《管理运筹学》第四版课后习题

合集下载

《管理运筹学》第四版课后习题答案

《管理运筹学》第四版课后习题答案

《管理运筹学》第四版课后习题解析(上)第2章线性规划的图解法1.解:(1)可行域为OABC。

(2)等值线为图中虚线部分。

? (3)由图2-1可知,最优解为B 点,最优解 x =12 , x ??15 7 2 7 图2-1;最优目标函数值 69 。

72.解:(1)如图2-2所示,由图解法可知有唯一解?x 1 ??0.2 ,函数值为3.6。

?x 2 图2-2(2)无可行解。

(3)无界解。

(4)无可行解。

? (5)无穷多解。

?x ? (6)有唯一解 ??1 ? 203 ,函数值为 92 。

8 3x ? ??2 3 3.解:(1)标准形式max f ??3x 1 ??2x 2 ??0s 1 ??0s 2 ??0s 39x 1 ??2x 2 ??s 1 ??303x 1 ??2x 2 ??s 2 ??132x 1 ??2x 2 ??s 3 ??9x 1, x 2 , s 1, s 2 , s 3 ≥ 0(2)标准形式min f ??4x 1 ??6x 2 ??0s 1 ??0s 23x 1 ??x 2 ??s 1 ??6x 1 ??2x 2 ??s 2??10 7x 1 ??6x 2??4x 1, x 2 , s 1, s 2 ≥ 0(3)标准形式min f ??x 1????2x 2????2x 2??????0s 1 ??0s 2?3x 1 ??5x 2????5x 2??????s 1 ??702x 1????5x 2????5x 2??????503x 1????2x 2????2x 2??????s 2 ??30x 1?, x 2??, x 2????, s 1, s 2 ≥ 0 4.解:标准形式max z ??10x 1 ??5x 2 ??0s 1 ??0s 23x 1 ??4x 2 ??s 1??95x 1 ??2x 2 ??s 2 ??8x 1, x 2 , s 1, s 2 ≥ 0≤ 松弛变量(0,0)最优解为 x 1 =1,x 2=3/2。

《管理运筹学》第四版课后习题解析(下)

《管理运筹学》第四版课后习题解析(下)

《管理运筹学》第四版课后习题解析(下)第9章 目 标 规 划 1、解:设工厂生产A 产品1x 件,生产B 产品2x 件。

按照生产要求,建立如下目标规划模型。

由管理运筹学软件求解得12121211.25,0,0,10, 6.25,0x x d d d d --++====== 由图解法或进一步计算可知,本题在求解结果未要求整数解的情况下,满意解有无穷多个,为线段(135/14,15/7)(1)(45/4,0),[0,1]ααα+-∈上的任一点。

2、解:设该公司生产A 型混凝土x 1吨,生产B 型混凝土x 2吨,按照要求建立如下的目标规划模型。

由管理运筹学软件求解得.0,0,20,0,0,0,0,35,40,0,120,120554433221121============+-+-+-+-+-d d d d d d d d d d x x3、解:设x 1,x 2分别表示购买两种基金的数量,按要求建立如下的目标规划模型。

用管理运筹学软件求解得,所以,该人可以投资A 基金113.636份,投资B 基金159.091份。

4、解:设食品厂商在电视上发布广告1x 次,在报纸上发布广告2x 次,在广播中发布广告3x 次。

目标规划模型为 用管理运筹学软件先求下述问题。

得10d -=,将其作为约束条件求解下述问题。

得最优值20-=d ,将其作为约束条件计算下述问题。

得最优值30d +=,将其作为约束条件计算下述问题。

得123112233449.474,20, 2.105,0,0,0,00, 4.211,14.316,0+-+-+-+-===========x x x d d d d d d d d ,。

所以,食品厂商为了依次达到4个活动目标,需在电视上发布广告9.474次,报纸上发布广告20次,广播中发布广告2.105次。

(使用管理运筹学软件可一次求解上述问题) 5、解:(1)设该化工厂生产1x 升粘合剂A 和2x 升粘合剂B 。

《管理运筹学》第四版课后习题解析(上)

《管理运筹学》第四版课后习题解析(上)

《管理运筹学》第四版课后习题解析(上)第2章 线性规划的图解法1.解:(1)可行域为OABC 。

(2)等值线为图中虚线部分。

(3)由图2-1可知,最优解为B 点,最优解1x =127,2157x =;最优目标函数值697。

图2-12.解:(1)如图2-2所示,由图解法可知有唯一解120.20.6x x =⎧⎨=⎩,函数值为3.6。

图2-2(2)无可行解。

(3)无界解。

(4)无可行解。

(5)无穷多解。

(6)有唯一解 1220383x x ⎧=⎪⎪⎨⎪=⎪⎩,函数值为923。

3.解:(1)标准形式12123max 32000f x x s s s =++++1211221231212392303213229,,,,0x x s x x s x x s x x s s s ++=++=++=≥(2)标准形式1212min 4600f x x s s =+++12112212121236210764,,,0x x s x x s x x x x s s --=++=-=≥(3)标准形式12212min 2200f x x x s s ''''=-+++ 1221122122212212355702555032230,,,,0x x x s x x x x x x s x x x s s '''-+-+=''''-+=''''+--=''''≥4.解:标准形式1212max 10500z x x s s =+++1211221212349528,,,0x x s x x s x x s s ++=++=≥松弛变量(0,0)最优解为 1x =1,x 2=3/2。

5.解:标准形式12123min 118000f x x s s s =++++121122123121231022033184936,,,,0x x s x x s x x s x x s s s +-=+-=+-=≥剩余变量(0, 0, 13)最优解为 x 1=1,x 2=5。

《管理运筹学》第四版课后习题解析(上)

《管理运筹学》第四版课后习题解析(上)

《管理运筹学》第四版课后习题解析(上)第2章 线性规划的图解法1.解:(1)可行域为OABC 。

(2)等值线为图中虚线部分。

(3)由图2-1可知,最优解为B 点,最优解1x =127,2157x =;最优目标函数值697。

图2-12.解:(1)如图2-2所示,由图解法可知有唯一解120.20.6x x =⎧⎨=⎩,函数值为3.6。

图2-2(2)无可行解。

(3)无界解。

(4)无可行解。

(5)无穷多解。

(6)有唯一解 1220383x x ⎧=⎪⎪⎨⎪=⎪⎩,函数值为923。

3.解:(1)标准形式12123max 32000f x x s s s =++++1211221231212392303213229,,,,0x x s x x s x x s x x s s s ++=++=++=≥(2)标准形式1212min 4600f x x s s =+++12112212121236210764,,,0x x s x x s x x x x s s --=++=-=≥(3)标准形式12212min 2200f x x x s s ''''=-+++1221122122212212355702555032230,,,,0x x x s x x x x x x s x x x s s '''-+-+=''''-+=''''+--=''''≥4.解:标准形式1212max 10500z x x s s =+++1211221212349528,,,0x x s x x s x x s s ++=++=≥松弛变量(0,0)最优解为 1x =1,x 2=3/2。

5.解:标准形式12123min 118000f x x s s s =++++121122123121231022033184936,,,,0x x s x x s x x s x x s s s +-=+-=+-=≥剩余变量(0, 0, 13)最优解为 x 1=1,x 2=5。

《管理运筹学》第四版课后习题解析上

《管理运筹学》第四版课后习题解析上

《管理运筹学》第四版课后习题解析(上)第2章 线性规划的图解法1.解:(1)可行域为OABC 。

(2)等值线为图中虚线部分。

(3)由图2-1可知,最优解为B 点,最优解1x =127,2157x =;最优目标函数值697。

图2-1 2.解:(1)如图2-2所示,由图解法可知有唯一解120.20.6x x =⎧⎨=⎩,函数值为3.6。

图2-2(2)无可行解。

(3)无界解。

(4)无可行解。

(5)无穷多解。

(6)有唯一解 1220383x x ⎧=⎪⎪⎨⎪=⎪⎩,函数值为923。

3.解: (1)标准形式12123max 32000f x x s s s =++++1211221231212392303213229,,,,0x x s x x s x x s x x s s s ++=++=++=≥(2)标准形式1212min 4600f x x s s =+++12112212121236210764,,,0x x s x x s x x x x s s --=++=-=≥(3)标准形式12212min 2200f x x x s s ''''=-+++1221122122212212355702555032230,,,,0x x x s x x x x x x s x x x s s '''-+-+=''''-+=''''+--=''''≥4.解: 标准形式1212max 10500z x x s s =+++1211221212349528,,,0x x s x x s x x s s ++=++=≥ 松弛变量(0,0) 最优解为 1x =1,x 2=3/2。

5.解: 标准形式12123min 118000f x x s s s =++++121122123121231022033184936,,,,0x x s x x s x x s x x s s s +-=+-=+-=≥剩余变量(0, 0, 13) 最优解为 x 1=1,x 2=5。

《管理运筹学》第四版课后习题解析(下)

《管理运筹学》第四版课后习题解析(下)

《管理运筹学》第四版课后习题解析(下)第9章目标规划1、解:设工厂生产A 产品1x 件,生产B 产品2x 件。

按照生产要求,建立如下目标规划模型。

112212121211122212min ()()s.t43452530555086100,,,0,1,2--+-+-+-++++-+=+-+==i i P d P d x x x x x x d d x x d d x x d d i ≤≤≥由管理运筹学软件求解得12121211.25,0,0,10, 6.25,0x x d d d d --++======由图解法或进一步计算可知,本题在求解结果未要求整数解的情况下,满意解有无穷多个,为线段(135/14,15/7)(1)(45/4,0),[0,1]ααα+-∈上的任一点。

2、解:设该公司生产A 型混凝土x 1吨,生产B 型混凝土x 2吨,按照要求建立如下的目标规划模型。

)5,,2,1(0,,0,014550.060.015550.040.030000100150100120275200.)()(min 2121215521442331222111215443322111Λ=≥≥≥≤+≤+=-++=-+=-+=-++=-++++++++-+-+-+-+-+----++-i d d x x x x x x d d x x d d x d d x d d x x d d x x ts d p d d p d p d d p i i 由管理运筹学软件求解得.0,0,20,0,0,0,0,35,40,0,120,120554433221121============+-+-+-+-+-d d d d d d d d d d x x3、解:设x 1,x 2分别表示购买两种基金的数量,按要求建立如下的目标规划模型。

,,01250543504.07.0100004525.min 2,122211121212211≥≥=-++=-++≤+++-+-+--+i i d d x x d d x x d d x x x x ts d p d p用管理运筹学软件求解得,0,0,0,818.206,091.159,636.113221121======+-+-d d d d x x所以,该人可以投资A 基金113.636份,投资B 基金159.091份。

《管理运筹学》第四版课后习题解析[下]

《管理运筹学》第四版课后习题解析[下]
与 相邻的弧有 , , , = = 。
给 标号 ,同理 标号 。得到最短路线为 ,最短时间为1.35小时。
4.解:
以 为起始点, 标号为 ;

边集为 =
且有
所以, 标号(4,1)。
则 ,
边集为
且有
所以, 标号(5,1)。
则 ,
边集为
且有
所以, 标号(7,2)。
则 ,
边集为
且有
所以, 、 标号(8,2)。
则 ,
边集为
且有
所以, 标号(9,4)。
则 ,
边集为
且有
所以, 标号(11.5,6)。
则 ,
边集为
且有
所以, 标号(12,7)。
, 为空集。
所以,最短路径为
5.解:
(1)从 出发,令 ={ },其余点为 ,给 标号 。 的所有边为 ,
累计距离最小为 ,给 标号为 ,令 。
(2) 的所有边为 ,累计距离最小为 ,令 。
(2)
图解法求解如图9-1所示,目标1,2可以达到,目标3达不到,所以有满意解为A点(150,120)。
6、解:
假设甲乙两种产品量为x1,x2,建立数学规划模型如下。
用管理运筹学软件求解得:
所以,甲乙两种产品量分别为8.333吨,3.333吨,该计划内的总利润为250元。
7、解:
设该汽车装配厂为达到目标要求生产产品A 件,生产产品B 件。
图解法略,求解得 。
(2)目标规划模型如下。
图解法略,求解得 。
由此可见,所得结果与(1)中的解是不相同的。
(3)加权目标规划模型如下,
求解得 。
9、解:
假设甲乙两种洗衣机的装配量分别是x1,x2,建立数学规划模型如下。

管理运筹学》第四版课后习题解析(上)

管理运筹学》第四版课后习题解析(上)

《管理运筹学》第四版课后习题解析(上)第2章线性规划的图解法1.解:(1)可行域为OABC。

(2)等值线为图中虚线部分。

(3)由图2-1可知,最优解为B点,最优解1x=127,2157x=;最优目标函数值697。

图2-12.解:(1)如图2-2所示,由图解法可知有唯一解120.20.6xx=⎧⎨=⎩,函数值为。

图2-2(2)无可行解。

(3)无界解。

(4)无可行解。

(5)无穷多解。

(6)有唯一解 1220383x x ⎧=⎪⎪⎨⎪=⎪⎩,函数值为923。

3.解:(1)标准形式12123max 32000f x x s s s =++++1211221231212392303213229,,,,0x x s x x s x x s x x s s s ++=++=++=≥(2)标准形式1212min 4600f x x s s =+++12112212121236210764,,,0x x s x x s x x x x s s --=++=-=≥(3)标准形式12212min 2200f x x x s s ''''=-+++ 1221122122212212355702555032230,,,,0x x x s x x x x x x s x x x s s '''-+-+=''''-+=''''+--=''''≥4.解: 标准形式1212max 10500z x x s s =+++1211221212349528,,,0x x s x x s x x s s ++=++=≥ 松弛变量(0,0) 最优解为 1x =1,x 2=3/2。

5.解:标准形式12123min 118000f x x s s s =++++121122123121231022033184936,,,,0x x s x x s x x s x x s s s +-=+-=+-=≥剩余变量(0, 0, 13) 最优解为 x 1=1,x 2=5。

《管理运筹学》第四版课后习题解析[下]

《管理运筹学》第四版课后习题解析[下]
4
0
900
最大利润为13500。
17.解:
最优策略为(1,2,3)或者(2,1,3),即该厂应订购6套设备,可分别分给三个厂1,2,3套或者2,1,3套。每年利润最大为18万元。
第11章 图与网络模型
1、解:
破圈法的主要思想就是在图中找圈,同时去除圈中权值最大的边。因此有以下结果:
圈 去除边 ;圈 去除边 ;圈 去除边 ;圈 去除边 ;得到图(a1)。
圈 去除边 ;圈 去除边 ;圈 去除边 ;得到图(a2)。
圈 去除边 ;圈 去除边 ;得到图(a3)。
圈 去除边 ;得到图(a4)。即为最小生成树,权值之和为23。
同样按照上题的步骤得出最小生成树如图(b)所示,权值之和为18。
2.解:
这是一个最短路问题,要求我们求出从 到 配送的最短距离。用Dijkstra算法求解可得到该问题的解为27。我们也可以用管理运筹学软件进行计算而得出最终结果,计算而得出最终结果如下。
从节点1到节点6的最大流
*************************
起点 终点 流量 费用
----------------
1 2 1 3
1 3 4 1
2 4 2 43 2 1 13 5源自3 343024502
4624
5 6 3 2
此问题的最大流为5。
此问题的最小费用为39。
第12章 排序与统筹方法
由管理运筹学软件求解得
3、解:
设x1,x2分别表示购买两种基金的数量,按要求建立如下的目标规划模型。
用管理运筹学软件求解得,
所以,该人可以投资A基金113.636份,投资B基金159.091份。
4、解:
设食品厂商在电视上发布广告 次,在报纸上发布广告 次,在广播中发布广告 次。目标规划模型为

《管理运筹学》第四版课后习题答案解析

《管理运筹学》第四版课后习题答案解析

学习资料整理⎨= 0.6《管理运筹学》第四版课后习题解析(上)第2章 线性规划的图解法1.解:(1)可行域为OABC 。

(2)等值线为图中虚线部分。

(3)由图2-1可知,最优解为B 点,最优解 x =12, x15 1727图2-1;最优目标函数值 69。

72.解:(1)如图2-2所示,由图解法可知有唯一解 x 10.2,函数值为3.6。

x 2图2-2(2)无可行解。

(3)无界解。

(4)无可行解。

⎨ (5)无穷多解。

x(6)有唯一解 120 3,函数值为 92 。

8 3x2 33.解:(1)标准形式max f3x 12x 20s 10s 20s 39x 1 2x 2 s 1 30 3x 1 2x 2 s 2 13 2x 12x 2s 39x 1, x 2 , s 1, s 2 , s 3 ≥ 0(2)标准形式min f4x 16x 20s 10s 23x 1x 2 s 16 x 12x 2s 210 7x 16x2 4x 1, x 2 , s 1, s 2 ≥ 0(3)标准形式min fx 12x 22x 20s 1 0s 23x1 5x 25x 2s 1702x 15x 25x 250 3x 12x 22x 2s 230x 1, x 2, x 2, s 1, s 2 ≥ 04.解: 标准形式max z10x 15x 20s 10s 2范文范例 指导参考学习资料整理3x 14x 2s 19 5x 12x 2s 28x 1, x 2 , s 1, s 2 ≥ 0≤松弛变量(0,0)最优解为 x 1 =1,x 2=3/2。

5.解: 标准形式min f11x 18x 20s 10s 20s 310x 1 2x 2 s 1 20 3x 1 3x 2 s 2 18 4x 19x 2s 336x 1, x 2 , s 1, s 2 , s 3 ≥ 0剩余变量(0, 0, 13)最优解为 x 1=1,x 2=5。

《管理运筹学》第四版课后习题解析[下]

《管理运筹学》第四版课后习题解析[下]
4
0
900
最大利润为13500。
17.解:
最优策略为(1,2,3)或者(2,1,3),即该厂应订购6套设备,可分别分给三个厂1,2,3套或者2,1,3套。每年利润最大为18万元。
第11章 图与网络模型
1、解:
破圈法的主要思想就是在图中找圈,同时去除圈中权值最大的边。因此有以下结果:
圈 去除边 ;圈 去除边 ;圈 去除边 ;圈 去除边 ;得到图(a1)。0 Nhomakorabea0
9.解:
前两年生产乙,后三年生产甲,最大获利2372000元。
10.解:
最优解(0,200,300,100)或(200,100,200,100)或者(100,100,300,100)或(200,200,0,200)。总利润最大增长额为134万。
11.解:
在一区建3个分店,在二区建2个分店,不在三区建立分店。最大总利润为32。
得 ,将其作为约束条件求解下述问题。
得最优值 ,将其作为约束条件计算下述问题。
得最优值 ,将其作为约束条件计算下述问题。

所以,食品厂商为了依次达到4个活动目标,需在电视上发布广告9.474次,报纸上发布广告20次,广播中发布广告2.105次。(使用管理运筹学软件可一次求解上述问题)
5、解:
(1)设该化工厂生产 升粘合剂A和 升粘合剂B。则根据工厂要求,建立以下目标规划模型。
图解法略,求解得 。
(2)目标规划模型如下。
图解法略,求解得 。
由此可见,所得结果与(1)中的解是不相同的。
(3)加权目标规划模型如下,
求解得 。
9、解:
假设甲乙两种洗衣机的装配量分别是x1,x2,建立数学规划模型如下。
用管理运筹学软件解得:

管理运筹学》-第四版课后习题解析(上)

管理运筹学》-第四版课后习题解析(上)

《管理运筹学》第四版课后习题解析(上)第2章线性规划的图解法1.解:(1)可行域为OABC。

(2)等值线为图中虚线部分。

(3)由图2-1可知,最优解为B点,最优解1x=127,2157x=;最优目标函数值697。

图2-12.解:(1)如图2-2所示,由图解法可知有唯一解120.20.6xx=⎧⎨=⎩,函数值为3.6。

图2-2(2)无可行解。

(3)无界解。

(4)无可行解。

(5)无穷多解。

(6)有唯一解 1220383x x ⎧=⎪⎪⎨⎪=⎪⎩,函数值为923。

3.解:(1)标准形式12123max 32000f x x s s s =++++1211221231212392303213229,,,,0x x s x x s x x s x x s s s ++=++=++=≥(2)标准形式1212min 4600f x x s s =+++12112212121236210764,,,0x x s x x s x x x x s s --=++=-=≥(3)标准形式12212min 2200f x x x s s ''''=-+++ 1221122122212212355702555032230,,,,0x x x s x x x x x x s x x x s s '''-+-+=''''-+=''''+--=''''≥4.解: 标准形式1212max 10500z x x s s =+++1211221212349528,,,0x x s x x s x x s s ++=++=≥ 松弛变量(0,0) 最优解为 1x =1,x 2=3/2。

5.解:标准形式12123min 118000f x x s s s =++++121122123121231022033184936,,,,0x x s x x s x x s x x s s s +-=+-=+-=≥剩余变量(0, 0, 13) 最优解为 x 1=1,x 2=5。

【资料汇编】《管理运筹学》第四版课后习题答案

【资料汇编】《管理运筹学》第四版课后习题答案

10.解: 设租用大卡 车 x 辆,农用车 y 辆,最低运费为 z 元.目标函数 为 z=960x+360y.
Hale Waihona Puke 0 x 10线 性约束条件是
0 8x 即 8x+ 3y=0,向上平移
y 20 2.5y 100
作出可行域,并作直 线 960x+360y=0.
x 10

8x 2.5y 100
得最佳点 为 8,10
相差 值为 0 代表,不需要对相应的目 标系数 进行改 进就可以生 产该产 品。 最优解不 变,因为 C1 允 许增加量 20-6=14;C2 允许减少量 为 10- 3=7,所有允许增 加百分比和允许减少百分比之和(7.5-6)/14+(10-
9)/7〈100%,所以最优解不 变。
4.解: 标准形式
max z 10 x1 5x2 0s1 0s2
3x1 4x2 s1 9 5x1 2x2 s2 8 x1, x2 ,s1,s2 ≥ 0
松弛变量(0,0) 最优解为x1=1,x2=3/2。
5.解: 标准形式
min f 11x1 8x2 0s1 0s2 0s3
10x1 2x2 s1 20 3x1 3x2 s2 18 4x1 9x2 s3 36 x1, x2 ,s1,s2 , s3 ≥ 0
经过点 C(350,100)时 ,z=6x+10y 最大
12.解:
模型 max z 500 x1 400 x2
2x1 ≤ 300 3x2 ≤ 540 2x1 2x1 ≤ 440 1.2x1 1.5x2 ≤ 300 x1, x2 ≥ 0
(1)x1 150 ,x2 70,即目标函数最优值是 103000。
是可行域内的整点,在可行域的整点中,点 (4,8) 使 z 取得最小 值。

最新《运筹学》第四版课后习题解析(上)

最新《运筹学》第四版课后习题解析(上)

《管理运筹学》第四版课后习题解析(上)《管理运筹学》第四版课后习题解析(上)第2章 线性规划的图解法1.解:(1)可行域为OABC 。

(2)等值线为图中虚线部分。

(3)由图2-1可知,最优解为B 点,最优解1x =127,2157x =;最优目标函数值697。

图2-12.解:(1)如图2-2所示,由图解法可知有唯一解120.20.6x x =⎧⎨=⎩,函数值为3.6。

图2-2(2)无可行解。

(3)无界解。

(4)无可行解。

(5)无穷多解。

(6)有唯一解 1220383x x ⎧=⎪⎪⎨⎪=⎪⎩,函数值为923。

3.解:(1)标准形式12123max 32000f x x s s s =++++1211221231212392303213229,,,,0x x s x x s x x s x x s s s ++=++=++=≥(2)标准形式1212min 4600f x x s s =+++12112212121236210764,,,0x x s x x s x x x x s s --=++=-=≥(3)标准形式12212min 2200f x x x s s ''''=-+++ 1221122122212212355702555032230,,,,0x x x s x x x x x x s x x x s s '''-+-+=''''-+=''''+--=''''≥4.解:标准形式1212max 10500z x x s s =+++1211221212349528,,,0x x s x x s x x s s ++=++=≥松弛变量(0,0)最优解为 1x =1,x 2=3/2。

5.解:标准形式12123min 118000f x x s s s =++++121122123121231022033184936,,,,0x x s x x s x x s x x s s s +-=+-=+-=≥剩余变量(0, 0, 13)最优解为 x 1=1,x 2=5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《管理运筹学》第四版课后习题答案第2章线性规划的图解法1.解:(1)可行域为OABC。

(2)等值线为图中虚线部分。

(3)由图2-1可知,最优解为B点,最优解1x=127,2157x=;最优目标函数值697。

图2-12.解:(1)如图2-2所示,由图解法可知有唯一解120.20.6xx=⎧⎨=⎩,函数值为3.6。

图2-2(2)无可行解。

(3)无界解。

(4)无可行解。

(5)无穷多解。

(6)有唯一解1220383xx⎧=⎪⎪⎨⎪=⎪⎩,函数值为923。

3.解:(1)标准形式12123max32000f x x s s s=++++1211221231212392303213229,,,,0x x sx x sx x sx x s s s++=++=++=≥(2)标准形式1212min4600f x x s s=+++12112212121236210764,,,0x x sx x sx xx x s s--=++=-=≥(3)标准形式12212min2200f x x x s s''''=-+++1221122122212212355702555032230,,,,0x x x sx x xx x x sx x x s s'''-+-+=''''-+=''''+--=''''≥4.解:标准形式1212max10500z x x s s=+++1211221212349528,,,0x x sx x sx x s s++=++=≥松弛变量(0,0)最优解为1x=1,x2=3/2。

5.解:标准形式12123min118000f x x s s s=++++121122123121231022033184936,,,,0x x sx x sx x sx x s s s+-=+-=+-=≥剩余变量(0, 0, 13)最优解为x1=1,x2=5。

6.解:(1)最优解为x1=3,x2=7。

(2)113c<<。

(3)226c<<。

(4)1264xx==。

(5)最优解为x1=8,x2=0。

(6)不变化。

因为当斜率12113cc---≤≤,最优解不变,变化后斜率为1,所以最优解不变。

7.解:设x,y分别为甲、乙两种柜的日产量,目标函数z=200x+240y,线性约束条件:⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+6448120126yxyxyx即⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+162202yxyxyx作出可行域.解⎩⎨⎧=+=+162202yxyx得)8,4(Q272082404200=⨯+⨯=最大z答:该公司安排甲、乙两种柜的日产量分别为4台和8台,可获最大利润2720元.8.解:设需截第一种钢板x张,第二种钢板y张,所用钢板面积zm2.目标函数z=x+2y,线性约束条件:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+27315212yxyxyxyx作出可行域,并做一组一组平行直线x+2y=t.解⎩⎨⎧=+=+12273yxyx得)2/15,2/9(E.但E不是可行域内的整点,在可行域的整点中,点)8,4(使z取得最小值。

答:应截第一种钢板4张,第二种钢板8张,能得所需三种规格的钢板,且使所用钢板的面积最小.9.解:设用甲种规格原料x张,乙种规格原料y张,所用原料的总面积是zm2,目标函数z=3x+2y,线性约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≥+≥+3222yxyxyx作出可行域.作一组平等直线3x+2y=t.解⎩⎨⎧=+=+3222yxyx得)3/1,3/4(CC不是整点,C不是最优解.在可行域内的整点中,点B(1,1)使z取得最小值. z最小=3×1+2×1=5,答:用甲种规格的原料1张,乙种原料的原料1张,可使所用原料的总面积最小为5m2.10.解:设租用大卡车x辆,农用车y辆,最低运费为z元.目标函数为z=960x+360y.线性约束条件是⎪⎩⎪⎨⎧≥+≤≤≤≤1005.282010yxyx作出可行域,并作直线960x+360y=0.即8x+3y=0,向上平移由⎩⎨⎧=+=1005.2810yxx得最佳点为()10,8作直线960x+360y=0.即8x+3y=0,向上平移至过点B(10,8)时,z=960x +360y取到最小值.z最小=960×10+360×8=12480答:大卡车租10辆,农用车租8辆时运费最低,最低运费为12480元.11.解:设圆桌和衣柜的生产件数分别为x、y,所获利润为z,则z=6x+10y.⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+5628.008.07209.018.0yxyxyx即⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+1400728002yxyxyx作出可行域.平移6x+10y=0 ,如图⎩⎨⎧=+=+1400728002yxyx得⎩⎨⎧==100350yx即C(350,100).当直线6x+10y=0即3x+5y=0平移到经过点C(350,100)时,z=6x+10y最大12.解:模型12max500400z x x=+1211121223003540224401.2 1.5300,0xxx xx xx x++≤≤≤≤≥(1)1150x=,270x=,即目标函数最优值是103 000。

(2)2,4有剩余,分别是330,15,均为松弛变量。

(3)50,0,200,0。

(4)在[]0,500变化,最优解不变;在400到正无穷变化,最优解不变。

(5)因为124501430cc-=--≤,所以原来的最优产品组合不变。

13.解:(1)模型A Bmin83f x x=+A BA BBA B5010012000005460000100300000,0x xx xxx x++≤≥≥≥基金A,B分别为4 000元,10 000元,回报额为62000元。

(2)模型变为A Bmax54z x x=+A BBA B501001200000100300000,0x xxx x+≤≥≥推导出118000x=,23000x=,故基金A投资90万元,基金B投资30万元。

第3章线性规划问题的计算机求解1.解:⑴甲、乙两种柜的日产量是分别是4和8,这时最大利润是2720⑵每多生产一件乙柜,可以使总利润提高13.333元⑶常数项的上下限是指常数项在指定的范围内变化时,与其对应的约束条件的对偶价格不变。

比如油漆时间变为100,因为100在40和160之间,所以其对偶价格不变仍为13.333⑷不变,因为还在120和480之间。

2.解:⑴不是,因为上面得到的最优解不为整数解,而本题需要的是整数解⑵最优解为(4,8)3 .解:⑴农用车有12辆剩余⑵大于300⑶每增加一辆大卡车,总运费降低192元4.解:计算机得出的解不为整数解,平移取点得整数最优解为(10,8)5.解:圆桌和衣柜的生产件数分别是350和100件,这时最大利润是3100元相差值为0代表,不需要对相应的目标系数进行改进就可以生产该产品。

最优解不变,因为C1允许增加量20-6=14;C2允许减少量为10-3=7,所有允许增加百分比和允许减少百分比之和(7.5-6)/14+(10-9)/7〈100%,所以最优解不变。

6.解:(1)1150x=,270x=;目标函数最优值103 000。

(2)1、3车间的加工工时数已使用完;2、4车间的加工工时数没用完;没用完的加工工时数为2车间330小时,4车间15小时。

(3)50,0,200,0。

含义:1车间每增加1工时,总利润增加50元;3车间每增加1工时,总利润增加200元;2车间与4车间每增加一个工时,总利润不增加。

(4)3车间,因为增加的利润最大。

(5)在400到正无穷的范围内变化,最优产品的组合不变。

(6)不变,因为在[]0,500的范围内。

(7)所谓的上限和下限值指当约束条件的右边值在给定范围内变化时,约束条件1的右边值在[]200,440变化,对偶价格仍为50(同理解释其他约束条件)。

(8)总利润增加了100×50=5 000,最优产品组合不变。

(9)不能,因为对偶价格发生变化。

(10)不发生变化,因为允许增加的百分比与允许减少的百分比之和2550100%100100+≤ (11)不发生变化,因为允许增加的百分比与允许减少的百分比之和5060100%140140+≤,其最大利润为103 000+50×50−60×200=93 500元。

7.解:(1)4 000,10 000,62 000。

(2)约束条件1:总投资额增加1个单位,风险系数则降低0.057; 约束条件2:年回报额增加1个单位,风险系数升高2.167; 约束条件3:基金B 的投资额增加1个单位,风险系数不变。

(3)约束条件1的松弛变量是0,表示投资额正好为1 200 000;约束条件2的剩余变量是0,表示投资回报额正好是60 000;约束条件3的松弛变量为700 000,表示投资B 基金的投资额为370 000。

(4)当2c 不变时,1c 在3.75到正无穷的范围内变化,最优解不变; 当1c 不变时,2c 在负无穷到6.4的范围内变化,最优解不变。

(5)约束条件1的右边值在[]780000,1500000变化,对偶价格仍为0.057(其他同理)。

(6)不能,因为允许减少的百分比与允许增加的百分比之和42100%4.25 3.6+>,理由见百分之一百法则。

8.解:(1)18 000,3 000,102 000,153 000。

(2)总投资额的松弛变量为0,表示投资额正好为1 200 000;基金B 的投资额的剩余变量为0,表示投资B 基金的投资额正好为300 000; (3)总投资额每增加1个单位,回报额增加0.1;基金B 的投资额每增加1个单位,回报额下降0.06。

(4)1c 不变时,2c 在负无穷到10的范围内变化,其最优解不变; 2c 不变时,1c 在2到正无穷的范围内变化,其最优解不变。

(5)约束条件1的右边值在300 000到正无穷的范围内变化,对偶价格仍为0.1; 约束条件2的右边值在0到1 200 000的范围内变化,对偶价格仍为-0.06。

(6)600000300000900000900000+=100%故对偶价格不变。

9.解:(1)18.5x =,2 1.5x =,30x =,40x =,最优目标函数18.5。

(2)约束条件2和3,对偶价格为2和3.5,约束条件2和3的常数项增加一个单位目标函数分别提高2和3.5。

(3)第3个,此时最优目标函数值为22。

(4)在负无穷到5.5的范围内变化,其最优解不变,但此时最优目标函数值变化。

相关文档
最新文档