甲烷制备合成气工艺开发进展 (1)

合集下载

甲烷制备合成气工艺开发进展 (1)

甲烷制备合成气工艺开发进展 (1)

该反应可在较低温度(750—800℃)下达到 90%以上的热力学平衡转化,反应接触时间短 (<10。2 s),可避免高温非催化部分氧化法伴生 的燃烧反应,CO和H2的选择性高达95%,生成 合成气的H2/CO比接近2,适合于合成甲醇、费托 合成等后续工业过程。与传统的蒸汽转化法和联 合重整法相比,甲烷催化部分氧化制合成气的反 应器体积小、效率高、能耗低,可显著降低设备投 资和生产成本。因此,此工艺受到国内外的广泛 重视,研究工作十分活跃。自90年代以来,人们 针对甲烷催化部分氧化反应所采用的氧化剂、原 料配比、催化剂体系、工艺条件及反应器的不同已 开发出固定床【3,4|、流化床[5,63以及陶瓷膜工艺 等【71 93。对这些工艺进行开发的国外公司主要有
石油资源作为20世纪的主要能源在石油、化 工领域占据了重要的地位。但由于长期大量开 采,储量日趋匮乏,使世界能源结构正在发生深刻 变化。据专家预测,到2l世纪中叶,天然气在世 界能源结构中所占比例将由目前的25%上升到 40%左右,而石油将从目前的34%降至20%…。 因此,天然气作为一种高效、优质、清洁的能源和 化工原料,将逐步取代石油而占主导地位,成为 21世纪的主要能源,而研究和开发利用天然气的 新技术、新工艺也就成为人们关注的焦点。 天然气的主要成分是甲烷。利用甲烷制备化 工产品主要有两条途径:直接转化法,如甲烷直接 氧化偶联制乙烯,甲烷选择氧化制甲醇、甲醛等; 间接转化法,即经合成气生产合成氨、甲醇和烃类 等,如利用合成气(CO+H2)作为中间产物,在Cu/ ZnO催化剂上合成甲醇(CO+2H2一cn308)或通 过费托过程在Fe和cu催化剂上合成烃类[nCO +2nH2一(CH2)n]。 由于直接转化法中目的产物在苛刻的反应条 件下很容易深度氧化为C02和H20,存在转化率 低、产率低、选择性较差等缺点,近期内工业化较 困难。而采用先将天然气转化为合成气,再合成 化学品和燃料的间接转化法目前已在工业上广泛 应用,而且随着以合成气为原料的许多化工合成 过程中一些新技术的不断诞生,将会使间接转化 法在天然气综合利用中发挥更大的作用。为此, 笔者将国内外已工业化应用的天然气转化为合成 气工艺技术的改进及新技术的研究开发进展综述 如下。

211171490_甲烷催化部分氧化制合成气催化剂的研究进展

211171490_甲烷催化部分氧化制合成气催化剂的研究进展

化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 4 期甲烷催化部分氧化制合成气催化剂的研究进展阮鹏1,杨润农1,2,林梓荣1,孙永明2(1 广东佛燃科技有限公司,广东 佛山 528000;2 中国科学院广州能源研究所,广东 广州 510640)摘要:天然气是一种前景广阔的清洁燃料,甲烷作为天然气的主要成分,其高效利用具有重要的现实意义。

在众多甲烷转化途径中,甲烷催化部分氧化(CPOM )具有能耗低、合成气组分适宜、反应迅速等优势。

本文简要介绍了CPOM 反应机理,即直接氧化机理和燃烧-重整机理;重点综述了过渡金属、贵金属、双金属和钙钛矿这四类CPOM 催化剂的研究现状;分析了反应温度、反应气体碳氧比和反应空速对CPOM 反应特性的影响;阐述了积炭和烧结这两种催化剂失活的主要原因及应对措施。

根据研究结果可知,通过选取合适的催化剂组分、采用优化的制备方法、精确控制催化剂活性组分分布和微观结构等措施,可以保证更多的有效活性位更稳定地暴露在催化剂表面,以此提高催化性能(包括甲烷转化率、合成气选择性、合成气生成率、反应稳定性等)。

最后指出了对CPOM 催化剂微观结构的合理设计与可控制备以及对CPOM 反应机理的深入研究仍将是今后关注的重点。

关键词:甲烷;部分氧化;催化剂;合成气;多相反应中图分类号:TE644 文献标志码:A 文章编号:1000-6613(2023)04-1832-15Advances in catalysts for catalytic partial oxidation of methane to syngasRUAN Peng 1,YANG Runnong 1,2,LIN Zirong 1,SUN Yongming 2(1 Guangdong Foran Technology Company Limited, Foshan 528000, Guangdong, China; 2 Guangzhou Institute of EnergyConversion, Chinese Academy of Science, Guangzhou 510640, Guangdong, China)Abstract: Natural gas is a promising clean fuel. The efficient use of methane, the major component of natural gas, is of great practical importance. Among many methane conversion routes, catalytic partial oxidation of methane (CPOM) has the advantages of low energy consumption, suitable syngas fraction and rapid reaction. This paper briefly introduced the CPOM reaction mechanisms (i.e. direct oxidation mechanism and combustion-reforming mechanism), reviewed the current research on four types of CPOM catalysts (i.e. transition metal, noble metal, bimetal and perovskite catalysts), analysed the effects of reaction temperature, carbon to oxygen molar ratio of reactant gas and reaction space velocity on CPOM reaction characteristics, and explained the two main causes of catalyst deactivation (i.e. carbon deposition and sintering) together with their countermeasures. According to the results of the research, the catalytic performance (including methane conversion, syngas selectivity, syngas yield, reaction stability) could be improved by selecting suitable catalyst components, adopting an optimized preparation method and precisely controlling the distribution of active components and microstructure of the catalyst. These method could ensure that more active sites are consistently exposed to the surface of catalyst. Finally, it综述与专论DOI :10.16085/j.issn.1000-6613.2022-1109收稿日期:2022-06-13;修改稿日期:2022-08-22。

甲烷与二氧化碳催化重整制取合成气的研究进展

甲烷与二氧化碳催化重整制取合成气的研究进展

第34卷第12期2005年12月应 用 化 工App lied Che m ical I ndustryVol .34No .12Dec .2005专论与综述收稿日期:2005210211基金项目:国家自然科学基金和宝钢科学基金联合资助项目(50164002,50574046);云南省自然科学基金资助项目(2004E0012Q );教育部高校博士学科点专项科研基金资助项目(20040674005)作者简介:魏永刚(1977-),男,陕西咸阳人,云南理工大学在读博士研究生,师从王华教授,从事环境调和型能源新技术的研究。

电话:(0871)5153405,E 2mail:t orier@sina .com 甲烷与二氧化碳催化重整制取合成气的研究进展魏永刚,王 华,何 方,辛嘉余(昆明理工大学材料与冶金工程学院,云南昆明 650093)摘 要:综述了甲烷与二氧化碳催化重整制取合成气的最新研究进展,比较了不同类型的催化剂在重整反应过程中的性能差异,分析了催化剂的积炭过程和重整反应机理,对非常规供能方式进行了阐述,指出了甲烷与二氧化碳催化重整制取合成气的研究方向。

关键词:催化重整;合成气;积炭;反应机理中图分类号:T Q 51 文献标识码:A 文章编号:1671-3206(2005)012-0721-05Progress i n methane cat alyti c refor m i n g with carbon di oxi de to syngasW E I Yong 2gang,WAN G Hua,HE Fang,X I N J ia 2yu(Faculty ofM aterials and Metallurgy Engineering,Kun m ing University of Science and Technol ogy,Kun m ing 650093,China )Abstract:The latest p r ogress of methane catalytic ref or m ing with carbon di oxide t o syngas is revie wed .The perf or mance difference a mong catalysts in the ref or m ing reacti on p r ocess is compared .The p r ocess of carbon depositi on of catalysts and ref or m ing reacti on mechanis m are analyzed,and non 2conventi onal means of supp lying energy are described .Finally the devel opment trend of methane catalytic ref or m ing with carbon di oxide t o syngas is pointed out .Key words:catalytic refor m ing;syngas;carbon depositi on;reacti on mechanis m 甲烷是煤层气和天然气的主要成分,随着石油资源的日益枯竭,储量丰富的天然气资源将成为最具希望的替代能源之一。

甲烷二氧化碳催化重整制合成气的研究进展和工艺技术

甲烷二氧化碳催化重整制合成气的研究进展和工艺技术

工艺与设备化 工 设 计 通 讯Technology and EquipmentChemical Engineering Design Communications·56·第45卷第9期2019年9月随着经济水平和科学技术不断的发展,我国的工业水平也得以不断的提高和强大。

但是在工业生产的发展过程中,能源问题成为制约发展最为关键的因素。

甲烷和二氧化碳作为两种主要的温室气体,它们的化学利用是一条非常好的节能减排途径,能够缓解当前日益严重的温室效应。

1 甲烷二氧化碳催化重整制合成气的工艺技术甲烷在实际化工过程中的利用主要可以分为两个部分。

首先它可以直接转化:甲烷可以发生氧化反应,生产乙烯等一些重要的化工基本的原料。

但是因为甲烷分子结构比较特殊,非常的稳定,所以它在发生氧化反应的过程中对反应的条件非常的苛刻,目前的技术手段下,没有办法大规模应用。

第二种就是间接转化,可以将甲烷先转化成合成气,然后再转化成某种化工产品。

生产过程中也可以通过一系列的反应来生产比较重要的化工产品。

在目前的发展阶段中,完成规模化的生产甲烷制成合成气有三种办法:通过水蒸气来进行催化重整、进行甲烷的部分氧化、二氧化碳的重整。

这三种模式在实际操作的过程中,最为基本的理论都是要提供一些还原性的物质。

二氧化碳重整制成合成气的方法较其他两种方法相比具有一定的优点。

首先通过这种方法制成的合成气具有较低的氢碳比,这样的比例可以使得在实际反应过程中直接作为合成的原料,这样就可以弥补在实际制成合成气过程中的一些不足。

其次就是生产过程中使用了甲烷和二氧化碳这两种对地球温室效应影响大的气体,可以有效地改善人类的生存环境,提高人们生活的质量。

还有就是甲烷和二氧化碳的催化重整,在实际反应过程中是具有较大反应热的可逆反应,所以它可以作为能源的储存介质。

这样就可以使得甲烷和二氧化碳这样的惰性气体能够在一定程度上实现活化来进行相应的转变。

近几年以来,人们对重整过程中催化剂的选择给予了高度的重视,并且在催化剂助剂、催化剂积碳行为以及催化反应理论等方面都取得了一系列的成果。

甲烷化技术的研究进展魏立奇

甲烷化技术的研究进展魏立奇

甲烷化技术的研究进展魏立奇发布时间:2021-07-28T08:02:46.870Z 来源:《中国科技人才》2021年第12期作者:魏立奇[导读] 随着我国经济在快速发展,社会在不断进步,甲烷化是焦炉气制天然气、煤制天然气生产流程的关键步骤,为打破国外技术垄断,国内研究机构积极进行技术开发。

系统梳理了甲烷化技术的国产化研究进展,分析了焦炉气甲烷化技术的应用现状,探讨煤制天然气甲烷化技术的应用前景,并就降低首次工程应用风险提出几点建议。

国内甲烷化技术已经实现广泛开发,焦炉气甲烷化技术成功实现工业化应用,其国内市场占有率高于国外技术。

魏立奇伊犁新天煤化工有限责任公司新疆伊宁 835000摘要:随着我国经济在快速发展,社会在不断进步,甲烷化是焦炉气制天然气、煤制天然气生产流程的关键步骤,为打破国外技术垄断,国内研究机构积极进行技术开发。

系统梳理了甲烷化技术的国产化研究进展,分析了焦炉气甲烷化技术的应用现状,探讨煤制天然气甲烷化技术的应用前景,并就降低首次工程应用风险提出几点建议。

国内甲烷化技术已经实现广泛开发,焦炉气甲烷化技术成功实现工业化应用,其国内市场占有率高于国外技术。

煤制天然气甲烷化技术已成功开发,工业化应用前景广阔,首次工程应用时应注重经验借鉴、安全分析及设备选型等。

关键词:甲烷化;焦炉气;煤制天然气引言天然气是一种清洁能源,使用安全性高,对环境的污染小,对我国大幅削减CO2等温室气体排放具有重要价值。

由于能源资源禀赋呈现“富煤、缺油、少气”的特点,我国一直在积极研究煤制天然气、焦炉气甲烷化以及电转甲烷储能等甲烷化工艺技术,提升天然气自我供给能力。

其中,电转天然气技术(power-to-gas)是解决太阳能、风能发电波动性、随机性的有效方法,也是一种消纳电力系统富余电量的有效方法。

我国三北地区风力、太阳能资源丰富,西南地区的水力资源充足,电转气技术可以充分利用富余的可再生电力,提供跨季节的存储能力和稳定的能源供应,具有良好发展前景。

甲烷水蒸气重整制合成气的研究进展-高志博

甲烷水蒸气重整制合成气的研究进展-高志博
高志博1,王晓波2,刘金明1,史桂青1,刘恩贺3
(1. 国电赤峰化工有限公司,内蒙古 赤峰 024050;2. 巴林左旗林东一中,内蒙古 赤峰 024050;3. 沈阳天顺金属有限公司,辽宁 沈阳 110164)
摘要:概述了甲烷转化的工艺特点和研究意义,综述了甲烷水蒸气重整的反应原理、工艺过程、 催化剂的组成,并论述了国内外甲烷水蒸气重整制合成气技术的研究现状及发展方向. 关键词:甲烷;水蒸气重整;合成气;镍基催化剂 中图分类号:TQ032.41 文献标识码:A doi:10.3969/j.issn.1007-9831.2012.02.025
Abstract:Summarized the technology feature and significance of methane reforming.Reviewed the reaction principle,process flow and catalyst component of methane steam reforming.Introduced the present situation and developing trend of the technique to produce synthesis gas from methane steam reforming at home and abroad. Key words:Methane;steam reforming;synthesis gas;Ni-catalyst 甲烷在自然界分布广泛 ,可以直接用作高效、优质、清洁的能源 ,还可以通过转化制造更有意义的 [3] [4-6] 化工原料 .甲烷转化有直接转化和间接转化 2 种途径 ,直接转化法是将甲烷直接转化为工业需求的产 [7] 品 ;间接转化法是将甲烷转化成合成气,进而合成甲醇等液体燃料、氨以及一系列精细化工产品. 目前,甲烷的大规模利用主要依赖于间接转化.甲烷水蒸气重整制合成气是甲烷间接转化的一种,被认 为是合理利用甲烷资源的有效途径之一.该过程可将廉价的甲烷资源转化为重要的化工原料——合成气, 用于进一步的转化利用.在甲烷水蒸气重整工艺中,催化剂是重要的组成部分,其催化剂的种类、活性和 寿命对合成气的产率、纯度和成本具有重要的影响.工业上常用的催化剂为镍系列催化剂,具有较高的催 [8] 化活性.但镍系列催化剂易积碳而失活,不能直接转化含硫量高的原料气 ,反应条件苛刻,设备投资大, [9] 能耗很高 .因此,寻求活性高、稳定性好、抗积碳性能强的催化剂,有效降低能耗,将是今后甲烷水蒸 [10-11] ,因此,甲烷水 气重整技术的重点研究方向.由于甲烷是破坏臭氧层、形成温室效应的主要气体之一 蒸气重整不但具有巨大的经济价值,而且在环境保护、合理利用资源等方面也具有重要意义.

合成气甲烷化工艺技术研究进展-李安学

合成气甲烷化工艺技术研究进展-李安学

程师,现任中国大唐集团公司煤炭产业部副主任、大唐能源化工有限 责 任 公 司 副 总 经 理 , 从 事 煤 炭 清 洁 转 化 利 用 方 面 的 工 作 。 E-mail anxue777@。
第 11 期
李安学等:合成气甲烷化工艺技术研究进展
·3899·
煤制天然气是煤炭清洁转化的一种重要途径, 是我国优化能源结构和保障能源安全的一种重要手 段,是缓解局部大气污染的一种有效手段[1],并且 煤制天然气具有一定竞争力,这都促使了煤制天然 气产业的蓬勃发展[2-3]。截止到 2015 年 9 月,国家 发展与改革委员会核准和给予启动前期工作的煤制 天然气项目共 13 个,总产能共计 933 亿立方米/年, 其中内蒙古大唐国际克什克腾煤制天然气工程一系 列装置、新疆庆华煤制天然气一期工程、内蒙古汇 能煤制天然气一期工程分别于 2013 年 12 月 18 日、 12 月 30 日和 2014 年 11 月 17 日投产。煤制天然气 技术体系中,空分、气化、变换、净化等均是传统 煤化工使用的技术,只有合成气完全甲烷化技术是 煤制天然气特有的技术[4]。
fixed bed process has been proven in industrial application and has been widely used in Coal to SNG
projects. Adiabatic fixed bed processes are introduced and five specific processes are analyzed and compared in terms of process,technology characteristics and application situation. Domestic adiabatic fixed bed technology has reached the same level of foreign processes,ready for commercialization. But further research is required on energy saving,consumption reduction and catalyst life. Furthermore, isothermal fixed bed process,fluidized bed process and slurry bed process are also introduced. Their existing problems and further research points are analyzed. As to isothermal fixed bed process,

煤基合成气制甲烷工艺流程、技术及催化剂研究进展趋势分析

煤基合成气制甲烷工艺流程、技术及催化剂研究进展趋势分析

煤基合成气制甲烷工艺流程、技术及催化剂研究进展趋势分析宋孝勇【摘要】随着社会经济的发展,工业生产、日常生活对于天然气等能源类的需求越来越大。

提高煤制天然气的生产效率,有利于缓解我国能源需求量增大与生产效率过低之间的矛盾,符合国家发展“能源节约型”和“环境友好型”社会的战略目标。

煤制天然气是煤炭高效清洁利用的重要途径,甲烷化是煤制天然气的关键反应。

推行煤基合成气制甲烷工艺创新,可以显著提高甲烷工艺的制备效率。

针对甲烷化反应的特点,对催化剂使用技术进行优化。

本文根据煤基合成气制甲烷工艺的技术细节展开讨论,提出几点优化制备流程的可行性建议。

%As social economic develops, the requirement for natural gas was more and more in industry and daily life. Improving production efficiency of coal gas could eased the problems of requirements is much higher than production efficiency. Coal gas is the main path of efficient cleaning and utilization. Methanation isthe key reaction for coal gas. Innovation of methane technique by coal based gas can raise preparation efficiency. The cat-alyst use was optimized according to the characters of methane reaction. Some advices were given for optimizing the preparation process.【期刊名称】《化学工程师》【年(卷),期】2016(000)004【总页数】3页(P44-45,43)【关键词】制烷流程;催化剂;煤基合成;模拟研究【作者】宋孝勇【作者单位】盐城工学院,江苏盐城 224001【正文语种】中文【中图分类】TQ546.61.1 甲烷化工艺从煤基合成气制甲烷工艺的工艺流程来看,首先要对煤备料进行初期拣洗工作,将粗制煤炭中的杂质去除,然后在反应器中加入H2,使用加温设备将H2加热,等待产品混合气冷却之后,析出HCl,NH3和脱酸性气体H2S等,使用低温分离的方法将重质芳烃和轻质芳烃析出。

甲烷化技术的研究进展

甲烷化技术的研究进展

第50卷第3期2021年3月应用化工AppOoed ChemocaOIndusieyVoO.50No.3Mae.2021甲烷化技术的研究进展刘玉玺1,卿山s赵明2,梁俊宇2(1-昆明理工大学冶金与能源学院,云南昆明650093;2-云南电网有限责任公司电力科学研究院,云南昆明650051)摘要:甲烷化技术是从煤、焦炉气、电能等原料制取天然气的关键技术,有着重要的研究和实用价值%主要介绍了国内外甲烷化技术的发展概况,分析并比较了各项技术的工艺流程及其特点;对不同类型的甲烷化反应器以及操作工况对反应器影响的相关研究做了分析和总结;对甲烷化工艺关键技术问题进行讨论。

以期能为今后我国开展电转天然气过程中甲烷化技术的研究提供参考。

关键词:甲烷化;合成天然气;电转气;甲烷化反应器中图分类号:TQ221.11文献标识码:A文章编号:1671-3206(2021)03-0754-05Research progress of mettanation technologyLIU Yu-xi1,QING Shan1,ZHA0Ming2,LIANG Jun-yu(1.FacuOiyoaMeia O uegocaOand EneegyEngoneeeong,KunmongUnoaeesoiyoaScoenceand TechnoOogy,Kunming650093,China;2.Electric Power Research Institute,Yunnan Power Grid Co.,Lth.,Kunming650051,China)Abstract:Methanation technoOgy is a k—technoOgy to produce synthetic natural gas from coat,coke oa-en ga5,eOecieoceneegyand oiheeeawmaieeoaO,whoch ha5ompoeianiee5eaech and peaciocaOaaOue.Thoae--cte mainly introduces the development of methanation technoOgy a-home and abroad,analyzes and com-paee5ihepeoce5aOowand chaeacieeoioc5oaaaeoou5iechnoOogoe5,anaOyoe5and5ummaeooe5iheeeOaied ee-sexrch on dbferent types of methanation reactors and the influence of operating conditions on reactors,and discusses the k—technical problems of methanation process.It is expected to provide a reference for the research of methanation technoOgy b the process of power to synthetic nature gas in China in the future. Key words:methanation;synthetic nature gas;power-to-fas;methanation reactor天然气是一种清洁能源,使用安全性高,对环境的污染小,对我国大幅削减C02等温室气体排放具有重要价值%由于能源资源禀赋呈现“富煤、缺油、少气”的特点,我国一直在积极研究煤制天然气、焦炉气甲烷化以及电转甲烷储能等甲烷化工艺技术,提升天然气自我供给能力%其中,电转天然气技术(power-to-gas)是解决太阳能、风能发电波动性、随机性的有效方法,也是一种消纳电力系统富余电量的有效方法%我国三北地区风力、太阳能资源丰富,西南地区的水力资源充足,电转气技术可以充分利用富余的可再生电力,提供跨季节的存储能力和稳定的能源供应,具有良好发展前景%1甲烷化反应原理甲烷化技术就是利用催化剂使CO、CO2与H2进行反应,最终转化为CH4的工艺技术⑴。

甲烷制备合成气工艺开发进展

甲烷制备合成气工艺开发进展

过费 托 过程 在 F e和 c u催 化 剂 上 合 成烃 类 [ C nO
+2 H 一 ( H ) ] n 2 C 2n 。 由 于直 接转 化法 中 目的产物 在苛刻 的反 应条 件下 很容易 深 度 氧化 为 C , H 0, 在 转 化 率 O和 2 存 低 、 率 低 、 择性 较 差 等缺 点 , 产 选 近期 内工 业化 较 困难 。而采用 先将 天然 气 转化 为ห้องสมุดไป่ตู้合成 气 , 合 成 再
工艺 要 求 , 而且 , 过 对原 料 与 工艺 条 件 的调配 , 通
可分别 生 产 出 具 有 不 同 H / O之 比 的合 成气 产 2C
品 , 得开 发 和研 究 。 值
1 1 甲烷 一蒸 汽 转 化 工 艺 .
甲烷 一蒸 汽转化 工艺 ( M 是 最早 开 发 的天 S R)
进 , 甲烷 蒸 汽 转 化 工 艺 采 用换 热 转 化 及 自热 转 化 技 术 ; 如 甲烷 催 化 部 分 氧 化 技 术 , 据 原 料 配 比 、 根 催 化 剂 体 系 、 艺 条 件 不 同 , 分 别 采 用 固 定床 、 化 床 、 瓷 膜 及 晶格 氧 工 艺 ; 烷 自热 式 转 化 工 工 可 流 陶 甲 艺 采 用 非催 化部 分氧 化与 绝 热 蒸 汽 转 化 相 结 合 , 艺 中 引 入 蒸 汽 可 消 除 积 碳 ; 工 甲烷 两 段 转 化 工 艺
1 已工业 化应 用工艺 的技 术改进
由天然 气 制 合 成气 技 术 自 12 9 6年 工业 应 用
以来 , 历 了不 断 改革 和 创 新 , 得 了很 大 的进 经 取 展, 已开 发成 功并工 业化 的工 艺有 多种 , 这些 工艺
采 用 的原料 各有不 同 , 涉及 的反应类 型 、 作条 所 操

甲烷重整制合成气用催化剂的研究进展

甲烷重整制合成气用催化剂的研究进展

甲烷重整制合成气用催化剂的研究进展周敏;薛茹君;陈春阳;程淑芬【摘要】甲烷重整是制取合成气的重要方法之一,催化剂是重整工艺中的重要组成部分。

综合国内外的研究现状,详细论述了甲烷重整反应的几种不同的途径,并针对不同的途径介绍了其反应机理以及催化剂的组成。

%Methane reforming is an importan t way to product syngas. And the catalyst in the reforming process is an important part. Accordding to the research status at home and abroad, the reforming reaction of methane are discussed in detail in several different ways and for different ways to introduce the compositi on of the reaction mechanism and catalyst in this paper.【期刊名称】《安徽化工》【年(卷),期】2015(000)001【总页数】4页(P21-23,28)【关键词】甲烷重整;合成气;催化剂【作者】周敏;薛茹君;陈春阳;程淑芬【作者单位】安徽理工大学化学工程学院,安徽淮南232001;安徽理工大学化学工程学院,安徽淮南232001;安徽理工大学化学工程学院,安徽淮南232001;安徽理工大学化学工程学院,安徽淮南232001【正文语种】中文【中图分类】O623.11甲烷是天然气的主要成分,约占到90%。

由于甲烷分子的化学性质十分稳定,很难将其直接转化为其他化工产品。

目前,甲烷转化的主要方式为间接转化:即先将甲烷转化为合成气(H2/CO),然后再通过F- T合成等方式转化为其他重要的化工产品。

天然气甲烷部分氧化制合成气的研究进展

天然气甲烷部分氧化制合成气的研究进展

气 , 要 集 中在 以下方 面研 究 : 主 1 反 应 机 理 的 研 究 对 于 甲烷 部 分 氧 化 制 合 成 的 反 应 机 理 存 在 燃 烧 重 整 机 理 和 直 接 氧 化 机 理 两 种 不 同 的 说 法 。燃 烧 重 整 机 理 认 为 C 先 与 o 发 生 完 全 氧 化 反 应 , 成 H. 生
维普资讯
1 6
内 蒙 古石 油 4 r  ̄-. -
20 年第 1 期 06 2
天然 气 甲烷部分氧化制合成气 的研 究进展
吴晓 滨
( 天津大学化工学院, 天津

30 7 ; 00 2 包头轻工职业技术学院, 内蒙古 包头
0 44 ) 105
要: 甲烷 部分氧化制 合成气是高转化 率、 高选择性 、 高空速、 H2c 温 和的放 热反应 , 低 / o、 综述 了近 几年来 甲烷部

( ) 2 ( ) 3
低 空速 下 , 甲烷 与 氧 气 反 应 的 动 力 学 过 程 受 外 扩 散 速 率 控 制 , 加 空 速 可 减 小 甚 至 消 除 外 扩 散 , 空 速 增 当 继 续 增 大 到 一 定 数 值 后 , 应 速 率 由 扩 散 控 制 变 为 反 表 面 反 应 控 制 , 继 续 增 加 空 速 , 导 致 接 触 时 间过 再 会 短 , 应 物 分 子 来 不 及 在 催 化 剂 表 面 反 应 就 离 开 了 反 催化 剂床 层 , 致 反应物 转化 率 和产 物 的收率 降低 , 导 但 是 有 利 于 Co 离 开 催 化 剂 床 层 而 使 其 选 择 性 增 加 I 一 方 面 , 加 空 速 会 导 致 催 化 剂 床 层 的 真 实 温 另 增 度升高 , 一氧化碳和氢气 的收率与选择性 上升。 使 C 和 甲烷 可 能 具 有 相 同 的 吸 附 位 ㈣, 是 增 加 空 速 O 于

煤制合成天然气技术进展

煤制合成天然气技术进展

煤制合成天然气技术进展发布时间:2021-05-21T16:23:03.293Z 来源:《科学与技术》2021年第29卷4期作者:贾海南[导读] 介绍了甲烷合成工艺的发展历程。

详细阐述了煤制天然气全流程工艺选择,贾海南盛虹炼化(连云港)有限公司江苏省连云港市222000摘要介绍了甲烷合成工艺的发展历程。

详细阐述了煤制天然气全流程工艺选择,分析不同煤气化工艺对煤耗、氧耗、后续变换和低温甲醇洗装置等的影响,通过比较,认为固定床气化工艺是制天然气原料气的最佳工艺选择。

比较了中温甲烷合成工艺和高温甲烷合成工艺的特点,并对高温甲烷合成工艺流程不同工艺商之间的差别做了深入探讨,可为煤制天然气工程设计提供参考。

关键词煤制天然气,煤气化,甲烷合成,催化剂,天然气脱水1 甲烷合成工艺的发展 20 世纪初,国外就开始了甲烷化催化剂及利用甲烷化反应脱除合成氨原料气中少量 CO、CO2 的研究。

高 CO 含量的甲烷化研究始于 20 世纪 40 年代。

20 世纪 70 年代,鲁奇公司和南非萨索尔公司建设了一套合成气多级绝热甲烷化工艺试验装置,同时鲁奇公司和奥地利艾尔帕索公司维也纳石油化工厂建设了一套半工业化的合成气甲烷化制天然气试验装置。

1978 年丹麦托普索公司用该公司开发的 TREMP 甲烷化工艺,在美国建成并投产一个日产 72 万 m3 的合成天然气工厂,由于油价逐降,1981 年该工厂被迫关停。

1984年美国北达科他州大平原气化厂采用德国鲁奇公司煤制天然气技术,投产了一个日产 389 万 m3 的煤制天然气工厂。

2012 年中国大唐国际内蒙克什克腾旗煤制天然气项目建成投产,2013 年中国庆华新疆伊宁煤制天然气项目建成投产。

国内中科院大连化物所 20 世纪 60 年代研制的中温甲烷化催化剂成功用于合成氨厂,脱除合成氨原料气中少量 CO、CO2,将低热值水煤气甲烷化,使其增值为中热值城市煤气。

近年该所成功研发了 700 ℃的高温甲烷化催化剂,在小试、中试成功的基础上,正开展工业试验。

甲烷干重整制合成气研究进展

甲烷干重整制合成气研究进展

甲烷干重整制合成气研究进展摘要:甲烷干重整(DRM)制合成气是一项可同时将CH4和CO2转化为低H2/CO 摩尔比合成气的极具应用前景技术,不仅能有效缓解全球变暖压力,且产品合成气可用作化石能源可持续能源替代品,有助于减少对化石能源的过度依赖。

本文主要介绍了甲烷重整转化制合成气途径,以及不同转化途径的优势和缺陷。

关键字:甲烷干重整;合成气;转化途径1CH4转化途径近年来,考虑到全球变暖等环境问题加剧,人们对温室气体CH4的有效减少以及合理利用越来越关注。

同时,CH4作为最简单的烷烃,还是天然气/页岩气的主要成分,随着天然气/页岩气储层相继开发以来,由于技术、成本限制以及储层地理位置偏僻或搁浅等原因导致大量天然气/页岩气被燃烧,这不仅造成了资源的浪费,还向大气释放了大量温室气体。

为了应对全球气候变化和最大限度地提高有效资源的利用率,CH4的转化利用已成为研究的热点。

其中通过CH4的直接氧化转化可以生产甲醇、甲醛、丙醇、苯和其他芳烃,但所有上述方法的产率都很低,或者在工业规模上不可行[1]。

而CH4重整转化除了合理利用了丰富的CH4资源,其产生的合成气还是化工业中一些能源化学品生产的重要中间体,使通过重整方式进行CH4的灵活利用受到了广泛关注。

目前,CH4重整转化产生合成气的途径主要有以下几种:甲烷蒸汽重整(SRM:)、甲烷部分氧化(POM:)、甲烷干重整(DRM:)和耦合重整。

1.1甲烷蒸汽重整通常情况下,SRM产生的合成气摩尔比理论值为3.0,而费托合成以及甲醇合成所需的合成气摩尔比理论值为2.0,即SRM产生的合成气不适合直接用于费托合成或甲醇合成[2]。

但相对而言,SRM制氢是有较大优势的,并为氨和甲醇合成以及许多炼油厂工业反应提供主要氢源。

同时,由于SRM反应的吸热性质,其过程属于能量密集型,需要投入大量资本。

这导致为了获得更高的氢气产率则需要更高的H2O/CH4比率,使得SRM在能量方面非常不利,并可能导致催化剂失活。

甲烷催化部分氧化制合成气研究新进展

甲烷催化部分氧化制合成气研究新进展
第 5期
余 长 林等 : 甲烷 催 化部 分 氧化 制合 成 气研 究新进展
6 7
甲烷催化部分氧化制合成气研理工 大 学材 料 与化学 工 程学 院 , 西 赣州 3 1 0 ) 江 4 0 0
摘 要 : 绍 了 甲烷 催 化 部 分 氧 化 制合 成 气 的 研 究 现 状 , 述 了 甲烷 催 化 部 分 氧 化 制 的 反 应 热 力 学 、 力 学 、 应 机 理 、 化 介 综 动 反 催 剂 研 制 等 方 面 的 研 究进 展 , 点 对 催 化 剂 的 活 性 组 分 、 剂 和 载体 进 行 了评 述 。 为 助 剂 的 掺 杂 改性 和加 强 活 性组 分与 载 体 之 重 助 认 间 相 互 作 用 是 提 高 催 化 剂 活 性 和稳 定 性 的关 键 。 关键 词 : 甲烷 ; 部分 氧 化 ; 化 剂 ; 力 学 ; 力 学 ; 理 ; 成 气 催 热 动 机 合
进 行 , 过 程 能 耗 高 , 备 投 资 大 , 且 产 物 中 H2 此 设 并 /
C 0摩 尔 比大 于 3 不 利 于合 成 甲醇 、 托合 成 ( - , 费 FT 合 成 ) 后 续过 程 。 等 二氧化 碳重 整所 得合 成 气 H C JO 比约 为 1 比较 适合 作 FT合成 的 原料 , 二 氧化 碳 , - 但 重 整仍 需 消 耗 大 量热 量 , 时 甲烷 转 化 率 低 , 化 同 催 剂 因为 积炭 而 失活严 重 。 O P M反 应 制合 成气 的过程
1 甲烷部分 氧化热力学 和动力 学分析
甲烷 部分 氧化 反应 (O P M反 应) 个 温和 的放 是一
热反 应 。表 1给 出了 P M 反应 的热力 学平 衡 常数 , O 从 表 l中可 以看 出 , 衡 常数 随 温度 的升 高 而有 所 平 减 小 , 变 化 幅 度 不 大 , 且 不 同 温度 的平 衡 常 数 但 并 都很 大 , 以认 为 反应 是 不 可 逆 的 , 此 温 度 范 围 可 在 内甲烷都 有较 大 的转化 率 。表 2给 出了不 同温度 下

煤基合成气制甲烷工艺与催化剂研究进展

煤基合成气制甲烷工艺与催化剂研究进展

煤基合成气制甲烷工艺与催化剂研究进展宗弘元;余强;刘仲能【摘要】The production of synthetic natural gas( SNG)is an important route of the highly efficient and clean utilization of coal. The key reactionof coal to SNG is methanation,which is strong exothermic, reversible and reduced volume after the reaction. In order to get high methane yield,the measures of multistage adiabatic cycle to dilute CO and shift/purificationof syngas was adopted. The existing traditional process of methanationand their characteristics were summarized. On this basis,the methanation processes were compared,and the development of novel sulfur-tolerant methanation process for coal to SNG was proposed and discussed. The hydrothermal stability of conventional Mo-based sulfur-tolerant methanation catalysts needs to be improved because of low space velocity and conversion of raw materials. The future research trend of coal to SNGis the development of multistage sulfur-tolerant methanation processes and their corresponding catalysts with high performance.%煤制天然气是煤炭高效清洁利用的重要途径,甲烷化是煤制天然气的关键反应,具有强放热、可逆和体积缩小的特点。

合成气甲烷化工艺技术研究进展

合成气甲烷化工艺技术研究进展

合成气甲烷化工艺技术研究进展发布时间:2022-01-20T09:24:33.595Z 来源:《中国科技人才》2021年第29期作者:梁晨[导读] 具有路线短、能源效率高、过程能耗低、二氧化碳排放量和耗水量相对较少等优势。

伊犁新天煤化工有限责任公司新疆伊犁 835100摘要:合成气完全甲烷化技术是煤制天然气特有的技术,按照反应器类型,合成气甲烷化工艺可以分为绝热固定床、等温固定床、流化床和浆态床等工艺,其中绝热固定床甲烷化工艺成熟并广泛应用于煤制天然气项目。

本文介绍了多种绝热固定床甲烷化工艺,并比较了2种高温绝热固定床甲烷化工艺的流程、技术特点和应用情况。

随着研究工作的不断深入,国内绝热固定床甲烷化技术达到了国际技术同类水平,具备了工业化应用条件,但还需在节能降耗、提高催化剂寿命方面加大研究力度。

关键词:合成气甲烷化;合成天然气;甲烷化工艺;绝热固定床“富煤、贫油、少气”是我国能源资源的特点。

近年来,我国天然气供求严重失衡,大量依赖进口,这一特点决定了煤制天然气是我国能源战略安全与经济发展的必由之路。

煤制天然气作为典型的煤基替代能源战略,具有路线短、能源效率高、过程能耗低、二氧化碳排放量和耗水量相对较少等优势。

国民经济和社会发展第十三个五年规划纲要(“十三五”规划)中提出了支持绿色清洁生产,发展绿色低碳循环产业,坚持节约资源和保护环境的基本国策,坚持可持续发展。

因此发展高效、低碳、洁净的煤炭资源利用技术意义重大1国内煤制天然气发展近况由于国内能源赋存,开发了很多大规模煤制天然气的工业化项目,涉及产能共计2410×108m3/a,目前国家发展改革委员会核准8个煤制天然气项目(见表1),总产能311×108m3/a。

国内煤制天然气项目存在规划多,环评通过率低,开工率低,项目推进缓慢的现状。

大唐阜新煤制天然气项目将于资产重组后开工建设;浙能伊犁新天煤制天然气项目将完成前期手续,尽快启动项目建设;中海油大同、北控鄂尔多斯、苏新能源等煤制天然气项目,将有序开展前期工作。

二氧化碳重整甲烷制合成气研究进展

二氧化碳重整甲烷制合成气研究进展

二氧化碳重整甲烷制合成气研究进展近年来,随着能源需求的不断增长和化石燃料的持续消耗,全球温室气体的排放问题已经引起了广泛关注。

其中,二氧化碳(CO2)被认为是主要的温室气体,因其对地球的气候变化产生巨大影响。

在这种背景下,二氧化碳重整甲烷制合成气成为近年来的研究热点之一、本文将从反应机理和催化剂设计两个方面论述二氧化碳重整甲烷制合成气的研究进展。

首先,二氧化碳重整甲烷制合成气的反应机理是研究的核心之一、这种反应的主要目的是通过将二氧化碳与甲烷反应生成一氧化碳(CO)和氢气(H2),以形成合成气(CO+H2)。

在常见的反应条件下,二氧化碳重整甲烷的反应机理可分为两个步骤:首先,在催化剂的作用下,二氧化碳和甲烷发生部分氧化反应,生成一氧化碳和水蒸气;然后,由于反应的可逆性,一氧化碳和水蒸气再进一步进行气相反应生成二氧化碳和氢气。

了解反应机理对催化剂的设计和优化具有重要意义。

其次,催化剂的设计在二氧化碳重整甲烷制合成气的研究中起着关键作用。

催化剂的选择和设计对反应的效率和选择性起着重要影响。

常见的催化剂包括金属催化剂、金属氧化物和过渡金属催化剂。

这些催化剂的设计关键在于提高反应的选择性,降低催化剂的毒性和损耗。

例如,一些研究表明,通过纳米金属颗粒的设计和优化,可以提高反应的选择性,减少副产物的生成。

另外,改变催化剂的组分和结构也能够对反应的效果产生显著影响。

因此,催化剂的设计是二氧化碳重整甲烷制合成气研究中的关键问题之一总的来说,二氧化碳重整甲烷制合成气作为一种能源生产和环境保护的双赢方法,吸引了众多研究者的关注。

未来的研究方向可以从以下几个方面展开:首先,深入研究二氧化碳重整甲烷的反应机理,从而提高反应的效率和选择性;其次,开发新型的催化剂,以降低催化剂的成本和对环境的影响;最后,探索二氧化碳的资源化利用途径,将其转化为更高价值的产品。

通过这些研究进展,二氧化碳重整甲烷制合成气有望成为未来替代传统燃料的一种可行方法,实现能源的可持续发展。

二氧化碳重整甲烷制合成气研究进展

二氧化碳重整甲烷制合成气研究进展
第4 1卷第 6期
2 0 1 3年 3月
广



Vo 1 . 4 1 No . 6
Ma r c h . 201 3
G u a n g z h o u Ch e mi c a l I n d u s t r y
二 氧 化 碳 重 整 甲烷 制 合 成 气 研 究 进 展 术
CHENG Zh i—h o n g,GAO Xu e—mi n g
( S h a n x i L u ’ a n M i n i n g( G r o u p )C o Байду номын сангаас ,L t d . ,S h a n x i X i a n g y u a n 0 4 6 2 0 4, C h i n a )
C O 和 C H 是 主要 的温室气体 ,同时它们也是一 种宝贵 的 资源 。随着全 球 变 暖 ,C O ,排 放 问题 正 在 引起 国际 社会 的关
应 ,导致 C O的选择性 下 降。 因此 ,从 工业 化 的角度 ,一般 希 望在 C O : / C H 比为 1的条件 下操作 ,这就使得无法避免 热力学 上的积碳 。
Abs t r a c t :Th e r e we r e ma n y a d v a nt a g e s o f c a r b o n d i o x i d e r e f o r mi n g o f me t h a n e t o s y n g a s,wh i c h a t t r a c t e d wi de a t t e n- t i o n.Th e l a t e s t p r o g r e s s a t h o me a nd a b r o a d i n t he c ha r a c t e r i z a t i o n r e s e a r c h o f c a r b o n d i o x i d e r e f o m i r n g o f me t h a n e t o s y n t h e s i s g a s,whi c h i nv o l v e d t h e m o r d y n a mi c s ,a c t i v a t i o n o f me t h a n e a n d c a r b o n di o x i de,s u r f a c e a r e a c a r bo ns a n d e l i mi — n a t e c a r b o n,d i o x i d e r e f o mi r n g o f me t h a n e r e a c t i o n me c ha n i s m ,wa s o u t l i n e d a n d d i s c u s s e d . Ke y wor ds:c a r bo n d i o x i d e r e f o r mi n g o f me t ha n e;s y n g a s;t h e mo r d y n a mi c s;c o k e;r e a c t i o n me c ha n i s m

甲烷催化二氧化碳重整制合成气反应研究进展

甲烷催化二氧化碳重整制合成气反应研究进展

甲烷催化二氧化碳重整制合成气反应研究进展天由甲烷制合成气有三条途径: 即水蒸汽重整、甲烷部分氧化和二氧化碳重整。

三条途径可分别提供H2/C0理论比为3 :1、2 : 1和1 : 1的合成气,这些产品可分别用于富H2和富CO 的化学转化过程。

因此,三条途径各具特色,各有值得开发的价值,其中已工业化的水蒸汽重整工艺,设备投资巨大,操作费用昂贵,亦需改进和完善。

# g& @( P: G) V5 z& B* z/ @4 B甲烷作为最小的烃类分子,具有特殊稳定的结构和惰性,C-H键的平均键能为4.1 >105J/mol,CH3-H键离解能高达4.35氷05J/mol。

因此,如何使甲烷分子活化并进行定向转化一直是困扰化学家们的一大难题。

二氧化碳作为含碳化合物的燃烧终产物,也是相当稳定的惰性小分子。

其排放量正以每年4%的速度递增,大气中高浓度的C02 破坏了大气平衡,是造成全球气温升高,气候恶化的主要原因。

随着科技进步和人类环保意识的增强,如何利用和固定C02已经成为世界各国政府和有识之士特别关注的问题。

甲烷催化二氧化碳重整制合成气,不失为一条有潜在应用前景的C02 利用途径,是废气利用,变废为宝之举。

要使惰性小分子气体的CH4和C02活化并进行定向转化,其关键是选择适宜催化剂。

近年来,人们已在催化剂的选择,催化剂和积炭行为以及催化反应机理等方面进行了大量卓有成效的工作,使这一问题的研究日益深化,也预示了这一工艺广阔的应用前景和深远意义。

本文就近年来甲烷催化二氧化碳重整制合成气已取得的成果作一概要介绍。

\( ?$ E/ _/ A( l1 B1 J一、热力学可行性研究吴越[3]译著的《气化和气体合成反应的热力学》一书,介绍了对天然气转化制合成气反应所作的完整的热力学计算,并给出了CH4+C02=2C0+2H2 反应不同温度下的平衡常数及产物分布。

从热力学计算可知,甲烷二氧化碳重整反应是强吸热反应,在温度达到600 C以上时,才有合成气生成,且随反应温度升高,反应物转化率增大,合成气产率升高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
000
h。),设备庞大复杂、占地面
积大、投资和操作费用昂贵等问题,因而国内外对 此进行了多方面改进。目前,除了对工艺本身及 工艺所采用的催化剂进行改进以外,在转化技术
收稿日期:2006—05—14。 作者简介:王卫,硕士,讲师,主要从事基础化学的教学及 工业催化的研究,已发表论文lO多篇。
万方数据

已工业化应用工艺的技术改进 由天然气制合成气技术自1926年工业应用
以来,经历了不断改革和创新,取得了很大的进 展,已开发成功并工业化的工艺有多种,这些工艺 采用的原料各有不同,所涉及的反应类型、操作条 件均不同,每一反应都各具特色,能够满足一定的 工艺要求,而且,通过对原料与工艺条件的调配, 可分别生产出具有不同H2/CO之比的合成气产 品,值得开发和研究。 1.1甲烷一蒸汽转化工艺 甲烷一蒸汽转化工艺(SMR)是最早开发的天 然气转化工艺,目前已成熟地应用于工业化生产, 成为天然气制备合成气的主要途径。该工艺以 cH4、H20为原料,在1.5 MPa和800 oC以上的高温 条件下反应,其反应式如下:
CH4+H20=CO+3H2
AH298K=206 kJ/mol
该反应为强吸热反应,在工业上采用管式反 应器,反应所需要的热量由装填催化剂的炉管外 的火焰加热炉提供。制得的合成气H2/CO比高 (≥3),适合制合成氨和以氢气为目的产物的工 艺,不适合甲醇及费托合成,而且,由于该过程需 过热蒸汽(H20:crl4=2—3:1),存在能耗大,生产 能力低(空速约2
该反应可在较低温度(750—800℃)下达到 90%以上的热力学平衡转化,反应接触时间短 (<10。2 s),可避免高温非催化部分氧化法伴生 的燃烧反应,CO和H2的选择性高达95%,生成 合成气的H2/CO比接近2,适合于合成甲醇、费托 合成等后续工业过程。与传统的蒸汽转化法和联 合重整法相比,甲烷催化部分氧化制合成气的反 应器体积小、效率高、能耗低,可显著降低设备投 资和生产成本。因此,此工艺受到国内外的广泛 重视,研究工作十分活跃。自90年代以来,人们 针对甲烷催化部分氧化反应所采用的氧化剂、原 料配比、催化剂体系、工艺条件及反应器的不同已 开发出固定床【3,4|、流化床[5,63以及陶瓷膜工艺 等【71 93。对这些工艺进行开发的国外公司主要有
9858874、EP 967005、JP 10291801、JP
t/d合成氨装置。国内石油大学也对两段法工
艺进行了研究,所开发的两段法是使用两个串联 的固定床,把氧气分成两部分加入反应器中,一段 低温进料,发生甲烷的低温燃烧;在二段,放热的 部分氧化反应与吸热的重整反应同时进行,避免 了催化剂床层飞温,反应基本在绝热条件下进 行‘13,141。 总之,由于两段法工艺在节约燃料、缩小装置 尺寸、降低烟气排放等方面具有明显的优势,因而 对其技术进行改进和创新以及新工艺的开发将是 今后的主流。同时,改造现有装置并采用这些技 术也将是今后工作的主要方向。 2新技术研究进展 2.1甲烷一二氧化碳重整技术(MCR) 利用甲烷制合成气除了可以采用水蒸汽转化 及部分氧化技术以外,还可以采用二氧化碳进行 重整反应制备合成气,其反应方程式如下: CH4+C02—2CO+2H2
石油资源作为20世纪的主要能源在石油、化 工领域占据了重要的地位。但由于长期大量开 采,储量日趋匮乏,使世界能源结构正在发生深刻 变化。据专家预测,到2l世纪中叶,天然气在世 界能源结构中所占比例将由目前的25%上升到 40%左右,而石油将从目前的34%降至20%…。 因此,天然气作为一种高效、优质、清洁的能源和 化工原料,将逐步取代石油而占主导地位,成为 21世纪的主要能源,而研究和开发利用天然气的 新技术、新工艺也就成为人们关注的焦点。 天然气的主要成分是甲烷。利用甲烷制备化 工产品主要有两条途径:直接转化法,如甲烷直接 氧化偶联制乙烯,甲烷选择氧化制甲醇、甲醛等; 间接转化法,即经合成气生产合成氨、甲醇和烃类 等,如利用合成气(CO+H2)作为中间产物,在Cu/ ZnO催化剂上合成甲醇(CO+2H2一cn308)或通 过费托过程在Fe和cu催化剂上合成烃类[nCO +2nH2一(CH2)n]。 由于直接转化法中目的产物在苛刻的反应条 件下很容易深度氧化为C02和H20,存在转化率 低、产率低、选择性较差等缺点,近期内工业化较 困难。而采用先将天然气转化为合成气,再合成 化学品和燃料的间接转化法目前已在工业上广泛 应用,而且随着以合成气为原料的许多化工合成 过程中一些新技术的不断诞生,将会使间接转化 法在天然气综合利用中发挥更大的作用。为此, 笔者将国内外已工业化应用的天然气转化为合成 气工艺技术的改进及新技术的研究开发进展综述 如下。
2006年7月
王卫等.甲烷制备合成气工艺开发进展
27
甲烷制备合成气工艺开发进展王 卫王凤英申欣孙道兴
(青岛科技大学化学与分子工程学院,青岛266042)
摘要综述了国内外天然气制合成气技术的研究进展,包括对已工业化应用工艺的技术改 进,如甲烷蒸汽转化工艺采用换热转化及自热转化技术;甲烷催化部分氧化技术,根据原料配比、 催化剂体系、工艺条件不同,可分别采用固定床、流化床、陶瓷膜及晶格氧工艺;甲烷自热式转化工 艺采用非催化部分氧化与绝热蒸汽转化相结合,工艺中引入蒸汽可消除积碳;甲烷两段转化工艺 采用换热一白热式转化技术。新技术研究进展包括甲烷一二氧化碳重整技术,甲烷、二氧化碳和 氧气催化氧化重整技术,甲烷联合转化工艺,气体加热转化工艺及联合自热转化工艺等。 关键词天然气 甲烷合成气
cn4+1/202-"CO+2H2
AH=一22.6 l【J/mol
化率和合成气的选择性也能满足要求。对于该工 艺的开发,许多研究公司都在原料中引进了水,可 有效地消除积碳。 1.2.3陶瓷膜工艺 陶瓷膜工艺采用空气代替纯氧,利用催化陶 瓷膜(混合导体透氧膜)在高温下将空气中的氧转 化为氧离子,通过陶瓷膜中的氧离子空位传递到 另一侧的催化剂薄层表面而发生甲烷部分氧化反 应。该技术使制氧过程与催化氧化过程在同一反 应器中进行,从而大大简化了操作过程和操作费 用,可使合成气成本降低30%~50%,因此,具有 广阔的应用前景,同时,也使甲烷催化部分氧化技 术更具吸引力。在陶瓷膜的研究方面,亟待解决 的问题是如何制得高透氧量、高稳定性和高机械 强度的透氧膜材料【1引。 1.2.4品格氧工艺 晶格氧工艺采用变价金属氧化物作为储氧材 料,利用它们的氧化还原性质,将空气中的氧变为 储氧材料中的晶格氧,并以此代替纯氧作为甲烷 催化部分氧化制合成气的氧源,这样不仅能大幅 度降低合成气的生产成本,同时还由于甲烷和空 气分开进料,避免了发生爆炸的危险。目前,采用 的储氧材料主要有氧化铁和氧化锰【l¨。 1.3甲烷自热式转化工艺 甲烷自热式转化工艺是将非催化部分氧化与 绝热蒸汽转化相结合,简称ATR法。在一个反应 炉内,以烃类、氧和少量水蒸汽为原料,首先在反 应器顶部混合并发生部分氧化反应后,高温混合 气再与转化炉中的下部催化剂接触发生蒸汽转化 反应生成合成气的过程,其水蒸汽转化反应所需 的热量由部分氧化反应放出的热量提供,无须外 部加热,因而能够降低操作费用和节约燃料。该 工艺为固定床催化无烟工艺,其投资少,反应技术 简单,具有操作弹性大、开停车方便等优点。由于 工艺中有蒸汽引人,因此可消除积碳的产生,实现 无烟尘生产。 ATR工艺开发于50年代末期,其主要用于生 产合成氨和甲醇。其中Topsqbe公司的ATR专利 技术早在1958年就已实现工业化,至今已推出20 套【12’生产装置。实践证明,该技术在工业上具有 很大的应用潜力。 目前,已有多篇国内外专利公开了各种自热 式转化工艺。这些工艺采用的原料除了甲烷以
万方数据
2006年7月

卫等.甲烷制备合成气工艺开发进展
29
外,还可以加工如天然气、炼厂气、液化气和石脑 油等在内的烃类物质。Topsqbe公司对ATR工艺 的开发具有丰富的经验,现已在世界各国申请了 多篇专利,近期的专利有EP
EP 936183、EP 0950636、
两侧均为工艺气,压差小,炉管可以不用价格昂贵 的合金,从而也节省了投资;换热一自热式工艺操 作更简单,更安全可靠。与外热式相比,换热一自 热式转化工艺要配备空分装置或富氧装置。 采用换热一自热式转化技术用于天然气生产 合成氨的工业应用始于1988年,英国、美国、德国 和俄罗斯均有此技术,主要规模有350、450和
600
982266、WO
9846525、CN
1247834及CN
1229122等,其典型的ATR工艺流程包括:原料预 热段;反应器和热回收段;气体分离装置。除了 Topsqbe公司以外,美国Exxon公司也对ATR工艺 进行了开发,其申请的专利为EP 977706。此外, 还有德国和日本的几家公司也对此进行了专利申 请,如WO
精细石油化工进展
28
ADVANCES IN
nNE
PE豫OCHEMICALS
第7卷第7期
方面进行了重要的改进。例如采用换热转化及自 热转化技术,这些技术类似预转化,对于装置扩产 是可行的选择。换热转化的相当一部分转化吸热 由回收转化炉烟气的热量提供,这样也可以减少 NO。的排放量。 1.2甲烷部分氧化技术 甲烷部分氧化技术根据是否采用催化剂而分 为非催化部分氧化工艺(Noncatalytic PoM)和催化 部分氧化工艺(CPO)两种【2]。甲烷催化部分氧化 制合成气是温和的放热反应,在催化剂存在下,氧 气和甲烷进行部分氧化反应,使甲烷氧化成CO 和心,其反应式如下:
AH298=247 kJ/tool
10291802等几篇专利均对自热式转化工艺进行了 新的开发,其总的设计思路大致相同,都是采用两 个反应室,即部分氧化室和蒸汽转化室,部分氧化 反应产生的热量可提供给蒸汽转化室进行蒸汽转 化反应;区别在于两个反应室的连接方式不同,前 者属于并联连接,后者属于串联连接,即部分氧化 反应的产品气流还要流入蒸汽转化反应室,因此, 两者的产品也有所不同,前者为富含氢气的合成 气,后者则基本上是氢气。 由于ATR工艺是用非催化部分氧化过程释 放的热供给强吸热蒸汽转化反应所需的大量热 量,在非催化条件下,部分氧化反应的温度高达
相关文档
最新文档