三维(3D)地震勘探

合集下载

三维地震勘探方法原理与进展

三维地震勘探方法原理与进展

三维地震勘探方法原理与进展1.震源激发:使用震源激发地震波。

常见的震源有人工震源(如重锤、炸药等)和自然地震。

2.地震波传播:地震波在地下沿不同路径传播,并与地下介质发生相互作用。

地震波的传播路径和传播速度取决于地下介质的物理特性,如弹性模量、密度等。

3.接收地震记录:在地震波传播的路径中,设置一系列地震接收器(通常是地震检波器或地震传感器),接收并记录地震波的到达时间、振幅等信息。

4.数据处理与分析:通过对接收到的地震记录进行数据处理和分析,可以得到地震波的传播速度、衰减特性等信息,并进一步推断地下介质的性质。

5.三维地震成像:将地震记录中的信息转化为地下模型,并进行三维地震成像。

常用的地震成像方法包括反演、偏移等。

1.高密度三维数据采集:随着数据采集技术的进步,三维地震勘探可以获得更高密度、更广范围的数据。

这使得勘探人员能够更准确地了解地下构造,并更好地定位资源。

2.多尺度体积建模:三维地震勘探方法逐渐从局部尺度向大范围尺度延伸。

除了对沉积盆地等大尺度地质问题的研究外,也在微观尺度上得到广泛应用,如岩石孔隙结构的研究。

3.三维地震反演技术:传统的地震成像方法主要基于地震波的走时信息,对地下结构的分辨率有限。

而三维地震反演技术可以利用地震波的振幅信息来改善地下结构的分辨率,进一步提高地震勘探的精度。

4.三维地震模拟方法:随着计算机技术的发展,三维地震模拟方法得到了广泛应用。

通过数值模拟地震波在地下的传播过程,可以更好地理解地震波和地下介质的相互作用,为地震勘探提供更准确的解释。

总之,三维地震勘探方法通过收集、处理和分析地震波传播信息来推断地下构造,并取得了显著的进展。

随着技术的进一步改进和计算机技术的不断发展,三维地震勘探将在未来的勘探开发中发挥更重要的作用,为石油、天然气等资源的开发提供更准确和可靠的地质信息。

三维地震勘探概述

三维地震勘探概述

第六章三维地震勘探技术
概述
第1节三维地震勘探优点
第2节三维地震资料采集
第3节三维地震资料处理
主讲教师:刘洋
第1节三维地震勘探优点
第6章
VSP 地面地震勘探
地面激发井中接收地面接收接收点激发点
(3)海上四分量地震勘探(单源—四分量)(4)陆上三分量地震勘探(单源—三分量)
模型示意图二维地震成果剖面三维地震成果剖面
第6章
二维资料作的构造等值线图三维资料作的构造等值线图
第6章
第2节三维地震资料采集
第6章
宽线弯线
十字线环形排列

常规正交线束砖墙式奇偶式非正交式
常用三维观测系统--束状观测系统
第6章
8线8炮观测系统
第3节三维地震资料处理
第6章
第六章总结
1.地震勘探的分类
2.三维地震勘探的优点
3.三维观测系统设计的要求
4.三维地震野外采集过程
第六章词汇
时移地震time-lapse seismic
三维地震3D seismic
三分量地震three-component seismic 三维三分量地震3D-3C seismic
面元bin
方位角azimuth。

三维地震勘探概述

三维地震勘探概述

三维地震勘探概述三维地震勘探通过在地表或井下埋设地震探测仪器,如地震震源、地震传感器等,来记录由地震源激发的地震波信号。

这些设备可以记录信号的到达时间、振幅和频率等信息。

根据记录到的地震波数据,可以进行地震成像和地震解释分析,从而推断出地下地层的性质和结构。

三维地震勘探是传统二维地震勘探的进一步发展。

传统的二维地震勘探只能获取地层沿勘探延线的二维信息。

而三维地震勘探则可以获取地层在水平和垂直方向上的三维信息,提供更全面的地下结构描述。

三维地震勘探可以更准确地刻画地下地层的复杂性,为油气勘探、矿产资源勘探和地质灾害研究等提供重要数据支持。

三维地震勘探的基本原理是地震波在地下的传播。

当地震波传播到地下不同的介质中时,会发生折射、反射、散射和衍射等现象,这些现象都可以通过地震波记录来分析和解释。

通过分析地震波的传播路径和到达时间,可以推导出地震波在地下的传播速度和传播路径,从而推断地下地层的结构和性质。

三维地震勘探的关键步骤包括数据采集、数据处理和数据解释。

在数据采集阶段,地震探测仪器会记录地震波的信号,这些信号可以通过地面震动、井下震动等方式激发。

数据采集通常需要在大范围、多点同时进行,以获取更全面的地震波数据。

数据处理阶段主要涉及信号预处理、地震成像和地震解释等过程。

信号预处理主要包括滤波、去除噪声等处理,以提高数据的质量。

地震成像是将数据转换成地下结构信息的过程,主要采用波动方程正演模拟、走时反演和成像等方法。

地震解释是对成像结果进行解释和分析,根据地震波的传播规律和地震信号的特征,推断地下地层的结构、性质和岩性等参数。

三维地震勘探的优势在于其能够提供更全面和详细的地下结构信息。

相比于二维地震勘探,三维地震勘探可以更好地揭示地下地层的三维结构和复杂性。

它可以提供地层性质的空间分布图、地下构造的三维模型和地震波传播路径的可视化等,为地质研究和勘探开发提供重要的佐证和指导。

总之,三维地震勘探是一种应用地震波传播原理进行地下结构分析的方法。

野外三维地震勘探测量质量检查和要点分析

野外三维地震勘探测量质量检查和要点分析

野外三维地震勘探测量质量检查和要点分析摘要:工程测量的质量对地震勘探资料品质和效果有重大的影响,因此必须由专业人员负责施工过程中的质量检查和监督。

本文以野外石油、煤炭等矿产资源三维地震勘探为例,阐述了测量工程在三维地震勘探工程中从施工前准备、施工中质量检查和监理、施工后质量验收等每个环节需要检查的内容和重点检查的对象,以及为测量质量检查人员高水平的完成质量检查提供一定的参考。

关键词:工程测量;三维地震勘探;质量检查要点近年来,随着我国经济的迅速发展,国家的能源需求出现了明显的上升趋势,这也促使野外石油、煤炭等矿产资源勘探市场的业务工作量大幅上升。

野外三维地震勘探的重要性显得更加突出,并在石油、煤炭等矿产资源三维地震勘探中取得了显著的效果,尤其是在探明资源储量领域三维地震勘探中发挥了关键的作用。

各工作单位提出了多种地震勘探技术测量技术。

王国芹[1]等提出了GoogleEarth的使用方法,能够实现人机交互,该方法的使用提高了地震勘探的效率。

张晶心介绍了[2]探讨、研究了全数字地震勘探、全数字地震测量的主要特色,并对全数字地震测量技术的革新作了浅要的分析。

由于资源勘探领域测量工作程序复杂,劳动量大,而且贯穿到地震数据采集过程的始终,极易产生误差和疏漏,因此为了地震勘探测量工作实施专业质量检查,确保野外三维地震勘探测量资料合格率达到100%,本文提出了如下工作流程和每个工作流程中需要检查的重点内容。

1测量准备阶段质量检查工作《测量质量检查细则》是测量工作的的指导性文件,可操作性较强,在地震勘探中的测量专业工作的地位和作用十分重要,必须按照《测量质量检查细则》的具体要求来制定测量工作的目的、任务和方法,所制定的质量检查措施必须符合规范和合同要求。

因为三维地震勘探测量是一项专业性较强的工作,而且工作的独立性十分突出,因此还需要一个《测量质量检查细则》对质量检查工作做出具体的指导。

测量工程施测前,质量检查人员需要对以下方面内容进行监督检查并进行签字交:(1)测量施工设计是否满足地震项目采集技术要求;(2)对测量工程人员的测绘证、设备操作证进行审查,并核查认可其测量工作经验,复印相关证书存档备案。

三维地震勘探方法原理与进展

三维地震勘探方法原理与进展

三维地震勘探方法原理与进展三维地震勘探是一种利用地震波对地下结构进行成像的方法,它通过记录地震波在地下传播过程中的反射、折射和透射等现象,从而获取地下结构的信息。

与传统的二维地震勘探方法相比,三维地震勘探能够更全面、准确地描述地下构造,并且能够提供更高分辨率的成像结果。

三维地震勘探的原理是利用地震波在地下介质中的传播特性来推断地下结构。

地震波是由地震源产生的一种机械波,它可以在地下介质中传播,并且会遇到不同介质边界的反射、折射和透射等现象。

通过记录地震波的传播时间、振幅和频率等信息,可以建立地震波在地下介质中的传播模型,并通过反演等数学手段将地下结构成像。

1.设计地震勘探方案:根据勘探目标和地质条件,确定地震源和测量装置的部署方式。

常用的地震源包括重锤、震源车和炸药等,测量装置包括地震检波器。

2.采集地震数据:利用地震源激发地震波,在地下布置检波器,并记录地震波在地下传播的过程。

通常采集多个不同位置和方向的地震数据,以获取更完整、准确的地下信息。

3.数据处理:利用信号处理、地震波理论和数学模型等方法对采集到的地震数据进行处理。

这包括地震分析、波场模拟和成像等步骤,通过反演等数学手段将地震数据转化为地下结构信息。

4.地震成像:将处理后的地震数据进行可视化,生成三维地震成像结果。

地震成像方法包括卷积成像、叠前深度偏移和正演模拟等,这些方法可以提供高分辨率的地下结构图像。

1.采集技术的提升:随着测量设备和地震源的不断发展和更新,三维地震勘探的采集效率和数据质量得到了改善。

如引入宽频带地震源、多分量地震数据采集和大角度成像等技术,提高了地震数据的频率响应和波动物性分辨能力。

2.数值模拟方法的发展:为了改善地震数据的处理效果,科学家们对波场模拟方法进行了深入研究。

开发了高效且精确的波动方程求解方法,如有限差分法、有限元法和高阶边界条件法等,这些方法可以更准确地模拟地震波在地下的传播过程。

3.成像技术的提高:为了提高地震勘探的分辨率和准确度,研究人员发展了一系列的地震成像方法。

二维和三维地震勘探的概念

二维和三维地震勘探的概念

二维和三维地震勘探的概念嘿,朋友!您知道吗?在地质勘探的奇妙世界里,有两个神秘的“高手”——二维地震勘探和三维地震勘探。

咱先来说说这二维地震勘探,您就把它想象成是在一张纸上画线条。

这线条代表着地震波的传播路径,通过分析这些线条,我们就能大概了解地下的情况。

这就好像您通过看一张平面地图来了解一个地方的大致布局。

可这毕竟只是个平面的,就像您只看到了一个人的正面,对于他的侧面和背面,那可就摸不着头脑啦!再瞧瞧三维地震勘探,这可就厉害啦!它就像是给地下世界拍了个立体的“照片”。

不再是简单的线条,而是一个全方位、多角度的“影像”。

这下子,地下的情况那是清清楚楚,明明白白!就好比您不光看到了一个人的正面,连侧面、背面,甚至是他身体内部的结构都能了解得透透的。

二维地震勘探呢,成本相对较低,操作也简单些,就像是个经济实惠的入门款工具。

但它能提供的信息有限,有时候就像雾里看花,不太真切。

三维地震勘探呢,虽然成本高,操作复杂,可它能给咱提供超级详细、准确的地下信息,就像是个高端豪华的专业设备。

比如说,在寻找石油和天然气的时候,二维地震勘探可能会告诉我们大概哪里有“宝藏”的迹象。

但要想精确地找到“宝藏”的位置和形状,那还得靠三维地震勘探出马。

在探测地质构造的时候,二维地震勘探可能只能看出个大概的轮廓,而三维地震勘探能把那些复杂的构造细节都给展现出来,就像一个超级放大镜,让一切都无所遁形。

总之,二维地震勘探和三维地震勘探各有各的特点和用处。

就像我们生活中的不同工具,有的简单实用,有的高级精密。

在实际的地质勘探中,根据具体的需求和条件,选择合适的“高手”出马,才能更好地揭开地下世界的神秘面纱,找到我们想要的宝藏!您说是不是这个理儿?。

地表建筑物下的三维地震勘探方法及效果

地表建筑物下的三维地震勘探方法及效果

地表建筑物下的三维地震勘探方法及效果
随着现代科技的不断进步,地球资源的勘探和开发越来越重要。

其中,地震勘探技术是探查地下结构、地下油气资源的重要手段之一。

传统的地震勘探方法是在地面上潜在地震源产生震动波,然后测量波在地下介质中传播的传播速度和振幅。

但是,在某些地方如城市、高山、森林和农田中,受限于地形地貌和建筑物,传统的地震勘探方法不能充分发挥作用,因此需要采用三维地震勘探方法。

三维地震勘探技术可以在地表建筑物下进行,通过找到适当的埋深和角度,让信号能够穿过地下建筑并传导到地层下方。

三维地震勘探方法是在地表附近埋设多个地震触发器,形成一个类似于网格状的信号发射数组,连续产生震动波进入地下,最后通过不能穿透的障碍物反弹回来,被地表上的接收器捕捉并进行记录,数据会保存到计算机中,并通过软件进行处理,生成地震图像。

这种方法可以在检测一组坐标的同时,获取包括建筑物在内的更多地下结构的详细信息。

三维地震勘探方法在建设期间尤其有用。

在建筑物、桥梁和其他地面结构的上下铺设许多地下管道和电缆网的情况下,使用该项技术,工程师们可以了解建筑物下方的地层情况和沉降情况,同时了解潜在地震风险、水文地质状况、土壤稳定性等信息。

三维地震勘探技术可以帮助工程师们评估工程安全风险,提前预测地面沉降、地洞和结构裂缝的形成情况,以确保建筑物的稳定性和可靠性。

总之,三维地震勘探是一种安全、精确、有效的勘探技术,在
建筑物下的应用越来越广泛。

它可以提供更准确的地下结构图像,为建筑和城市基础设施建设提供决策支持。

随着科技不断进步和更新,相信三维地震勘探技术的应用范围将越来越广泛。

三维地震勘探方法及原理

三维地震勘探方法及原理

三维地震勘探方法及原理1. 引言嘿,大家好!今天我们要聊聊一个听上去很高大上的话题——三维地震勘探。

听名字就知道,这可不是随便玩玩的事情。

它是一种能让我们了解地下世界的神奇方法,想象一下,像是在看一部《寻龙诀》那样,揭开大地的秘密。

不过别担心,我会用简单易懂的方式告诉你这一切,咱们轻松聊聊,不让你感觉像在上课。

2. 三维地震勘探的基本概念2.1 什么是三维地震勘探?简单来说,三维地震勘探就是通过发送地震波到地下,然后再接收这些波反射回来的信息,帮我们“看”清地下的结构。

这就像是在用声音给地下“拍照”,而且是立体的!你可以想象一下,像是在玩一个高级的探险游戏,寻找宝藏的感觉。

2.2 三维勘探与传统勘探的区别传统的地震勘探就像是在平面上画图,而三维勘探则是把这个图变成立体的。

你知道的,平面图和立体图的感觉完全不一样。

三维勘探能给我们更丰富、更详细的信息,帮助我们更好地了解地下资源的位置,尤其是石油、天然气这些重要的宝贝。

3. 三维地震勘探的方法3.1 数据采集首先,我们得把“耳朵”伸得长长的,来听地下的声音。

为了做到这一点,咱们需要在地面上布置很多的传感器,这些小家伙就像是地下的侦探,负责接收地震波。

当我们用震源(比如炮炸或者震动器)制造地震波的时候,这些传感器会像打了鸡血一样,快速记录下反射回来的波形数据。

3.2 数据处理与解释数据采集完成后,就进入了“数理化”的阶段。

别担心,不用心慌,这可不是高深的数学题。

其实就是把我们采集到的数据进行分析,转化成地下结构的图像。

这个过程就像是在拼图,有时候拼图的碎片可能会缺失,但聪明的工程师们总能用他们的智慧,把这些碎片拼凑起来,呈现出一个清晰的地下世界。

4. 三维地震勘探的应用4.1 石油与天然气勘探大家知道,石油和天然气是现代生活的命脉。

通过三维地震勘探,我们能够找到这些资源的埋藏地点,提前做好准备,确保能安全高效地开采。

可以说,这项技术就像是给石油公司带来了“金钥匙”,打开了通往财富的大门。

三维地震勘探概述

三维地震勘探概述

第一节 三维地震资料采集
X1=Z﹒tgφ
一、采集要求
或 X1=Vt0sinφ/2 其中:Z—深度,φ—最深目 的层的最大倾角,V—平均速 度,t0——Z对应的垂直反射 时 显然,这个扩大范围的估算由 目的层的深度和倾角决定。
由这个“偏移帽沿”X1扩大 后A0变成了A1——满覆盖面积, 但还应加上覆盖次数渐减带和 附加段,最后得到
第一节 三维地震资料采集
1、采集参数
二、观测系统和采集参数
④最大炮检距Xmax Xmax的设计应考虑下列因素:⒜近似等于目的层深度,⒝ 主要目的层反射应避开直达波、初至折射波的干涉,⒞小于 最深目的层临界折射炮检距,⒟满足速度鉴别精度的要求 ⒠ 使动校正拉伸对信号的影响较小,⒡满足消除多次波的要求 等。 ⑤偏移孔径M 其设计应考虑:⒜大于第一菲涅尔带半径;⒝大于Z•tg30° (Z为最深目的层的深度),以使绕射波能量很好收敛;⒞ 大于倾斜层偏移的横向移动距离 : M >Z•tgmax 偏移孔径应取三项中的最大值。
第一节 概述
四、三维地震勘探应用范围
①复杂构造勘探
查明因断层发育、地层产状变化大而引起的绕射波、侧面波 等干涉严重的复杂断裂构造区,以及盐丘、礁块、地层尖灭、 不整合、微型构造等;
②地层岩性和沉积特征研究 结合钻井资料研究地层岩性的平面和空间变化; ③油田勘探开发
帮助制定或调整油田勘探开发方案,在油田开发过程中监测 油藏动态
第一节 三维地震资料采集
1、采集参数
二、观测系统和采集参数
②覆盖次数N 纵测线方向覆盖次数NX应满足:NX = n/(2dx) 横测线方向覆盖次数NY应满足: NY= P•R/(2dy) 式中: n—排列内一条接收线的道数,dx—纵向上激发点移 动的道数;dy—束线之间接收线移动距离相当的道数,P—排 列不动所需的激发点数,R—接收线数; 总覆盖次数N则为: N = NX •NY ③最大的最小炮检距Xmin Xmin是“子区”(由两条相邻接收线和两条相邻激发线构成) 中心点的CMP面元的最小炮检距,也是该子区内所有CMP面 元中最小炮检距中的最大者。一般等于1~1.2倍的最浅目的层 深度。

三维(3D)地震勘探

三维(3D)地震勘探
3D 地震勘探
1
2
一维勘探是观测一个点的地下情况;
二维勘探是观测一条线下面的地下情况;
三维勘探是观测一块面积下面的地下情况;
四维地震勘探是在同一地区不同时间重复做三维地震 勘探,则可称之为四维地震勘探(时移地震)。四维 是观测同一块面积下面不同时间的地下变化情况。根 据地质任务和达到的目的不同,可采用不同维的勘探 方法。
二是发展数据处理和数据存储技术。为提高处理精度,必须发展海量机群 并行处理和海量存储技术。海量机群并行处理技术是指PC-CLUSTER(针对大型 数据库及大负荷运算量的集群计算机)的节点要多,同时发展相关的静校正处理、 组合处理、叠前时间偏移、叠前深度偏移、全三维各向异性等处理技术,以提 高地下成像精度和储层描述精度及含油气分析精度。海量存储技术指发展大容 量的磁盘和自动带库,以满足大数据量的存储需求。
a、三维地震模型 b 、原始剖面 c 、二维偏移剖面 d 、三维偏移剖面
6
7
三维地震勘探与二维地震勘探相比的优越性
三维数据采集不存在二维数据采集时来自非射线平面 内的侧面反射波。 三维采集的数据按三维空间成象处理,可以真实地确 定反射界面的空间位置。 三维观测可以避开地形、地物的障碍,对地表条件适 应性很强。 三维观测可对资料有更大的保真度,相位数据更齐全, 便于研究地层的岩性。 三维地震勘探资料的完整统一性及显示技术的现代化, 更便于人工联机解释。
×× ×× ×
1 50cm
61 121
181
100m
四线六炮端点激

60 200m
120
180
240
这种观测系统的的优点:可以获得从小到大均匀的炮检距和均匀的覆 盖参数,适应于复杂地质条件的三维地震勘探。此外在多居民点、多 农田地区可改变偏移距和发炮方向进行施工,亦可获得满意的资料。

1-三维地震

1-三维地震

☆实例
• 3D地震数据采集 地震数据采集
☆观测系统的基本类型(陆地),十字型,L型,丰字型等。
陆地三维勘探的成本一般 与炮点数有关,因此, 与炮点数有关,因此,勘 探中使用的检波器往往大 于炮点数。 于炮点数。
☆观测系统的基本类型(海洋) 观测系统的基本类型(海洋)
• 三维地震勘探设计
要有目标: 要有目标: 应该知道: 应该知道:
• 3D地震数据处理 地震数据处理
☆流程与二维类似,但速度分析、 流程与二维类似,但速度分析、 偏移归位变化最大,最重要! 偏移归位变化最大,最重要! ☆三维速度分析 叠加速度的方向性变化( 叠加速度的方向性变化(叠加速度 椭圆) 椭圆) ☆三维偏移
技术关键) ☆三维偏移(技术关键 三维偏移 技术关键
R
2维:沿测线观测, 沿测线观测, 得测线下断面信息。 得测线下断面信息。 3维:一次激发, 一次激发, 面积” 沿“面积”全面观 数据体, 测3D数据体,得 出测区以下的三维 信息。 信息。
1-D R
观测面

3-D
三维地震勘探
优点
通常会得到较高的钻井成功率; ☆ 通常会得到较高的钻井成功率; 钻井成功率 在构造复杂地区(确定窄河道砂, ☆ 在构造复杂地区(确定窄河道砂,不整合面及地层 圈闭)可得到较好的钻井开发效果; 钻井开发效果 圈闭)可得到较好的钻井开发效果; 能监视提高采收率过程(蒸气驱油地区, 采收率过程 ☆ 能监视提高采收率过程(蒸气驱油地区,地震波的 变化是热前缘的指示); 变化是热前缘的指示); 工程上的应用。 ☆ 工程上的应用。
三维地震勘探 3D Seismic Exploration
高分辨率+三维: 高分辨率 三维: 三维 精细勘探的需要! 精细勘探的需要!

三维(3D)地震勘探在煤矿生产应用

三维(3D)地震勘探在煤矿生产应用

探项目;贵州山脚树矿、云南、大宁矿、郑庄矿、东
大矿、陕西府谷三道沟矿、甘肃核桃峪、武甲煤矿、
小西煤矿等三维地震勘探项目,累计近100km2。
三维地震勘探在山西的发展
近年来不仅取得了可靠的地质成果,而且积累了
丰富的经验。特别是在煤田陷落柱、小断层和采空 区的解释研究方面,积累了丰富的实践经验,取得 了验证率较高的地质成果和良好的社会效益。
三维地震勘探在山西的发展
近几年来完成有阳泉新景矿、固庄煤矿、开元煤
矿、西上庄煤矿、和顺天池煤矿三维地震勘探项目,
累计近60km2;黄柏矿、河曲上榆泉矿、娄烦县龙
泉矿井首采区、西山煤电集团屯兰矿三维地震勘探项
目,累计近60km2;晋城煤业集团寺河矿、成庄矿、
赵庄矿三维地震勘探;兰花科创公司唐安矿、大阳矿、
煤矿采区地震勘探中首次在采区地质勘探中查明
了落差大于5m以上的断层,取得了重大的技术突
破。
三维地震勘探的发展史
高分辨率三维地震勘探成果,显示了很高的信
噪比和分辨率,其解决地质问题的效果和能力,是
以往常规二维地震勘探所无法比拟的,由此掀起了
采区地震勘探技术的新高潮。
短短几年里,由于国家开发行和中国煤田地质
自从1997年,首次将平原中的三维地震勘 探技术引进到山西山区(寺河煤矿)以来,成 功地解决了困扰煤矿高效生产的地质构造问题。 经过多年在晋城、潞安、阳泉、西山、朔州等 矿区的使用、推广和宣传,该方法目前在我省 各地机械化开采矿井中得到普遍使用,成为山 西省各矿确保安全、提高效益的不可缺少的、 有效的勘探手段。为各矿带来了巨大的经济效 益和社会效益,为山西省煤炭工业近几年的快 速发展作出了贡献。也为本单位创造了巨大的 经济效益。

【建筑】《矿井三维地震勘探计划》

【建筑】《矿井三维地震勘探计划》

《矿井三维地震勘探计划》Hey小伙伴们,今天咱们要聊的,可不是普通的挖矿故事,而是一项高大上的科技探索——矿井三维地震勘探计划! 这听起来就像是科幻电影里的情节,但其实,它已经在我们的现实生活中悄然上演了!一、 技术革新,矿井勘探进入3D时代!想象一下,如果我们的眼睛能穿透厚厚的岩层,直接看到地下的矿藏分布,那该有多爽?矿井三维地震勘探计划,就是这样一双“透视眼”!它利用地震波在不同介质中传播速度的差异,通过精密的数据采集和分析,构建出矿井地下的三维图像。

这不仅仅是二维平面的升级,更是对整个矿井结构的全方位、立体式解读!这项技术的出现,意味着矿井勘探从此告别了“盲人摸象”的时代,进入了精准、高效的3D时代。

对于矿业企业来说,这无疑是提高开采效率、降低成本的利器;而对于科研人员来说,这更是研究地球内部结构、探索自然奥秘的宝贵工具。

二、 安全与环保,矿井勘探的双重考验!当然,提到矿井,大家最关心的还是安全和环保问题。

毕竟,矿井事故频发,环境污染严重,这些都是不容忽视的现实。

矿井三维地震勘探计划,在这方面又能发挥什么作用呢?一方面,通过精确勘探,可以避免盲目开采导致的地层塌陷、瓦斯爆炸等安全隐患,为矿工们的生命安全提供更加坚实的保障。

另一方面,该技术还能帮助识别并避开地下水层、生态敏感区等关键区域,减少开采过程中的水资源破坏和生态破坏,实现绿色、可持续的矿业发展。

三、 未来展望,矿井勘探的无限可能!矿井三维地震勘探计划的实施,不仅标志着矿业技术的又一次重大突破,更预示着未来矿井勘探的无限可能。

随着技术的不断进步和应用的不断深化,我们有理由相信,未来的矿井将更加智能化、绿色化、高效化。

想象一下,未来的矿井可能就像是一个巨大的“地下工厂”,矿工们坐在宽敞明亮的控制中心,通过虚拟现实技术实时监控着矿井的每一个角落;而机器人则穿梭在矿井深处,执行着各种复杂的开采任务。

这样的场景,是不是既科幻又充满期待呢?最后,我想说,矿井三维地震勘探计划的成功实施,离不开科研人员的辛勤付出和企业的积极投入。

煤矿三维地震勘探流程详解

煤矿三维地震勘探流程详解

煤矿三维地震勘探流程详解下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!煤矿三维地震勘探流程详解煤矿三维地震勘探,是一种利用地震波在地壳中的传播特性,对地下地质结构进行探测的技术。

三维地震勘探应急预案

三维地震勘探应急预案

三维地震勘探应急预案
一、背景和目的
三维地震勘探是一项复杂的工程活动,常常需要面对各种突发情况和意外事件。

为了保障勘探工作的顺利进行,确保勘探人员和设备的安全,制定三维地震勘探应急预案就显得尤为重要。

二、适用范围
本预案适用于三维地震勘探过程中可能发生的突发事件,包括但不限于自然灾害、人为事故等。

三、责任部门
1. 三维地震勘探项目管理部门
2. 应急管理部门
3. 安全生产管理部门
四、应急预案
1. 突发事件发生时的应急处置流程
2. 紧急撤离和避险措施
3. 通讯和联络协调措施
4. 人员伤亡和失踪处理程序
5. 设备损坏和紧急维修措施
6. 事件记录和报告程序
7. 应急演练和培训措施
五、应急资源
1. 应急通讯设备和工具
2. 应急救援队伍和力量
3. 应急物资储备
4. 应急救护设施和医疗资源
六、其他事项
1. 应急预案的定期演练和修订
2. 应急处置过程中的法律责任和保障措施
3. 应急预案的宣传和培训措施
七、附录
1. 相关法律法规和标准
2. 重要联系人名单
3. 应急通讯设备清单
八、生效日期
本预案自颁布之日起生效。

(完整word版)三维地震勘探

(完整word版)三维地震勘探

摘要本文是介绍在山西省屯留县郭庄煤矿进行三维地震勘探的工程设计。

本次三维地震勘探的目的是了解和掌握郭庄煤矿矿区的地质构造、煤层的赋存形态和断层、褶曲、陷落柱发育特征,查明工作区内3#煤层的底板起伏形态、采空区范围、无煤区和煤层冲刷变薄区。

本次野外三维数据采集的基本观测系统为8线8炮制束状规则观测系统。

通过三维地震勘探获得工区地表面以下的信息数字化成果,为矿区后继生产、优化矿井采掘设计方案、提高生产效率提供详实的基础地质资料。

关键字:三维地震勘探; 工程设计; 断层; 褶曲; 陷落柱; 观测系统SummaryThis Abstract introduces the engineering design that the three-dimensional earthquake explored will be carried on in the colliery of the Guo 's of Tunliu county of Shanxi. The three-dimensional purpose that earthquake explore to understand and know Guo village geological structure , to is it deposit shape , fault and pleat song , subside the development characteristic of the post to compose coal seam , colliery of mining area, find out the undulating shape of baseplate of coal seam No. 3 in the workspace , quarry the empty district range , there are no coal district and coal seam to erode and turn into the thin district. Field this three-dimensional basic observation system that data gather concoct for 8 Line 8 bunches of form rule observe the system. Explore person who obtain work area surface following information digitized achievement through three-dimensional earthquake, is it produce , optimize mine not to excavatefoundation geological materials to carry on.Keyword:The three- dimensional seismic survey l; Engineering design ; Fault; Pleat song ; Subside the post; Observe the system(完整word版)三维地震勘探目录1. 前言 (1)1.1目的与任务 (1)1.1.1 项目来源 (1)1.1.2 任务 (1)1.1.3 工作时间 (1)1.1.4 项目要求及依据 (2)1.2工作区范围、交通位置及自然地理环境 (2)1.2.1 工作区范围和交通位置 (2)1.2.2 自然地理 (3)1.2.3 气候状况和经济状况 (3)2. 地质概况及地球物理特征 (4)2.1工作区地质及物化研究程度 (4)2.1.1 以往工作程度成果 (4)2.1.2 野外踏勘成果 (4)2.2区域地质概况 (4)2.2.1 工作区地层特征 (4)2.2.2 工作区构造特征 (5)2.2.3 工作区煤层特征 (6)2.2.4 勘探区煤质特征 (6)2.3区域地球物理特征 (7)2.3.1 表层地震地质条件 (7)2.3.2 浅层地震地质条件 (7)2.3.3 深部地震地质条件 (7)3. 野外工作方法及技术要求 (8)3.1工作方法 (8)3.1.1 三维地震试验工作 (8)3.1.2 低速带调查工作 (8)3.1.3 三维地震勘探观测系统参数的选定 (9)3.1.4 三维线束的布置 (10)3.2测地工作 (10)3.2.1 测量作业采用系统 (10)3.2.2 测量仪器及测量方法 (11)3.3.1 野外数据采集要求 (12)3.3.2 测量要求 (12)3.3.3 质量目标 (12)4 资料整理及报告编写 (14)4.1主要数据处理方法与技术 (14)4.1.1 预处理 (14)4.1.2 初至波折射静校正 (14)4.1.3 反褶积 (15)4.1.4 速度分析 (15)4.1.5 DMO迭加及迭后一步法偏移 (15)4.2资料解释 (15)4.2.1 解释流程 (15)4.2.2 解释的主要资料及要求 (16)4.2.3 速度标定与时深转换 (17)4.4图件编制方法 (17)4.5报告编写 (18)4.5.1 报告的要求 (18)4.5.2 报告的内容 (18)5. 人员编制和管理 (19)5.1项目组人员编制及分工 (19)5.1.1 项目经理及其岗位职责 (19)5.1.2 项目技术负责及其岗位职责 (19)5.1.3 炮班班长及其岗位职责 (19)5.1.4 爆破员及其岗位职责 (20)5.1.5 爆破品保管及其职责 (20)5.2.1 组织措施 (20)5.2.2 质量保证 (21)5.2.3 安全生产管理措施 (21)5.3HSE管理 (22)5,3,1 内容、标准及组织 (22)5.3.2 野外作业 (23)5.3.3 营地管理 (24)5.3.4 施工搬迁 (25)7.实物工作量 (28)7.1主要实物工作量 (28)7.1.1 野外数据采集工作量 (28)7.1.2 成孔工作量 (30)7.2仪器设备 (30)8. 经费预算 (31)8.1经费预算依据及方法 (31)8.2工作费用 (31)致谢 (32)参考文献 (34)附图 (35)1. 前言1.1 目的与任务1.1.1 项目来源本次三维地震勘探项目的甲方是山西省屯留县郭庄煤矿,该煤矿是屯留县县办国营煤矿,为了进一步了解和掌握郭庄煤矿煤层的赋存形态和断层、陷落柱发育特征,郭庄煤矿委托山西省第六地质工程勘察院(乙方)进行三维地震勘探,为优化矿井采掘设计方案,提高生产效率提供详实的基础地质资料。

第九章三维地震勘探要点

第九章三维地震勘探要点

第九章三维地震勘探要点第九章三维地震勘探要点地震勘探是一种利用地震波在地下传播特性获取地壳结构和地质信息的方法。

在勘探过程中,为了提高数据的精度和准确性,必须注意一系列的要点。

本章将介绍三维地震勘探的要点,包括采集参数设计、数据处理、图像解释和应用。

采集参数设计要点在进行三维地震勘探之前,需要合理设计采集参数,以获得高质量的地震数据。

以下是一些要点:1. 选取适当的地震源:地震源的类型和能量决定了勘探数据的质量。

常用的地震源包括爆炸源、振动源和重力源等。

在选择地震源时,要考虑地下结构复杂性和勘探目标的深度。

2. 选择合适的接收器布置方案:接收器的密度和布置方式对于勘探结果具有重要影响。

通常采用均匀布置的方式,并根据地下结构调整接收器的位置。

3. 合理选择地震剖面参数:地震剖面的长度和方向应根据勘探目标和地质条件进行合理选择。

在确定剖面参数时,需要考虑到地震数据分辨率和数据采集的经济性。

数据处理要点数据处理是保证勘探结果准确可靠的重要环节。

以下是一些数据处理的要点:1. 原始数据预处理:在进行数据处理之前,需要对原始数据进行预处理,包括去除噪声、校正仪器漂移和调整数据的振幅等。

这些预处理操作可以提高数据质量和解释结果的准确性。

2. 数据变换和滤波:对地震数据进行变换和滤波操作,可以提取有用的信号信息,并去除不必要的干扰。

常用的数据变换方法包括频率域变换和小波变换等。

3. 叠加和成像处理:通过对多次采集的地震数据进行叠加和成像处理,可以提高勘探效果。

叠加处理可以有效增强勘探信号,成像处理可以产生地质构造的图像。

图像解释要点图像解释是三维地震勘探结果分析和解释的关键步骤。

以下是一些图像解释的要点:1. 识别地震波形特征:通过对地震波形的振幅、频率和相位等特征的观察和分析,可以识别地下地质结构和岩性的差异。

2. 建立地质模型:基于勘探数据的解释结果,可以建立地质模型,包括地层的分布、岩性的变化和构造的分布等信息。

三维地震勘探方法及原理

三维地震勘探方法及原理

三维地震勘探方法及原理说到找宝藏,那可就得靠高科技了!就像探险家们用罗盘和地图一样,我们得依靠三维地震勘探技术来找到地下的“金矿”。

这个技术听起来是不是有点像电影里的特效?没错,它就是让地下的世界变得触手可及。

想象一下,你站在一片广阔的草原上,四周是连绵起伏的山丘。

突然,一阵风吹过,草丛中传来沙沙的声音。

你好奇地走过去,发现原来是一群蚂蚁在搬食物。

这就像是三维地震勘探技术在地下世界里的场景。

地下的岩石、土壤和气体都在不停地运动,就像蚂蚁一样忙碌着。

而我们的三维地震勘探技术就像是一台高超的显微镜,能够放大这些地下世界的微观细节。

通过发射超声波或者电磁波,我们可以探测到地下岩石的结构和密度分布,就好像给大地拍了一张清晰的X光片。

这些信息有什么用呢?简单来说,它们就像是地质学家们的“宝藏图”。

通过分析这些图像,科学家们可以了解到地下的构造、岩性、油气藏等信息,甚至还能预测未来的地质灾害。

比如,如果某个地方的岩石结构比较松散,可能就容易发生地震或者滑坡;而如果发现了油气藏,那就可能是下一个石油大发现的地方了。

不过,三维地震勘探技术可不是一件简单的事情。

它需要大量的数据收集和复杂的处理过程。

就像我们在草原上寻找宝藏一样,每一步都需要小心翼翼,不能有丝毫的马虎。

由于地下环境复杂多变,有时候还需要借助无人机、卫星等高科技手段来进行辅助探测。

三维地震勘探技术就像是一把打开地下世界奥秘的钥匙。

它让我们能够更加深入地了解地球的历史和未来,也为人类找到了更多宝贵的资源。

所以,下次当你看到那些穿着白大褂的地质学家们在野外工作时,不妨想象一下他们正在使用这项神奇的技术来寻找地下的宝藏。

怎么样,是不是觉得很有趣呢?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

×
181
210
× 40m
图5-7四线六
×
炮中点激发
60 160m
120
180
240
×× ×× ×
1 50cm
61 121
181
100m
四线六炮端点激

60 200m
120
180
240
这种观测系统的的优点:可以获得从小到大均匀的炮检距和均匀的覆 盖参数,适应于复杂地质条件的三维地震勘探。此外在多居民点、多 农田地区可改变偏移距和发炮方向进行施工,亦可获得满意的资料。
观测系统的类型与选择:点按一定的规律 有规则的分布。 不规则型:地面施工条件不好,有施工障碍的山区 、水泡等。 不规则型观 测系统仅适用于地表障碍物多,通行条件差,不能按正常观测系统施工的地 区,可根据地面条件和地质任务的要求设计成各种类型。
9
规则型观测系统:十字型观测系统, 由此衍生成L 型、T型
a、三维地震模型 b 、原始剖面 c 、二维偏移剖面 d 、三维偏移剖面
6
7
三维地震勘探与二维地震勘探相比的优越性
三维数据采集不存在二维数据采集时来自非射线平面 内的侧面反射波。 三维采集的数据按三维空间成象处理,可以真实地确 定反射界面的空间位置。 三维观测可以避开地形、地物的障碍,对地表条件适 应性很强。 三维观测可对资料有更大的保真度,相位数据更齐全, 便于研究地层的岩性。 三维地震勘探资料的完整统一性及显示技术的现代化, 更便于人工联机解释。
12
观测系统(大港油田王官屯三维)
观测方式: 8线5炮240道
使用道数: 8×(120+120)道=1920道
覆盖次数: 4×15
面元大小:12.5m×25m
道 距: 25m
排列线距:250m
纵向炮排距:200m
横向炮点距:50m
最大纵向炮检距:2987.5m 排列横向滚动距离:250m
最小纵向炮检距:12.5m
三是进行高精度精细地震解释。随着微机性能的提高、成本的降低以及可 视化解释软件的发展,三维可视化解释技术的发展趋向是微机群,即用于解释 的微机群将以两种形式存在:一种是集成并行机群,用于大数据量的计算和三 维可视化分析;另一种是分布式机群,人手一台,通过网络连接,用于精细解 释研究。
5
用三维的观点和方法 研究地下三维问题, 才能得出地质构造的 全面认识。
1.十字型观测系统
× × ×
L型 ×
× × × × o o o o o o o oo o o
宽十字型 × × × ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ × ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
○ ○ ○ ○ ○○ ○ ○○○
○ ○ ○ ○ ○○ ○ ○○○
×
× × ×


T型
○ ○ ○ ○ ○ ○
3D 地震勘探
1
2
一维勘探是观测一个点的地下情况;
二维勘探是观测一条线下面的地下情况;
三维勘探是观测一块面积下面的地下情况;
四维地震勘探是在同一地区不同时间重复做三维地震 勘探,则可称之为四维地震勘探(时移地震)。四维 是观测同一块面积下面不同时间的地下变化情况。根 据地质任务和达到的目的不同,可采用不同维的勘探 方法。
该系统一般由十字型观测系统 组合或衍生而来,主要有直式栅 状系统和地震线束观测系统。
可作为小面积三维观测网,将 地下网格面积分布在需要勘探的 地区。
11
地震线束观测系统是目前三维地震大面积施工中最常用的类型, 该系统是由多条平行的接收排列和垂直的炮点排列组成。
×
80m
1
30m ×
61
90
×
121
150
× × × × × × × ×× × ×
这类观测系统可将地下网格面积分布在需要勘探的地区,湖泊、村镇等。在进
行小面积三维观测时,用多道仪器,多个炮点即可完成野外采集。
施工时,接收点排列不动,炮点沿炮线逐点激发。
缺点是:单次覆盖
10
组合型观测系统 从炮点和接收点分布关系,可分为垂直型、平行型和斜交型。 1)垂直型观测系统
8
三维地震野外数据采集
观测系统的设计原则 1.在一个共炮点道集式一个共CDP道集内地震道应均匀分布。即,炮点距、 道间距一般均匀分布,布保证同时勘探浅、中、深各目的层。即能取得各反 射层的有用反射波信息,又能用来进行速度分析。 2.在一CDP道集内各炮检距连线的方位方向应当尽可能比较均匀地分布在中 心点的CDP点360°的方位上。 3.地下各点的覆盖参数应尽可能相同,保证叠加参数相同。均匀的覆盖参数 是保证反射记录振幅均匀,频率均匀的前提,从而保证地震记录特征稳定, 便于岩性、岩相研究。
13
2)平行线型布置
14
3)积木型(又称斜交型)炮点线与接收点线彼此斜交
15
4)路线型(宽线剖面)
沿测线布置检波和炮点,可以得到测线附近条带上的反射资料。 宽线剖面处理后,能确定地下反射界面的位置、倾角和倾向, 分析波的来源,提高剖面信噪比。
16
2、不规则型观测系统
3
发达国家 20世纪70年代开始使用
中国
20世纪80年代迅速发展起来
野外资料采集→室内资料处理→成果解释
三维地震是将地震测网按一定规律布置成方格 状或环状的地震面积勘探方法。
4
三维地震勘探技术发展方向主要包括3方面:
一是发展万道地震采集技术。采用万道地震仪(测线在30000道以上)和数字 检波器进行单点激发、单点接收、大动态范围、多记录道数、多分量地震、全 方位信息、小面元网格、高覆盖次数的特高精度三维地震采集技术。
二是发展数据处理和数据存储技术。为提高处理精度,必须发展海量机群 并行处理和海量存储技术。海量机群并行处理技术是指PC-CLUSTER(针对大型 数据库及大负荷运算量的集群计算机)的节点要多,同时发展相关的静校正处理、 组合处理、叠前时间偏移、叠前深度偏移、全三维各向异性等处理技术,以提 高地下成像精度和储层描述精度及含油气分析精度。海量存储技术指发展大容 量的磁盘和自动带库,以满足大数据量的存储需求。
大大改善记录质量,提高信号的清晰度和分辨率,从而提高解决地质问题的能力,能 把油气田的位置确定得更准确。
由于三维地震最后得到的是一组立体的数据,根据这个数据体就能给出地层的立体图 像(三维立体图)。同时,也可给出由浅至深,一层层的水平切片图,将这些图制成 动画,人们就能像看电影一样来解释地下地质情况,省时省力又精确。
相关文档
最新文档