中考数学反比例函数综合题及答案解析

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、反比例函数真题与模拟题分类汇编(难题易错题)

1.平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点

(1)已知点A的坐标是(2,3),求k的值及C点的坐标;

(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.

【答案】(1)解:∵点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比

例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,∴3= ,点C与点A关于原点O对称,

∴k=6,C(﹣2,﹣3),

即k的值是6,C点的坐标是(﹣2,﹣3);

(2)解:过点A作AN⊥y轴于点N,过点D作DM⊥AC,如图,

∵点A(2,3),k=6,

∴AN=2,

∵△APO的面积为2,

∴,

即,得OP=2,

∴点P(0,2),

设过点A(2,3),P(0,2)的直线解析式为y=kx+b,

,得,

∴过点A(2,3),P(0,2)的直线解析式为y=0.5x+2,

当y=0时,0=0.5x+2,得x=﹣4,

∴点D的坐标为(﹣4,0),

设过点A(2,3),B(﹣2,﹣3)的直线解析式为y=mx+b,

则,得,

∴过点A(2,3),C(﹣2,﹣3)的直线解析式为y=1.5x,

∴点D到直线AC的直线得距离为:= .

【解析】【分析】(1)根据点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C

在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,可以求得k的值和点C的坐标;(2)根据△APO的面积为2,可以求得OP的长,从而可以求得点P的坐标,进而可以求得直线AP的解析式,从而可以求得点D的坐标,再根据点到直线的距离公式可以求得点D到直线AC的距离.

2.如图,平行于y轴的直尺(一部分)与双曲线y= (k≠0)(x>0)相交于点A、C,与x轴相交于点B、D,连接AC.已知点A、B的刻度分别为5,2(单位:cm),直尺的宽度为2cm,OB=2cm.

(1)求k的值;

(2)求经过A、C两点的直线的解析式;

(3)连接OA、OC,求△OAC的面积.

【答案】(1)解:∵AB=5﹣2=3cm,OB=2cm,

∴A的坐标是(2,3),

代入y= 得3= ,

解得:k=6

(2)解:OD=2+2=4,

在y= 中令x=4,解得y= .

则C的坐标是(4,).

设AC的解析式是y=mx+n,

根据题意得:,

解得:,

则直线AC的解析式是y=﹣ x+

(3)解:直角△AOB中,OB=2,AB=3,则S△AOB= OB•AB= ×2×3=3;

直角△ODC中,OD=4,CD= ,则S△OCD= OD•CD= ×4× =3.

在直角梯形ABDC中,BD=2,AB=3,CD= ,则S梯形ABDC= (AB+DC)•BD= (3+ )×2= .

则S△OAC=S△AOB+S梯形ABDC﹣S△OCD=3+ ﹣3=

【解析】【分析】(1)首先求得A的坐标,然后利用待定系数法求得函数的解析式;(2)首先求得C的坐标,然后利用待定系数法求得直线的解析式;(3)根据S△OAC=S△AOB+S梯形ABDC﹣S△OCD利用直角三角形和梯形的面积公式求解.

3.如图,已知点D在反比例函数y= 的图象上,过点D作x轴的平行线交y轴于点B (0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC= .

(1)求反比例函数y= 和直线y=kx+b的解析式;

(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;

(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.

【答案】(1)解:∵A(5,0),

∴OA=5.

∵,

∴,解得OC=2,

∴C(0,﹣2),

∴BD=OC=2,

∵B(0,3),BD∥x轴,

∴D(﹣2,3),

∴m=﹣2×3=﹣6,

∴,

设直线AC关系式为y=kx+b,

∵过A(5,0),C(0,﹣2),

∴,解得,

∴;

(2)解:∵B(0,3),C(0,﹣2),

∴BC=5=OA,

在△OAC和△BCD中

∴△OAC≌△BCD(SAS),

∴AC=CD,

∴∠OAC=∠BCD,

∴∠BCD+∠BCA=∠OAC+∠BCA=90°,

∴AC⊥CD;

(3)解:∠BMC=45°.

如图,连接AD,

∵AE=OC,BD=OC,AE=BD,

∴BD∥x轴,

∴四边形AEBD为平行四边形,

∴AD∥BM,

∴∠BMC=∠DAC,

∵△OAC≌△BCD,

∴AC=CD,

∵AC⊥CD,

∴△ACD为等腰直角三角形,

∴∠BMC=∠DAC=45°.

【解析】【分析】(1)由正切定义可求C坐标,进而由BD=OC求出D坐标,求出反比例函数解析式;由A、C求出直线解析式;(2)由条件可判定△OAC≌△BCD,得出AC=CD,∠OAC=∠BCD,进而AC⊥CD;(3)由已知可得AE=OC,BD=OC,得出AE=BD,再加平行得四边形AEBD为平行四边形,推出△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD为等腰直角三角形,∴∠BMC=∠DAC=45°.

4.如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A、B两点,点A的坐标为(2,3n),点B的坐标为(5n+2,1).

相关文档
最新文档