从电子管到集成电路

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从电子管到集成电路

摘要:电子技术的迅速发展,是20世纪以来最重大而又影响深远的科技成就之一。电子工业的发展和电子技术的水平,已经成为衡量一个国家现代化程度的重要尺度。通过梳理电子技术的发展历程,找寻一门技术从出现发展到成熟的内在逻辑,并提出自己得见解,正是这篇文章的意义所在。

关键词:电子管晶体管半导体集成电路

1 电子管的诞生

1883年美国发明家爱迪生在进行提高电灯灯丝寿命的实验时在灯丝附近安放了一根金属丝,然后他意外地发现通电加热的灯丝和这根金属丝之间竟然出现了微弱的电流。通过进一步的实验,爱迪生发现当金属丝对灯丝的电压为正时有电流通过,而当电压为负时则没有电流。这种现象就是“爱迪生效应”,它成为后来发明电子管的基础。1897年,英国物理学家约瑟夫·约翰·汤姆生(J.JThomson,1856—1940)通过对阴极射线的研究,证明了从炽热灯丝会发射出一种带负电的粒子流,这就是电子。由于电子的发现,人们终于明白“爱迪生效应”就是真空中的热电子发射现象。

1889年英国工程师弗莱明(J.A.Fleming,1849—1945)在当时迅速兴起的电子学的基础上,开始对爱迪生效应进行了深入研究,终于在1904年发明了第一种电子元件:一种可用作电磁波检波器的二极电子

管。二极管发明之后,美国无线电工程师德·福雷斯特(L.de Forest,1873—1961)即对弗莱明的发明进行了深入研究。为了改进二极管的性能,福雷斯特于1906年进行了在二极管的负极加入一个电极的实验。实验结果发现,在正极负极之间加入一个金属丝支撑的栅极时,其检波效果最佳,不久还发现三极管对电流有放大作用。

二极电子管和三极电子管的发明奠定了电子元件的主要技术基础,是具有划时代意义的技术发明。由于电子元件技术的带动,另一电子基础技术——电子线路也得以迅速发展,两者一并为后来的广播、电视、雷达等电子应用技术的兴起提供了技术基础。虽然电子管作为20世纪前半期电子技术的基础,写下了光辉的一页,但它也暴露出一些弱点,主要是体积大、重量重、耗电多、寿命短、需预热等,这同电子设备的发展要求提供体积小、重量轻、功耗低、可靠性高、起动迅速的元器件,形成了尖锐的矛盾。这就迫使人们去寻求新的性能更优异的电子器件。

2 半导体物理学的兴起

半导体物理学是凝聚态物理学的主要分支之一,在第二次世界大战之后得到了迅猛发展。它的兴起与30年代中后期相关技术背景和相关科学基础的形成有直接的内在联系。

在技术背景方面,到30年代中后期的时候,以热机技术和电力技术为主要技术标志的第二次工业革命在德、美、英等国家已基本完成。

以电子管为主要技术基础的电子技术经过从20世纪初到30年代中后期的发展,其技术已经基本成熟,其技术局限也日趋明显。

在科学基础方面,布洛赫提出的能带理论为半导体物理学的发展提供了重要的理论基础。所谓能带理论,是研究固体中电子运动规律的一种近似理论。固体由原子组成,原子又包括原子实和最外层电子,它们均处于不断的运动状态。为使问题简化,首先假定固体中的原子实固定不动,并按一定规律作周期性排列,然后进一步认为每个电子都是在固定的原子实周期势场及其他电子的平均势场中运动,这就把整个问题简化成单电子问题。到1931年英国物理学家威尔逊提出区分绝缘体、半导体和导体的微观理论判据之后,半导体物理学已经开始呈现向半导体技术初步转化的态势。

晶体管的出现

由于半导体物理学的兴起以及电子管本身材料与技术的局限性,美国贝尔实验室研究部电子管分部主任、固体物理学家凯利(M.Kelly)敏锐地察觉到电子技术可能正面临着一场大革命。1939年,凯利组建了以肖克利(W.Shockley)、巴丁(J.Bardeen)、布拉顿(W.H.Brattain)和伍德里奇(D.E.Woodridge)等人为主要成员的半导体学物理小组。这是一个年富力强,既有深厚的固体物理理论素养,又有丰富的实验技术经验的科研集体。他们的目标是:探索半导体的导电机制,研制能消除电子管缺陷并具有放大功能的新型电子器件。

1947年12月,研究小组发现金属与半导体表面形成的两个充分靠近点接触的结,存在着相互作用。巴丁和布拉顿根据这个效应重新制订了方案,12月23日终于研制出世界上第一支晶体三极管,它是用半导体锗制成的点接触型晶体管。1956年,肖克利、巴丁、布拉顿三人由于晶体管的发明和半导体物理学的杰出贡献,共同获得了诺贝尔物理学奖。

3 P-N结理论

肖克利及其小组成员在研制第一代晶体管的同时,在固体物理学已有的电子理论、量子理论和能带理论的基础上,对半导体物理的导电性进行了深入研究。1949到1950年间,他们提出了以半导体电子理论为基本内容的P-N结理论。P-N结理论主要有三个方面。

其一,半导体有N型半导体和P型半导体两种不同的类型。N型半导体参与导电的主要是带负电(negative)的电子。这些电子来自于半导体中的施主,如含有适量的五价元素砷、磷、锑的锗或硅,即是这种N型半导体。P型半导体参与导电的主要是带正电(positive)的空穴。这些空穴来自半导体中的受主,如含有适量的三价元素硼、铟、镓的锗或硅,即是这种P型半导体。

其二,N型半导体和P型半导体的交界层能形成P-N结。由于P-N 结具有单向导电性,因此以P-N结为基础的二极管对电流具有整流作用。

其三,以P-N结为基础,可以形成PNP或NPN两种类型的组合P-N 结。由于组合P-N结具有三极,因此以它为基础的三极管与电子三极管一样,对电流具有放大效应。

4 晶体管的大规模生产

在肖克利及其小组成员提出P-N结理论之后,肖克利根据对晶体管工作机理的分析,又提出了PNP和NPN结型晶体管的理论。1950年贝尔电话实验室的斯帕克斯(M.Sparks)等人研制出了这种结型晶体管(或称面触型晶体管)。它同点接触型晶体管相比,结构简单、牢固可靠、噪声小、宜于大批量生产。

晶体管的大规模生产除了自身技术硬件指标达标外,原材料的数量和质量的供应以及产品的生产工艺也是决定晶体管能否大量生产的重要因素。1952年,范(W.G.Pfann)发明了生产高纯度锗的区域提纯熔炼工艺;1954年蒂尔(G.KTeal)和比勒(E.Buehler)改进了拉制单晶硅的工艺;同年,富勒(C.S.Fuller)研究出了一种新的掺杂方法——扩散工艺。他们均来自贝尔实验室。1959年,仙童公司的霍尔尼(J.A.Hoerni)发明了平面工艺,并制出了第一个平面型晶体管。这些成果为晶体管的大规模生产和半导体工业的发展创造了条件,尤其是扩散工艺和平面工艺,不但将晶体管的工作频率推到了超短波波段,而且使晶体管的管芯结构图形达到前所未有的精密和微小程度,从而为晶体管的微小型化开辟了道路。

相关文档
最新文档