数学发展的历史

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①通史研究 代表作可以举出M.B.康托尔的《数学史讲义》
②古希腊数学史 许多古希腊数学家的著作被译成现代文字
③古埃及和巴比伦数学史 把巴比伦楔形文字泥板算书和古埃及纸 草算书译成现代文字是艰难的工作。
范·德·瓦尔登的《科学的觉醒》(1954)一书,则又加进古希 腊数学史,成为古代世界数学史的权威性著作之一。 ④断代史和分科史研究 德国数学家(C.)F.克莱因著的《19世纪数学发展 史讲义》(1926~1927)一书,是断代体近现代数学史研究的开始,它成书于 20世纪,但其中所反映的对数学的看法却大都是19世纪的。直到1978年法国 数学家J.迪厄多内所写的《1700~1900数学史概论》出版之前,断代体数学 史专著并不多,但却有(C.H.)H.外尔写的《半个世纪的数学》之类的著名 论文。
数学史研究的任务在于,弄清数学发展过 程中的基本史实,再现其本来面貌,同时透过 这些历史现象对数学成就、理论体系与发展模 式作出科学、合理的解释、说明与评价,进而 探究数学科学发展的规律与文化本质。作为数 学史研究的基本方法与手段,常有历史考证、 数理分析、比较研究等方法。
学史既属史学领域,又属数学科学领域, 因此,数学史研究既要遵循史学规律,又要遵 循数理科学的规律。根据这一特点,可以将数 理分析作为数学史研究的特殊的辅助手段,在 缺乏史料或史料真伪莫辨的情况下,站在现代 数学的高度,对古代数学内容与方法进行数学 原理分析,以达到正本清源、理论概括以及提 出历史假说的目的。数理分析实际上是“古” 与“今”间的一种联系。
数学发展史上的三次危机
无理数的发现──第一次数学危机 无穷小是零吗?── 第二次数学危机 18世纪,微分法和积分法在生产 和实践上都有了广泛而成功的应用
悖论的产生 --- 第三次数学危机 数学史上的第三次危机,是由1897 年的突然冲击而出现的
1. 承认“无理数”是对“万物皆数”的思想解放 古希腊有一个毕达哥拉斯学派ห้องสมุดไป่ตู้是一个研究数学、
数学史的发展
古代数学史: ①古希腊曾有人写过《几何学史》,未能流传
下来。 ②5世纪普罗克洛斯对欧几里得《几何原本》第
一卷的注文中还保留有一部分资料。 ③中世纪阿拉伯国家的一些传记作品和数学著
作中,讲述到一些数学家的生平以及其他有关数学史的 材料。
④12世纪时,古希腊和中世纪阿拉伯数学书籍 传入西欧。这些著作的翻译既是数学研究,也是对古典 数学著作的整理和保存。
2 微积分的产生是第二次思想解放 第二次数学危机源于极限概念的提出。微积分
的问题,实际上就是解决连续与极限的问题.牛 顿在发明微积分的时候, 牛顿合理地设想:Δ t 越小,这个平均速度应当越接近物体在时刻t时的 瞬时速度。这一新的数学方法,但由于它逻辑上 的不完备也使贝克莱主教曾猛烈地攻击牛顿的微 分概念。
数学史的研究对象
数学史是研究数学科学发生发展及其规律的科 学,简单地说就是研究数学的历史。它不仅追溯数 学内容、思想和方法的演变、发展过程,而且还探 索影响这种过程的各种因素,以及历史上数学科学 的发展对人类文明所带来的影响。因此,数学史研 究对象不仅包括具体的数学内容,而且涉及历史 学、哲学、文化学、宗教等社会科学与人文科学内 容,是一门交叉性学科 .
3 非欧几何的诞生是第三次思想解放 ' 希腊人在几何学上取得很大成就, 最典型的是《几何原本》。
《几何原本》从五个公理、五个公设 出发推演出有关的数学问题,这就给 了人们一个价值尺度,一把尺子。非 欧几何的创建打破了 2000多年来欧氏 几何一统天下的局面,从根本上革新 和拓宽了人们对几何学观念的认识。 4 罗索悖论引出的数学基础研究是第 四次思想解放 ,MGEO o
科学和哲学的团体。他们认为“数”是万物的本源, 是数学严密性和次序性的唯一依据,是在宇宙体系里 控制着自然的永恒关系,数是世界的准则和关系,是 决定一切事物的,“数统治着宇宙”,支配着整个自 然界和人类社会。但是学派中一个叫希帕索斯的学生 在研究 1与2的比例中项时,发现没有一个能用整数比 例写成的数可以表示它。无理数的发现推翻了毕达哥 拉斯等人的信条,打破了所谓给定任何两个线段,必 定能找到第三个线段使得给定的线段都是这个线段的 整数倍。
数学发展具有阶段性,因此研究者根据一 定的原则把数学史分成若干时期。目前学术界 通常将数学发展划分为以下五个时期:
1.数学萌芽期(公元前600年以前); 2.初等数学时期(公元前600年至17世纪中 叶); 3.变量数学时期(17世纪中叶至19世纪20年 代); 4.近代数学时期(19世纪20年代至第二次世 界大战); 5.现代数学时期(20世纪40年代以来)。
建工(1)班
▪ 数学在实际需要的基础之上产生并发展起 来的.它经经历了不同时期的过渡,才逐 渐变的完善起来.
▪ 不同时期的数学有其特点,直到现阶段, 数学仍然在不断发展.随着实践带来新的 发展.
主 要 内 容
• 1数学史的研究对象 • 2数学史的分期 • 3数学史的发展 • 4几次重大的思想方法突破 • 5中外著名数学家 • 6数学发展的意义及特点 • 7总结
⑤历代数学家的传记以及他们的全集与《选集》的整理和出版 这是数学史 研究的大量工作之一。此外还有多种《数学经典论著选读》出现,辑录了历代 数学家成名之作的珍贵片断。
⑥专业性学术杂志 最早出现于19世纪末,现代则有国际科学史协会数学史 分会主编的《国际数学史杂志》。
中国数学史:
中国以历史传统悠久而著称于世界,在历代正史的《律历志》“备数”条 内常常论述到数学的作用和数学的历史。例如较早的《汉书·律历志》说数学 是“推历、生律、 制器、 规圆、矩方、权重、衡平、准绳、嘉量,探赜索稳, 钩深致远,莫不用焉”。《隋书·律历志》记述了圆周率计算的历史,记载了祖 冲之的光辉成就。历代正史《列传》中,有时也给出了数学家的传记。正史 的《经籍志》则记载有数学书目。
近代西欧各国的数学史:
是从18世纪,由J.蒙蒂克拉、C.博絮埃、A.C.克斯特纳同时开始,而以蒙 蒂克拉1758年出版的《数学史》(1799~1802年又经J.de拉朗德增补)为代表。 从19世纪末叶起,研究数学史的人逐渐增多,断代史和分科史的研究也逐渐展 开,1945年以后,更有了新的发展。19世纪末叶以后的数学史研究可以分为下述 几个方面。
相关文档
最新文档