函数的奇偶性、周期性及对称性三者之间关系的探究

函数的奇偶性、周期性及对称性三者之间关系的探究
函数的奇偶性、周期性及对称性三者之间关系的探究

探究:函数的奇偶性、周期性及对称性三者之间关系

松江四中 孙吉利 201601

2007学年度,我在高三的数学教学工作中,遇到了下面这个问题:

(2007年普通高等学校招生全国统一考试安徽卷)定义在R 上的函数f(x)既是奇函数,又是周期函数,T 是它的一个正周期。若将方程f(x)=0在闭区间〔-T,T 〕上的根的个数记为n,则n 可能为( )A 0 B 1 C3 D5

令我费解的是,当我把这个问题呈现给学生的时候,我却收到了意想不到的结果。自己所教的学生中,只有5

1的学生给出了正确的选择,将近一半的学生无从下手。课后之余,我就找到很多同学谈心、了解,看一看,问题到底出在那里?通过自己与学生的谈话和聊天的过程,我找到了问题的原因,那就是:多数同学没弄清函数的奇偶性、周期性及对称性三者之间的联系,甚至有的同学问我:老师,他们之间还有联系吗?即使得到正确答案的同学,还有一部分是带有猜的成份。经过精心准备与设计,我就开了一节函数的奇偶性、周期性及对称性三者之间关系的探究课,以期达到纠正的效果。

我的探究过程是这样开展的:

师:针对同学们出现的问题,今天这节课,我们专门来探究一下函数的奇偶性、周期性及对称性三者之间的联系。首先,让我们以奇函数为例来探究三者之间的关系。要探究三者之间的关系,我们必须确立一个解决问题的突破口,找到问题的切入点,那么,这个突破口是什么呢?(设立悬念,学生积极思考讨论,得出不同的结论,引起思维碰撞。)

张:奇函数的图象关于原点成中心对称,偶函数的图象关于y 轴成轴对称。奇函数的图象没有对称轴,同样,偶函数的图象也就没有对称中心。

李:不对,正弦函数f (x )=sinx ()R x ∈就是奇函数,但是,它却有对称轴。余弦函数f(x)=cosx ()R x ∈是偶函数,它也有对称中心。对呀!我们就应该从正弦函数与余弦函数入手,来探究这个问题。老师,老师,我找到了(迫不及待地要发言)

李:无论是余弦函数还是正弦函数,他们同时还都具有周期性,正好符合要求,我觉得他们应该是突破口。

师:很好。那么,我们就从正弦函数f (x )=sinx ()R x ∈着手展开探究,通过对正弦函数f (x )=sinx ()R x ∈的研究,看一看对一般的奇函数是否也具有相关的性质。 通过对正弦函数f (x )=sinx ()R x ∈的研究可知:

① 函数f (x )=sinx 为奇函数:

② 函数f (x )=sinx 的周期为2k π(k ∈Z),最小正周期为2π;

③ 函数f (x )=sinx 的图象关于点(k π,0)成中心对称,关于直线x=k π+2π成轴对 称。(k ∈Z)

根据上述三条,结合我们今天的目的,同学们可自由提出自己的见解与猜想。(下面,四个人开始一组展开讨论,每组争取得到自己的结论)

教师开始巡视教室,学生在激烈地讨论着问题。

“老师,我们得出来了”。突然,有一个同学在喊:

我们不约而同地看去,原来是王。

王:老师,我的结论是:若函数f (x )为奇函数,最小正周期为T (T >0),则函数图象关于直线4

T x =成轴对称; 师:你是怎么得出来的呢?

王:正弦函数f (x )=sinx ()R x ∈为奇函数,最小正周期为2π,它的一条对称轴是x=2π,2π=42π,因此,我说函数图象关于直线4

T x =成轴对称;(同学们以羡慕的眼光看着王,王也非常高兴)

师:对吗?请同学们集体讨论一下。

钱:老师,王的结论是错误的。(同学们都惊讶地看着钱)

师:为什么?

钱:我们知道函数f (x )=tgx 在定义域内也为奇函数,且最小正周期为π,但是却无对称轴。因此,我说王的结论是错误的。(这时,班级突然响起了热烈的掌声,表达了对钱的赞扬,尤其是王的掌声最响)

师:猜想出来的结论不一定是正确的,需要我们去验证。但是,王的勇气可嘉,他的猜想方法还是值得我们去借鉴的。王同学是根据正弦函数的奇偶性、周期性、对称性的特点,在一个函数具备奇函数与周期性的前提下,而猜测出它的对称性,然后,再通过证明论证是否正确。我们不妨把它看作是知二求一,如果我们继续猜测下去,你有没有就会有更多的收获,同学们不妨试一试。(教师及时点明探究方向,避免学生迷失方向。)

在我的激励下,同学们个个跃跃欲试,你一言,我一语,就开始了讨论。不久,孙同学的话匣子就打开了。

孙:老师,根据王的猜想方法,我得出如下结论:若函数f (x )为奇函数,且最小正周期为T (T >0),则函数图象关于点(2

T ,0)成中心对称。不知是否正确?(脸上充满了不敢肯定的表情)

我见状,立即说:不要紧,你敢于猜测就已经说明了你是一名非常优秀的学生。我非常感谢你为我们提供了探究的话题。(这时,其它同学们不由自主地鼓起掌来)好,同学们,就让我们共同探讨孙的结论吗?我相信你们有这个能力。(在我的鼓励下,唐勇敢地站了起来)

唐:老师,我觉得孙的答案是正确的。我是这样证明的。(师生共同通过实物投影仪,展示了一下唐的结论:)

设点p (a ,f (a ))是函数图象上的任意一点,点p 关于点(2

T ,0)的对称点为p '(T -a ,-f (a )),而f (T-a )=f (-a )=-f (a ),因此,点p '(T -a ,-f (a ))也在函数f (x )的图象上。所以,函数图象关于点(2

T ,0)成中心对称。 师:(我用赞许的目光看着唐,表达了我的心意)太好了,非常正确。

我的话音刚落,我就看见,平时一声不响的女生高的脸上也露出了笑容,我赶紧提问了她一下。

师:高,你在笑什么?

高听到了我的声音,脸刷一下红了。但是,她还是站了起来,用她那细小的声音对我说:

老师,我得出了你刚上课时,提问我们那个问题的答案。

师:是吗?那你就说说你的答案吧,让我们也来分享一下你的喜悦。

高:∵函数f(x)既是奇函数,又是周期函数,且T 是它的一个正周期。

∴由唐的结论可知,函数f (x )关于点(2

T ,0)()Z k ∈成中心对称。 又∵函数f(x) 的定义域为R ,∴f (2T )=-f (-2

T )=0 ∵f(x)是奇函数,∴f (0)=0,∴f(0)=f(T+0)=0,f(-T)=0=-f(T)

∴f (T )= f (-T )=f (0)=0。

∴方程f(x)=0在闭区间〔-T,T 〕上的根的个数至少为5。

“老师,老师,我也得出一个结论。”我回头一看,是吴同学。

吴:若函数f (x )为奇函数,函数图象关于直线x=a 成轴对称,则函数f (x )为周期函数,且4a 是它的一个周期;

师:你为什么猜测4a 是它的一个周期,而不是2a 呢?或者是其它数值呢?

吴:根据正弦函数的结论猜测出来的。函数f (x )=sinx 的最小正周期为2π,它又关于x=2π对称,2π=4×2

π,所以,我猜测结果是4a. 师:奥,原来还可以这样去猜测,不知是否正确。同学们证明一下试试。(个个越越欲试)

丁:∵函数f (x )的图象关于直线x=a 成轴对称,

∴f (a+x )=f (a-x ),

∴f (4a+x )=f(a-(3a+x))=f(-2a-x)

=-f(2a+x)=-f(a+(a+x))=-f(a-(a+x))=-f(-x)=f(x),

∴4a 是它的周期。

师:看来,你的猜想完全正确,继续努力。我由衷地伸出大拇指。

这时,班级东北角又骚动起来,看来他们肯定有所发现。

庄作为代表发言,说“若函数f (x )为奇函数,图象关于点(a ,0)成中心对称,则f (x )为周期函数,且2a 是它的一个周期”是真命题。看着他那自信傲气的样子,我不禁反问了一句“为什么?”。庄说:我发现,我们猜出来的结论中,凡是轴对称的都是错误的,而中心对称的却是正确的。因此,只须将吴的结论中的关于直线x=a 成轴对称改成关于点(a ,0)成中心对称,4a 改成2a,那结论肯定是正确的。说完这话,同学们都大笑起来,表示怀疑。我急忙制止了同学们的笑声。

师:其实,庄的答案是正确的。

我的话音刚落,立即引起同学们的惊讶,啊!怎么这样猜测也可以呢?

看着同学疑惑的表情,我感到非常高兴,他们这是完全被题迷住了。我带着神秘的表情说:不想信是吧,下面我给证明一下。

证明:设点p (x ,y )是函数图象上的任意一点,则点p 关于点(a ,0)的对称点p '(2a-x ,-y )也在函数f (x )的图象上,

∴f (2a-x )=-f (x )=f (-x ),

∴f (2a+x )=f (x ),

∴2a 是函数f (x )的一个周期。猜想正确;

陆:(自然自语地说)看来,庄的猜测是正确的,好神奇呀。

裴:老师,偶函数有没有类似的性质呢?

师:这个问题问得好,对于偶函数,我们可以类比余弦函数,猜想并证明相应的一些结论。由于时间关系,本节课我们就不做直接探讨,我只列出下面几条相应的结论,有兴趣的话,你课后再去探讨。

⑴若f (x )为偶函数,且以T 为周期(T >0)的函数,则图象关于直线x=2

T 对称; ⑵若f (x )为偶函数,且图象关于直线x=a (a ≠0)对称,则f (x )为周期偶函数,且2a 是它的一个周期;

⑶若f (x )的图象关于直线x=a (a ≠0)对称,且f (x )是以2a 为周期的周期函数,则f (x )是偶函数。

不知不觉,下课的铃声响了。但是,同学们还在激烈地讨论着,我不仅露出了笑容。 坐在办公室,我陷入了深思,觉得这节课有几个方面还是值得自己继续去发扬。 ① 搭建双基平台:使学生学会在合作中学习

探究性学习的方式一直是我们所倡导的,一方面,这种方式能使学生完全参入到教学中来,非常有利教学工作的开展。另一方面,它又可以为学生终身学习提供有效的学习方法。但是,学生对如何采用探究性学习的方式往往是束手无策。在这样的背景下,我认为:教师必须根据学生的实际认知水平,搭建一个他们能驾驭的研究平台,而且这样的平台,最好是低一点,这样使学生能很快地进入角色。本文中,我就建立了一个以正弦函数的有关性质为基础的双基平台,这个平台起点要求比较低,学生起步比较容易。另外,由于正弦函数同时具有奇偶性、周期性与对称性,这正好与我们要探讨的问题想吻合。鉴于此,我选择了正弦函数做突破口,事实证明这么做是正确的。看着自己的设想达到了预期的目的,我倍感欣慰。 欣喜之余,我也深深体会出了课堂中加强团结合作的重要性。我在这个过程中充当了组织者、引导者、合作者的多重身份。作为合作者,我完全成为了学生中的一员,充分走进学生,放下架子与学生进行平等交流,相互分享彼此的思考、见解和见识。正是在我的影响下,学生才积极去思考、交流我所提出的问题,通过合作而得出一个个正确的结论。对于学生来说,不仅仅是收获了知识,更大的是收获学会了合作、交流,这可是终身受益的事情。

②注重教学有效性:使学生在探究中体验成功的喜悦

每位教师都有自己不同的教学方法,但是,要达到教学的有效性,他的教学方法必须是多种多样的,不可能是一种方法教到底。而如何达到有效,却是我们每个教师所亟待解决的问题。本节课上,开始我直接点中探究的要害——突破口问题,一下子就将学生的注意力集中起来,这就为后续的教学成功埋下了强有力的伏笔。俗话说:良好的开端是成功的一半,上课伊始,如果把学生牢牢抓住,那么,你后面的一切工作就会得心应手,这就是引课的有效性作用。教学过程中,我适时采取了设问、类比、猜想、启发、引导等方式,运用小组讨论 的形式,充分调动了学生学习的主观能动性,收到了理想的效果。在教学过程中,凡是学生想到的,学生想说的,学生想做的,我都让学生自己去完成,我尽量减少自己对教学时空的占有,把更多的学习时空让给了学生。还有,我主动提供机会,让学生重充分发挥集体的力量与智慧,群策群力。这不仅解决了本节课的问题,还为他们将来走向社会,学会团结合作,打下了深深的烙印,可谓是一举多得。学生通过这样的训练,自信心大增,学习的效率有了飞速的提高,学习成绩自然就会提高,他们就会由衷地喜欢上你的课,这就是我们抓教学有效性的目的所在。

③关注学生的闪光点:提倡大胆类比、猜想创建和谐氛围

学生的认知水平不可能一下达到教师的要求,在课堂中,我觉得教师更应该关注学生的 优点所在,哪怕就是那么一点点,尤其是对内向型和学习较差的学生。我的一句表扬的话可能就会对他产生深远的影响。正是牢记这一点,本节课中,我对每一个学生的答案都积极地表示肯定,即使错了,也是同样对待,因为这个学生已经参入到我的教学中来了。这样,他

的自信心就建立起来了,对于后续课的开展是大有益处的。课堂中,探究出的每一个结论,都要经过学生的不断思考,才可能得出结果来。当然,这个过程不可能是一帆风顺的,和谐的氛围是探究成功的基础。

《函数的奇偶性与周期性》教案

教学过程 一、课堂导入 我们生活在美的世界中,有过许多对美的感受,请想一下有哪些美? 对于对称美,请想一下哪些事物给过你对称美的感觉呢? 生活中的美引入我们的数学领域中,它又是怎样的情况呢?若给它适当地建立直角坐标系,那么会发现什么特点? 数学中对称的形式也很多,这节课我们就来复习在坐标系中对称的函数

二、复习预习 1、复习单调性的概念 2、复习初中的轴对称和中心对称 3、预习奇偶性的概念 4、预习奇偶性的应用

三、知识讲解 考点1 函数的奇偶性 [探究] 1. 提示:定义域关于原点对称,必要不充分条件. 2.若f(x)是奇函数且在x=0处有定义,是否有f(0)=0?如果是偶函数呢? 提示:如果f(x)是奇函数时,f(0)=-f(0),则f(0)=0;如果f(x)是偶函数时,f(0)不一定为0,如f(x)=x2+1. 3.是否存在既是奇函数又是偶函数的函数?若有,有多少个? 提示:存在,如f(x)=0,定义域是关于原点对称的任意一个数集,这样的函数有无穷多个.

考点2 周期性 (1)周期函数: 对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y =f(x)为周期函数,称T为这个函数的周期. (2)最小正周期: 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.

四、例题精析 【例题1】 【题干】判断下列函数的奇偶性 (1)f(x)=lg 1-x 1+x ;(2)f(x)= ? ? ?x2+x(x>0), x2-x(x<0); (3)f(x)= lg(1-x2) |x2-2|-2 .

函数的奇偶性与周期性练习题

函数的奇偶性与周期性 1.奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (1)=1,则f (8)+f (9)= ( ) A. -2 B.-1 C. 0 D. 1 2.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π +=x y ,④)42tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ 3.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 4.已知()f x 是定义在R 上的奇函数,且是以2为周期的周期函数,若当(]0,1x ∈时 2()1f x x =-,则7()2 f 的值为 A 34- B 34 C 12- D 12 5.下列函数为偶函数的是 A. sin y x = B. 3y x = C. x y e = D. y = 6.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5 ()2f -= (A) -12 (B)1 4- (C)14 (D)12 7.下列函数中,既是偶函数又在()0,+∞单调递增的函数是 (A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= 8.下列函数为偶函数的是() A.()1f x x =- B.()2f x x x =+ C.()22x x f x -=- D.()22x x f x -=+ 9.偶函数y=f(x)的图像关于直线x=2对称,f(3)=3,则f(-1)=_______. 10.函数)4)(()(-+=x a x x f 为偶函数,则实数a = . 11.已知()f x 为奇函数,()()9,(2)3,(2)g x f x g f =+-==则 .

函数的奇偶性及周期性综合运用

函数的奇偶性及周期性 1. 已知定义在 R 上的奇函数 f(x) 满足 f(x+2)= -f(x) f(6) 的值为 ( ) A.-1 B.0 C.1 D.2 【答案】 B 【解析】 ∵ f(x+2)=-f(x), ∴ f(6)=f(4+2)=-f(4)=f(2)= -f(0) 又 f(x) 为R 上的奇函数 , ∴ f(0)=0. ∴ f(6)=0. 2. 函数 f ( x) x 3 sin x 1( x R), 若 f(a)=2, 则 f(-a) 的值为 ( ) A.3 B.0 C.-1 D.-2 【答案】 B 【解析】 设 g ( x) 3 sinx, 很明显 g(x) 是一个奇函数 . x ∴ f(x)=g(x)+1. ∵ f(a)=g(a)+1=2, ∴ g(a)=1. ∴ g(-a)=-1. ∴ f(-a)=g(-a)+1=-1+1=0. 3. 已知 f(x) 是定义在 R 上的偶函数 , 并满足 f(x+2)= 1 1 x 2 时 ,f(x)=x-2, 则 f ( x) f(6.5) 等于?? ( ) A.4.5 B.-4.5 C.0.5 D.-0.5 【答案】 D 【 解 析 】 由 f(x 2) 1 得 f(x 4) 1 f ( x ) f ( x 2) f(6.5)=f(2.5). 因为 f(x) 是偶函数 , 得 f(2.5)=f(-2.5)=f(1.5), 而 1 x 2 时 ,f(x)=x-2, 所以 f(1.5)=-0.5. 综上 , 知f(6.5)=-0.5. 4. 已知函数 f(x) 是定义在 R 上的奇函数 , 当 x>0时 ,f(x)= - 是 ( ) A. ( 1) B. ( 1] C. (1 ) D. [1 ) 【答案】 A 【解析】 当 x>0时 f ( x ) 1 2 x 1 1 x 2 当 x<0时,-x>0, ∴ f( x ) 1 2 x . 又∵ f(x) 为 R 上的奇函数 , ∴ f(-x)=-f(x). ∴ f ( x ) 1 2 x . ∴ f ( x ) 2 x 1 . ∴ f ( x) 2 1 1 即 2 x 1 . x ∴ x<-1. 2 2 ∴不等式 f ( x ) 1 的解集是 ( 1) . 2 5. 设 g(x) 是定义在 R 上、以 1为周期的函数 . 若函数 f(x)=x+g(x) 则f(x) 在区间 [0,3] . f ( x) 那 么 f(x) 的 周 期 是 4, 得 2 x 则不等式 f ( x) 1 的解集 2 1 2 在区间 [0,1] 上的值域为 [-2,5],

函数的奇偶性与周期性 知识点与题型归纳

1.结合具体函数,了解函数奇偶性的含义. 2.会运用函数的图象理解和研究函数的奇偶性. 3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. ★备考知考情 1.对函数奇偶性的考查,主要涉及函数奇偶性的判断,利用奇偶函数图象的特点解决相关问题,利用函数奇偶性求函数值,根据函数奇偶性求参数值等. 2.常与函数的求值及其图象、单调性、对称性、零点等知识交汇命题. 3.多以选择题、填空题的形式出现. 一、知识梳理《名师一号》P18 注意: 研究函数奇偶性必须先求函数的定义域 知识点一函数的奇偶性的概念与图象特征 1.一般地,如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=f(x),那么函数f(x)就叫做偶函数. 2.一般地,如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=-f(x),那么函数f(x)就叫做奇函数. 1

2 3.奇函数的图象关于原点对称; 偶函数的图象关于y 轴对称. 知识点二 奇函数、偶函数的性质 1.奇函数在关于原点对称的区间上的单调性相同, 偶函数在关于原点对称的区间上的单调性相反. 2. 若f (x )是奇函数,且在x =0处有定义,则(0)0=f . 3. 若f (x )为偶函数,则()()(||)f x f x f x =-=. 《名师一号》P19 问题探究 问题1 奇函数与偶函数的定义域有什么特点? (1)判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. (2)判断函数f (x )的奇偶性时,必须对定义域内的 每一个x , 均有f (-x )=-f (x )、f (-x )=f (x ), 而不能说存在x 0使f (-x 0)=-f (x 0)、f (-x 0)=f (x 0). (补充) 1、若奇函数()f x 的定义域包含0,则(0)0=f . (0)0=f 是()f x 为奇函数的 既不充分也不必要条件 2.判断函数的奇偶性的方法 (1)定义法: 1)首先要研究函数的定义域,

1.10基本初等函数奇偶性和周期性

1.10基本初等函数奇偶性和周期性 姓名___________ 本节重点:①能够正确判断函数的奇偶性和周期性;②运用基本初等函数的性质解题。 一.基础练习 1. 写出下列函数中,奇函数是________;偶函数是________;非奇非偶函数是________ ①sin 2y x = ②2cos y x = ③4221y x x =++ ④2(1)y x =- ⑤()x x f x e e -=- ⑥1()1 x f x x -=+ ⑦1()lg 1 x f x x -=+ ⑧23 ()f x x -= 2. 已知多项式函数32()f x ax bx cx d =+++,系数,,,a b c d 满足__________时,()f x 是奇函数; 满足___________时,它是偶函数. 3. 定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(2)f =________. 4. 函数sin 2y x =的周期是________;tan y x π=的周期是________. 5. 已知函数()f x 是定义在(-3,3)上的奇函数,当03x << ()f x 图象如右,则不等式 ()0f x x >的解集是____________. 二、例题讲解 例1:判断下列函数的奇偶性 (1)2 ()2||3f x x x =-- (2)22 2,0 ()2,0 x x x f x x x x ?-≥?=?--,实数a 的范围是____________.

函数的奇偶性和周期性

精锐教育学科教师辅导讲义 讲义编号11sh11sx00 学员编号: 年级:高二课时数:3 学员姓名:辅导科目:数学学科教师: 课题函数的奇偶性和周期性 授课日期及时段 教学目标 1、理解函数的周期性与奇偶性的概念 2、能根据函数的周期性求函数值或在相关区间上的函数解析式 3、会判断函数的奇偶性,并会结合周期性与奇偶性解决相关问题 教学内容 一、知识点梳理及运用 知识点一、函数的奇偶性 1、定义:设() y f x =,x A ∈,如果对于任意x A ∈,都有,则称函数() y f x =为奇函数;如果对于任意x A ∈,都有,则称函数() y f x =为偶函数 2、函数具有奇偶性的必要条件是其定义域关于对称 3、() f x是偶函数?() f x的图象关于y轴对称 () f x是奇函数?() f x的图象关于原点对称 4、若奇函数() f x的定义域包含0,则(0)0 f= 5、判断函数奇偶性的方法: ①定义法:首先判断其定义域是否关于原点对称 若不对称,则为非奇非偶函数 若对称,则再判断()() f x f x =-或()() f x f x =-是否成立 ②性质法:设() f x,() g x的定义域分别是 12 , D D,那么在它们的公共定义域 12 D D D =?上: 奇±奇=奇,偶±偶=偶,奇?奇=偶,偶?偶=偶,奇?偶=奇 典型例题 例1、(判断奇偶性)判断下列函数的奇偶性 (1)35 ()35 f x x x =+(2)2 ()3||1 f x x x =-+(3) 2 2 (0) () (0) x x x f x x x x ?+< ? =? -+> ?? (4)()|1||1| f x x x =+--

函数对称性、周期性和奇偶性的规律总结大全 .分解

函数对称性、周期性和奇偶性规律 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数 )(x f y =,如果存在一个不为零的常数 T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周 期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==, 即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数 )(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在 )(x f y =上,即) (11x f y =,通过 b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以 1 112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得 证。 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 (3)函数 )(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个 y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则 有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数 )(x f y =满足如下关系系,则T x f 2)(的周期为 A 、 )()(x f T x f -=+ B 、) (1 )()(1)(x f T x f x f T x f - =+= +或 C 、 )(1)(1)2(x f x f T x f -+=+或) (1) (1)2(x f x f T x f +-=+(等式右边加负号亦成立)

函数的奇偶性与周期性试题(答案)

函数的奇偶性与周期性 一、选择题 1.(2015·四川绵阳诊断性考试)下列函数中定义域为R ,且是奇函数的是( ) A .f(x)=x2+x B .f(x)=tan x C .f(x)=x +sin x D .f(x)=lg 1-x 1+x 2.(2014·新课标全国卷Ⅰ)设函数f(x),g(x)的定义域都为R ,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( ) A .f(x)g(x)是偶函数 B .|f(x)|g(x)是奇函数 C .f(x)|g(x)|是奇函数 D .|f(x)g(x)|是奇函数 3.(2015·长春调研)已知函数f(x)=x2+x +1x2+1,若f(a)=23 ,则f(-a)=( ) A.23 B .-23 C.43 D .-43 4.已知f(x)在R 上是奇函数,且满足f(x +4)=f(x),当x ∈(0,2)时,f(x)=2x2,则f(7)等于( ) A .-2 B .2 C .-98 D .98 5.函数f(x)是周期为4的偶函数,当x ∈[0,2]时,f(x)=x -1,则不等式xf(x)>0在[-1,3]上的解集为( ) A .(1,3) B .(-1,1) C .(-1,0)∪(1,3) D .(-1,0)∪(0,1) 6.设奇函数f(x)的定义域为R ,最小正周期T =3,若f(1)≥1,f(2)=2a -3a +1 ,则a 的取值范围是( ) A .a<-1或a≥23 B .a<-1 C .-1

函数的奇偶性与周期性考点和题型归纳

函数的奇偶性与周期性考点和题型归纳 一、基础知 1.函数的奇偶性 函数的定义域关于原点对称是函数具有奇偶性的前提条件. 若f (x )≠0,则奇(偶)函数定义的等价形式如下: (1)f (-x )=f (x )?f (-x )-f (x )=0?f (-x ) f (x )=1?f (x )为偶函数; (2)f (-x )=-f (x )?f (-x )+f (x )=0?f (-x ) f (x )=-1?f (x )为奇函数. 2.函数的周期性 (1)周期函数 对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期. 周期函数定义的实质 存在一个非零常数T ,使f (x +T )=f (x )为恒等式,即自变量x 每增加一个T 后,函数值就会重复出现一次. (2)最小正周期 如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 二、常用结论 1.函数奇偶性常用结论

(1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |). (2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性. (3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇. 2.函数周期性常用结论 对f (x )定义域内任一自变量x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )= 1 f (x ) ,则T =2a (a >0). (3)若f (x +a )=-1 f (x ),则T =2a (a >0). 3.函数图象的对称性 (1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称. (2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称. (3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称. 考点一 函数奇偶性的判断 [典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2 |x +3|-3; (2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2) |x -2|-2 ; (4)f (x )=? ??? ? x 2+x ,x <0,x 2-x ,x >0. [解] (1)由f (x )=36-x 2 |x +3|-3,可知????? 36-x 2≥0,|x +3|-3≠0?????? -6≤x ≤6, x ≠0且x ≠-6, 故函数f (x )的定 义域为(-6,0)∪(0,6],定义域不关于原点对称,故f (x )为非奇非偶函数.

函数的奇偶性与周期性

函数的奇偶性与周期性 考点梳理 一、函数的奇偶性 (探究:奇、偶函数的定义域有何特点?若函数f(x)具有奇偶性,则f(x)的定义域关于原点对称,反之,若函数的定义域不关于原点对称,则函数无奇偶性。) 二、奇、偶函数的性质 1、奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上单调性相反。 2、在公共定义域内, (1)两个奇函数的和函数是奇函数,两个奇函数的积函数是偶函数。(2)两个偶函数的和函数、积函数是偶函数。 (3)一个奇函数,一个偶函数的积函数是奇函数。 3、若f(x)是奇函数且在x=0处有定义,则f(0)=0。 (探究:若f(x)是偶函数且在x=0处有定义,是否有f(x)=0?不一定,

如f(x)= 21x +,而f(0)=1。) 三、函数的周期性 一般的,对于函数f(x),如果存在一个非零常数T ,使得当x 取定义域的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期。 对于一个周期函数f(x),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期。 (探究:若偶函数f(x)满足对任意的x R ∈,都有f(2+x)=f(-x),那么函数f(x)是周期函数吗? 是周期函数,()()(),(2)() (2)(),()=2f x f x f x f x f x f x f x f x T ∴-=+=-∴ += 是偶函数, 又所以是以为周期的函数) 例题解析 要点1:函数奇偶性的判定 判断函数奇偶性的一般方法 (1)首先确定函数的定义域,看其是否关于原点对称,否则,既不是奇函数也不是偶函数。 (2)若定义域关于原点对称,则可用下述方法进行判断: ①定义判断: ()()()()-()()f x f x f x f x f x f x -=?-=?为偶函数, 为奇函数。 ②等价形式判断:

函数的单调性奇偶性和周期性和对称性之间的关系

函 数 的 对 称 性 一个函数的自对称 定义1、定义域为R 的函数()f x ,若满足()()f a x f a x +=-或是(2)()f a x f x -=,图像特征函数自身关于x a =对称。就是该函数的对称轴是x a =。 定义2、定义域为R 的函数()f x ,若满足()()f a x f a x +=--或是(2)()f a x f x -=-,图像特征函数自身关于点(,0)a 对称。就是该函数的对称点是(,0)a 。 定义3、定义域为R 的函数()f x ,若满足()()f a x f b x +=-,图像特征函数自身关于2a b x += 对称。就是该函数的对称轴是2 a b x +=。 定义2、定义域为R 的函数()f x ,若满足()()f a x f b x +=--,图像特征函数自身关于点( ,0)2a b +对称。就是该函数的对称点是(,0)2 a b +。 还可以推广为()()f a x m f b x +=-- 含义:函数()f x 关于( ,)22a b m +这个点对称。 周期性:若()f x 对于定义域中的任意x 均有()()f x T f x +=,则()f x 是周期函数. 它的变形有: (1)f(x-1)=f(x+1) (2)f(x+2)=-f(x);(3)f(x+2)=1() f x - (4)f(x+3) +f(x)=1 (5)f(x+1)=) (11)(x f x f -+ 特征是x 的符号相同。 习 题 1、已知()f x 是R 上的偶函数,且f(-x-1)=f(-x+1) 当[0,1]x ∈时,()1f x x =-+,求当[5,7]x ∈时,()f x 的解析式。 2、定义域为R 的()f x 既是奇函数又是周期函数,T 是它的一个周期.问:区间[,]T T -上它有几个根?(财富:奇函数的半周期也是0点) 3、定义在R 上的偶函数()f x 以3为周期,且(2)0f =,则方程()0f x =在区间(0,6) 上有几个根? 4、()f x 是R 上的偶函数,若将()f x 的图象向右平移一个单位又得到一个奇函数,且(2)1f =-,求(1)(2)(3)(2008)f f f f ++++L 的值. 5、定义在R 上的函数()f x 满足5()()02 f x f x ++=且5 ()4 f x +为奇函数,下列结论谁正确? ①函数()f x 的最小正周期是52;②函数()f x 的图象关于点(5,04)对称;③函数()f x 的图象关于52 x =对称;④函数()f x 的最大值为5()2f . 6、函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( )(A) ()f x 是偶函数; (B) ()f x 是奇函数 (C) ()(2)f x f x =+ ; (D) (3)f x +是奇函数 例4举例子,构造新函数,用定义,平移,伸缩处理四道抽象函数题。 (1)f(x)是奇函数,则有f(-x+a)= f(x+a)是奇函数,则f(-x+a)= (2)函数f(x-1)是偶函数,求y=f(x)的对称轴。

函数的奇偶性与周期性

函数的奇偶性与周期性 1.函数的奇偶性 2.(1)周期函数 对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. (2)最小正周期 如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)若f (x )是定义在R 上的奇函数,则f (-x )+f (x )=0.(√) (2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×) (3)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.(√) (4)定义域关于原点对称是函数具有奇偶性的一个必要条件.(√) (5)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.(√) (6)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.(√) (7)函数f (x )=0,x ∈(0,+∞)既是奇函数又是偶函数.(×) (8)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.(√) (9)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.(√) (10)若某函数的图象关于y 轴对称,则该函数为偶函数;若某函数的图象关于(0,0)对称,则该函数为奇函数.(√) 考点一 判断函数的奇偶性

函数的奇偶性及周期性

函数的奇偶性及周期性 1.函数的奇偶性 (1)周期函数 对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x +T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期. (2)最小正周期 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. [小题体验] 1.下列函数中为偶函数的是() A.y=x2sin x B.y=x2cos x C.y=|ln x|D.y=2-x 答案:B 2.若函数f(x)是周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(8)-f(14)=________. 答案:-1 3.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(1+x),则x<0时,f(x)=________. 答案:x(1-x) 1.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. 2.判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)=-f(x)或f(-

x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0). 3.分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性. [小题纠偏] 1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .-13 B.13 C.12 D .-1 2 解析:选B ∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数, ∴a -1+2a =0,∴a =1 3.又f (-x )=f (x ), ∴b =0,∴a +b =1 3 . 2.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时, f (x )= ? ???? -4x 2+2,-1≤x <0,x , 0≤x <1,则f ????32=________. 解析:由题意得,f ????32=f ????-12=-4×????-122+2=1. 答案:1 考点一 函数奇偶性的判断(基础送分型考点——自主练透) [题组练透] 判断下列函数的奇偶性: (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3; (3)f (x )=3x -3- x ; (4)(易错题)f (x )=4-x 2 |x +3|-3 ; (5)(易错题)f (x )=????? x 2+x ,x >0, x 2-x ,x <0. 解:(1)∵由? ???? x 2-1≥0, 1-x 2≥0,得x =±1, ∴f (x )的定义域为{-1,1}. 又f (1)+f (-1)=0,f (1)-f (-1)=0,

高三一轮复习精题组函数的奇偶性与周期性(有详细答案)

§2.3函数的奇偶性与周期性 1.函数的奇偶性 奇偶性,定义,图象特点偶函数,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数,关于y轴对称 奇函数,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数,关于原点对称 2.周期性 (1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值 时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正 数就叫做f(x)的最小正周期.

1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数f (x )=0,x ∈(0,+∞)既是奇函数又是偶函数.( × ) (2)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( √ ) (3)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.( √ ) (4)若函数f (x )=x (x -2)(x +a ) 为奇函数,则a =2.( √ ) (5)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.( √ ) (6)函数f (x )为R 上的奇函数,且f (x +2)=f (x ),则f (2 014)=0.( √ ) 2.(2013·山东)已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1 x ,则f (-1)等于( ) A .-2 B .0 C .1 D .2 答案 A 解析 f (-1)=-f (1)=-(1+1)=-2. 3.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是() A .-13B.13C.12D .-12 答案 B 解析 依题意b =0,且2a =-(a -1), ∴a =13,则a +b =13 . 4.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 015)等于( ) A .-2 B .2 C .-98 D .98 答案 A 解析 ∵f (x +4)=f (x ), ∴f (x )是以4为周期的周期函数,

函数的奇偶性与周期性专题练习

函数的奇偶性与周期性专题练习 一、选择题 1.(2019·肇庆三模)在函数y =x cos x ,y =e x +x 2,y =lg x 2-2,y =x sin x 中,偶函数的个数是( ) A.3 B.2 C.1 D.0 解析 y =x cos x 为奇函数,y =e x +x 2为非奇非偶函数,y =lg x 2-2与y = x sin x 为偶函数. 答案 B 2.(2019·湖南卷)设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( ) A.奇函数,且在(0,1)内是增函数 B.奇函数,且在(0,1)内是减函数 C.偶函数,且在(0,1)内是增函数 D.偶函数,且在(0,1)内是减函数 解析 易知f (x )的定义域为(-1,1),且f (-x )=ln(1-x )-ln(1+x )=-f (x ),则y =f (x )为奇函数, 又y =ln(1+x )与y =-ln(1-x )在(0,1)上是增函数, 所以f (x )=ln(1+x )-ln(1-x )在(0,1)上是增函数. 答案 A 3.已知函数f (x )=x ? ?? ??e x -1e x ,若f (x 1)x 2 B.x 1+x 2=0 C.x 10时,f ′(x )>0,∴f (x )在[0,+∞)上为增函数,

函数的奇偶性与周期性

函数的奇偶性与周期性 1.函数的奇偶性 奇函数偶函数 定义 一般地,如果对于函数f(x)的定义域内任意一个x 都有f(-x)=-f(x),那么函数 f(x)就叫做奇函数 都有f(-x)=f(x),那么函数f(x)就叫做 偶函数 图象特征关于原点对称关于y轴对称 2. (1)周期函数 对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期. (2)最小正周期 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)若f(x)是定义在R上的奇函数,则f(-x)+f(x)=0.(√) (2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×) (3)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.(√) (4)定义域关于原点对称是函数具有奇偶性的一个必要条件.(√) (5)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√) (6)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.(√) (7)函数f(x)=0,x∈(0,+∞)既是奇函数又是偶函数.(×) (8)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.(√) (9)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.(√) (10)若某函数的图象关于y轴对称,则该函数为偶函数;若某函数的图象关于(0,0)对称,则该函数为奇函数.(√) 考点一判断函数的奇偶性

6.函数的奇偶性与周期性考点及题型

第三节 函数的奇偶性与周期性 ? 基础知识 1.函数的奇偶性? ?函数的定义域关于原点对称是函数具有奇偶性的前提条件. ?若f (x )≠0,则奇(偶)函数定义的等价形式如下: (1)f (-x )=f (x )?f (-x )-f (x )=0?f (-x ) f (x )=1?f (x )为偶函数; (2)f (-x )=-f (x )?f (-x )+f (x )=0?f (-x ) f (x )=-1?f (x )为奇函数. 2.函数的周期性 (1)周期函数 对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期. 周期函数定义的实质 存在一个非零常数T ,使f (x +T )=f (x )为恒等式,即自变量x 每增加一个T 后,函数值就会重复出现一次. (2)最小正周期 如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. ? 常用结论 1.函数奇偶性常用结论 (1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |). (2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性. (3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇. 2.函数周期性常用结论 对f (x )定义域内任一自变量x :

(1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )= 1 f (x ) ,则T =2a (a >0). (3)若f (x +a )=-1 f (x ),则T =2a (a >0). 3.函数图象的对称性 (1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称. (2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称. (3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称. 考点一 函数奇偶性的判断 [典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2 |x +3|-3; (2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2) |x -2|-2 ; (4)f (x )=???? ? x 2+x ,x <0,x 2-x ,x >0. [解] (1)由f (x )=36-x 2 |x +3|-3,可知????? 36-x 2≥0,|x +3|-3≠0?????? -6≤x ≤6,x ≠0且x ≠-6, 故函数f (x )的定义域为(-6,0)∪(0,6],定 义域不关于原点对称,故f (x )为非奇非偶函数. (2)由? ???? 1-x 2≥0, x 2-1≥0?x 2=1?x =±1,故函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,所以f (- x )=f (x )=-f (x ),所以函数f (x )既是奇函数又是偶函数. (3)由? ???? 1-x 2>0,|x -2|-2≠0?-10的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.

函数对称性、周期性和奇偶性规律总结.

函数对称性、周期性和奇偶性 关岭民中数学组 (一)、同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的对称性) 1、奇偶性:(1)奇函数关于(0,0)对称,奇函数有关系式0) ()(x f x f (2)偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f 2、奇偶性的拓展 : 同一函数的对称性 (1)函数的轴对称: 函数)(x f y 关于a x 对称)()(x a f x a f )()(x a f x a f 也可以写成)2() (x a f x f 或)2()(x a f x f 若写成: )()(x b f x a f ,则函数)(x f y 关于直线22)() (b a x b x a x 对称 证明:设点),(11y x 在)(x f y 上,通过)2()(x a f x f 可知,)2()(111x a f x f y ,即点)(),2(11x f y y x a 也在上,而点 ),(11y x 与点),2(11y x a 关于x=a 对称。得证。说明:关于a x 对称要求横坐标之和为2a ,纵坐标相等。∵1111(,)(,)a x y a x y 与关于x a 对称,∴函数)(x f y 关于a x 对称 )()(x a f x a f ∵1111(,)(2,)x y a x y 与关于x a 对称,∴函数)(x f y 关于a x 对称 )2()(x a f x f ∵1111(,)(2,)x y a x y 与关于x a 对称,∴函数)(x f y 关于a x 对称 )2()(x a f x f (2)函数的点对称: 函数)(x f y 关于点),(b a 对称b x a f x a f 2)()(

相关文档
最新文档