酒店锅炉新一代解决方案—A.O.史密斯直接供热系统

酒店锅炉新一代解决方案—A.O.史密斯直接供热系统
酒店锅炉新一代解决方案—A.O.史密斯直接供热系统

直接供热系统在商务酒店中的应用

直接供热系统在商务酒店中的应用

艾欧史密斯(中国)热水器有限公司

直接供热系统在北京嘉苑饭店中的应用案例

一、直接供热系统在北京嘉苑饭店中的应用案例

1、项目背景

北京铁科嘉苑饭店是中国铁

道科学研究院辖内一家三星级涉

外酒店。酒店建筑面积约14,000平

方米,地上12层,拥有不同类型客

房128间,是一家集客房、餐饮、

会议、娱乐为一体的现代化商务型

酒店。

酒店属于改造项目,原使用市

政热力作为酒店生活热水及采暖的

热源。因其供热不稳定,无法满足

星级酒店用热的要求,因此酒店投资方决定自行采购热源设备。A.O.史密斯凭借自身良好的品牌信誉、优质的产品质量、高效节能的热水方案及完善的售后服务体系获得他们的认可。酒店最终采用两台A.O.史密斯DW系列商用直流式燃气热水锅炉供暖,采用五台A.O.史密斯BTR系列商用容积式燃气热水炉并联供应酒店高、中、低三个区域的客房、娱乐休闲区以及1700㎡餐厅的生活热水。

2、采暖热负荷和热水耗热量计算

(1)采暖热负荷计算:

参考《城市热力网设计规范》GB CJJ 34-2002中3.1.2条之规定:酒店采暖热指标推荐值为60~70 W/ ㎡。根据建筑情况采暖热指标取60 W/㎡,则所需的采暖热负荷为:Q1 =14000×60÷1000=840kW

(2)生活热水耗热量计算:

①客房热水耗热量计算:

参考《建筑给水排水设计规范》GB50015-2003(2009年版):

a) 宾馆旅客,每床位每日最高日用水定额:120~160 L (60℃),此处取160L ; b) 宾馆的热水小时变化系数为2.60-3.33,此处取2.9;

c) 宾馆客房(不含员工)的集中热水供应系统的设计小时耗热量应按下列公式计算:

86400

)(ρL r r h

h t t C mq K Q ?= 式中:Qh ——设计小时耗热量(W );

m ——用水计算单位数(人数或床位数); qr ——热水用水定额(L/人·d 或L/b ·d );

C ——水的比热,c=4187(J/Kg ·℃);

tr ——热水温度,tr=60℃;

tl ——冷水温度,tl=4℃;

ρ——热水密度(kg/L );

Kh ——小时变化系数

则客房热水设计小时耗热量为:

1()12821604187(604)12.93216633228640086400

r r l h h mq C t t Q K W kW ρ?××××?×==×== ② 厨房热水耗热量计算:

参考《建筑给水排水设计规范》GB50015-2003(2009年版):

a) 餐饮业洗涤盆(池),卫生器具的小时用水量:250 L ,50℃;

b) 定时供应热水的餐厅后厨设计小时耗热量应按下式计算:

()3600

h r L r o h q t t N bC Q ρ?=∑

式中:Qh ——设计小时耗热量(W ); qh ——卫生器具热水的小时用水定额(L/h );

C ——水的比热,C=4187(J/Kg ·℃);

tr ——热水温度,tr=50℃;

tl ——冬季冷水温度,tl=4℃;

ρr ——热水密度(kg/L );

No ——同类型卫生器具数,No=9;

b ——卫生器具的同时使用百分数;住宅、旅馆、医院、疗养院病房,卫生间内浴盆或淋浴器可按70%~100%计;

则厨房热水设计小时耗热量为:

2()250(504)19100%418712037612036003600

h r L r o h q t t N bC Q W kW ρ?×?××××====∑ ③ 生活热水总耗热量为:

12322120442h h Q Q kW +=+=

3、选型计算

考虑到项目实际情况和客户需求,设计方案将热水与采暖系统分开,充分发挥 A.O.史密斯直接供热系统的应用优势。

(1)采暖系统

采用A.O.史密斯DW-1810型商用直流式燃气热水锅炉,DW-1810额定输入热负荷为478kW,热效率≥90%。

采暖系统使用台数:840÷478÷0.9 = 1.95台,选用两台。

(2)生活热水系统

采用 A.O.史密斯BTR-338型商用容积式燃气热水炉,BTR-338额定输入热负荷为99kW,热效率≥88%。

生活热水使用台数:442÷99÷0.88 = 5.07台

BTR-338拥有322L储水容积,五台BTR-338共储存1610L(60℃)热水,可满足15分钟的调峰用量。

因此选用两台DW-1810和五台BTR-338即可满足铁科嘉苑饭店的采暖及生活热水需求。

4、系统特点

该项目采用热水、采暖分设热源系统,生活热水由BTR系列商用容积式燃气热水炉分区供应,采暖由DW系列商用直流式燃气热水锅炉供应,两套独立的系统均为直接供热,无需储热水箱、换热设备等系统附件。不仅简化热水/采暖系统,节省初投资,而且省却中间热损耗环节,最大程度的提高系统效率,大大节省运行费用。

铁科嘉苑饭店直供热水系统示意图

铁科嘉苑饭店直供采暖系统示意图

5、项目特点

铁科嘉苑饭店位于商业繁华地段,可谓寸土寸金,不能“开源”的话,“节流”也是增

加盈利的重要手段。该项目正因为采用直接供热系统,在节省能耗及缩减安装空间方面,优

势尤为突出。

经过近七年的实际应用,A.O.史密斯直供热水/采暖系统的运行能耗相较原先的市政热力,采暖、热水年均运行费用各节省约12万元/年、5万元/年。

酒店锅炉房设在地上一层,空间十分有限,直供系统可免去储热水箱、换热设备及因此添置的循环系统,可大大节省安装空间。DW-1810锅炉体积小(长×宽×高2096×864×1537mm),单台占地面积仅2㎡左右;BTR-338(直径700mm)单台占地面积不到1 ㎡,锅炉房总占地面积约35㎡,相比较传统锅炉的设备间,安装空间节省逾半。

酒店中的应用优势

二、直接供热系统在商务

直接供热系统在商务酒店中的应用优势

酒店中的应用优势

1、节省运行能耗

商务型酒店应用中,A.O.史密斯建议由容积式热水炉直接供应热水,由直流式燃气热水锅炉直接供应采暖。A.O.史密斯容积式热水炉自身拥有内胆(如BTR-338系列内胆容积322L),由BTR多台并联供应生活热水无需配置水箱,直输热水至客房用水末端,该系统在北美已得到广泛应用并获得市场一致的认可,取代传统方式成为新一代节能热水主流方案。A.O.史密斯直流式燃气热水锅炉具有高承压能力,最大工作压力为1.1MPa,同时锅炉采用全铜热交换器设计,彻底防止锈蚀产生,可直接输送热水以供应采暖。

直接供热系统简化了热水及采暖系统,免去不必要的热损耗,提高系统效率并大幅节省运行能耗。

2、节省空间、安装灵活

A.O.史密斯商用热水设备具备体积小、重量轻、效率高、系统简单、施工周期短的优势,甚至可灵活安装于酒店的地下室及楼顶位置,布置灵活,最大化地为寸土寸金的酒店空间节省锅炉房占地面积。

3、使用低压燃气

A.O.史密斯商用燃气设备均使用压力范围1500Pa-3450Pa的民用燃气,当进入采暖高峰期时用户增多,中压管道燃气压力降低,此时的A.O.史密斯燃气热水设备不受影响仍能正常运行。采用低压燃气不仅可节省高昂的开户费,降低投资成本,又能确保燃气锅炉稳定运行。

结论

三、结论

酒店行业的认可,良好口碑的树立,来源于最佳热水/采暖解决方案为客户带来的直观

利益。A.O.史密斯直接供热系统在北美已得到广泛应用,经过在中国逾十年的市场验证,已成为新一代节能热水/采暖主流解决方案。

参考文献参考文献::

[1][1]《《建筑给水排水设计规范建筑给水排水设计规范》》 GB 50015 GB 50015--20032003((2009版)

[2][2]《《城市热力网设计规范城市热力网设计规范》》GB CJJ 34GB CJJ 34--20022002

[3] 国质检锅函国质检锅函〔〔20022002〕〕288号

[4] 艾欧史密斯艾欧史密斯((中国中国))热水器有限公司商用热热水器有限公司商用热水产品合订本水产品合订本水产品合订本

阅读更多文章阅读更多文章,,请查阅请查阅::

(1《)《暖通空调暖通空调暖通空调》》2012年1月刊 《酒店锅炉系统节能案例酒店锅炉系统节能案例》》 https://www.360docs.net/doc/9316989066.html,/view/5a820467ddccda38376bafad.html

浅谈住宅采暖系统的节能设计

浅谈住宅采暖系统的节能设计 采暖系统是住宅里的耗电大户,每年的电费中采暖系统耗电所占比例较大,因此对于住宅采暖系统的节能设计就显得非常重要,有着非常好的经济效益和社会效益,住宅采暖系统的节能设计本身就是一项系统工程,需要不断努力。本文从建成太阳能供热的建筑;让节能新材料引领住宅采暖未来;建筑节能先治窗户散热;改变现在的供暖方式,实现“集中供暖、分户计量”等方面就住宅采暖系统的节能设计进行了深入的研究,具有一定的参考价值。 标签住宅;采暖系统;节能设计 1 前言 近年来,随着我国社会经济的进一步深入发展.人民生活水平不断提高,住宅采暖系统的应用范阔越来越广,但是不可否认的是,采暖系统是住宅里的耗电大户,每年的电费中采暖系统耗电所占比例较大,因此对于住宅采暖系统的节能设计酒显得非常重要,有着非常好的经济效益和社会效益。本文就住宅采暖系统的节能设计进行研究。 2 建成太阳能供热的建筑 以北京市为例,全市在2012年将建成太阳能供热的建筑100万平方米,届时,北京全市建筑的单位面积平均采暖能耗将降低17%,其中住宅建筑采暖平均能耗降低23%,公共建筑采暖能耗降低14.5%。 目前,北京市尚有9300多万平方米非节能住宅,其中建于1976年后,按照8度抗震设防建造的具有节能改造价值的住宅有6300多万平方米。这些住宅冬冷夏热,采暖和空调能耗较高。预计到2012年,北京全市建筑能耗将达到1981万吨煤,比2004年增长37%,建筑能耗将占北京市总能耗的30.5%。 为此,2012年前,北京市供热系统热效率将平均提高10%,实际平均能耗降低10%以上。北京市建成采用太阳能进行供热的建筑100万平方米,建成采用地热源、污水源等可再生能源进行供热的建筑1500万平方米。 此外,今后开发商在售房合同书、房屋质量保证书中,必须向消费者承诺建筑节能工程质量和建筑能效,必须签订有节能设计标准和赔偿条款的购房合同。 3 让节能新材料引领住宅采暖未来 节能新材料的应用无疑给住宅采暖系统的节能设计带来了新的希望,地面采暖兴起以来一直受到用户的青睐。据了解,它已经被称为“最具舒适、最具环保、最具节能性”的采暖方式,采用该种供暖方式也正在成为房地产项目的大卖点,受到了百姓的关注。

供暖系统自动化控制方案

XXXXXX有限公司供热管网自动控制系统方案 同方股份有限公司 2010年6月

目录 1 大滞后控制对象自动化系统要点分析................................. 2分时、分温、分区供暖自动控制模式................................. 3供暖节能自动控制系统的构成....................................... 供热自动控制系统总体架构............................................ 节能自控系统的组成.................................................. 监控中心的主要功能.................................................. 设备配置....................................................... 监控管理软件................................................... 监控管理主机................................................... 系统组态功能................................................... 人机界面的特点................................................. 各换热站的设备功能.................................................. 数据采集....................................................... DDC智能控制器.................................................. 触摸式操作显示屏............................................... GPRS无线数据传输器............................................. 供暖节能自动控制系统的设备配置...................................... 4节能自动控制系统拟选设备简介..................................... DDC智能控制器....................................................... 一体化彩色液晶触摸屏(工控机)...................................... GPRS无线数据传输器.................................................. 5热网监控系统解决的问题和产生的效益...............................

电锅炉采暖方案

电锅炉供暖方案 、工程概况 供暖采用电热水锅炉采暖系统 二、参照标准、依据 1、蓄热式电锅炉房设计施工图集。 2、常压蓄热水箱。 三、系统工作原理 1、蓄热系统直接向采暖系统供热,简称直接供热。直接供热在蓄热系统和采暖系统中不设热交换器,采暖系统中的循环水也回到蓄热水箱中。由于直接供热系统中不设热交换器、补水泵、定压装置,减少了设备,锅炉房管道也较为简单。 2、谷电、平电、峰电时间段(以北京地区为例) 谷电时间:23:00~7:00共计8小时;平电时间:7:00~8:0011:00~18:00共计8小时;峰电时间:8:00~11:0018:00~23:00共计8小时 电锅炉蓄热式供暖系统的运行,全部使用谷电: 23: 00~7: 00开启电锅炉加热水箱中的水,加热至95C,向系统供热; 7:00~23:00 关闭电锅炉,由蓄热水箱向系统供热。 3、电网电价: 谷电0.21 元/度 平电0.52 元/ 度 峰电0.84 元/度 4、自控: 蓄热状态和供热状态,蓄热水箱中的热水温度不断的在变化。但是锅炉房采暖供水温度却不能随蓄热水箱温度的变化而变化。为使锅炉房采暖供水温度保持在设定范围内,采取有效的温度调控装置是必须的。对直接供热的系统,采用合流三通阀来调控锅炉房采暖供水温

度。淋浴系统出水管设温度自动控制阀。 5、蓄热式电锅炉房系统单独设置系统控制柜,系统控制柜一般应具备以下功能: ①控制蓄热箱是否达到蓄热温度。 ②控制锅炉在23:00自动启动,7:00 达到蓄热温度后自动停炉。 ③控制电动三通阀,调控锅炉房采暖供水温度。 ④控制蓄热泵的启停,保证先启泵,后启炉,先停炉,后停泵。 6、电气部分: ①电锅炉的电源应由配电室直接供给,可用电缆或金属排输送。 ②锅炉控制柜及系统控制柜宜单独设置在控制室内。 ③所有设备外壳均应有可靠接地,接地电阻按有关要求执行。 四、设计参数 1、采暖系统: 采暖室外计算温度:-9C 采暖室内设计温度:20~22C 建筑物总耗热量:350KW 设计采暖天数:120天 采暖系统总阻力:60Kpa 2、淋浴系统按同时开启20个水龙头,开放时间每天2 小时计算。 五、设备造型及运行方案 根据需方实际情况,采用全谷电、谷+平的方式。全谷电:选一台900KW 的锅炉,水箱容积为100m3。

供热系统及换热站工程设计开题报告

开题报告 设计题目:天津迎光丽苑供热系统及换热站工程设计学生姓名: 学院名称:城建学院 专业名称:建筑环境与能源应用工程 班级名称: 学号: 指导教师: 教师职称: 教授 学历:本科 2017年3月3日

开题报告 一、选题依据 1.设计目的及意义 冬季采暖是我国北方居民的生活需求。采暖是人们为了保证适宜的生活条件而创造的。因此采暖方式与设备便成为了一直以来人们所关心的话题。随着社会的发展,人们对室内环境水平程度也越来越看重。现在的供暖方式日新月异,当然,每种供暖方式也存在一定的弊端。保障冬季供热工作安全稳定运行,保障城市居民的正常生活。同时,通过进一步的熟悉相关专业知识,了解相关规范,做好有关专业知识的衔接,为以后的工作和学习奠定基础,让自己可以在这个领域有进一步的发展。 通过本设计可以清晰的了解供热系统及换热. 站的设计不走和相关设备的工作原理,进一步熟练应用专业知识,熟悉相关规范;同时,本设计也应理论联系实际,在符合相关规范的前提下,尽可能的设计出节能环保的供热系统,使设计方案达到最佳。 2.设计拟解决的工程实际问题 (1)根据建筑物的实际工程概况,选择采暖系统,供水方式,计算热负荷; (2)选择散热器种类或者采用地暖,并计算散热器片数或者地暖热负荷; (3)计算管径和水利平衡并进行采暖管路布置; (4)选择换热器型号及数量; (5)选择水泵、水箱等设备并确定水泵、水箱等设备的布置位置; 室内供暖系统要考虑如何能够让整栋楼达到水力平衡,使每户温度在设计温度。室外管网要考虑怎样进行室外管网的最优设计,使其既经济合理,又不影响小区的整体规划美观,在出现故障时还能够方便检修;换热站的设计中设备、各种附件等的选型与布置,要保证其提供的热量能够满足各用户的需求,并且方便设备的维护与检修等。 3.设计拟应用的现场资料综述 据《供热通风与通条工程设计资料大全》气象资料,采暖室外计算温度-9℃,冬季室外平均风速3.1m/s,冬季室外最多风向的平均风速6.0m/s,冬季最多风向

住宅室内采暖系统节能设计方案

1、引言 节能是我国一项长远的战略方针。我国政府对节能工作高度重视,特别是改革开放以后节能工作出现了欣欣向荣的局面。节能对于供热行业来说潜力是相当大的。供热行业是能耗大户,能耗支出占据其大部分成本。由于以往的住宅供暖按面积收取热费,存在很大的不合理性,且不便于用户进行局部调节,造成供热用热浪费很大。随着人们生活水平的提高和供暖事业的不断发展,对供暖系统实现用热量的分户计量和独立控制的呼声越来越高。 近年来节能问题在供暖系统设计中越来越被人们重视。因此有必要在新建住宅中采用更合适的供暖系统形式来满足热费按户计量的需要。在节能问题上,尤其要特别重视能源利用过程前的处理,即在规划设计整个供暖系统时,应该考虑该系统的节能前景及经济效益。建设部《建筑节能“九五”计划和2010年规划》明确指出,“对集中供暖的民用建筑安装热表及有关调节设备并按户计量收费的工作,1998年通过试点取得成效,开始推广,2000年在重点城市新建小区中推行,2010年全面推广”。因此,在进行住宅室内采暖系统设计时,设计人员应考虑热用户分户及分室控制温度的需要。据初步测算,采取供暖分户计量,可以实现采暖节能20%以上。本文就几种适宜分户计量的采暖系统做一浅析。 2、旧式采暖系统的基本形式及其优缺点 长期以来,我国城市住宅室内采暖系统设计基本上都采用单管垂直系统的方案进行设计。(如图1)这种设计方案有许多优点:1系统简单;2施工方便;3造价低等,但是也存在一定缺陷,主要是不便于用户进行局部调节,因而造成能源的浪费。随着能源结构的变化及节能和物业管理的要求,这一缺陷越来越明显,使得此种供暖系统不得不被逐步替代。

采暖供热系统的应用

采暖供热系统的应用 采暖供热系统的应用 摘要:随着环保要求的提高和电力峰谷差的拉大,燃煤锅炉采暖受到严格限制,而其他采暖形式,如燃气采暖、电动采暖和蓄热的应用,开始受到关注。本文对热电联产、燃气锅炉、电炉、电动热泵以及蓄热的应用前景做初步的分析与探讨。关键词:采暖蓄热应用 中图分类号:F407.61文献标识码:A 文章编号: 一、引言近年来,我国大气污染日益严重,人们要求保护环境、净化天空的呼声日益增高,而北方冬季城市空气污染的重要来源是采暖燃煤锅炉所排放的粉尘和有害气体。与此同时,许多地区电力出现了相对过剩、电力峰谷差不断拉大的现象。例如,东北电网系统的最大峰谷差已是最大负荷的37%,而华北电网已达峰负荷的40%[1]。为解决电力系统的这种供需矛盾,电力系统用户侧和发电侧均采取了一定措施。在发电方面,一大批初投资巨大的抽水蓄能电站、运行费昂贵的燃油燃气尖峰电站相继建成并投入调峰运行,甚至一些高参数的大型火电厂也以被迫降低发电效率为代价而参与电力调峰。同时,电力系统也加强了用户侧管理。例如,采取分时电价,鼓励用户在电力低谷时多用电,在电力高峰时少用电。因此,在环保要求高的城市采暖供热中,燃煤锅炉房或燃煤炉灶将严格限制使用,取而代之的几种可能的采暖形式主要有集中供热的电锅炉、大型电动热泵和燃气锅炉房以及分散在用户房间内的家用燃气炉、电暖器。同时,为减小电力网发电的峰谷差,也可考虑在供热系统中设置蓄热装置,使得在满足采暖要求的同时,对电力负荷起到削峰填谷的作用。为此,本文将对上述采暖系统形式的应用作初步的分析与探讨。 二、各采暖系统应用分析1.传统采暖供热系统 传统的采暖供热系统主要有锅炉采暖系统和热电联产集中供热系统。

供热系统节能技术措施方案

整体解决方案系列 供热系统节能技术措施(标准、完整、实用、可修改)

编号:FS-QG-15021供热系统节能技术措施 Energy-saving technical measures for heating systems 说明:为明确各负责人职责,充分调用工作积极性,使人员队伍与目标管理科学化、制度化、规范化,特此制定 1.安装热工仪表,掌握系统的实际运行情况 供热系统安装所需的热工仪表是掌握系统运行工况、准确了解和分析系统存在的问题、采取正确方法与措施以达到节能挖潜目的重要手段。目前热工仪表安装不全、不准的情况比较普遍,因此,必须要按照规定补齐所有热工仪表,并保证仪表的完好和准确。 2.加强锅炉房的运行管理,是投资少、效果显著的节能措施 1.司炉人员及水处理人员必须经国家劳动部门或技术监督部门培训并考试合格; 2.建立正确、完善、切实可行的运行操作规程; 3.锅炉房水处理(包括软化水或脱盐、除氧)设备处理后的水质,必须达到而易见国家规程规定的水质标准,严禁锅

炉直接补自来水或河水; 4.严格执行定期维修,停炉保养制度,保证设备完好,杜绝跑、冒、滴、漏。 3.采用分层燃烧技术,改善锅炉燃烧状况 目前城市集中供热锅炉房多采用链条炉排,燃煤多为煤炭公司供应的混煤,着火条件差,炉膛温度低,燃烧不完全,炉渣含碳量高,锅炉热效率普遍偏低。采用分层燃烧技术对减少炉渣含碳量、提高锅炉热效率,有明显的效果。 沈阳惠天公司一台10.5MW的热水炉,采用分层燃烧后,热效率由70.2%提高到75.1%,炉渣含碳量由13%下降为10%。唐山热力公司采用该技术,使锅炉热效率提高10~15%,炉渣含碳量降低至10%以下,而且锅炉燃烧系统的设备故障大大减少,提高了锅炉运行的可靠性和安全性。 对于粉末含量高的燃煤,可以采用分层燃烧及型煤技术。该技术是将原煤在入料口先通过分层装置进行筛分,使大颗粒煤直接落至炉排上,小颗粒及粉末送入炉前型煤装置压制成核桃大小形状的煤块,然后送入炉排,以提高煤层的透气性,从而强化燃烧,提高锅炉热效率和减少环境污染。中原

燃气热水锅炉控制方案要求

基于PLC的锅炉供热控制系统及节能管理平台的设计需求一、需求目的: 一个锅炉监控系统应主要包含以下几个部分: (1)各种设备状态和系统状态的采集; (2)锅炉和各种执行机构的控制。 设备状态的采集主要是锅炉输出的状态点,循环泵和补水泵给出的状态点,以及水箱等设备的状态点。锅炉的状态点主要包括锅炉的运行状态点、水箱的液位状态点、锅炉故障状态点、锅炉出水温度、锅炉回水温度、锅炉排烟温度;循环泵、补水泵以及电动调节阀等辅助其工作的变频设备的状态点。 系统状态的采集主要分为一次侧和二次侧。一次侧是锅炉到换热器之间的水循环系统,二次侧是到末端的水循环系统主要是指换热器循环系统。一次侧采集的状态包括一次侧供水温度、一次侧回水温度、一次侧供水压力、一次侧回水压力、烟温及燃烧机的工作状态及水箱水位、;二次侧采集的状态包括二次侧供水温度、二次侧回水温度、二次侧供水压力、二次侧回水压力;还有室外温度的采集,即可根据室外温度实现锅炉监控系统的自动控制。 锅炉和各种执行机构的控制主要是对锅炉本体的启停控制和各种电动阀门的控制。将锅炉房内各个设备、仪器仪表、传感器、执行机构及通讯模块组成在线监控系统,通过完成对锅炉房和其它现场设备的数据采集和控制功能从而实现锅炉房的全自动控制,能够安全启停机组,达到无人值守。 供热管网通过控制系统的在线监测应实现以下目的: (1)监控各管网节点的实时数据,为系统管理和科学管理进行调度提供参数数据;(2)系统平衡功能计算,供热管网内的热水流动需要一定的水泵做功来完成,不合理的管网设计和建造将带来极大的能源浪费,通过对管网的相关部位的压力检测、增设压力调节阀,对管网的各部分压力进行合理的平衡分配(水平衡、热平

住宅室内采暖系统节能设计方案(Energy-saving-design-scheme-of-resi

住宅室内采暖系统节能设计方案(Energy saving design scheme of residential indoor heating system) The energy-saving design of residential indoor heating system Energy conservation is a long-term strategic policy of china. The Chinese government attaches great importance to energy saving work, especially after the reform and opening up energy-saving work appeared thriving situation. Energy saving for the heating industry potential is quite large. The heating industry is large energy consumption, energy consumption expenditure occupy most of its cost. Because the previous residential heating heat fee according to the area, there is much irrationality, and is not convenient for the users of local regulation, causing great waste heat heating. With the continuous development of the improvement of people's living and heating business, to achieve the heating system with heat metering and independent control is more and more high. In recent years, such problems in heating system design has been paid more and more attention. So it is necessary to meet the need of heat metering charges by using more suitable forms of

采暖系统施工方案

第十八节采暖系统 一、工艺流程 安装准备→预制加工→干管安装→卡件安装→立管安装→散热器安装→系统试压冲洗→保温、调试。 二、管材使用及连接方法 共用立管及干管采用镀锌钢管,DN>50焊接,DN≤20丝扣连接。 三、安装准备 1.认真熟悉图纸,核对已经配合土建施工进度预留的槽、洞及安装预埋件。 2.按设计图纸画出管路的位置、管径、变径、预留口、坡向、卡架位置等施工草图,包括干管起点、末端和拐弯、节点、预留口、坐标位置等。 3.管道安装前应熟悉管材的一般性能,掌握基本操作要点,严禁盲目施工。 四、预制加工 1.镀锌钢管焊接安装 1)管道焊接前应先清除接口处的锈迹、污垢及油脂割口断面应与管中心线垂直,当管壁厚大于4mm时,需开坡口,并清除渣屑、氧化铁,并用锉刀打磨直至露出金属光泽。 2)焊接钢管的切割坡口采用氧-乙炔焰气割,气割完成后,用锉刀清除干净管口氧化铁,用磨光机将影响焊接质量的凹凸不平处削磨平整。 3)小直径管道采用砂轮切割机和手提式电动切管机进行切割,然后用磨光机进行管口坡口。管道坡口采用V型坡口,坡口用砂轮机打磨,光滑、平整。对坡口两侧20mm范围内将油污,铁锈和水份去除,且保证露出金属光泽,保证坡口表面不得有裂纹、夹层等缺陷,并清除坡口内外侧污物。管口组对确保管子的平直度和对口平齐度。管道对接焊口的组对必须做到内壁齐平;管子组对点固,应由焊接同一管子的焊工进行,点固用的焊条或焊丝应与正式焊接所用的相同,点焊长度为10~15mm,高度为2~4mm,且应超过管壁厚的2/3;管道焊缝表面不得裂缝、气孔、夹渣等缺陷。

4)不同管径焊接,缩口的管头不应有皱折、裂纹、壁厚不均匀等现象,管口应平直,不应凹凸不平。 2.镀锌钢管丝扣连接同排水系统衬塑钢管丝扣连接方法。 五、管道的支吊架、套管制作安装 1.套管安装(预埋、栽设) 普通套管:管道穿过墙壁和楼板,应设置硬质套管。 根据所穿构筑物的厚度及穿越管道管径大小确定套管材质、规格和长度;并根据图纸统计出套管的规格与数量,编制套管加工统计表。当设计无要求时,对于小管径管道,其套管管径应比穿越管大两号;对于大管径管道,其套管内径应大于穿越管外径50mm。穿墙套管的长度应为墙厚加墙两面装饰层的厚度;穿楼板长度应为该处楼板厚度加楼板两面装饰层厚度之后,一般房间再加上20mm,卫生间等有防水要求的房间再加上50mm。 按照加工统计表、根据施工进度的要求制作套管。选取合适的管材,按相应的长度截取,套管两端面垂直于轴线、光洁无毛刺。下料后套管内刷防锈漆一道,必要的在适当部位焊好架铁。 套管安装应随同干管、立管、支管安装。将预制好的套管套在管道上,放在指定位置(预留孔洞处)。管道安装完毕找正后,再调整套管的位置及与管道的间隙,调整完毕加以固定不得位移。 需预埋套管时,应用小线拉直、找正,套管端面应与墙面平行,中心线宜与穿越管道的中心线在同一条直线上,且水平管需注意坡度要求。根据不同部位的要求把套管固定牢固,不得因轻微的碰撞而产生位移。安装在楼板内的套管,其顶部应高出装饰地面20mm;安装在卫生间及厨房内的套管,其顶部应高出装饰地面50mm,底部应与楼板底面相平;安装在墙壁内的套管其两端与饰面相平。 安装管道时应注意穿越管道与套管周边的间隙要一致,管道安装完毕应及时填堵套管与构筑物的缝隙。穿过楼板的套管与管道之间缝隙应用阻燃密实材料和防水油膏填实,端面光滑;穿墙套管与管道之间缝隙宜用阻燃密实材料填实,且端面应光滑。管道接口不得在套管内。

采暖系统节能设计方案

采暖系统节能设计方案 摘要:通过对几种采暖系统原理的分析,提出住宅室内采暖设计的节能方案,对于住宅小区的供暖系统设计,如果规划和设计合理,不仅能够实现较好的系统控制和计量功能,同时可以降低能源的浪费,极大的提高供热的社会效益并获得相当的经济效益。为建设高质量住宅小区采暖提供参考依据。 关键词:住宅;室内采暖;节能;分户计量;控制 中图分类号:[f287.8]文献标识码:a 文章编号: 近年来节能问题在供暖系统设计中越来越被人们重视。因此有必要在新建住宅中采用更合理的供暖系统形式来满足热费按户计 量的需要。在节能问题上,尤其要特别重视能源利用过程前的处理,即在规划设计整个供暖系统时,应该考虑该系统的节能前景及经济效益。 旧式采暖系统的基本形式及优缺点 长期以来,我国城市住宅室内采暖系统设计基本上都采用单管垂直系统的方案进行设计。这种设计方案有许多优点:(1)系统简单;(2)施工方便;(3)造价低等,但是也存在一定缺陷,主要是不便于用户进行局部调节,因而造成能源的浪费。随着能源结构的变化及节能和物业管理的要求,这一缺陷越来越明显,使得此种供暖系统不得不被逐步替代。随着我国社会主义市场经济的发展,“热”也是商品的观点逐步被人们所认识和接受。传统的落后的按

建筑面积结算收费的方法,既不科学又不合理。已不能适应社会主义市场经济体制的要求,必须进行按热量计量收费的改革。供热收费由计划经济时期的福利制向社会主义市场经济体制转变,即热用户向供热企业缴纳热费。因此用户对供热系统节能越来越关注。单管垂直采暖系统的弊病越来越明显,其弊端具体表现在以下几方面: 1.1系统不具有个体调节的能力 单管垂直采暖系统的主要缺点是不利于进行局部调节,无法改善和满足热用户的热舒适性要求。而且由于该系统是将热水先供到住宅楼的顶层,然后依次向下分至各用户,这就在理论上造成了各不同楼层的热用户的散热器的传热系数k值也不相等。因此造成顶层过热,底层过冷,冷热不均现象。顶层用户过热时只能通过打开门窗的方式来放走热量以降低室内温度,这就造成了能源的浪费。如果采用调节热水流量来降低室温,就会造成以下各层过冷的现象。其次,该系统也无法对各房间的室温进行单独调节,从而导致能源的浪费。 1.2系统维修时浪费能源 由于单管垂直采暖系统是一个整体的热水循环系统。如果该系统有一处设施漏水或堵塞,整个系统将会受到影响。严重时可能导致整个住宅楼停供;而且在维修时会造成大量热水的浪费,在寒冷地区可能会出现水管冻裂等严重问题,造成不必要的事故,影响居民的正常生活。

燃气锅炉供暖系统

燃气锅炉供暖系统 1 燃气锅炉供热的某些特点 燃气锅炉供热将有较广泛应用,理由为:我国能源结构调整,煤炭将主要用于大型电厂发电,中小容量供热锅炉将由燃煤改为燃油、燃气;西气东输、引进液化天然气等,将使广大地区用天然气这种清洁能源成为现实;天然气Nm 3热值约是人工煤气的2倍,而价格将不到2倍,“照付不议”和其它一些政策会陆续出台,平衡天然气产、供、销各部门利益,使消费者利益也得到保障;我国城市化正处于高速发展阶段,将有大量新建与改建房屋采用非集中供热系统,燃气是非集中供热系统最佳能源;市场经济体制建立使开发商、物业管理公司、业主更多考虑小区、自家利益,更注重经济核算,国家与单位补贴将逐步取消;经济发展地区大中城市和小城镇大量兴建的住宅小楼和城郊别墅多为非标建筑等等,这些因素都促使燃气非集中供热应用量不断增大。我国早在解放前的上海、天津等城市少层小洋房里就已应用独立式自然循环热水供暖系统,例如:上海延安中路昇平街里的原上海纺织同业会所(1965年上海房地局四清工作团团部所在地)三层小楼就装有独立式供暖供热水系统。其特点是简单、可靠,供电中断不会影响供热。但设计时要求精确做水力计算,管径较机械循环系统大,耗金属多,垂直顺流式单组散热器难有效调节。解放后我国 集中供热事业有了很大发展,现在随西气东输,除独户式燃气供热会增加外,更多的将是小区式燃气非集中供热,或称为自治式热源供热。它的特点有:采用机械循环,要求不间断供电;锅炉燃烧及整个系统控制的自动化程度高,用户端用热量个别调节时整个系统仍能保持较好的水力稳定性;用户数量多,住宅可达100户,可既有住宅、旅馆供暖供热水的生活用热,又有游泳池地板供暖、池水加热、通风空调空气加热、食品机制各种生产工艺用热水等等不同类型用户;供暖系统的热负荷变化与室外气温成线性关系,不同国家设计工况(标准工况)下供回水温度95/70℃,90/70℃,80/60℃,供暖调节最简单方法是定流量质调法,但采用变流量调节法越来越多,散热器装热静力型温控阀可使个性化要求更能得到满足;当实际热负荷减小,供回水温度降低时,尤其是在有低温地板辐射供暖应用时,要保证非冷凝式燃气锅炉入口水温不过低,以免烟气中生成凝水损坏锅炉部件甚至发生事故,还要保证水流量不小于锅炉要求的额定流量G,以免锅炉构件局部过热;热水供应用热高峰影响供暖等等。这些非集中燃气锅炉供热的特点,尤其后几点值得重视。

锅炉供热系统节能控制措施

锅炉供热系统节能控制措施 锅炉供热系统节能控制措施 选择合适的燃料和燃烧形式 在锅炉的使用中消耗最多的就是燃料,要做好节能措施首先必须从燃料的选择开始。在目前的社会经济条件下,主要的锅炉燃料有 三种,分别是固体燃料、气体燃料和液体燃料,这三种不同的燃料 其产生的热量不一样,对于环境的危害程度也是不一样的。从整体 上来看,气体燃料无论在加热质量,还是环境保护方面都有很大的 优势,在选择燃料的时候应该优先选择。但是在一些锅炉加热系统 中因为生产工艺以及燃料供应能力的影响,选用气体燃料还受到一 定的限制。在燃油的选择中,因为成本较高,在锅炉加热中选择这 种燃料往往成本较高。目前比较可行的就是可以采用型煤,将它汽 化之后使用,这样燃烧之后的残留物较少,在燃烧的过沉重排放出 来的废气量也较小,而且型煤汽化之后燃烧的热值是比较高的,所 以在锅炉加热中使用比较合算。 从燃烧方式来说,不同形态的燃料的燃烧形式是不一样的:气体燃料主要是有焰燃烧和无焰燃烧,有焰燃烧也就是气相燃烧,火焰 较长,并且有明显的轮廓,有焰燃烧的速度与空气的混合速度有很 大的关系。无焰燃烧指的是固相燃烧,燃烧速度较快,燃烧的温度 较高,不足之处是燃烧能力较小。液体燃料具有的燃烧形式也有两种,分别是高压雾化和低压雾化。高压雾化比较适用于一些较大的 锅炉中,虽然能有效回收烟气的余热,但是运行的费用和能耗相对 较高。而低压雾化主要适用于中小型锅炉中,使用的能耗和费用较高,虽然收集烟气不方便,但是仍然可以采用相应的方法收集余热。固体燃料燃烧形式中,最好的是煤气化燃烧,燃烧最差的是薄煤层。在锅炉选择中要根据实际的情况,对各种条件进行对比,确定最合 适的燃料和燃烧方式。 合理的风量调节和回收冷凝水的热量

办公楼采暖系统改造施工组织设计

目录 1 编制依据 (1) 2 工程概况 (1) 3 施工方案 (1) 3.1 拆除原暖气系统 (2) 3.2 安装准备 (2) 3.3卡架安装 (2) 3.4管道安装 (2) 3.5散热器安装 (4) 3.6水压试验 (4) 3.7系统冲洗 (4) 3.8保温防腐 (4) 3.9系统调试 (4) 3.10后期恢复 (4) 3.11劳动力计划 (5) 3.12主要机具计划 (5) 3.13质量控制和保证的具体措施 (6) 3.14质量控制点及控制措施 (6) 4 安全生产、文明施工及安全措施 (7) 5 成品保护措施 (8)

1编制依据 1.1 设计文件; 1.2 《采暖通风及空气调节设计规范》GB50019-2003; 1.3 《建筑设计防火规范》GB50016-2006; 1.4 《建筑给排水及采暖工程施工质量验收规范》GB50242-2002; 1.5 国家现行的工程建设、安全生产、文明施工、环保及消防等有关规定; 2 工程概况 2.1 工程名称:沈阳市服装艺术学校昆山校区采暖改造工程。 2.2 建设单位:******服务管理中心。 2.3 工程地点:******公司机关办公楼。 2.4 主要工程内容:拆除原暖气系统、新暖气系统安装、后期恢复。 2.5 工程期限:按甲方要求 3 施工方案 本工程施工过程要做到正常施工并保证办公楼内工作的正常运行,这使得施工难度增加,顾施工中应注意以下几点: (1)原暖气系统的拆卸必须采用工人手工拆除,搬运过程中有些设备不方便使用,要采用人工搬运方式,同时设专门人员对拆卸搬运过程进行监督,以免造成人身伤害。 (2)楼内人员活动频繁,为防止造成人身伤害,需要放置安全警示牌等以示提醒,同时采取一定的遮挡措施,以免管件机具等倾斜、掉落砸伤楼内办公人员; (3)管件、机具等要轻拿轻放,以免出现噪音,影响楼内人员正常办公; (4)施工过程中的管件、机具要轻拿轻放,必要时需要在墙壁、地面上铺设遮挡物,以防止管件、机具等放置、移动过程中对墙壁及楼地面造成破坏; (5)施工时间根据现场办公人员在场时间确定,办公人员不在场时不得施工,在场时方可施工。因办公人员不在场导致的施工进度延缓,要在其余时间加班加点完成;

电锅炉采暖方案

电锅炉供暖方案 一、工程概况 供暖采用电热水锅炉采暖系统 二、参照标准、依据 1、蓄热式电锅炉房设计施工图集。 2、常压蓄热水箱。 三、系统工作原理 1、蓄热系统直接向采暖系统供热,简称直接供热。直接供热在蓄热系统和采暖系统中不设热交换器,采暖系统中的循环水也回到蓄热水箱中。由于直接供热系统中不设热交换器、补水泵、定压装置,减少了设备,锅炉房管道也较为简单。 2、谷电、平电、峰电时间段(以北京地区为例) 谷电时间:23:00~7:00共计8小时;平电时间:7:00~8:0011: 00~18:00共计8小时;峰电时间:8:00~11:0018:00~23:00共计8小时。 电锅炉蓄热式供暖系统的运行,全部使用谷电: 23:00~7:00开启电锅炉加热水箱中的水,加热至95℃,向系统供热;7:00~23:00关闭电锅炉,由蓄热水箱向系统供热。 3、电网电价: 谷电0.21元/度 平电0.52元/度 峰电0.84元/度 4、自控:

蓄热状态和供热状态,蓄热水箱中的热水温度不断的在变化。但是锅炉房采暖供水温度却不能随蓄热水箱温度的变化而变化。为使锅炉房采暖供水温度保持在设定范围内,采取有效的温度调控装置是必须的。对直接供热的系统,采用合流三通阀来调控锅炉房采暖供水温度。淋浴系统出水管设温度自动控制阀。 5、蓄热式电锅炉房系统单独设置系统控制柜,系统控制柜一般应具备以下功能: ①控制蓄热箱是否达到蓄热温度。 ②控制锅炉在23:00自动启动,7:00达到蓄热温度后自动停炉。 ③控制电动三通阀,调控锅炉房采暖供水温度。 ④控制蓄热泵的启停,保证先启泵,后启炉,先停炉,后停泵。 6、电气部分: ①电锅炉的电源应由配电室直接供给,可用电缆或金属排输送。 ②锅炉控制柜及系统控制柜宜单独设置在控制室内。 ③所有设备外壳均应有可靠接地,接地电阻按有关要求执行。 四、设计参数 1、采暖系统: 采暖室外计算温度:-9℃ 采暖室内设计温度:20~22℃ 建筑物总耗热量:350KW 设计采暖天数:120天 采暖系统总阻力:60Kpa

锅炉供热控制系统设计

1 引言 1.1 系统设计背景 近年来,加热炉温度控制系统是比较常见和典型的过程控制系统,温度是工业生产过程中重要的被控参数之一,冶金﹑机械﹑食品﹑化工等各类工业生产过程中广泛使用的各种加热炉﹑热处理炉﹑反应炉,对工件的处理均需要对温度进行控制。因此,在工业生产和家居生活过程中常需对温度进行检测和监控。由于许多实践现场对温度的影响是多方面的,使得温度的控制比较复杂,传统的加热炉电气控制系统普遍采用继电器控制技术,由于采用固定接线的硬件实现逻辑控制,使控制系统的体积增大,耗电多,效率不高且易出故障,不能保证正常的工业生产。随着计算机控制技术的发展,传统继电器控制技术必然被基于计算机技术而产生PLC控制技术所取代。而PLC 本身优异的性能使基于PLC控制的温度控制系统变的经济高效稳定且维护方便。这种温度控制系统对改造传统的继电器控制系统有普遍性意义。 通过本设计可以熟悉并掌握西门子S7-300PLC的原理与功能以及它的编程语言,以自动控制理论为指导思想,解决工业生产及生活中温度控制的问题。 1.2 系统工作原理 加热炉温度控制系统基本构成如图1-1所示,它由PLC主控系统、固态继电器、加热炉、温度传感器等4个部分组成。 PLC主控系统 图1-1 加热炉温度控制系统基本组成 加热炉温度控制实现过程是:首先温度传感器将加热炉的温度转化为电压信号,PLC主控系统内部的A/D将送进来的电压信号转化为西门子S7-300PLC可识别的数字量,然后PLC将系统给定的温度值与反馈回来的温度值进行比较并经过PID运算处理后,给固态继电器输入端一个控制信号控制固态继电器的输出端导通与否从而使

采暖系统打压方案

大连世界金融中心一、二期配套工程—机电安装总承包工程 (采暖管道系统) 打压及冲洗 专 项 施 工 方 案 编制: 审核: 审批: 编制单位:中国建筑第六工程局有限公司

目录 一、工程概述 (3) 1、采暖工程简介 (3) 2、采暖施工说明 (4) 二、编制依据 (5) 三、试压工作程序 (5) 四、施工部署 (6) 1、技术准备 (6) 2、试验段划分 (6) 3、人员安排 (7) 4、主要使用工具 (7) 5、注意事项 (8) 五、管道系统试压及冲洗 (10) 1、供水水源的选择 (10) 2、试压试验过程 (10) 3、冲洗 (11) 六、安全技术措施 (11) 1、管道打压试验安全技术措施 (11) 2、临时用电安全技术措施 (12) 七、应急预案 (13)

一、工程概述 1、采暖工程简介 本工程位于大连市中山区人民路旁,规划用地面积约5378平方米,总建筑面积172518平方米,地上52层,地下5层.塔楼最高点相对高度213.440米。其中1-5层裙房为商业公建;南北塔楼6~52层为办公.其中南北楼14F、28F、40F为设备层。 一次热源为市政0.7MPa,190°C过热蒸汽,经过减温减压后送至地下三、四层的换热站换热及地下五夹层制冷机房。地下地下三、四层换热站内设置1套1138KW汽水换热机组负担办公低区采暖系统;1套1850KW 汽水换热机组负担办公中区采暖系统;1套1566KW汽水换热机组负担办公高区采暖系统;1套853KW汽水换热机组负担北塔超高区采暖系统;1套1220KW汽水换热机组负担南塔办公超高区空调采暖系统;各系统换热器、循环泵、补水泵均按一用一备配置,补水采用软化水,系统定压均在换热站内解决。换热站内详细设计及供热系统设备由热力公司负责,要求换热站内换热器、水泵、阀门、管件等系统承压等级不小于4.0MPa。 地热采暖系统热水水温为60/50℃;散热器采暖系统热水水温为80/60℃ 本工程裙房及南楼超高区办公采用空调采暖,散热器采暖系统为南塔6~13F、15~27F、29~39F及北塔6~13F、15~27F、29~39F、41~52F。 各区系统形式:均采用垂直双管下供下回式。 各区系统工作压力:低区系统静水压线标高64.800m(相对标高);中区系统静水压线标高111.600m;高区系统静水压线标高162.000;超高

医院制冷采暖系统节能改造方案

---------------------------------------------------------精品 文档 --------------------------------------------------------------------- 医院制冷采暖系统节能改造方案说明 一、工程现状 本工程原设计为水源热泵系统夏季制冷,冬季供暖,但是由于系统运行后期地下水水量不足,改为夏季采用水源热泵+冷却塔供冷,冬季电热锅炉供暖。现有水源热泵机组435KW 一台,电热锅炉200KW 一台,水源热泵配套冷却塔一台,空调循环泵等辅助设备一套。每年运行费用约为40万元,制冷采暖费用相对较高。 二、系统改造方案 为节省运行费用,设计将水源热泵系统改造为土壤源热泵系统,现有水源热泵机组制冷量435kW ,制热量约400kW 。本工程选择用竖直埋管的形式,初步设计每孔深100m ,双U 形直埋管,采用高密度聚乙烯PE100-De25。冬季每米井深吸热量为40W ,夏季每米井深释热量为50W 。 根据《地源热泵系统工程技术规范》GB50366-2005(2009版) 地源热泵系统最大吸热量为: ()[]∑∑∑-+-?=水泵释放热量输送过程失热量空调热负荷COP 11r Q 地源热泵系统最大释热量为: ()[]∑∑∑+++?=水泵释放热量输送过程得热量空调冷负荷EER 11l Q 因输送过程得失热量和水泵的释放热量较小,并且不易计算,一般取 1.02-1.05的安全系数。 螺杆式地源热泵机组 COP (制热运行时的性能系数)为3.5,EER (制冷运行时的能效比)为5.0,各系统埋管计算如下:

集中供热锅炉控制系统的PLC控制

集中供热锅炉控制系统的PLC控制 彭桂力.刘知贵 (西南科技大学信息工程学院,四川绵阳621010) 摘要:针对目前对集中供热锅炉控制中没有远距离控制的现状,基于西门子S7—200系列可编程逻辑控制器PLC(Pmgr锄mablehgicContmller)设计了一种集中供热锅炉自动控制系统,介绍其工作原理:控制现场传感器标准信号经过信号调理模块送到现场控制单元PLC。控制单元通过以太网相连,将需要监控的信号送入上位机,实现人机交互和远程控制。对系统的控制核心S7—200作了详细的介绍.并给出了软、硬件结构设计方案。 中图分类号:TP273文献标识码:B文章编号:1006—6047(2006)09—0075—03 0引言 近年来.大型集中供热锅炉房的控制系统开始采 用可编程逻辑控制器PLC(ProgrammableL0鲥cCon— tmller)控制方式。在集中供热锅炉房,PLC主要用于 输煤、驱动风机及进行比例积分微分PID(Pmponional IntegralDerivative)调节控制系统中[1|。当前国内许 多地方的锅炉控制系统主要是采用分布式控制系统 DCS(DistributedControlSvstem)‘2_。这是由于锅炉系 统的仪表信号较多.采用此系统性价比相对较好,但 随着PLC技术的不断发展.PLC在仪表控制方面的 功能已经不断强化。用于回路调节和组态画面的功 能不断完善.而且PLC的抗干扰能力也很强.对电 源的质量要求比较低。 基于PLC在工业控制系统中的良好应用.本文 将西门子S7—200PLC用于集中供热系统锅炉控制 系统。整个系统的工作原理为:从控制现场传感器 送来的4。20mA或0。5v的标准信号经过信号调 理模块送到现场控制单元(PLC).经过智能运算后 形成控制信号.控制信号再经过信号调理模块返送到 现场执行单元(电磁阀)。各个控制单元通过以太网 相连.将需要监控的信号送人上位机,实现人机交互和 远程控制。 1系统结构和控制方案 系统结构如图1所示。本系统主要是用西门子 图1系统结构图 Fig.1System stmcture 收稿日期:2005—12—13;修回日期:2006—03—04向 户 PLCS7—200CPU224作为控制器进行控制.主要是 对燃煤锅炉进行控制。包括风机、给煤机的开关,根 据液位变化对进出水口阀门的控制.根据锅炉内温度 变化进行自动控制.利用PLC中所带有的PID调节器 进行调节.以控制锅炉内的温度.再利用远程传输的 功能.可以在用户处装上温度传感器.将其温度转成 标准信号传到PLC主机上.观测到的温度根据需要 进行调节,提高或降低锅炉的温度.直接控制传到用 户的温度。在锅炉内装有压力传感器.这是十分必要 的,如果压力过高,可能会降低锅炉的寿命,甚至发生 危险,所以一定要控制压力.当压力超过一定的数值, 需报警。并迅速进行处理.降低锅炉内的压力.以免 发生危险[3-41。 根据系统的要求.选取西门子PLCS7—200CPU224作为控制核心.同时还扩展了2个EM231模拟 量输入模块、1个EM223数字量输入模块和1个CP 243—1以太网模块。CPU224的I/0点数是14/10。 所以要扩展1个EM223的数字量输入/输出模块. 它的I/O点数是16/16.作用是提供附加的输入、输 出点。这样完全可以满足系统的要求。同时.选用了 EM231模块.它是AD转换模块,具有4个模拟量 输入,12位AD,其采样速度25¨s,温度传感器、压 力传感器、流量传感器以及含氧检测传感器的输出信 号经过调理和放大处理后.成为0。5V的标准信号. EM231模块自动完成AD转换。 PLC通过检测温度、水位、压力、流量和气体中的含氧量给出控制信号控制燃烧机、真空泵、给媒机、 电磁阀等输出设备[5-刚。为实现人机对话功能.如系统 状态以及变量图形显示、参数修改等。还扩展了一块 TD200触摸显示屏,操作控制简单、方便,可用于设置 系统参数。显示锅炉温度等。还有一个以太网模块 CP243—1.其作用是可以让S7—200直接连入以太网. 通过以太网进行远距离交换数据.与其他的S7—200 进行数据传输.通信基于TCP/IP,安装方便、简单。 机组控制系统如图2所示j

相关文档
最新文档