几种典型的颜色空间
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几种典型的颜色空间
(一)CIE色度模型
国际照明委员会(CIE,Commission Internationale de L'Eclairage / International Commission on Illumination)的色度模型是最早使用的模型之一。它是三维模型,其中,x和y两维定义颜色,第3维定义亮度。
CIE 在1976 年规定了两种颜色空间。一种是用于自照明的颜色空间,叫做CIE LUV(图06-02-2)。
图06-02-2 CIE 1976 Lu’v’色度图
另一种用于非自照明的颜色空间,叫做CIE 1976 L*a*b*,或者叫CIE LAB。CIE LAB 系统使用的坐标叫做对色坐标(opponent color coordinate),如图06-02-3 所示。CIELAB 使用b*, a *和 L*坐标轴定义CIE 颜色空间。其中,L*值代表光亮度,其值从0(黑色)~100(白色)。b*和a*代表色度坐标,其中a*代表红-绿轴,b*代表黄-蓝轴,它们的值从0到10。a* = b*= 0表示无色,因此L*就代表从黑到白的比例系数。使用对色坐标(opponet color coordinate)的想法来自这样的概念:颜色不能同时是红和绿,或者同时是黄和蓝,但颜色可以被认为是红和黄、红和蓝、绿和黄以及绿和蓝的组合。
图06-02-3 CIE LAB 颜色空间
CIE XYZ 是国际照明委员会在1931 年开发并在1964年修订的CIE 颜色系统(CIE Color System),该系统是其他颜色系统的基础。它使用相应于红、绿和蓝三种颜色作为三种基色,而所有其他颜色都从这三种颜色中导出。通过相加混色或者相减混色,任何色调都可以使用不同量的基色产生。CIE 1931 色度
图(CIE 1931 Chromaticity Diagram),如图06-02-4(a)所示,图(b)是它的轮廓图。图(a)中的A点在色度图上的坐标是x =0.4832,y =0.3045,它的颜色与红苹果的颜色相匹配。
图06-02-4 CIE 1931
图06-02-4 CIE 1931色度图是用标称值表示的CIE 色度图,x 表示红色分量,y 表示绿色分量。图中的E 点代表白光,它的坐标为(0.33,0.33);环绕在颜色空间边沿的颜色是光谱色,边界代表光谱色的最大饱和度,边界上的数字表示光谱色的波长,其轮廓包含所有的感知色调。所有单色光都位于舌形曲线上,这条曲线就是单色轨迹,曲线旁标注的数字是单色(或称光谱色)光的波长值;自然界中各种实际颜色都位于这条闭合曲线内;RGB系统中选用的物理三基色在色度图的舌形曲线上。
(二)RGB颜色空间
计算机颜色显示器显示颜色的原理与彩色电视机一样,都是采用R、G、B相加混色的原理,通过发射出三种不同强度的电子束,使屏幕内侧覆盖的红、绿、蓝磷光材料发光而产生颜色的。这种颜色的表示方法称为RGB颜色空间表示。在多媒体计算机技术中,用得最多的是RGB颜色空间表示(图06-01-9)。
根据三基色原理,用基色光单位来表示光的量,则在RGB颜色空间,任意色光F都可以用R、G、B三色不同分量的相加混合而成:
F=r [ R ] + g [ G ] + b [ B ]
RGB颜色空间还可以用一个三维的立方体来描述(图06-02-5)。
图06-02-5RGB颜色空间
我们可知自然界中任何一种色光都可由R、G、B三基色按不同的比例相加混合而成,当三基色分量都为0(最弱)时混合为黑色光;当三基色分量都为k(最强)时混合为白色光。任一颜色F是这个立方体
坐标中的一点,调整三色系数r、g、b中的任一系数都会改变F的坐标值,也即改变了F的色值。RGB颜色空间采用物理三基色表示,因而物理意义很清楚,适合彩色显像管工作。然而这一体制并不适应人的视觉特点。因而,产生了其他不同的颜色空间表示法。
(三)HSI颜色空间
HSI(Hue,Saturation and Intensity)颜色空间是从人的视觉系统出发,用色调(Hue)、色饱和度(Saturation或Chroma)和亮度(Intensity或Brightness)来描述颜色。HSI颜色空间可以用一个圆锥空间模型来描述(图06-02-6)。
图06-02-6 HSI颜色圆锥空间模型
用这种描述HIS颜色空间的圆锥模型相当复杂,但确能把色调、亮度和色饱和度的变化情形表现得很清楚。其中:
(A)HSI圆锥空间模型
(B)线条示意图:圆锥上亮度、色度和饱和度的关系。
(C)纵轴表示亮度:亮度值是沿着圆锥的轴线度量的,沿着圆锥轴线上的点表示完全不饱和的颜色,按照不同的灰度等级,最亮点为纯白色、最暗点为纯黑色。
(D)圆锥纵切面:描述了同一色调的不同亮度和饱和度关系。
(E)圆锥横切面:色调H为绕着圆锥截面度量的色环,圆周上的颜色为完全饱和的纯色,色饱和度为穿过中心的半径横轴。
通常把色调和饱和度通称为色度,用来表示颜色的类别与深浅程度。由于人的视觉对亮度的敏感程度远强于对颜色浓淡的敏感程度,为了便于颜色处理和识别,人的视觉系统经常采用HSI颜色空间,它比RGB颜色空间更符合人的视觉特性。在图像处理和计算机视觉中大量算法都可在HSI颜色空间中方便地使用,它们可以分开处理而且是相互独立的。因此,在HSI颜色空间可以大大简化图像分析和处理的工作量。
HSI颜色空间和RGB颜色空间只是同一物理量的不同表示法,因而它们之间存在着转换关系,如公式所示:
其中
(四)YUV(Lab)颜色空间
在现代彩色电视系统中,通常采用三管彩色摄像机或彩色CCD(电耦合器件)摄像机,它把得到的彩色图像信号,经分色、分别放大校正得到RGB,再经过矩阵变换电路得到亮度信号Y和两个色差信号R-Y、B-Y,最后发送端将亮度和色差三个信号分别进行编码,用同一信道发送出去。这就是我们常用的YUV 颜色空间。
采用YUV颜色空间的重要性是它的亮度信号Y和色度信号U、V是分离的。如果只有Y信号分量而没有U、V分量,那么这样表示的图就是黑白灰度图。彩色电视采用YUV空间正是为了用亮度信号Y解决彩色电视机与黑白电视机的兼容问题,使黑白电视机也能接收彩色信号。
根据美国国家电视制式委员会NTSC制式的标准,当白光的亮度用Y来表示时,它和红、绿、蓝三色光的关系可用如下式的方程描述:
Y=0.3 R + 0.59 G + 0.11B
这就是常用的亮度公式。色差U、V是由B-Y、R-Y按不同比例压缩而成的。YUV颜色空间与RGB颜色空间的转换关系如下:
如果要由YUV空间转化成RGB空间,只要进行相应的逆运算即可。