数系的扩充ppt课件

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数的概念
------数系的扩充 洩湖中学:王艳
3.1 数系的扩充
❖ 从社会生活来看为了满足生活和生产实 践的需要,数的概念在不断地发展.
❖ 从数学内部来看,数集是在按某种 “规 则”不断扩充的.
自然数
❖ 自然数是“数”出来的,其历史最早可以追 溯到五万年前.
负数
负数是“欠”出来
的.它是由于借贷关
自然数中开方产生 无理数 , 实数系统;
负数中开方产生 虚数 , 新的系统.
数系的扩充
复数的概念
数系扩充的科学道理
逆运算在数系的扩充中扮演着极为 重要的角色;
逆运算的运算法则来源于正运算, 因此比正运算困难,以致可能出现 无法进行的现象,从而必须引进新 东西,使数系得以扩展.
实数集能否继续扩充呢?
虚数
虚数是“算”出来 的. 1637年,法国数学 家笛卡尔把这样的 数叫做“虚数” (“想象中 (imaginary)的数”).
笛卡尔 (R.Descartes,1596-1661)
数系的扩充
复数的概念
知识引入
我们已知知道:
对于一元二次方程 x2 10没有实数根.
x2 1
形如a+bi(a,b∈R)的数叫做复数.
全体复数所形成的集合叫做复数集, 一般用字母C表示 .
数系的扩充
复数的概念
复数的代数形式: 通常用字母 z 表示,即
zabi(aR,bR)
i 实部 虚部 其中 称为虚数单位。
讨 论?
复数集C和实数集R之间有什么关系?
实数 b0
R C
复数a+bi虚数 b0非 纯纯 虚a虚 数 a0数 , 0b,b00
系中量的不同意义
而产生的.我国三国
时期数学家刘徽
(公元250年前后)
首先给出了负数的
定义、记法和加减
刘徽(公元250年前后)
运算法则.
数集扩充到整数集
分数(有理数)
❖ 分数(有理数)是 “分”出来的.早在 古希腊时期,人类已 经对有理数有了非常 清楚的认识,而且他 们认为有理数就是所 有的数.
数集扩充到有理数集
边长为1的正方形的对角线长 度为多少?
1

1
无理数
无理数是“推”出来
的.公元前六世纪,古
希腊毕达哥拉斯学派
利用毕达哥拉斯定理,
发现了“无理数”.
“无理数”的承认
(公元前4世纪)是数
学发展史上的一个里
程碑.
毕达哥拉斯(约公元前 560——480年)
数集扩充到实数集
正数与负数, 有理数与无理数, 都是具有“实际意义的量”, 称之为“实数”,构成实数系统. 实数系统是一个没有缝隙的连续系统.
(1)若a、b为实数,则Z=a+bi为虚数
(2)若b为实数,则Z=bi必为纯虚数
(3)若a为实数,则Z= a一定不是虚数
数系的扩充
复数的概念
例1 实数m取什么值时,复数
z m 1 (m 1 )i
是(1)实数? (2)虚数? (3)纯虚数?
解: (1)当 m 10,即 m1时,复数z 是实数.
(2)当 m 10,即 m1时,复数z 是虚数.
(3)当 m 1 0
m
1
0
即m1时,复数z 是
纯虚数.
练习:当m为何实数时,复数
Zm 2m 2(m 21 )i
是 (1)实数 (2)虚数 (3)纯虚数
数系的扩充
复数的概念
B
nZ*
i4n 1
i4n2 -1
i4n1 i i4n3 i
数系的扩充
复数的概念
1.虚数单位i的引入; 2.复数有关概念:
复数的代数形式 复数的实部 、虚部
虚数、纯虚数
数系的扩充
数集再次扩充
复数的概念
数系的扩充
复数的概念
数系扩充的科学道理
从数学内部来看,数集是在按某种 “规则”不断扩充的。
自然数中减法产生 负数 ;
, 整数系统
整数中除法产生 分数 , 有理数系统;
数系的扩充
复数的概念
思 考?
复数集
复数集,虚数集,实数集, 虚数集 纯虚数集之间的关系?
纯虚数集
实数集
数系的扩充
复数的概念
1.说明下列数中,那些是实数,哪些是虚数, 哪些是纯虚数,并指出复数的实部与虚部。
2 7 0.618 2 i 0
7
i 2 i1 3 5 i+8, 39 2i
2、判断下列命题是否正确:
思考?
我们能否将实数集进行扩充,使得在新的数 集中,该问题能得到圆满解决呢?
i 引入一个新数:
满足 i2 1
数系的扩充
复数的概念
现在我们就引入这样一个数 i ,把 i 叫做虚数单位,
并且规定:
(1)i21;
(2)实数可以与 i 进行四则运算,在进行四则运
算时,原有的加法与乘法的运算率(包括交换率、结 合率和分配率)仍然成立。
相关文档
最新文档