲对应工作台的位移为方案2:低速端转角测量测量原理如图所示,传感与丝杠的端部相连,传感器直接测量丝杠的转角,与减速比无关;应选用n=1000的增量式编码器;选用n s =500脉冲/转 编码器不合用;2.解:由题可得:1当激磁磁场不变时,电机输出转矩T 正比于电枢电流: T =K T i ;2当电枢转动时,电枢中会感应反电势e b ,其值正比于转动的角速度:e b =K E ω 3电枢回路的微分方程为:u e Ri dt di L b =++ 4电机轴上的转矩平衡方程为:T =J M ω, 5求拉氏变换及联立求解得:Ls+RI s+K E Ωs=U s输出转速与输入电压之间的传递函数:五、综合题1.答:信息变换电路位于输入通道,误差的低频分量会影响输出精度,因此对静态有较高要求;而误差的高频分量对输出精度几乎没有影响,允许存在一定程度的高频噪声;传感器位于反馈通道上的环节,其对输出精度的影响与位于输入通道的信号160005.054=⨯=∆⋅=∴⋅=∆i s s i i t n n it变换电路相同;丝杠螺母机构位于闭环之后,其误差的低频分量和高频分量都会影响输出精度,因此要尽量消除传动间隙和传动误差;2.解:设启动按钮为X 1,停止按钮为X 2,正转输出为Y 1,反转输出为Y 21I/O 分配表2选择西门子S7-200型PLC 也可选择其它品牌和型号的PLC,梯形图如下: 形成性考核作业4参考答案一、判断题正确的打√,错误的打× 1.√ 2.× 3.√ 4.× 5.√ 6.√ 7.× 8.× 9.× 10.√ 11.√ 12.× 二、单选题 1.C 2.B 3.A 4.D 5.D 6.D 7.B . 8.C三、简答题1.何谓概念设计简述概念设计的设计过程; 概念设计:在确定任务之后,通过抽象化,拟定功能结构,寻求适当的作用原理及其组合等,确定出基本求解途径,得出求解方案;概念设计的过程如下图所示;1首先是将设计任务抽象化,确定出系统的总功能;K =3sT0 T0 R T1 S K =3s T1 正转反转2根据系统的总功能要求和构成系统的功能要素进行总功能分解,划分出各功能模块,将总功能分解为子功能,直到分解到不能再分解的功能元,形成功能树;确定它们之间的逻辑关系;3对各功能模块输入/输出关系进行分析,确定功能模块的技术参数和控制策略、系统的外观造型和总体结构;4寻找子功能功能元的解,并将原理解进行组合,形成多种原理解设计方案, 5以技术文件的形式交付设计组讨论、审定;由于体现同一功能的产品可以有多种多样的工作原理,6方案进行整体评价:对不同的方案进行整体评价,选择综合指标最优的设计方案;最终选定最佳方案形成概念产品2.如何进行机电一体化系统的可靠性设计可靠性是指系统在规定的条件下和规定的时间内,完成规定功能的能力;通常用“概率”表示“能力”来实现可靠性指标的量化;可靠性评价的指标体系主要包括五个方面:可靠性、维修性、有效性、耐久性和安全性;1机电一体化系统的可靠性设计:现代机械系统可靠性设计包括缩短传动链,减少元件数;必要时增设备用元件或系统;简化结构;增加过载保护装置、自动停机装置;设置监控系统;合理规定维修期;2控制系统可靠性设计包括:●采用自动控制使产品具有自适应、自调整、自诊断甚至自修复的功能;●通过元器件的合理选择提高可靠性;●对功率接口采用降额设计提高可靠性;●采用监视定时器提高可靠性;●采取抗干扰措施提高可靠性;3.简述HRGP-1A喷漆机器人的示教再现过程;示教:操作人员用手操纵操作机构的关节和手腕,根据喷漆工件的型面进行示教;此时,中央处理器通过旋转变压器将示教过程中检测到的参数存入存储器,即把示教喷漆的空间轨迹记录下来;再现:由计算机控制机器人运动,中央处理器将示教时记录的空间轨迹信息取出,经过插补运算与采样得到的位置数据进行比较,然后将其差值调节后输出,控制操作机按示教的轨迹运动;4.简述数控设备中计算机数控装置的组成和功能;在数控设备中,计算机数控装置是设备的核心部分,一般由专用计算机或通用计算机输入输出接口以及机床控制器等部分组成;计算机数控装置根据输入的数据和程序,完成数据运算、逻辑判断、输入输出控制等功能;机床控制器主要用于机床的辅助功能,主轴转速的选择和换刀功能的控制;五、综合题1.解:系统设计的详细工程路线:1确定目标及技术规范:机械手的用途:物料搬运;工作方式:手动、自动方式;主要技术参数:3自由度;使用环境要求:生产线;2可行性分析:收集资料、市场分析、可行性分析、技术经济性分析;3总体方案设计:机械手总体结构方案设计,制定研制计划;开发经费概算;开发风险分析;4总体方案的评审、评价5理论分析阶段机构运动学模型、作业空间分析;机构的力学计算;驱动元件的选择、动力计算;传感器选择、精度分析;建立控制模型、仿真分析;2.答:1首先是将设计任务抽象化,确定出系统的总功能;2根据系统的总功能要求和构成系统的功能要素进行总功能分解,划分出各功能模块,将总功能分解为子功能,直到分解到不能再分解的功能元,形成功能树;确定它们之间的逻辑关系;3对各功能模块输入/输出关系进行分析,确定功能模块的技术参数和控制策略、系统的外观造型和总体结构;图1 概念设计步骤4寻找子功能功能元的解,并将原理解进行组合,形成多种原理解设计方案,5以技术文件的形式交付设计组讨论、审定;由于体现同一功能的产品可以有多种多样的工作原理,6方案进行整体评价:对不同的方案进行整体评价,选择综合指标最优的设计方案;最终选定最佳方案形成概念产品;。
可靠性指标分配报告
可靠性指标分配报告:可靠性分配指标报告可靠性分配方法可靠性设计指标分配gjb 可靠性指标分配公式篇一:可靠性分配第三章可靠性与维修性指标分配3.1 概述3.2 AGREE可靠性指标分配法3.3 可靠性工程加权分配法3.4 维修性工程加权分配法3.5 进行可靠性与维修性指标分配在工程实施上应注意事项第三章可靠性与维修性指标分配3.1 概述可靠性与维修性指标分配是为了把系统的可靠性与维修性定量要求按照一定的准则分配给系统各组成单元而进行的工作。
其目的是将整个系统的可靠性与维修性要求转换为每一个分系统或单元的可靠性与维修性要求,使之协调一致。
它是一个由整体到局部,由上到下的分解过程。
通过可靠性与维修性指标分配,把设计目标落实到相应层次的设计人员身上。
各相应层次的设计人员通过可靠性与维修性指标预计,当感到采用常规的设计不能达到系统的要求时,可以采取特殊设计措施。
比如:采取降额设计、冗余设计、动态设计、热设计、优选元器件、最大的减少元器件数量等措施,以满足系统可靠性要求。
采取可接近性设计、可更换性设计、模块化设计、故障定位(BIT)设计等措施以满足系统维修性要求。
通过可靠性与维修性指标分配,还可以暴露系统设计汇总的薄弱环节及关键单元和部位,为指标监控和改进措施提供依据,为管理提供所需的人力、时间和资源等信息。
因而,可靠性与维修性指标分配是可靠性设计中不可靠缺少的工作项目,也是可靠性工程与维修性工程决策点。
可靠性与维修性指标分配应在系统研制的早期进行,可按可靠性结构模型进行分配,使各分系统、单元的可靠性与维修性指标分配值随着研制任务同时下达,在获得较充分的信息后进行再分配。
随着系统研制的进展和设计的更动,可靠性与维修性分配要逐步完善和进行再分配。
可靠性与维修性指标分配方法很多,在这里仅将工程实用、科学合理方法予以介绍。
3.2 AGREE 可靠性指标分配法这是美国电子设备可靠性顾问组在一份报告中所推荐的分配方法。
第二章机械系统的总体设计
第十二页,共85页。
(污)衣物 净水 洗涤剂
主功能
(动洗力涤功衣能物)
(净)衣物 脏水
动力功能
控制功能
驱损 动耗 能能
洗涤方式 输入
洗涤过程 显示
结构
第十三页,共85页。
2.系统的原理方案总体(zǒngtǐ)分析
例1:制造一个零件 采用切削加工;采用挤压成型;采用激光烧结快速成型
切削机床 压力加工机床 激光快速成型设备
第五页,共85页。
例2-1 更换普通自行车的传动系统,并改变部分结构后开 发的变速赛车(sài chē);发动机作四缸、六缸、直列、V 形等改型设计。 多数产品属于变型设计。随着技术水平的提高和市场需 求的变化,应掌握产品生命周期的特征,适时地对老产 品进行改进。 3. 仿型设计(Selecting Design) 它是指有同类产品可供参考,原理和结构完全或部分已 知。原理、结构和性能一般不变,只作工艺性变化,以 适应本企业的生产特点和技术装备要求。通常采用反求 设计(Reverse Design)方法。
机械系统总体设计的主要内容包括: 1.系统的原理方案的构思 2.结构方案设计 3.总体布局与环境设计 4.主要参数及技术指标的确定 5.总体方案的评价与决策
在总体设计过程中,应逐步形成下列技术文件: 系统(xìtǒng)工作原理简图;主要部件的工作原理图; 方案评价报告;总体设计报告;系统(xìtǒng)总体布置图。
功能→工作原理(yuánlǐ)→功能载体
波纹管水泵;
输 送
负压效应(压力与容积的关系;流速与压力的关系) 惯性力效应 离心泵
柱塞泵; 文丘里喉管
液
体
毛细管效应 热管(用于人造卫星和冻土层输油管保温等)
2024版可靠性工程师全部课程
04
结果解释
根据数据处理结果,对产品的 可靠性进行评估和解释,为产
品设计和改进提供依据。
2024/1/26
14
可靠性评估指标及计算方法
2024/1/26
可靠度
产品在规定条件下和规定时间内完成规定功能的概率,通过寿命试验 或耐久性试验获得的数据进行计算。
失效率
产品在规定条件下和规定时间内失效的概率,通过寿命试验或现场使 用数据进行计算。
可靠性工程师全部课程
2024/1/26
1
目录
2024/1/26
• 可靠性工程基础 • 可靠性分析与设计 • 可靠性试验与评估 • 维修性与保障性技术 • 故障模式、影响及危害性分析
(FMECA)
2
目录
• 可靠性增长与寿命周期管理
2024/1/26
3
01
可靠性工程基础
2024/1/26
4
可靠性定义与重要性
数据分析与优化
收集并分析产品在使用过程中产 生的数据,找出影响产品可靠性 的关键因素并进行优化改进。
2024/1/26
26
实现可靠性增长和寿命周期管理最佳实践
制定详细的可靠性增长计划
明确可靠性增长目标、实施步骤和时间表,确保计 划的可行性和有效性。
引入先进技术和方法
积极引进先进的可靠性设计、分析、试验和评估技 术,提高产品可靠性设计水平和评估能力。
维修性参数 介绍常用的维修性参数,如平均修复时间、维修 度等,以及这些参数在评估产品维修性时的意义。
3
维修性对产品的影响 分析维修性对产品全寿命周期费用的影响,以及 提高维修性对产品可用性和战备完好性的影响。
2024/1/26
17
机电一体化系统的现代设计方法
机电一体化系统的现代设计方法摘要:机电一体化系统的现代设计方法主要有可靠性设计、优化设计、反求设计、绿色设计、虚拟设计等。
本论文主要介绍了可靠性设计方法和优化设计方法。
可靠性设计包括了很广的内容,可以说在满足产品功能,成本等要求的前提下一切使产品可靠运行的设计都称之为可靠性设计。
优化设计是指将优化技术应用于设计过程,最终获得比较合理的设计参数,优化设计的方法目前已比较成熟,各种计算机程序能解决不同特点的工程问题。
关键词:机电一体化;现代设计方法;可靠性设计;优化设计。
一、引言随着社会的发展和科学技术的进步,使人们对设计的要求发展到了一个新的阶段,具体表现为设计对象由单机走向系统、设计要求由单目标走向多目标、设计所涉及的领域由单一领域走向多个领域、承担设计的工作人员从单人走向小组甚至大的群体、产品设计由自由发展走向有计划的开展。
与人们对设计的要求相比现阶段的设计确实是落后的,主要表现为:对客观设计的研究不够,尚未很好的掌握设计中的客观规律;当前设计的优劣主要取决于设计者的经验;设计生产率较低;设计进度与质量不能很好控制;实际手段与设计方法有待改进;尚未形成能被大家接受,能有效指导设计实践的系统设计理论。
面对这种形势,唯一的解决方法就是设计必须科学化。
这就意味着要科学的阐述客观设计过程及本质,分析与设计有关的领域及其地位,在此基础上科学的安排设计进程,使用科学的方法和手段进行设计工作,同时也要求设计人员不仅有丰富的专业知识,而且要掌握先进的设计理论、设计方法及设计手段,科学地进行设计工作,这样才能及时得到符合要求的产品。
二、机电一体化系统的现代设计方法概述机电一体化系统的现代设计方法是以设计产品为目标的一个总的知识群体的总称。
它运用了系统工程,实行人、机、环境系统一体化设计,使设计思想、设计进程、设计组织更合理化、现代化,大力采用许多动态分析方法,使问题分析动态化,实际进程、设计方案和数据的选择更为优化,计算、绘图等计算机化。
可靠性设计
1 1 0.0004 次/小时 MTBF 2500
R(t 500) e t e 0.0004500 0.8187
R(t 1000 ) e t e 0.00041000 0.6703
28
4.正态分布(normal distribution)—— 连续型分布函数
R(t 400) R( z 2.5) F ( z 2.5) 0.9938 失效概率 F (t 400) 1 R(t 400) 1 0.9938 0.0062
失效数r=1000×0.0062=6.2(个)≈6(个)
30
(2)t=600h时,标准正态变量
r r nr f (r ) C n p q
25
设事件发生次数的均值为m,事件实际发生次数为r,对泊松分布
而言,则有:
事件发生r次概率为:
m r m f (r ) e r!
F (c ) f ( r )
r 0 c
事件发生次数不超过c的累积概率为: 其泊松分布的均值E(r)=np=m,方差s=m
17
由此得到失效率、可靠度与概率密度之间的关
系为:
f (t ) (t ) R(t )
18
举例: 某零件的失效时间随机变量服从指数分布,为了让1000小时的可靠 度在80%以上,该零件的失效率应低于多少?
解:分析可知,失效时间随机变量服从指数分布,即 f (t ) e t 因为 由于
N f (t ) N s (t ) N 0 N f (t ) R(t ) 1 N0 N0 N0 由于0≤Nf(t)≤N0,故0≤R(t)≤1。
11
可靠度表达式-B
设t为零件(系统)的失效时间(随机变量),T为
机械设计标准
机械设计标准一、引言在机械工程领域,制定和遵守一系列的规范、规程和标准是确保产品质量、安全性和可靠性的重要手段。
本文将介绍机械设计中的一些基本标准,包括尺寸、材料、加工工艺、安全等方面。
二、尺寸标准尺寸标准是机械设计的基础,它们决定了零件的几何形状和相互关系。
按照国际通用的标准,机械设计中常用的尺寸标准有ISO、ANSI和JIS等。
1. ISO标准国际标准化组织(ISO)制定了一系列的机械尺寸标准,如ISO 2768-m和ISO 286等。
在设计中,应根据零件的功能和使用要求选择适当的ISO标准。
2. ANSI标准美国国家标准协会(ANSI)制定了一些机械尺寸标准,如ANSIY14.5和ANSI/ASME B4.2等。
这些标准在美国及其相关行业应用广泛,设计人员应熟悉并使用这些标准。
3. JIS标准日本工业标准化组织(JIS)制定了一系列机械尺寸标准,如JIS B 0401和JIS B 0419等。
这些标准在日本和一些亚洲地区的制造业中得到广泛应用。
三、材料标准材料标准规定了机械设计中所使用的各种材料的基本性能指标和使用要求。
常用的材料标准有ASTM、JIS和GB等。
1. ASTM标准美国材料与试验协会(ASTM)制定了一系列的材料标准,包括金属、塑料、橡胶等各类材料。
设计人员应按照实际需求选择和应用合适的ASTM标准。
2. JIS标准日本工业标准化组织(JIS)同样制定了一系列材料标准,被广泛应用于日本和亚洲地区的产品制造。
设计人员在选择材料时,应参考JIS 标准的要求。
3. GB标准中国国家标准(GB)对于机械设计中常用的材料也有相应的标准规范。
设计人员在选择材料时,应参照国家标准,并结合产品特点和市场需求进行选择。
四、加工工艺标准加工工艺标准规定了机械零件的制造过程中所需的工艺流程、检验方法和质量要求等。
常用的加工工艺标准有ISO9001、ISO14001和TS16949等。
1. ISO9001标准ISO9001是一种质量管理体系标准,旨在确保产品和服务的质量。
可靠性知识总结
第一章可靠性概述1.1 可靠性的内涵1.1.1 产品可靠性的定义可靠性的定义:指产品在规定条件下和规定时间内,完成规定功能的能力。
产品可靠性定义的三个要素是:“规定条件”、“规定时间”和“规定功能”。
“规定条件”指产品使用时的环境条件和工作条件。
“规定时间”指产品规定了的任务时间。
“规定功能”指产品规定了的必须具备的功能及其技术指标。
1.1.2 可靠性与质量的关系现代质量观念认为,质量包含了系统的性能特性、专门特性、经济性、时间性、适应性等方面。
是系统满足使用要求的特性总和。
(如下图所示[1])图性能特性、专门特性及其权衡随着现代工程系统的复杂化,系统的专门特性显得更加重要。
1.1.3 可靠性与系统工程的关系1.2 可靠性基本概念1.2.1 故障的定义与分类(1)有关的几个定义故障——产品不能完成规定的功能或存在不能年规定要求工作的状态。
[2]失效——产品丧失规定的功能。
[2]缺陷——产品的质量特性不满足预期的使用要求,随时间(或工作)过程可能发展成各类故障。
[2]故障模式——故障的表现形式。
[1]故障机理——引起故障的物理、化学变化等内在原因。
[1](2)故障的分类按故障的规律分:偶然故障与渐变故障。
偶然故障是由于偶然因素引起的,只能通过概率统计的方法来预测。
渐变故障是通过事前的检测或监测可以预测到的故障,是由于产品的规定性能随使用时间的增加而逐渐衰退引起的,对电子产品又叫漂移故障。
按故障的后果分:致命性故障与非致命性故障。
按故障的统计特性分:独立故障与从属故障。
不是由另一产品故障引起的故障称为独立故障,反之称为从属故障。
按关联、非关联分:关联故障与非关联故障。
与产品本身有关联。
预期在规定的使用条件下可能发生的任何故障叫关联故障,在解释试验结果或计算可靠性特性值时必须计入;与产品本身无关,预期在使用条件下不可能发生的任何故障叫非关联故障,在解释试验结果或计算可靠性特征量时不应计入。
按责任、非责任分:责任故障与非责任故障。
《可靠性技术》课件
环境适应性设计
确保产品能在不同的环境条件下正常工作,包括 温度、湿度、压力等。
可靠性分析方法
故障模式与影响分析(FMEA)
识别产品中可能出现的故障模式,并评估其对产品可靠性的影响。
故障树分析(FTA)
通过建立故障树的逻辑模型,找出导致产品失效的根本原因。
寿命测试和加速寿命测试
通过测试产品在不同环境下的寿命或加速老化过程,预测产品的可靠 性。
可靠性模型介绍
可靠性模型定义
可靠性模型是为了描述产品在给 定条件下的工作状态和性能而建 立的数学模型,它基于产品的设 计、制造、使用和维修等方面的 信息。
可靠性模型的分类
根据用途和复杂程度,可靠性模 型可分为基本模型、串联模型、 并联模型、混联模型等。
可靠性模型的建立
步骤
建立可靠性模型需要收集产品在 各种条件下的性能数据,分析数 据并确定模型参数,然后通过验 证和修正模型来提高其准确性。
可靠性评估流程
数据收集和分析
收集相关产品的性能数据、故 障数据、维修数据等,进行统 计分析和处理。
进行可靠性评估
根据所选择的评估方法,利用 收集的数据和建立的指标体系 进行可靠性评估。
明确评估目的和范围
确定评估的对象、功能、使用 条件和评估范围,为后续评估 提供依据。
建立评估指标体系
根据评估目的和范围,建立相 应的可靠性评估指标体系。
数据的统计分析 运用统计学方法对数据进行统计 分析,以评估产品的性能和可靠 性水平。
故障模式与影响分析 对试验过程中出现的故障进行分 类和分析,找出故障模式和原因 ,并提出相应的改进措施。
05
可靠性管理与实践
可靠性管理概述
可靠性管理定义
工程机械行业的可靠性工程与改进设备可靠性的方法
工程机械行业的可靠性工程与改进设备可靠性的方法工程机械在现代建设和生产领域中扮演着重要的角色,因此其可靠性对于保障工作效率和安全至关重要。
本文将探讨工程机械行业的可靠性工程以及改进设备可靠性的方法,为行业提供指导和建议。
一、工程机械行业的可靠性工程1. 可靠性概念与指标工程机械的可靠性是指其在规定的时间内和工作条件下,不出现故障或失效的能力。
常用的可靠性指标包括平均无故障时间(MTBF)、故障率(FR)、失效概率(F)等。
2. 可靠性改进措施(1)优化设计:通过采用可靠性设计方法,包括降低故障率、提高失效概率等,以提高工程机械的可靠性。
(2)合理配件:选用高质量的配件和材料,确保其可靠性和耐久性。
(3)质量控制:建立完善的质量管理体系,进行严格的质量控制,包括检验、测试等环节,以确保工程机械的质量可靠。
(4)维护保养:定期进行设备的维护保养工作,包括检查、清洁、润滑、更换磨损部件等,以延长设备的寿命和提高可靠性。
二、改进设备可靠性的方法1. 故障诊断与预测通过建立故障诊断系统,监测设备的运行状态和参数,及时发现潜在故障点,并给出修复建议。
预测技术是基于设备的历史故障数据和各种故障因素的统计分析,预测设备未来可能出现的故障。
2. 可靠性分析与测试通过对设备进行可靠性分析和测试,了解设备的故障模式和故障原因,为进一步改进设备可靠性提供依据。
可靠性测试包括实验室测试和现场测试,通过对设备的各项指标进行测试,评估设备的可靠性水平。
3. 故障树分析故障树分析是一种常用的可靠性工程工具,用于分析设备故障的原因和关联关系。
通过建立故障树模型,将故障事件拆解成多个子事件,并分析子事件之间的逻辑关系,确定主导故障因素,为改进设计和维护提供依据。
4. 设备更新与改进随着科技的进步和市场需求的变化,工程机械的设备也需要持续改进和更新。
采用新的技术和材料,设计更先进的设备,提高设备的可靠性和性能。
5. 培训与人员素质提升设备的可靠性不仅仅依赖于设计和制造,也与使用和维护密切相关。
产品可靠性设计与分析
性
性
靠
预
预
性
测
测
预 测
可靠性分配
按
按
相
单
等
对
元 复
分
失
杂
配
效
度
法
率
和 重
分
要
配
度
14
系统可靠性设计(System reliability design)
定义:通过预测、分配、分析、改进等一系列可靠性
计算和可靠性工程活动,把定量的可靠性目标值设计到 技术文件和图纸中去,形成系统的固有可靠性。
可靠性预测
可靠性指标体系
Characteristic quantity of reliability
4
可靠性指标体系(Characteristic quantity of reliability)
可 靠 度
失 效 率
平 均 寿 命
可靠性定义
可靠性评价指标
规
规
规
定
定
定
条
时
功
件
间
能
维 修 度
有 效 度
可 靠 寿 命
R(100) =
84 100
=
0.84
工作400h后尚有72个轴承可以继续工作,故
R(400) =
72 100
=
0.72
产品出厂时,其时间 t = 0,失效数量 n(0) = 0,故 R(0) = 1
,随着使用时间(包括运输、贮存及使用等)的增加,失效数不断增加,因
而可靠度相应逐渐减小。所有的产品,不论其寿命有多长,在使用过程
32
∑ Rs = Rsi = 0.95376 i =1
机械产品的可靠性大纲
机械产品的可靠性大纲一、引言随着科技的发展和全球化的推进,机械产品的可靠性越来越受到。
可靠性是衡量产品质量的重要标准,对于机械产品而言,可靠性更是关键。
为了满足客户不断提升的产品质量和性能需求,机械产品的可靠性设计已成为重要的研究领域。
本文将重点探讨机械产品的可靠性大纲。
二、机械产品的可靠性概述机械产品的可靠性是指在预定的时间内,在规定的条件下,完成预定功能的能力。
可靠性包含了产品的稳定性、耐久性、安全性和维修性等多个方面。
提高机械产品的可靠性,可以降低故障率,减少维修成本,提高生产效率,最终提升产品的竞争力。
三、机械产品可靠性的影响因素1、设计与制造:设计不合理或制造过程存在问题,都会影响机械产品的可靠性。
2、操作与维护:操作不当或缺乏及时的维护,都会导致机械产品的可靠性降低。
3、使用环境:如温度、湿度、压力、腐蚀等环境因素,都会对机械产品的可靠性产生影响。
4、使用寿命:使用时间过长,会导致机械产品的可靠性逐渐降低。
四、机械产品可靠性的提升策略1、优化设计:通过引入先进的设计理论和方法,优化产品设计,提高产品的稳定性和耐久性。
2、严格控制制造过程:通过实行全面质量管理体系,严格控制制造过程中的每一个环节,确保产品的质量。
3、提供专业的操作和维护培训:为操作人员提供专业的培训,确保他们能够正确操作机械产品,同时提供定期的维护和保养指导。
4、适应环境因素:通过采用耐腐蚀、耐高温、耐高压等材料和表面处理技术,使机械产品能够适应各种环境因素。
5、适当调整使用寿命:通过定期的检查和维护,可以延长机械产品的使用寿命,提高其可靠性。
五、结论在全球化背景下,机械产品的可靠性已经成为一个重要的研究领域。
对于企业来说,提高机械产品的可靠性不仅可以提高产品的质量和性能,还可以降低生产成本和售后服务成本,提高市场竞争力。
因此,应从产品设计、制造、使用和维护等多个方面入手,全面提升机械产品的可靠性。
还应不断引进和创新技术,以适应不断变化的市场需求,提升企业的核心竞争力。
【结构设计】结构可靠度分析与计算.pdf
第9章 结构可靠度分析与计算 教学提示:本章介绍了结构可靠度的基本原理和基本分析方法。
并在此基础上,简述了相关随机变量的结构可靠度和结构体系的可靠度分析及计算方法。
教学要求:学生应掌握结构可靠度基本概念,熟悉结构可靠度常用的计算方法。
9.1 结构可靠度的基本概念9.1.1 结构的功能要求和极限状态工程结构设计的基本目的是:在一定的经济条件下,使结构在预定的使用期限内满足设计所预期的各项功能。
《建筑结构可靠度设计统一标准》(GB 50068—2001)规定,结构在规定的设计使用年限内应满足下列功能要求。
(1) 能承受在正常施工和正常使用时可能出现的各种作用。
(2) 在正常使用时具有良好的工作性能。
(3) 在正常维护下具有足够的耐久性能。
(4) 在偶然事件发生时(如地震、火灾等)及发生后,仍能保持必需的整体稳定性。
上述(1)、(4)项为结构的安全性要求,第(2)项为结构的适用性要求,第(3)项为结构的耐久性要求。
这些功能要求概括起来称为结构的可靠性,即结构在规定的时间内(如设计基准期为50年),在规定的条件下(正常设计、正常施工、正常使用维护)完成预定功能(安全性、适用性和耐久性)的能力。
显然,增大结构设计的余量,如加大结构构件的截面尺寸或钢筋数量,或提高对材料性能的要求,总是能够增加或改善结构的安全性、适应性和耐久性要求,但这将使结构造价提高,不符合经济的要求。
因此,结构设计要根据实际情况,解决好结构可靠性与经济性之间的矛盾,既要保证结构具有适当的可靠性,又要尽可能降低造价,做到经济合理。
整个结构或结构的一部分超过某一特定状态就不能满足设计规定的某一功能要求,此特定状态称为该功能的极限状态。
极限状态是区分结构工作状态可靠或失效的标志。
极限状态可分为两类:承载力极限状态和正常使用极限状态。
(1) 承载力极限状态。
这种极限状态对应于结构或结构构件达到最大承载能力或不适于继续承载的变形。
结构或结构构件出现下列状态之一时,应认为超过了承载力极限状态。
机械电气设备的可靠性设计与安全技术
机械电气设备的可靠性设计与安全技术摘要:可靠性是检验机械设备质量的主要依据,其对机械设备的安全稳定运行具有重要的影响,机械的安全性必须从本质安全入手,在机械设计时,同时考虑安全设计。
本文简要论述了加强机械设备可靠性研究的意义,对比分析了国内外机械设备在可靠性方面所存在的差距,重点探讨了有利于提高国内机械设备可靠性的策略,以及给相关从业者提供一定的借鉴。
关键词:机械电气设备;设计;可靠性;安全技术引言:可靠性、稳定性是衡量机械产品的重要指标,也是工业生产中机械正常运行的可靠性保障。
工业的发达是依靠科技推动的,科技推动工业发展的承载点则表现在机械产品中。
随着科学技术的飞速发展,人们不仅需要多功能的产品,而且还需要产品能够可靠地实现其所具有的功能。
机械是现代化生产中各行各业不可缺少的生产设备,从机械的发展历史看,机械是用来代替人的劳动,目前已从简单的工具发展到完全自动化的机械。
因此,以产品可靠性为目的的可靠性设计应运而生,并得到迅速发展和广泛应用。
一、.加强机械电气设备可靠性研究的意义1、有利于提高机械设备的整体性能,增加机械产品的核心竞争力。
可靠性的提高不仅意味着能大大降低设备的故障率,其生产效率和产品的质量必然也会更有保障。
2、有利于促进国内机械制造企业的快速发展,可靠性的提高可以让国产机械设备在国际市场上拥有更强的市场竞争力,能为其占领更多的市场份额提供更有力的保障。
3、有利于提高机械设备的安全性,特别是对于一些大型的机械设备例如车床、工程车辆以及许多生产线设备,甚至是日常生活中所用的电梯,可靠性的提高都会降低安全事故发生的风险,使得设备的安全稳定运行更有保障。
二、机械可靠性设计及安全技术分析1、危险识别危险识别在机械安全设计中占有十分重要的地位,它的目的是描述危险的性质和识别它们各自危险所产生的后果。
在对机械进行安全设计、制定有关安全标准和风险评价时,必须要对机器可能产生的危险进行识别。
它是安全评价和安全设计的主要依据,危险识别的准确与否,直接影响到安全性能的好坏。
机械系统设计中的可靠性问题分析
机械系统设计中的可靠性问题分析机械可靠性的提高是当前机械行业普遍关注的话题,而设计、制造、管理则是提高可靠性的关键要素。
文章对机械可靠性进行了介绍,并在此基础上对机械可靠性的优化设计、稳健设计进行了深入的分析和探讨。
标签:机械可靠性设计;发展沿革;优化设计;稳健设计引言可靠性研究最早开始于四十年代针对电子产品故障的研究,经过多年的积累与发展,电子产品可靠性技术体系已获得完善并逐渐成熟起来。
电子产品的可靠性水平日益提高,并具备丰富的工程经验和巨大的数据资源。
近些年来,可靠性技术也逐渐应用于机械领域,并发挥着重要的作用。
机械系统越来越复杂,对于其可靠性的要求也逐步提高,尤其是在军用装备和航空领域,对于机械可靠性的要求更加严格,并成为系统可靠性中较为薄弱的环节。
为此,非常有必要研究机械的可靠性,从而推动科技的进步与发展。
对于复杂机械产品来说,其可靠性受到多种因素的影响,如使用条件、使用环境、维修方法、人为因素等等,属于可修复的人机系统。
1 机械可靠性设计的概述作为最主要和最重要的技术指标,可靠性是评判产品质量好坏的关键因素,并逐渐成为工程领域普遍关注的焦点。
机械可靠性贯穿于从产品的设计研发到装配调试的各个环节,可靠性是在概率统计的理论基础上发展起来的,加强机械可靠性设计的推广和应用,对于提高产品质量、降低成本有着非常重要的意义。
随着可靠性技术的创新与发展,其设计方式也越来越丰富,呈多样化的趋势发展。
数学模型法是在可靠性设计中应用得较为广泛的一种方式,基于实验所获得的数据,并充分利用了概率统计的原理。
数学模型法可以划分为两部分,其中一部分所涉及的量在时间范畴内具有可靠性质,换句话说,即所涉及的量是遵循一定的规律的,随着时间的变动,其疲劳寿命和损耗也将在一定的范围内产生变动。
另外一部分为偶然因素所引发的事件结果的可靠性,偶然因素所导致的波动是不定期出现的,具有不确定性,一般来说,需要利用概率可靠性来对随机事件进行计算。
(完整版)机械工程师知识结构
1 .工程制图的一般规定( 1 )图框 ( 2 )图线 ( 3 )比例 (4)标题栏( 5 )视图表示方法 ( 6 )图面的布置 (7)剖面符号与画法2 .零、部件(系统)图样的规定画法( 1 ) 机械系统零、部件图样的规定画法 (螺纹及螺纹紧固件的画法齿轮、齿条、蜗杆、蜗轮及链轮的画法花键的画法及其尺寸标注弹簧的画法)( 2 ) 机械、液压、气动系统图的示意画法 (机械零、部件的简化画法和符号管路、接口和接头简化画法及符号常用液压元件简化画法及符号)3 .原理图( 1 )机械系统原理图的画法( 2 )液压系统原理图的画法( 3 )气动系统原理图的画法4 .示意图5 .尺寸、公差、配合与形位公差标注( 1 )尺寸标注( 2 )公差与配合标注(基本概念公差与配合的标注方法) ( 3 )形位公差标注6 .表面质量描述和标注( 1 )表面粗糙度的评定参数( 2 )表面质量的标注符号及代号( 3 )表面质量标注的说明7 .尺寸链1 .金属材料( 1 )材料特性(力学性能物理性能化学性能工艺性能)( 2 )晶体结构(晶体的特性金属的晶体结构金属的结晶金属在固态下的转变合金的结构)( 3 ) 铁碳合金相图 (典型的铁碳合金的结晶过程分析碳对铁碳合金平衡组织和性能的影响铁碳合金相图的应用)(4)试验方法(拉力试验冲击试验硬度试验化学分析金相分析无损探伤)( 5 )材料选择(使用性能工艺性能经济性)2 .热处理( 1 )热处理工艺(钢的热处理铸铁热处理有色金属热处理)( 2 )热处理设备(燃料炉电阻炉真空炉感应加热电源)( 3 ) 热处理应用 (轴类弹簧类齿轮类滚动轴承类模具类工具类铸铁、铸钢件有色金属件)1 .新产品设计开发程序( 1 )可行性分析(市场调研产品定位可行性分析报告)( 2 )概念设计(设计要求功能分析方案设计设计任务书 ) ( 3 )技术设计(工作内容与要求机械结构设计设计计算说明书 )(4)设计评价与决策(评价目标、准则评价方法)2 .机械设计基本技术要素( 1 )强度、刚度( 2 )结构工艺性设计(可加工性设计可装配性设计可包装运输的设计原则要点)( 3 )可靠性(可靠性的评价指标可靠性设计)(4)摩擦/磨损/润滑(摩擦定律磨损定律影响摩擦磨损的因素减少摩擦与磨损的方法)( 5 ) 机械振动与噪声 (基本概念振动、噪声产生的根源与危害防止和降低振动、噪声的策略措施)( 6)安全性(安全设计的原则防护设计)( 7 ) 标准化、通用化3 .机械零、部件设计( 1 ) 机械传动及其零、部件 (齿轮的功能特点及设计计算轴的功能特点及设计丝杠的功能特点及设计带传动的功能特点及设计计算减速器的功能特点及设计选用调速器的功能特点及设计)( 2 ) 联接、紧固件 (螺栓联接的功能特点与设计键的功能特点与设计计算销的功能特点与设计联轴器的功能特点与设计计算过盈联接的功能特点与设计)( 3 )操作调节与控制件(弹簧的功能特点与设计离合器的功能特点与设计制动器的功能特点) (4)箱体/机架件(箱体、机架的设计准则箱体、机架设计的一般要求箱体、机架的设计步骤) 4 .气动、液压的传动控制系统( 1 )常用气动、液压元件(控制阀泵和马达)( 2 )气、液传动原理及系统设计(气动系统基本管路设计液压系统基本管路设计)( 3 )常见故障诊断与维护(4)密封设计5 .电气传动基础6 .设计方法与应用( 1 )电动机(直流电动机异步电动机同步电动机) ( 2 )电气调速(直流电动机的调速异步电动机的调速) ( 3 )电气制动(直流电动机制动异步电动机制动 ) ( 4 )电动机的选用6 .设计方法与应用( 1 )计算机辅助设计(概念应用)( 2 ) 实用设计方法 (工业造型设计优化设计人机工程反求技术模块化设计有限元分析快速原型制造)( 3 )现代设计方法(并行设计智能设计生命周期设计绿色设计创新设计)1 .工艺过程设计( 1 )工艺过程基本概念(生产过程工艺过程机械加工工艺过程机械加工工艺规程)( 2 ) 工艺规程设计的依据、程序和主要问题 (工艺规程设计的依据工艺规程设计的程序工艺规程设计中的主要问题)( 3 ) 产品结构工艺性审查 (产品结构工艺性审查对象产品结构工艺性审查目的产品结构工艺性审查时应考虑的主要因素产品结构工艺性审查内容)(4)定位基准选择(基准的概念精基准的选择粗基准的选择)( 5 )工艺路线设计(表面加工方法的选择加工阶段的划分加工顺序的安排工序的合理组合) ( 6)加工余量确定(加工余量概念影响加工余量的因素确定加工余量的方法)( 7 ) 工艺尺寸计算 (工艺尺寸链的基本概念基本的工艺尺寸链求解综合的工艺尺寸链的图表计算法)( 8 )工艺方案的技术经济分析(工艺方案的评价原则工艺方案的分析与比较)( 9)典型零件工艺设计示例(箱体件的加工工艺主轴加工工艺圆柱齿轮加工工艺)2 .工艺装备的设计与制造( 1 )工艺装备及其类型(工艺装备工艺装备的类型)( 2 ) 工艺装备选择的依据 (工艺方案工艺规程工序要求与设备本企业的现有工艺装备条件各类工艺装备的标准、订购手册、图册及使用说明书等)( 3 )工艺装备的选择与设计的原则(4)工艺装备选择的程序( 5 )工艺装备设计程序( 6)工艺装备设计(或选择)的技术经济评价指标(7)工艺装备的验证(工艺装备验证的目的验证的范围验证的主要内容验证的方法) 3 .车间平面设计( 1 )车间生产设备布置原则( 2 ) 产品种类与生产分析 (按产品 (或流水线、生产线) 的设备布置方案按工种(或专业化) 的设备布置方案成组(或单元)设备布置方案)( 3 )车间设备的布置方式(机群式布置流水线布置)4.切(磨)削加工( 1 )切(磨)削加工基本知识(基本概念金属切削率切削力切削热与切削温度刀具磨损与刀具耐用度切削加工方法与特点经济加工精度)( 2 ) 车削 ( 常用车削方式典型车削加工表面类型车床类型与适用范围典型的车削加工 (非数控车削方法) 新的车削技术)( 3 ) 铣削 ( 常用铣削方式典型铣削加工表面类型铣床类型与适用范围典型零件表面的铣削超精铣削)( 4 ) 磨削 ( 常用磨削方式典型磨削加工表面类型主要磨床类型与适用范围典型零件表面磨削)5 .特种加工( 5 ) 影响切 (磨) 削加工质量的因素和改进措施 (工艺系统方面的因素工艺过程的因素环境因素提高切削加工质量的原则措施)( 6 ) 切削用量的选择( 7 )切削用的工夹具(机床夹具切削刀具)5 .特种加工( 1 )特种加工方法与特点( 2 )电火花加工(电火花成形加工电火花成形加工工艺过程电火花成形加工机床影响电火花成形加工工艺质量的因素及提高措施)( 3 ) 电火花线切割加工 ( 电火花线切割加工特点电火花线切割加工工艺过程电火花线切割加工设备线切割加工的主要工艺质量指标影响工艺经济性的因素与分析)(4)激光加工(激光加工原理、特点和分类激光加工设备激光打孔激光切割 )( 5 )超声加工(超声加工的原理与特点超声加工设备超声加工工艺参数及其影响因素超声加工的应用)6 .铸造( 1 )铸造及其特点(铸造工艺基础铸造工艺设计铸造工艺文件)( 2 )砂型铸造(造型材料铸铁件铸造铸钢件铸造铜、铝合金铸件铸造)( 3 )金属型铸造(铜合金铸件铝合金铸件)(4)压铸(压铸件的结构压铸合金压铸机)( 5 )熔模铸造(熔模铸件的结构熔模铸造的工艺参数模型壳的特点及应用) ( 6)铸造工艺装备(模样模板芯盒砂箱)7 .压力加工( 1 )压力加工及其分类(压力加工的涵义和特点压力加工的分类与应用)( 2 )锻造(自由锻模锻)( 3 )冲压(冲压加工的特点冲压工艺分类冲压工艺的应用要求)(4)影响锻压加工质量的因素及其提高的措施( 5 )压力加工用的工艺装备(冲压模设计热锻模设计胎模结构设计快速经济制模技术) 8 .焊接( 1 )焊接方法和特点(熔焊工艺基础弧焊电源及其特性焊接工艺)9 .表面处理( 2 )电弧焊(手弧焊及其设备埋弧焊 )( 3 )氩弧焊( 4 )气焊(气焊与气割设备选用气焊工艺参数的选择气焊工艺参数的选择) ( 5 )焊接工艺装备(焊接用夹具焊接辅助加工装置焊接操作机)9 .表面处理( 1 )表面处理的特点和分类(表面处理特点表面工程技术分类)( 2 )涂装技术(涂装材料涂装工艺与装备涂膜干燥典型产品涂装涂膜质量的评价)( 3 )热喷涂技术(常用热喷涂工艺分类和热喷涂技术特点热喷涂工艺流程热喷涂工艺方法热喷涂材料热喷涂技术的应用热喷涂涂层质量评定)( 4 ) 电镀 ( 电镀的实施方式电镀的工艺过程影响镀层质量的因素电镀种类及应用电镀层质量评价)10 .装配( 1 )基本知识(组装、部装、总装装配单元、基准零件与基准组件、基准部件装配精度影响装配质量的主要因素)( 2 )装配尺寸链及装配方法(装配尺寸链装配方法)( 3 ) 装配方法类型及其选择 (完全互换装配法部分互换装配法 (亦称大数互换装配法) 选择装1 .安全/环保配法修配装配法调整装配法)( 4 )典型部件装配(滚动轴承部件装配圆柱齿轮传动部件装配)1 .安全/环保( 1 ) 设备维护保障 (保养) 与安全操作 (设备的维护保障 (保养) 加工和起重机械的安全机器人、数控机床和自动生产线的安全技术)( 2 )常见劳动安全与卫生防范(防火、防爆防触电和静电防噪声)( 3 )环境保护(工业废气、废水、固体废弃物及其处理技术环保法律、法规及标准清洁生产 ISO 14000 环境管理系列标准介绍)2 .与职业相关的道德、法律知识( 1 )公民基本道德规范( 2 )公民道德建设的主要内容( 3 )机械工程师职业道德规范(4)财务及税务制度(会计基本制度财务三表税种、税率)3 .工程经济( 5 )知识产权法(基本知识专利法商标法著作权法反不正当竞争法)( 6)现代企业制度相关法律(公司法合同法招投标法生产许可制度)(7)WTO 规则和政府产业政策(历史和我国的承诺 WTO 基本原则 WTO 的四大宗旨反补贴与反倾销加入 WTO 对我国社会的影响)3 .工程经济( 1 )经济学基本概念(需求供给供给和需求平衡市场市场经济指令经济和混合经济)( 2 )成本分析(成本的分类量—本—利之间的关系量—本—利分析)( 3 ) 价值工程 (价值工程的基本概念实施价值工程的基本程序产品功能分析产品功能评价提出改进设想分析与评价方案试验,检查,评价效果)4 .管理( 1 )管理的基本职能(管理的重要性和工作性质管理的基本职能 )( 2 )现代企业制度(企业所有制两权分离企业财产组织形式公司治理结构 )( 3 )生产率分析与提高(生产率方法研究时间研究熟练曲线)( 4 ) 物流基础 (物流及其系统的基本概念制造企业的物流系统常用物料搬运设备的特点及选用供应链和供应链管理)( 5 )现场管理( 5S 活动定置管理)5 .管理创新( 1 ) 制造模式的变化和先进制造模式 (制造模式从大量生产开始成组技术、数控技术和单元制造——多品种成批生产的解决方案当代的先进制造模式)( 2 ) MRP/MRPⅡ/ERP ( MRP MRPⅡ ERP )(3)精益生产(准时制(JIT)生产看板管理)(4)项目管理(项目及项目管理概念项目管理三要素和目标项目管理的过程和内容)( 5 )灵捷制造(灵捷制造战略产生背景灵捷制造战略的基本概念企业灵捷化案例)1 .质量管理/质量保证( 1 )质量/产品质量(质量定义产品质量和质量特性产品质量的形成与质量职能及职责)( 2 )质量管理和全面质量管理(质量管理的含义质量管理的发展全面质量管理的特点全面质量管理的基础工作)( 3 ) ISO 9000 族标准与质量体系 ( ISO 9000 族标准的产生与发展 ISO 9000 族标准的构成与内容质量保证和质量体系建立)(4)质量认证(质量认证的类型产品质量认证质量体系认证)2 .过程质量控制( 1 )质量控制概念( 2 )过程质量控制的基本工具(统计分析表排列图因果图 )( 3 )统计过程控制工具(直方图工序能力和工序能力指数 Cp 控制图 )(4)相关分析(相关图(散点图)法回归方程法相关分析在质量控制中的用途) 3 .计量与检测( 1 )产品制造中的计量与检测( 2 )几何量测量(测量基准长度测量用的器具角度测量器具形状测量器具) ( 3 )机械量测量(力、重量的测量力矩的测量位移测量转速测量振动测量) (4)其他物理量测量(温度测量压力测量噪声测量)1 .计算机应用的基本知识( 1 )微机的构成及种类( 2 ) 常用微机的结构性能特点 ( 十六位微机 ( 8086/8088CPU ) 的结构性能特点八位微机( Z80CPU ) 的结构性能特点单片机的结构性能特点 I/O 接口及存储器的扩展可编程逻辑控制器(PLC))( 3 )微机软硬件的选用原则2 .计算机仿真( 1 ) 仿真的基本概念( 2 )计算机仿真的发展和意义( 3 )计算机仿真的一般过程(4)仿真在 CAD/CAPP/CAM 系统中的应用3 .计算机数字控制( CNC )( 1 ) CNC 控制程序编制基础( CNC 加工程序编制的内容及步骤普通程序格式及典型程序代码)( 2 )CNC 程序编制方法(手工编程与自动编程手工编程举例程序语言方法自动编程流程及 APT 编程简例普通程序格式)( 3 )直线插补与圆弧插补4.CAD/CAPP/CAM/CAE( 1 ) CAD/CAPP/CAM 的基本概念( 2 ) CAD/CAPP/CAM 的基本功能和工作流程( 3 )计算机辅助设计( CAD )( 4 )计算机辅助工艺规程设计( CAPP )( 5 )计算机辅助制造( CAM )( 6 ) CAD/CAPP/CAM 的应用状况( 7 )计算机辅助工程( Computer Aided Engineering-CAE )1 .机械制造自动化发展及其技术内容分类2 .加工作业自动化(设备自动化)( 1 )刚性自动化加工设备(普通的自动化机床组合机床刚性自动线) ( 2 )柔性自动化加工设备(数控机床加工中心)3 .物流自动化( 1 ) 物流概念和功能( 2 )物流自动化设备分类(上、下料 /装卸自动化设备传输/搬运自动化设备存储自动化设备) 4 .信息流自动化( 1 )信息涵义与信息流/信息系统( 2 )信息源 ( 3 )信息采集/输入( 4 )信息处理 ( 5 )信息传输与交换( 6)信息存储5 .管理自动化( 1 )管理含义及其自动化基础( 2 ) MRP- Ⅱ6 .常见的机械制造柔性自动化系统( 1 ) DNC 系统( 2 ) FMC (柔性加工单元)( 3 )柔性自动线( FTL)( 4 ) FMS (柔性制造系统)( 5 )计算机集成制造系统( CIMS )。
机械制造装备设计方法复习要点
第二章机械制造装备设计方法1.械制造装备设计可分为创新设计、变型设计和模块化设计等三大类型。
2.创新设计:创新设计通常应从市场调研和预测开始,明确产品的创新设计任务,经过产品规划、方案设计、技术设计和工艺设计等四个阶段;还应通过产品试制和产品试验来验证新产品的技术可行性;通过小批试生产来验证新产品的制造工艺和工艺装备的可行性。
一般需要较长的设计开发周期,投入较大的研制开发工作量。
3.变型设计:采用适应型和变参数型设计方法。
在原有产品基础上,基本工作原理和总体结构保持不变,适应型设计是通过改变或更换部分部件或结构,变参数型设计是通过改变部分尺寸与性能参数,形成所谓的变型产品。
按照一定的规律演变出各种不同的规格参数、布局和附件的产品,扩大原有产品的性能和功能,形成一个产品系列。
4.模块化设计:模块化设计是按合同要求,选择适当的功能模块,直接拼装成所谓的“组合产品”。
进行组合产品的设计,是在对一定范围内不同性能、不同规格的产品进行功能分析的基础上,划分并设计出一系列功能模块,通过这些模块的组合,构成不同类型或相同类型不同性能的产品。
5.机械制造装备设计的典型步骤可划分为产品规划、方案设计、技术设计和工艺设计等四个阶段。
6.产品规划阶段的任务是明确设计任务,包括:需求分析、调查研究、预测、可行性分析、编制设计任务书7.方案设计阶段:根据设计任务书的要求,进行产品功能原理的设计。
方案设计阶段大致包括对设计任务的抽象、建立功能结构、寻求原理解与求解方法、形成初步设计方案和对初步设计方案的评价与筛选等步骤。
8.技术设计阶段:将方案设计阶段拟定的初步设计方案具体化,确定结构原理方案;进行总体技术方案设计,确定主要技术参数,布局;进行结构设计,绘制装配草图,初选主要零件的材料和工艺方案,进行各种必要的性能计算;如果需要还可以通过模型试验检验和改善设计;通过技术经济分析选择较优的设计方案。
在技术设计阶段将综合运用系统工程学、价值工程学、力学、摩擦学、机械制造工程学、优化理论、可靠性理论、人机工程学、工业美学、相似理论等,来解决设计中出现的问题。
质量管理学--可靠性基础知识讲义PPT(45张)
第12章 可靠性基础知识
12.1.5 可靠性与产品质量的关系 质量: 性能特性——容易评价 专门特性——可用性、难于直观判断 安全性——难于直观判断 经济性——容易判别、比较 时间性——容易判别、比较 适用性——容易判别、比较
第12章 可靠性基础知识
12.1.6 可靠性发展历史 二战:雷达 军事→电子→机械→其它、民用 可靠性—维修性—维修保障性—安全性 宏观→微观. 定性→定量. 手工→计算机 统计试验→工程试验、筛选、强化. 以可靠性为中心的全面质量管理 可靠性与性能最大区别:看不见、测不到。 但可以统各个阶段对可靠性的影响大小: 设计 40~50% 制造 20~30% 固有可靠性 使用 20~30% 使用可靠性 实际过程中表现出的能力 —— 使用可靠性, 与安装、操作使用、维修保障有关。 还可分为:基本可靠性、任务可靠性。 在规定任务剖面内完成规定的功能的能力。
第12章 可靠性基础知识
产品的特征寿命 产品寿命:可靠寿命、使用寿命、总寿命、 贮存期限 可靠寿命:t R 一定可靠度下的寿命 使用寿命:t r 一定故障率下的寿命 总寿命:投入使用到报废的总工作时间 贮存期限:在规定条件下,产品能贮存的 日历持续时间→启封使用能满足规定要求。
第12章 可靠性基础知识
第12章 可靠性基础知识
浴盆曲线
第12章 可靠性基础知识
①早期故障阶段
机械:跑合期(磨合期)、设计缺陷、 加工缺陷、安装缺陷 ②偶然:偶然因素,操作、负荷
③耗损:老化、疲劳、磨损、腐蚀。可 通过维修、更换
第12章 可靠性基础知识
故障率与可靠度及故障密度函数的关系 四个函数之间的关系: R(t) F(t) λ (t) f(t)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械可靠性设计太原理工大学机械工程学院主讲:刘混举机械可靠性设计第2讲机械可靠性设计的基本方法及其指标体系2.1可靠性基本概念⏹可靠性的概念及基本思想可靠性的经典定义:产品在规定条件下和规定时间内,完成规定功能的能力。
⏹可靠性的基本思想任何参数均为多值的,且呈一定分布。
安全系数大的设备或产品不一定是百分之百的安全。
2.2可靠性定义可靠性的概念可靠性的经典定义:产品在规定条件下和规定时间内,完成规定功能的能力。
产品:指作为单独研究和分别试验对象的任何元件、设备或系统,可以是零件、部件,也可以是由它们装配而成的机器,或由许多机器组成的机组和成套设备,甚至还把人的作用也包括在内。
规定条件:一般指的是使用条件,环境条件。
包括应力温度、湿度、尘砂、腐蚀等,也包括操作技术、维修方法等条件。
规定时间:是可靠性区别于产品其他质量属性的重要特征,一般也可认为可靠性是产品功能在时间上的稳定程度。
规定功能:道德要明确具体产品的功能是什么,怎样才算是完成规定功能。
产品丧失规定功能称为失效,对可修复产品通常也称为故障。
可靠性的类型可靠性可分为固有可靠性和使用可靠性⏹固有可靠性是通过设计、制造赋予产品的可靠性;⏹使用可靠性既受设计、制造的影响,又受使用条件的影响。
一般使用可靠性总低于固有可靠性。
可靠性的类型及影响因素2.3可靠性特征量(可靠性指标)⏹可靠度可靠度是产品在规定条件下和规定时间内,完成规定功能的概率,一般记为R。
它是时间的函数,故也记为R(t),称为可靠度函数。
⏹1)可靠度如果用随机变量T表示产品从开始工作到发生失效或故障的时间,其概率密度为f(t)如右图所示,若用t表示某一指定时刻,则该产品在该时刻的可靠度。
对于不可修复的产品,可靠度的观测值是指直到规定的时间区间终了为止,能完成规定功能的产品数与在该区间开始时投入工作产品数之比,即:2)可靠寿命可靠寿命是给定的可靠度所对应的时间,一般记为t(R)一般可靠度随着工作时间t的增大而下降,对给定的不同R,则有不同的t(R),即t(R)=R-1(R)式中R-1——R的反函数,即由R(t)=R反求t4)平均寿命⏹平均寿命:平均寿命是寿命的平均值,对不可修复产品常用失效前平均时间,一般记为MTTP ,对可修复产品则常用平均无故障工作时间,一般记为MTBF 。
它们都表示无故障工作时间T 的期望E (T )或简记为t 。
如已知T 的概率密度函数f (t ),则⏹⏹经分部积分后也可求得5)失效率和失效率曲线 失效率:失效率是工作到某时刻尚未失效的产品,在该时刻后单位时间内发生失效的概率。
一般记为λ,它也是时间t的函数,故也记为λ(t),称为失效率函数,有时也称为故障率函数或风险函数.按上述定义,失效率是在时刻t尚未失效产品在t+△t的单位时间内发生失效的条件概率.即失效率曲线失效期的成因分析:⏹早期失效期:设计、制造、存储缺陷及使用不当;(DFR——Decreasing Failure Rate)⏹偶然失效期:意外过载、误操作、不可抗拒因素等;(CFR——Constant Failure Rate)⏹耗损失效期:疲劳、磨损等。
(IFR——Increasing Failure Rate)1.为什么要重视和研究可靠性?5.已知某产品的失效率为常数可靠度函数,试求可靠度R=0.999的相应可靠寿命t 0.999,中位寿命t 0.5。
()ht /41030.0−×=λ()t e t R λ−=2.4机械可靠性设计的基本特点、内容和方法1)机械可靠性设计的基本特点2)机械可靠性设计的主要内容3)机械可靠性设计的方法和步骤机械可靠性设计的基本特点1)以应力和强度为随机变量作为设计的出发点;2)引用概率和统计方法进行分析和求解;3)能够定量地回答产品的失效率和可靠度;4)根据不同的产品、不同的使用场合采用不同的可靠性指标;5)强调设计对产品可靠性的主导作用,由设计决定产品的固有可靠性,由制造保证固有可靠性。
机械可靠性设计的基本特点6)必须考虑环境的影响;7)必须考虑产品的维修性;8)从整体的、系统的观点出发:⏹人——机——环境系统;⏹重视产品在全寿命周期的总费用。
9)承认在设计阶段及以后的阶段都需要可靠性增长。
2)机械可靠性设计的主要内容3)机械可靠性设计的方法与步骤(1)方法:⏹概率设计法⏹失效树分析法(FTA)⏹失效模式、影响及致命度分析(FMECA)⏹模糊可靠性设计方法3)机械可靠性设计的方法与步骤(2)步骤:⏹明确可靠性要求;⏹调查分析类似产品的使用情况;⏹可靠性分配;⏹进行可靠性分析,确定关键件、重要件;⏹可靠性定性设计——非关键件;⏹可靠性定量设计——关键件;⏹可靠性分析计算与设计评审;⏹可靠性增长(完善)。
注:不同类型的产品,其步骤不尽相同,而采用不同的可靠性设计方法,其步骤也不同。
可靠性设计技术——定性与定量⏹定性:以经验为主,即将过去积累处理失效的经验设计到产品中去,使其具有较高的可靠性;⏹定量:定量地设计、试验、控制和管理产品的可靠性可靠性设计分析⏹事前分析——在设计阶段预测和预防所有可能发生的故障和隐患,消除于未然,把可靠性设计到产品中去;⏹事中分析——产品在运行中的故障诊断、检测和寿命分析技术,以保持运行的可靠性;⏹事后分析——找出产品故障模式的原因,研究预防故障技术(失效分析)。
2.5机械可靠性定性设计的十大准则1)简单化准则在满足预定功能的情况下,机械设计应力求简单、零部件的数量应尽可能减少,越简单越可靠是可靠性设计的一个基本原则,是减少故障提高可靠性的最有效方法。
但不能因为减少零件而使其它零件执行超常功能或在高应力的条件下工作。
否则,简化设计将达不到提高可靠性的目的。
第2讲机械可靠性设计的基本方法及其指标体系2.5机械可靠性定性设计的十大准则2)模块化、组件化、标准化准则产品零部件的模块化、组件化及其标准化是现代化生产的重要标志,是提高产品可靠性水平的重要手段。
尽量采用模块化、通用化设计方案。
优先选用标准件,提高互换性。
2.5机械可靠性定性设计的十大准则3)降额设计准则降额设计是使零部件的使用应力低于其额定应力的一种设计方法。
降额设计可以通过降低零件承受的应力或提高零件的强度的办法来实现。
工程经验证明,大多数机械零件在低于额定承载应力条件下工作时,其故障率较低,可靠性较高。
2.5机械可靠性定性设计的十大准则4)合理选材准则正确选择材料是保证可靠性设计的必要条件之一。
除要考虑材料的结构性能、化学性能和热性能外,还必须考虑材料的稳定性(使用环境、加工方法等的影响)。
选用的零部件、原材料除满足结构尺寸、重量、强度、刚度要求外,还应满足使用环境和寿命要求。
2.5机械可靠性定性设计的十大准则5)冗余设计准则余度设计是对完成规定功能设置重复的结构、备件等,以备局部发生失效时,整机或系统仍不致于发生丧失规定功能的设计。
2.5机械可靠性定性设计的十大准则6)耐环境设计准则耐环境设计是在设计时就考虑产品在整个寿命周期内可能遇到的各种环境影响,例如装配、运输时的冲击,振动影响,贮存时的温度、湿度、霉菌等影响,使用时的气候、沙尘振动等影响。
认识环境;控制环境;适应环境。
2.5机械可靠性定性设计的十大准则7)失效安全设计(Failure Safe)准则系统某一部分即使发生故障,但使其限制在一定范围内,不致影响整个系统的功能。
2.5机械可靠性定性设计的十大准则8)防误设计准则采用不同的安全保护装置,如灯光、音响等报警装置,监视装置,保护性开关、防误插定位卡、定位销等,并有符合国家标准的醒目的识别标志、防差错或危险标志,防止误动作引起重大事故,主要用于产品或设备的操作系统设计。
2.5机械可靠性定性设计的十大准则9)维修性设计准则指产品或设备的结构设计应充分考虑其维修性能的优劣。
2.5机械可靠性定性设计的十大准则10)人机工程设计准则人机工程设计的目的是为减少使用中人的差错,发挥人和机器各自的特点以提高机械产品的可靠性。
例如,设计的操作环境尽量适合于人的工作需要,减少引起疲劳、干扰操作的因素,如温度、湿度、气压、光线、色彩、噪声、振动、沙尘、空间等。
机械可靠性设计注意事项:⏹权衡设计——是指在可靠性、维修性、安全性、功能重量、体积、成本(制造成本与运行成本)等之间进行综合权衡,以求得最佳的结果。
⏹创新设计——优先选用经过充分验证、技术比较成熟的设计方案,提高产品设计的继承性。
日本一些企业的专家认为:一个新产品的设计,其80%是采用原有产品或相似产品的设计经验,只有20%是因为产品的功能、性能的变化需要进行重新设计。
(新技术应用原则)。