正交实验计算方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正交试验设计方法(1)(2008-12-17 12:59:39)
标签:正交设计杂谈分类:其他5.1 试验设计方法概述
试验设计是数理统计学的一个重要的分支。
多数数理统计方法主要用于分析已经得到的数据,而试验设计却是用于决定数据收集的方法。
试验设计方法主要讨论如何合理地安排试验以及试验所得的数据如何分析等。
例5-1某化工厂想提高某化工产品的质量和产量,对工艺中三个主要因素各按三个水平进行试验(见表5-1)。
试验的目的是为提高合格产品的产量,寻求最适宜的操作条件。
表5-1 因素水平
对此实例该如何进行试验方案的设计呢?
很容易想到的是全面搭配法方案(如图5-1所示):
此方案数据点分布的均匀性极好,因素和水平的搭配十分全面,唯一的缺点是实验次数多达33=27次(指数3代表3个因素,底数3代表每因素有3个水平)。
因素、水平数愈多,则实验次数就愈多,例如,做一个6因素3水平的试验,就需36=729次实验,显然难以做到。
因此需要寻找一种合适的试验设计方法。
图5-1 全面搭配法方案
试验设计方法常用的术语定义如下。
试验指标:指作为试验研究过程的因变量,常为试验结果特征的量(如得率、纯度等)。
例1的试验指标为合格产品的产量。
因素:指作试验研究过程的自变量,常常是造成试验指标按某种规律发生变化的那些原因。
如例1的温度、压力、碱的用量。
水平:指试验中因素所处的具体状态或情况,又称为等级。
如例1的温度有3个水平。
温度用T表示,下标1、2、3表示因素的不同水平,分别记为T1、T2、T3。
常用的试验设计方法有:正交试验设计法、均匀试验设计法、单纯形优化法、双水平单纯形优化法、回归正交设计法、序贯试验设计法等。
可供选择的试验方法很多,各种试验设计方法都有其一定的特点。
所面对的任务与要解决的问题不同,选择的试验设计方法也应有所不同。
由于篇幅的限制,我们只讨论正交试验设计方法。
5.2 正交试验设计方法的优点和特点
用正交表安排多因素试验的方法,称为正交试验设计法。
其特点为:①完成试验要求所需的实验次数少。
②数据点的分布很均匀。
③可用相应的极差分析方法、方差分析方法、回归分析方法等对试验结果进行分析,引出许多有价值的结论。
从例1可看出,采用全面搭配法方案,需做27次实验。
那么采用简单比较法方案又如何呢?
先固定T1和p1,只改变m,观察因素m不同水平的影响,做了如图2-2(1)所示的三次实验,发现m=m2时的实验效果最好(好的用□表示),合格产品的产量最高,因此认为在后面的实验中因素m应取m2水平。
图5-2 简单比较法方案情案
固定T1和m2,改变p的三次实验如图5-2(2)所示,发现p=p3时的实验效果最好,因此认为因素p应取p3水平。
固定p3和m2,改变T的三次实验如图5-2(3)所示,发现因素T宜取T2水平。
因此可以引出结论:为提高合格产品的产量,最适宜的操作条件为T2p3m2。
与全面搭配法方案相比,简单比较法方案的优点是实验的次数少,只需做9次实验。
但必须指出,简单比较法方案的试验结果是不可靠的。
因为,①在改变m值(或p值,或T值)的三次实验中,说m2(或p3或T2)水平最好是有条件的。
在T≠T1,p≠p1时,m2水平不是最好的可能性是有的。
②在改变m的三次实验中,固定T=T2,p=p3应该说也是可以的,是随意的,故在此方案中数据点的分布的均匀性是毫无保障的。
③用这种方法比较条件好坏时,只是对单个的试验数据进行数值上的简单比较,不能排除必然存在的试验数据误差的干扰。
运用正交试验设计方法,不仅兼有上述两个方案的优点,而且实验次数少,数据点分布均匀,结论的可靠性较好。
正交试验设计方法是用正交表来安排试验的。
对于例1适用的正交表是L9(34),其试验安排见表5-2。
所有的正交表与L9(34)正交表一样,都具有以下两个特点:
(1)在每一列中,各个不同的数字出现的次数相同。
在表L9(34)中,每一列有三个水平,水平1、2、3都是各出现3次。
(2)表中任意两列并列在一起形成若干个数字对,不同数字对出现的次数也都相同。
在表L9(34)中,任意两列并列在一起形成的数字对共有9个:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),每一个数字对各出现一次。
表5-2 试验安排表
这两个特点称为正交性。
正是由于正交表具有上述特点,就保证了用正交表安排的试验方案中因素水平是均衡搭配的,数据点的分布是均匀的。
因素、水平数愈多,运用正交试验设计方法,愈发能显示出它的优越性,如上述提到的6因素3水平试验,用全面搭配方案需729次,若用正交表L27(313)来安排,则只需做27次试验。
在化工生产中,因素之间常有交互作用。
如果上述的因素T的数值和水平发生变化时,试验指标随因素p变化的规律也发生变化,或反过来,因素p的数值和水平发生变化时,试验指标随因素T变化的规律也发生变化。
这种情况称为因素T、p间有交互作用,记为T×p。
5.3 正交表
使用正交设计方法进行试验方案的设计,就必须用到正交表。
正交表请查阅有关参考书。
5.3.1 各列水平数均相同的正交表
各列水平数均相同的正交表,也称单一水平正交表。
这类正交表名称的写法举例如下:
L 9(3 4)
正交表的列数
每一列的水平数
实验的次数
正交表的代号
各列水平均为2的常用正交表有:L4(23),L8(27),L12(211),L16(215),L20(219),L32(231)。
各列水平数均为3的常用正交表有:L9(34),L27(313)。
各列水平数均为4的常用正交表有:L16(45)
各列水平数均为3的常用正交表有:L25(56)
5.3.2 混合水平正交表
L 8(41×24)
2水平列的列数为4
4水平列的列数为1
实验的次数
正交表的代号
各列水平数不相同的正交表,叫混合水平正交表,下面就是一个混合水平正交表名称的写法:
L 8(41×24)常简写为L 8(4×24)。
此混合水平正交表含有1 个4水平列,4个2水平列,共有1+4=5列。
5.3.3 选择正交表的基本原则
一般都是先确定试验的因素、水平和交互作用,后选择适用的L表。
在确定因素的水平数时,主要因素宜多安排几个水平,次要因素可少安排几个水平。
(1)先看水平数。
若各因素全是2水平,就选用L(2*)表;若各因素全是3水平,就选L(3*)表。
若各因素的水平数不相同,就选择适用的混合水平表。
(2)每一个交互作用在正交表中应占一列或二列。
要看所选的正交表是否足够大,能否容纳得下所考虑的因素和交互作用。
为了对试验结果进行方差分析或回归分析,还必须至少留一个空白列,作为“误差”列,在极差分析中要作为“其他因素”列处理。
(3)要看试验精度的要求。
若要求高,则宜取实验次数多的L表。
(4)若试验费用很昂贵,或试验的经费很有限,或人力和时间都比较紧张,则不宜选实验次数太多的L表。
(5)按原来考虑的因素、水平和交互作用去选择正交表,若无正好适用的正交表可选,简便且可行的办法是适当修改原定的水平数。
(6)对某因素或某交互作用的影响是否确实存在没有把握的情况下,选择L表时常为该选大表还是选小表而犹豫。
若条件许可,应尽量选用大表,让影响存在的可能性较大的因素和交互作用各占适当的列。
某因素或某交互作用的影响是否真的存在,留到方差分析进行显著性检验时再做结论。
这样既可以减少试验的工作量,又不致于漏掉重要的信息。
5.3.4 正交表的表头设计
所谓表头设计,就是确定试验所考虑的因素和交互作用,在正交表中该放在哪一列的问题。
(1)有交互作用时,表头设计则必须严格地按规定办事。
因篇幅限制,此处不讨论,请查阅有关书籍。
(2)若试验不考虑交互作用,则表头设计可以是任意的。
如在例5-1中,对L 9(3 4)表头设计,表5-3所列的各种方案都是可用的。
但是正交表的构造是组合数学问题,必须满足5.2中所述的特点。
对试验之初不考虑交互作用而选用较大的正交表,空列较多时,最好仍与有交互作用时一样,按规定进行表头设计。
只不过将有交互作用的列先视为空列,待
表5-3 L9(3 4)表头设计方案
试验结束后再加以判定。