天津大学固定床乙醇脱水反应实验的研究新

天津大学固定床乙醇脱水反应实验的研究新
天津大学固定床乙醇脱水反应实验的研究新

化工专业实验报告

实验名称:固定床乙醇脱水反应实验研究组号:

实验人员:同组人:

实验地点:天大化工技术实验中心630室

实验时间:2014年5月23日指导教师:冯老师班级/学号:学号:

实验成绩:

固定床乙醇脱水反应实验研究

一.实验目的

1. 掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产物的反应条件对正、副反应的影响规律和生成的过程。

2. 学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法。

3. 学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床层温度分布。

4. 学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择。

5. 学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体流量。二.实验仪器和药品

仪器:乙醇脱水固反应器,气相色谱及计算机数据采集和处理系统,精密微量液体泵,蠕动泵。

药品:ZSM-5型分子筛乙醇脱水催化剂,分析纯乙醇,蒸馏水。

三.实验原理

乙烯是重要的基本有机化工产品。乙烯主要来源于石油化工,但是由乙醇脱水制乙烯在南非、非洲、亚洲的一些国家中仍占有重要地位。

乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增不变的可逆反应。提高反应温度、降低反应压力,都能提高反应转化率。乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。有人认为在生成产物的决定步骤中,生成乙烯要断裂C—H 键,需要的活化能较高,所以要在高温才有和于乙烯的生成。

乙醇在催化剂存在下受热发生脱水反应,既可分子内脱水生成乙烯,也可分子间脱水生成乙醚。现有的研究报道认为,乙醇分子内脱水可看成单分子的消去反应,分子间脱水一般认为是双分子的亲核取代反应,这也是两种相互竞争的反应过程,具体反应式如下:

C2H5OH →C2H4 + H2O (1)

C2H5OH →C2H5OC2H5 +H2O (2) 目前,在工业生产方面,乙醚绝大多数是由乙醇在浓硫酸液相作用下直接脱水制得。但生产设备会受到严重腐蚀,而且排出的废酸会造成严重的环境污染。因此,研究开发

可以取代硫酸的新型催化体系已成为当代化工生产中普遍关注的问题。目前,在这方面的探索性研究已逐渐引起人们的注意,大多致力于固体酸催化剂的开发,主要集中在分子筛上,特别是ZSM-5分子筛。

研究发现,通过对反应热力学函数的计算分析可了解到乙醇脱水制乙烯、制乙醚是热效应相反的两个过程,升高温度有利于脱水制乙烯(吸热反应),而降低温度对脱水制乙醚更为有利(微放热反应),所以要使反应向要求的方向进行,必须要选择相适应的反应温度区域,另外还应该考虑动力学因素的影响。

本实验采用ZSM-5分子筛为催化剂,在固定床反应器中进行乙醇脱水反应研究,反应产物随着反应温度的不同,可以生成乙烯和乙醚。温度越高,越容易生成乙烯,温度越低越容易生成乙醚。实验中,通过改变反应的进料速度,可以得到不同反应条件下的实验数据,通过对气体和液体产物的分析,可以得到反应温度下的最佳工艺条件和动力学方程。

反应机理如下:

主反应:C2H5OH →C2H4 + H2O (1)

副反应:C2H5OH →C2H5OC2H5 +H2O (2)

在实验中,由于两个反应生成的产物乙醚和水留在了液体冷凝液中,而气体产物乙烯是挥发气体,进入尾气湿式流量计计量总体积后排出。

对于不同的反应温度,通过计算不同的转化率和反应速率,可以得到不同反应温度下的反应速率常数,并得到温度的关联式。

四.实验装置流程图

1、原料无水乙醇;

2、乙醇进料泵;

3、湿式流量计;

4、催化剂床层温度

控制显示仪表;5、预热器加热温度控制显示仪表;6、反应器加热温度控制显示仪表;7、反应器;8、产物空气冷却器;9、产物气液分离器;10、ZSM-5分子筛催化剂;11、样品采出阀

图1 实验装置流程图

五.实验步骤

1. 按照实验要求,将反应器加热温度设定为270摄氏度,预热器温度设定为150

摄氏度。

2. 在温度达到设定值后,继续稳定分钟,然后开始加入乙醇,加料速度设定为

1.2ml/min

3. 反应进行10分钟后,正式开始实验。先换掉反应器下的吸收瓶,并换上清洗

干净的新瓶。记录湿式流量计的读数,应每隔10min记录反应温度和尾气流

量等实验条件。

4. 每个流量反应30分钟,然后取出吸收瓶中的液体,用天平对液体产物准确称

重,并进行色谱分析。

5. 在实验期间配制合适浓度的水、无水乙醇的标准溶液,并对标准溶液进行三次

色谱分析,色谱分析峰面积比例不得相差大于1%,以确定水、无水乙醇的相对校正因子,为后续的反应残液的定量分析作准备。

6. 依次改变乙醇的加料速度为0.9ml/min,0.6ml/min,重复上述实验步骤,则得到不同加料速度下的原料转化率、产物乙烯收率、副产物乙醚的生成速率等。

7. 实验结束后,关闭进料开关。继续加热20分钟,之后关闭各加热器,打开尾

液收集器阀门,放掉尾液,关闭总电源。

七.数据处理

1. 质量相对校正因子的计算:

在标准溶液中

m总=m水+m乙醇=12.00+11.23=23.23g

所以各质量分数为

ω水=m水/m总×100%=12.00/23.23×100%=51.68%

ω乙醇=m乙醇/m总×100%=11.23/23.23×100%=48.32%

以水为基准物,求各物质质量相对校正因子

乙醇:

f乙醇,1′=f乙醇/f水=(ω乙醇/A%乙醇,1 )/(ω水/A%水,1)=(48.32/47.65163)/(51.68/52.34837)=1.027

f乙醇,2′=f乙醇/f水=(ω乙醇/A%乙醇,2 )/(ω水/A%水,2)=(48.32/47.22139)/(51.68/52.77861)=1.045

f乙醇,3′=f乙醇/f水=(ω乙醇/A%乙醇,3 )/(ω水/A%水,3)=(48.32/46.58669)/(51.68/53.41331)=1.072

f乙醇,1=(f乙醇,1′+f乙醇,2′+f乙醇,3′)/3=1.048

表5 质量相对校正因子表

2. 各样品中组分的计算:

以加料速度1.2ml/min中的水为例:

ω水,1=(f水A%水,1 )/(f水A%水,1+f乙醇A%乙醇,1+f乙醚A%乙醚,1)×100% =1×16.71951/(1×16.71951+1.048×66.35472+1.1×16.92578)×100%

=15.94%

ω水,2=(f水A%水,2 )/(f水A%水,2+f乙醇A%乙醇,2+f乙醚A%乙醚,2)×100% =1×16.25224/(1×16.71951+1.048×66.56432+1.1×17.18344)×100%

=15.42%

ω水=(ω水,1+ω水,2)/2=(15.94%+15.42%)2=15.68%

数据汇总表如下

表6 产品组成

3.产品的质量和气体流量的计算,及原料质量衡算:

以加料速度为1.2ml/min数据为例

乙醇脱水

化工专业实验报告 实验名称:固定床乙醇脱水反应实验研究 实验人员:徐继盛同组人:赵乐、陈思聪、白帆 实验地点:天大化工技术实验中心630室 实验时间:2014年5月13号 年级2011 ;专业化学工程与工艺;组号10 ;学号3011207115 指导教师:冯荣秀 实验成绩: 天津大学化工技术实验中心印制

固定床乙醇脱水反应实验研究 一.实验目的 1.掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产物的反应条件对正、付反应的影响规律和生成的过程。 2.学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法。 3.动控制仪表的使用,如何设定温度和加热电流大小。怎样控制床层温度分布。 4.学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择。 5.学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体流量。 二.实验原理 1.过程原理 乙烯是重要的基本有机化工产品.乙烯主要来源于石油化工,但是由乙醇脱水制乙烯在南非、非洲、亚洲的一些国家中仍占有重要地位.我国的辽源、苏州、兰州、南京、新疆等地的中小型化工企业由乙醇脱水制乙烯的工艺主要采用r—Al2,虽然其活性及选择性较好,但是反应温度较高,空速较低,能耗大。 乙醇脱水生成乙烯是一个吸热反应,生成乙醚是一个放热反应,分子数增不变的可逆反应。提高反应温度、降低反应压力,都能提高反应转化率。乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。有人认为在生成产物的决定步骤中,生成乙烯要断裂C—H键,需要的活化能较高,所以要在高温才有和于乙烯的生成。 乙醇在催化剂存在下受热发生脱水反应,既可分子内脱水生成乙烯,也可分子问脱水生成乙醚.现有的研究报道认为,乙醇分子内脱水可看成单分子的消去反应,分子间脱水一般认为是双分子的亲核取代反应,这也是两种相互竞争的反应过程,具体反应式如下: C2H5OH → C2H4 + H2O (1)

固定床乙醇反应脱水

固定床乙醇反应脱水

实验四固定床乙醇脱水反应实验研究 一、实验目的 1. 掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产物的反应条件对正、副反应的影响规律和生成的过程。 2. 学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法。 3. 学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床层温度分布。 4. 学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择。 5. 学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体流量。 二、实验原理 乙醇脱水生成乙烯,是一个吸热、分子数增不变的可逆反应。提高反应温度、降低反应压力,都能提高反应转化率。乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要

生成乙醚。乙醇在催化剂存在下受热发生脱水反应,既可分子内脱水生成乙烯,也可分子间脱水生成乙醚。现有的研究报道认为,乙醇分子内脱水可看成单分子的消去反应,分子间脱水一般认为是双分子的亲核取代反应,这也是两种相互竞争的反应过程,具体反应式如下: C2H5OH → C2H4 + H2O (1) C2H5OH → C2H5OC2H5 +H2O (2) 目前,在工业生产方面,乙醚绝大多数是由乙醇在浓硫酸液相作用下直接脱水制得。但生产设备会受到严重腐蚀,而且排出的废酸会造成严重的环境污染。因此,研究开发可以取代硫酸的新型催化体系已成为当代化工生产中普遍关注的问题。目前,在这方面的探索性研究已逐渐引起人们的注意,大多致力于固体酸催化剂的开发,主要集中在分子筛上,特别是ZSM-5分子筛。 研究发现,通过对反应热力学函数的计算分析可了解到乙醇脱水制乙烯、制乙醚是热效应相反的两个过程,升高温度有利于脱水制乙烯(吸热反应),而降低温度对脱水制乙醚更为有利(微放热反应),所以要使反应向要求的方向进行,

天津大学《物理化学》第五版-习题及解答

天津大学《物理化学》第五版习题及解答 目录 第一章气体的pVT性质 (2) 第二章热力学第一定律 (6) 第三章热力学第二定律 (24) 第四章多组分系统热力学 (51) 第五章化学平衡 (66) 第六章相平衡 (76) 第七章电化学 (85) 第八章量子力学基础 (107) 第九章统计热力学初步 (111) 第十一章化学动力学 (118)

第一章气体的pVT性质

1.1 物质的体膨胀系数与等温压缩率的定义如下 试推出理想气体的,与压力、温度的关系。 解:根据理想气体方程 1.5 两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。若将其中的一个球加热到100 °C,另一个球则维持0 °C,忽略连接细管中气体体积,试求该容器内空气的压力。 解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。 标准状态: 因此, 1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。

(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。 (2)隔板抽取前后,H2及N2的摩尔体积是否相同? (3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后 即在上述条件下混合,系统的压力认为。 (2)混合气体中某组分的摩尔体积怎样定义? (3)根据分体积的定义 对于分压 1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。重复三次。求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。 解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。 设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为 ,则,。重复上面的过程,第n次充氮气后,系统的摩尔分数为 , 因此 。 1.13 今有0 °C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals方程计算其摩尔体积。实验值为。

实验三 乙醇脱水

实验三乙醇气相脱水制乙烯反应动力学 (本实验学时:7×1) 实验室小型管式炉加热固定床、流化床催化反应装置是有机化工、精细化工、石油化工等部门的主要设备,尤其在反应工程、催化工程及化工工艺专业中使用相当广泛。本实验是在固定床和流化床反应器中,进行乙醇气相脱水制乙烯,测定反应动力学参数。 固定床反应器内填充有固定不动的固体催化剂,床外面用管式炉加热提供反应所需温度,反应物料以气相形式自上而下通过床层,在催化剂表面进行化学反应。 流化床反应器内装填有可以运动的催化剂层,是一种沸腾床反应器。反应物料以气相形式自下而上通过催化剂层,当气速达到一定值后进入流化状态。反应器内设有档板、过滤器、丝网和瓷环(气体分布器)等内部构件,反应器上段有扩大段。反应器外有管式加热炉,以保证得到良好的流化状态和所需的温度条件。 反应动力学描述了化学反应速度与各种因素如浓度、温度、压力、催化剂等之间的定量关系。动力学在反应过程开发和反应器设计过程中起着重要的作用。它也是反应工程学科的重要组成部分。 在实验室中,乙醇脱水是制备纯净乙烯的最简单方法。常用的催化剂有: 浓硫酸液相反应,反应温度约170℃。 三氧化二铝气-固相反应,反应温度约360℃。 分子筛催化剂气-固相反应,反应温度约300℃。 其中,分子筛催化剂的突出优点是乙烯收率高,反应温度较低。故选用分子筛作为本实验的催化剂。 一、实验目的 1、巩固所学有关反应动力学方面的知识。 2、掌握获得反应动力学数据的手段和方法。 3、学会实验数据的处理方法,并能根据动力学方程求出相关的动力学参数值。 4、熟悉固定床和流化床反应器的特点及多功能催化反应装置的结构和使用方法,提高自身实验技能。 二、实验原理 乙醇脱水属于平行反应。既可以进行分子内脱水生成乙烯,又可以进行分子间脱水生成乙醚。一般而言,较高的温度有利于生成乙烯,而较低的温度有利于生成乙醚。因此,对于乙醇脱水这样一个复合反应,随着反应条件的变化,脱水过程的机理也会有所不同。借鉴前人在这方面所做的工作,将乙醇在分子筛催化剂作用下的脱水过程描述成: 2C2H5OH→C2H5OC2H5+H2O C2H5OH→C2H4+H2O 三、装置、流程及试剂 1、多功能催化反应实验装置介绍 该实验装置可进行加氢、脱氢、氧化、卤化、芳构化、烃化、歧化、氨化等各种催化反应的科研与教学。它能准确地测定和评价催化剂活性、寿命,找出最适宜的工艺条件,同时也能测取反应动力学和工业放大所需数据。本装置由反应系统和控制系统组成:

天津大学物理化学考研物化实验

1、恒温槽主要由哪几个部分组成的?各部分的作用是什么? 答:恒温槽主要由浴槽、加热器、搅拌器、温度计、感温元件、温度控制器等部分组成的。各部分的作用如下: 浴槽:用来盛装恒温介质;加热器:通过电加热使介质的温度升高,以弥补热量的散失;搅拌器:通过机器搅拌保持浴槽内的介质各部分温度均匀;温度计:指示恒温槽的温度,恒温槽的温度高低一定要以此温度计为准;感温元件;设定恒温槽所需的恒温温度,常用接触温度计作为感温元件;温度控制器:通过感温元件发出的“通”、“断”指令,对加热器实施控制加热,常用继电器作温度控制器。 2、影响恒温槽灵敏度的主要因素有哪些? 答:影响恒温槽灵敏度的因素很多,大体有: (1)恒温介质:流动性好,传热性能好,则控温灵敏度高; (2)加热器:功率适宜,热容量小,则控温灵敏度高; (3)搅拌器:搅拌速率要足够大,才能保证恒温槽内温度均匀; (4)温度控制器:电磁吸引电键,电键发生机械作用的时间越短,断电时线圈中的铁心剩余磁性愈小,则控温灵敏度就越高; (5)接触温度计:热容小,对温度的变化敏感,则灵敏度高; (6)环境温度与设定温度的差值越小,控温效果越好。 3、欲提高恒温槽的控温精确度,应采取哪些措施? 答:为了提高恒温槽的控温精确度,在设计恒温槽时要注意以下几点: (1)恒温槽的热容量要大些,传热介质的热容量越大越好。 (2)尽可能加快电热器与接触温度计之间传热的速率。为此要使:(1)感温元件的热容尽可能小,感温元件与电热器间距离要近一些;(2)搅拌器效果要高。 (3)作调节温度用的加热器功率要小些。 4、普通(玻璃浴槽)恒温槽与超级恒温槽的区别是什么? 答:普通(玻璃浴槽)恒温槽与超级恒温槽的恒温原理和基本构造大体相同。主要区别是:(1)普通恒温槽的槽体是玻璃浴槽,因为透明,所以便于观察待测体系。 (2)超级恒温槽配有循环水泵,能使恒温水循环流经待测体系,使待测体系得以恒温。 (3)部分超级恒温槽配有冷水循环或致冷系统,可以通过温控系统使恒温槽的温度设置在低于室温下恒温,而普通恒温槽一般不具备这种功能。 注意余热升温,所以起初温度设定在预定温度以下2度。余热升温

物理化学课后习题及答案(天津大学)

第七章电化学 7.1用铂电极电解溶液。通过的电流为20 A,经过15 min后,问:(1)在阴极上能析出多少质量的?(2) 在的27 ?C,100 kPa下的? 解:电极反应为 电极反应的反应进度为 因此: 7.2在电路中串联着两个电量计,一为氢电量计,另一为银电量计。当电路中 通电1 h后,在氢电量计中收集到19 ?C、99.19 kPa的;在银电量 计中沉积。用两个电量计的数据计算电路中通过的电流为多少。 解:两个电量计的阴极反应分别为 电量计中电极反应的反应进度为 对银电量计 对氢电量计

7.3用银电极电解溶液。通电一定时间后,测知在阴极上析出的 ,并知阴极区溶液中的总量减少了。求溶液中的和。 解:解该类问题主要依据电极区的物料守恒(溶液是电中性的)。显然阴极区溶液中的总量的改变等于阴极析出银的量与从阳极迁移来的银的量之差: 7.4用银电极电解水溶液。电解前每溶液中含。阳极溶解下来的银与溶液中的反应生成,其反应可表示 为 总反应为 通电一定时间后,测得银电量计中沉积了,并测知阳极区溶液重 ,其中含。试计算溶液中的和。 解:先计算是方便的。注意到电解前后阳极区中水的量不变,量的改变为 该量由两部分组成(1)与阳极溶解的生成,(2)从阴极迁移到阳极

7.5用铜电极电解水溶液。电解前每溶液中含 。通电一定时间后,测得银电量计中析出,并测知阳极区溶 液重,其中含。试计算溶液中的和。 解:同7.4。电解前后量的改变 从铜电极溶解的的量为 从阳极区迁移出去的的量为 因此, 7.6在一个细管中,于的溶液的上面放入 的溶液,使它们之间有一个明显的界面。令的电流直上而下通过该管,界面不断向下移动,并且一直是很清晰的。以后,界面在管内向下移动的距离相当于的溶液在管中所占的长度。计算在实验温度25 ?C下,溶液中的和。 解:此为用界面移动法测量离子迁移数

天津大学高等教育出版社第五版《物理化学》课后习题答案第七章

第七章电化学 7.1 用铂电极电解溶液。通过的电流为20 A,经过15 min后,问:(1)在阴极上能析出多少质 量的?(2) 在的27 ?C,100 kPa下的? 解:电极反应为 电极反应的反应进度为 因此: 7.2 在电路中串联着两个电量计,一为氢电量计,另一为银电量计。当电路中通电1 h后,在氢电量计 中收集到19 ?C、99.19 kPa的;在银电量计中沉积。用两个电量计的数据计算电路中通过的电流为多少。 解:两个电量计的阴极反应分别为 电量计中电极反应的反应进度为 对银电量计 对氢电量计 7.3 用银电极电解溶液。通电一定时间后,测知在阴极上析出的,并知阴极区溶液中的总量减少了。求溶液中的和。 解:解该类问题主要依据电极区的物料守恒(溶液是电中性的)。显然阴极区溶液中的总量的改变

等于阴极析出银的量与从阳极迁移来的银的量之差: 7.4 用银电极电解水溶液。电解前每溶液中含。阳极溶解下来的银与溶液中 的反应生成,其反应可表示为 总反应为 通电一定时间后,测得银电量计中沉积了,并测知阳极区溶液重,其中含 。试计算溶液中的和。 解:先计算是方便的。注意到电解前后阳极区中水的量不变,量的改变为 该量由两部分组成(1)与阳极溶解的生成,(2)从阴极迁移到阳极 7.5 用铜电极电解水溶液。电解前每溶液中含。通电一定时间后, 测得银电量计中析出,并测知阳极区溶液重,其中含。试计算 溶液中的和。 解:同7.4。电解前后量的改变 从铜电极溶解的的量为

从阳极区迁移出去的的量为 因此, 7.6 在一个细管中,于的溶液的上面放入的溶液,使它们之间有一个明显的界面。令的电流直上而下通过该管,界面不断向下移动,并且一直是很清晰的。以后,界面在管内向下移动的距离相当于的溶液在管中所占的长度。计算 在实验温度25 ?C下,溶液中的和。 解:此为用界面移动法测量离子迁移数 7.7 已知25 ?C时溶液的电导率为。一电导池中充以此溶液,在25 ?C时测得其电阻为。在同一电导池中装入同样体积的质量浓度为的溶液, 测得电阻为。计算(1)电导池系数;(2)溶液的电导率;(3)溶液的摩尔电导率。 解:(1)电导池系数为 (2)溶液的电导率 (3)溶液的摩尔电导率

乙醇脱水实验报告

乙醇脱水反应研究实验 一、实验目的 1. 掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产物的反应条件对正、副反应的影响规律和生成的过程。 2. 学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法。 3. 学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床层温度分布。 4. 学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择。 5. 学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体流量。 二、实验原理 乙烯是重要的基本有机化工产品。乙烯主要来源于石油化工,但是由乙醇脱水制乙烯在南非、非洲、亚洲的一些国家中仍占有重要地位.我国的辽源、苏州、兰州、南京、新疆等地的中小型化工企业由乙醇脱水制乙烯的工艺主要采用-Al2O3,虽然其活性及选择性较好,但是反应温度较高,空速较低,能耗大。 乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增不变的可逆反应。提高反应温度、降低反应压力,都能提高反应转化率。乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。有人认为在生成产物的决定步骤中,生成乙烯要断裂C-H键,需要的活化能较高,所以要在高温才有利于乙烯的生成。 乙醇在催化剂存在下受热发生脱水反应,既可分子内脱水生成乙烯,也可分子间脱水生成乙醚。现有的研究报道认为,乙醇分子内脱水可看成单分子的消去反应,分子间脱水一般认为是双分子的亲核取代反应,这也是两种相互竞争的反应过程,具体反应式如下:C2H5OH—C2H4(g)+H2O(g) (1) C2H5OH—C2H5OC2H5(g)+H2O(g) (2) 目前,在工业生产方面,乙醚绝大多数是由乙醇在浓硫酸液相作用下直接脱水制得。但

乙醇脱水反应实验步骤修订

实验十五流动法测定γ-Al2O3小球催化剂乙醇脱水的催化性能 1. 色谱条件设置 检测器:FID,色谱柱:Porapak-Q柱,柱温:160℃,气化室:170℃,FID:250℃,色谱载气:N2,流速:30~40 mL/min,对应柱前压在160℃时约为0.14~0.16MPa(载气流量已调好,一般不要再调)。加热带设定温度:130℃,六通阀:采样时间1 min,其它时间处于分析状态(防止液态物种在定量管中冷凝)。 等催化剂开始活化后打开色谱仪。先通载气(氮气),再打开色谱仪总开关,进入主界面设置色谱参数:柱温:160℃,气化室:170℃,FID:250℃,检测器:20℃。按“起始”开始升温。待温度稳定后,打开氢气发生器和空气发生器的开关,等流速稳定后,按下“点火”按钮(FID有两个,根据色谱连接情况按点火1或者2)。若要调节仪器的灵敏度,先按左边“检测”,再按“设置”,调节对应的FID的灵敏度(一般为7~9之间,正常情况下不需要调整)。开启计算机,打开N2000在线色谱工作站,对“实验信息”和“方法”作必要的修改后进入“数据采集”界面,点击“查看基线”图标,等待基线稳定。插上加热带电源插头,设定加热带温度为130℃。 2. 催化反应测定步骤 (1) 装样。拆开电炉下面反应管上缠绕的加热带至两通接头螺帽位置,用扳手松开反应管上面和下面气路连接螺帽,从反应装置中卸下反应管,将其中的石英砂和催化剂倒入回收塑料桶中,可用洗耳球吹干净反应管。量取2 mL活化后Al2O3催化剂小球,称重后装入反应管中,用不锈钢管轻敲反应器,使催化剂装填均匀。在反应管上部装填干净石英砂至距管口约7 cm 处,并轻轻敲实,然后将反应管接入反应装置,并用扳手旋紧上下的接头螺帽。重新缠绕加热带包裹好反应管的下端。 (2) 活化。在减压阀关闭状态下打开氮气钢瓶总阀(逆时针为开启),调节减压阀出口压力至0.3MPa(顺时针旋转),调节反应装置控制面板上“调压”旋钮,使压力显示为0.2MPa。将尾气的三通活塞转至通皂膜流量计的位置,调节“调流”旋钮,使皂膜流量计测出的反应载气流速为80 mL/min,然后将尾气的三通活塞转到通入排空管道的位置。打开控温仪开关,设定温度为400℃,将反应炉温度升至400℃,活化1 h。 (3) 反应。催化剂活化结束后,设置“控温”仪表温度为250℃,炉子开始降温。待“测温”仪表温度降至270℃左右时,即可打开平流泵。乙醇进样管下接一个小烧杯,按“FLOW”,输入较大的流速(>1mL/min),再按“RUN”,待进样管出口乙醇流量稳定后,按“PAU”停止。将乙醇进样管从上端插入反应管(需将原来的螺帽取下,换上带乙醇进样管的螺帽),拧紧密封螺帽,设置平流泵流量为0.15 mL/min,开始向反应器中通入乙醇。调节“控温”仪表温度设定值,使“测温”仪表温度(即催化剂床层温度)显示为250±2℃。待“测温”仪表温度稳定后,将色谱仪上六通阀手柄从"分析"位置转至"采样"位置,1 min后重新转至“分析”位置,同时点击色谱工作站的“采集数据”图标,进行在线分析。待相关产物峰完全出来后(大约5~7 min),点击色谱工作站中“停止采集”图标,图谱文件自动保存。该温度下采样分析两次。第二次采样后,当六通阀转至“分析”时,将“控温”仪表温度升高10℃,等“测温”仪表温度稳定后,重复上面的采样分析步骤(每个温度下可只采样分析一次),直至“测温”仪表温度升至300℃左右,停止实验。 (4) 停止实验。关闭恒流泵,将乙醇进样管(连螺帽)从反应管中取出,换上原来取下的螺帽,关闭“控温”仪表,继续用载气吹扫反应管。关闭氢气和空气发生器,按色谱仪面板上的“关闭控温”按钮,让色谱仪降温,15 min后可关闭色谱总开关和氮气钢瓶总阀。 3. 色谱定量方法 本次实验使用校正面积归一法计算乙醇脱水反应的转化率和选择性。其相对摩尔校正因子为(以乙醇为1计)乙烯:0.74 ;乙醛:1.40;乙醇:1.00;乙醚:0.47。由于2分子乙醇反应才能转化为1分子乙醚,计算摩尔关系时应在乙醚面积乘以校正因子的基础上再乘以2。

物理化学(天津大学第四版)上册答案完整版

一章气体的pVT关系 1.1 物质的体膨胀系数与等温压缩率的定义如下 试推出理想气体的,与压力、温度的关系。 解:根据理想气体方程 1.2 气柜内贮有121.6 kPa,27℃的氯乙烯(C2H3Cl)气体300 m3,若以每小时90 kg的流量输往使用车间,试问贮存的气体能用多少小时? 解:假设气柜内所贮存的气体可全部送往使用车间。 1.3 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度? 解:将甲烷(M w=16g/mol)看成理想气体: PV=nRT , PV =mRT/ M w 甲烷在标准状况下的密度为=m/V= PM w/RT =101.32516/8.314273.15(kg/m3) =0.714 kg/m3 1.4 一抽成真空的球形容器,质量为25.0000g充以4℃水之后,总质量为125.0000g。若改充以25℃,13.33 kPa的某碳氢化合物气体,则总质量为 25.0163g。试估算该气体的摩尔质量。水的密度1g·cm3计算。 解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3 将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M w M w= mRT/ PV=(25.0163-25.0000)8.314300.15/(1333010010-6) M w =30.51(g/mol)

1.5 两个容积均为V 的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。若将其中的一个球加热到 100℃,另一个球则维持 0℃,忽略连接细管中气体体积,试求该容器内空气的压力。 解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。 标准状态: 因此, 1.6 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。试作p p -ρ 图,用外推法求氯甲烷的相对 分子质量。

乙醇脱水

化工专业实验报告 实验名称:乙醇脱水反应研究实验 实验人员:陈俐吭同组人:肖昌弘、李奇峰、吴婵实验地点:天大化工技术实验中心630 室 实验时间:2012年04月12日 班级/学号:09 级化工四班8 组3009207089号 指导教师:郭红宇 实验成绩:

乙醇脱水反应研究实验 一、实验目的 1、掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产物的反应条件对 正、副反应的影响规律和生成的过程; 2、学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常操作和安装,掌 握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法; 3、学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床层温度分布; 4、学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。了解气 相色谱的原理和构造,掌握色谱的正常使用和分析条件选择; 5、学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体流量。 二、实验仪器和药品 乙醇脱水固反应器,气相色谱及计算机数据采集和处理系统,精密微量液体泵,蠕动泵。 ZSM-5型分子筛乙醇脱水催化剂,分析纯乙醇,蒸馏水。 三、实验原理 乙烯是重要的基本有机化工产品。乙烯主要来源于石油化工,但是由乙醇脱水制乙烯在南非、非洲、亚洲的一些国家中仍占有重要地位。 乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增不变的可逆反应。提高反应温度、降低反应压力,都能提高反应转化率。乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。有人认为在生成产物的决定步骤中,生成乙烯要断裂C—H 键,需要的活化能较高,所以要在高温才有和于乙烯的生成。 乙醇在催化剂存在下受热发生脱水反应,既可分子内脱水生成乙烯,也可分子间脱水生成乙醚。现有的研究报道认为,乙醇分子内脱水可看成单分子的消去反应,分子间脱水一般认为是双分子的亲核取代反应,这也是两种相互竞争的反应过程,具体反应式如下:C2H5OH → C2H4 + H2O (1) C2H5OH → C2H5OC2H5 +H2O (2) 目前,在工业生产方面,乙醚绝大多数是由乙醇在浓硫酸液相作用下直接脱水制得。但生产设备会受到严重腐蚀,而且排出的废酸会造成严重的环境污染。因此,研究开发可以取代硫酸的新型催化体系已成为当代化工生产中普遍关注的问题。目前,在这方面的探索性研究已逐渐引起人们的注意,大多致力于固体酸催化剂的开发,主要集中在分子筛上,特别是ZSM-5分子筛。 研究发现,通过对反应热力学函数的计算分析可了解到乙醇脱水制乙烯、制乙醚是热效应相反的两个过程,升高温度有利于脱水制乙烯(吸热反应),而降低温度对脱水制乙醚更为有利(微放热反应),所以要使反应向要求的方向进行,必须要选择相适应的反应温度区域,另外还应该考虑动力学因素的影响。 本实验采用ZSM-5分子筛为催化剂,在固定床反应器中进行乙醇脱水反应研究,反应产物随着反应温度的不同,可以生成乙烯和乙醚。温度越高,越容易生成乙烯,温度越低越容易生成乙醚。实验中,通过改变反应的进料速度,可以得到不同反应条件下的实验数据,通过对气体和液体产物的分析,可以得到反应温度下的最佳工艺条件和动力学方程。

乙醇气相脱水制乙烯动力学实验

化工专业实验报告 实验名称:乙醇气相脱水制乙烯动力学实验 学院:化学工程学院 专业:化学工程与工艺 班级:化工班 姓名:学号 同组者姓名: 指导教师: 日期:

一、实验目的 1、巩固所学的有关动力学方面的知识; 2、掌握获得的反应动力学数据的方法和手段; 3、学会动力学数据的处理方法,根据动力学方程求出相应的参数值; 4、熟悉内循环式无梯度反应器的特点以及其它有关设备的使用方法,提高自己的实验技能。 二、实验原理 乙醇脱水属于平等反应。既可以进行分子内脱水成乙烯,又可以分子间脱水 生成乙醚。一般而言,较高的温度有利于生成乙烯,而较低的温度则有利于生成乙醚。 较低温度:O H H OC H C OH H C 25252522+→ 较高温度:O H H C OH H C 24252+→ 三、实验装置、流程及试剂 1.装置 本实验装置由三部分构成。 第一部分是有微量进料泵、氢气钢瓶、汽化器和取样六通阀组成的系统。 第二部分是反应系统。它是由一台内循环式无梯度反应器,温度控制器和显示仪表组成。 第三部分是取样和分析系统。包括取样六通阀,产品收集器和在线气相色谱信。 2.实验流程

内循环无梯度反应色谱实验装置流程示意图K3-进气旁路调节阀;K2-阀箱产物流量调节;K3-气液分离后尾气调节;J-进液排放三通阀;1-气体钢瓶;2-稳压阀;3-转子流量计;4-过滤器;5-质量流量计;6-缓冲器;7-压力传感器;8-预热器;9-预热炉;10-反应器;11-反应炉;12-马达;13-恒温箱;14-气液分离器;15-调压阀;16-皂膜流量计;17-加料泵 12 内循环无梯度反应色谱实验装置流程示意图 3.试剂和催化剂:无水乙醇,优级纯;分子筛催化剂,60~80目,重0.4g 。 四、实验步骤 1、打开H 2钢瓶使柱前压达到0.5kg/cm 2确认色谱检测中截气通过后启动色谱,柱温110℃,汽化室130℃,检测室温达到120℃,待温度稳定后,打开热导池——微电流放大器开关,桥电流至100mA ; 2、在色谱仪升温的同时,开启阀恒温箱加热器升温至110℃,开启保温加热器升温至180℃; 3、打开反应器温度控制开关,升温,同时向反应器冷却水夹套通冷却水; 4、打开微量泵,以小流量向气化器内通原料乙醇; 5、在200~380℃之间选择三个温度,测定每5分钟内反应后乙醇和水的质量并记录,每个温度测定2~3次。 五、数据处理 乙醇进料速度:0.3ml/min 乙醇每5min 内进料质量:1.5×0.79=1.185g

①天津大学《物理化学》考试大纲(2016年版)

一、考试的总体要求 1. 对本门课程中重要的基本概念与基本原理掌握其含义及适用范围; 2. 掌握物理化学公式应用及公式应用条件。计算题要求思路正确。步骤简明; 3. 掌握物理化学实验中常用物理量的测量(包括原理、计算式、如何测量)。能正确使用常用物化仪器(原理、测量精度、使用范围、注意事项) 二、考试内容及比例(重点部分) 1. 气体、热力学第一定律、热力学第二定律(~22 %) 理想气体状态方程、范德华方程、压缩因子定义。 热力学第一、第二定律及其数学表达式;pVT变化、相变化与化学反应过程中W、Q、U、H、S、A与G的计算;熵增原理及三种平衡判据。 了解热力学基本方程和麦克斯韦关系式的简单应用;克拉贝龙方程及克-克方程的应用。2. 多组分热力学及相平衡(~18 %) 偏摩尔量、化学势的概念;理想气体、理想稀溶液的化学势表达式;逸度、活度的定义以及活度的计算。 拉乌尔定律和亨利定律;稀溶液依数性的概念及简单应用。 相律的应用;单组分相图;二组分气-液及凝聚系统相图。 3. 化学平衡(~10 %) 等温方程;标准摩尔反应Gibbs函数、标准平衡常数与平衡组成的计算;温度、压力和惰性气体对平衡的影响;同时平衡的原则。 4. 电化学(~10 %) 电解质溶液中电导率、摩尔电导率、活度与活度系数的计算;电导测定的应用。 原电池电动势与热力学函数的关系,Nernst方程;电动势测定的应用;电极的极化与超电势的概念。 5. 统计热力学(~6 %) Boltzmann分布;粒子配分函数的定义式;双原子平、转、振配分函数的计算;独立子系统能量、熵与配分函数的关系,Boltzmann熵定理。 6. 化学动力学(~15 %) 反应速率、基元反应、反应分子数、反应级数的概念。 零、一、二级反应的动力学特征及速率方程积分式的应用;阿累尼乌斯公式;对行、平行反应(一级)速率方程积分式的应用;复杂反应的近似处理法(稳态近似法、平衡态近似法)。催化作用的基本特征;光化反应的特征及光化学第一、第二定律。 7. 界面现象与胶体化学(~10 %) 弯曲液面的附加压力与Laplace方程;Kelvin方程与四种亚稳态;润湿与铺展现象及杨氏方程;化学吸附与物理吸附;Langmuir吸附等温式。 了解胶体的光学性质、动力性质及电学性质;掌握胶团结构的表示,电解质对溶胶的聚沉作用;了解乳状液的稳定与破坏。 8. 实验部分(~10 %) 1) 恒温槽的调节及粘度测定;2)液体饱和蒸气压的测定;3)反应焓的测定;4)平衡常数的测定(ZnO与HCl水溶液反应);5)凝固点降低法测摩尔质量(萘-苯系统);6)二元完全互溶液体蒸馏曲线(乙醇-正丙醇系统,阿贝折射仪);7)二元凝聚系统相图;8) 原电池热力

物理化学课后习题及答案天津大学

物理化学课后习题及答案天津大学

第七章电化学 7.1用铂电极电解溶液。通过的电流为20 A,经过15 min后,问:(1) 在阴极上能析出多少质量的?(2) 在的27 ?C,100 kPa下的? 解:电极反应为 电极反应的反应进度为 因此: 7.2在电路中串联着两个电量计,一为氢电量计,另一为银电量计。当电路中 通电1 h后,在氢电量计中收集到19 ?C、99.19 kPa的;在银电量 计中沉积。用两个电量计的数据计算电路中通过的电流为多少。 解:两个电量计的阴极反应分别为 电量计中电极反应的反应进度为 对银电量计 对氢电量计

7.3用银电极电解溶液。通电一定时间后,测知在阴极上析出的 ,并知阴极区溶液中的总量减少了。求溶液中的和。 解:解该类问题主要依据电极区的物料守恒(溶液是电中性的)。显然阴极区 溶液中的总量的改变等于阴极析出银的量与从阳极迁移来的银的量之差: 7.4用银电极电解水溶液。电解前每溶液中含。阳极溶 解下来的银与溶液中的反应生成,其反应可表示 为 总反应为 通电一定时间后,测得银电量计中沉积了,并测知阳极区溶液重 ,其中含。试计算溶液中的和。 解:先计算是方便的。注意到电解前后阳极区中水的量不变,量的改变为 该量由两部分组成(1)与阳极溶解的生成,(2)从阴极迁移到阳极

7.5用铜电极电解水溶液。电解前每溶液中含 。通电一定时间后,测得银电量计中析出,并测知阳极区溶 液重,其中含。试计算溶液中的和。 解:同7.4。电解前后量的改变 从铜电极溶解的的量为 从阳极区迁移出去的的量为 因此, 7.6在一个细管中,于的溶液的上面放入 的溶液,使它们之间有一个明显的界面。令的电 流直上而下通过该管,界面不断向下移动,并且一直是很清晰的。以后, 界面在管内向下移动的距离相当于的溶液在管中所占的长度。计算在实验温度25 ?C下,溶液中的和。 解:此为用界面移动法测量离子迁移数

固定床乙醇脱水制乙烯反应研究的实验

固定床乙醇脱水制乙烯反应研究实验 学校:齐齐哈尔大学化学 学院:化学与化学工程学院 班级:化工112 马林福,何青云,张杰 化工113 贾楠,王丽博 指导教师:韩福忠 日期:2014年11月26日

固定床乙醇脱水制乙烯反应研究实验 贾楠,马林福,王丽博,何青云,张杰 (齐齐哈尔大学化学与化学工程学院,161006) 摘要:乙烯是重要的基本有机化工产品。在固定床反应器中进行乙醇脱水反应研究,反应产物随着反应温度的不同,可以生成乙烯和乙醚。温度越高,越容易生成乙烯,温度越低越容易生成乙醚。实验中,通过改变反应的进料速度,可以得到不同反应条件下的实验数据,可以得到反应温度下的最佳工艺条件。 关键词:乙烯;进料速度;固定床反应器;最佳工艺条件; Abstract:Ethylene is an important basic organic chemical products.For ethanol dehydration reactionresearch in a fixed bed reactor,reaction products can be ethylene or ether with a different reaction temperature in a chemical reaction that the higher temperature,the more tend to generate ethylene and the lower temperature,the more tend to generate ether.By changing the speed of incoming materials of reactions,the experimental datas dissective to get the best process conditions are obtained in a different reaction condition. Key words:ethylene;feed rate;fixed bed reactor;the best process conditions 1前言 乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增不变的可逆反应。提高反应温度、降低反应压力,都能提高反应转化率。乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。有人认为在生成产物的决定步骤中,生成乙烯要断裂C—H 键,需要的活化能较高,所以要在高温才有和于乙烯的生成。 乙醇在催化剂存在下受热发生脱水反应,既可分子内脱水生成乙烯,也可分子间脱水生成乙醚。现有的研究报道认为,乙醇分子内脱水可看成单分子的消去反应,分子间脱水一般认为是双分子的亲核取代反应,这也是两种相互竞争的反应过程,具体反应式如下: C2H5OH → C2H4 + H2O (1)

天津大学《物理化学》第四版_习题及解答

天津大学《物理化学》第四版习题 及解答 目录 第一章气体的pVT性质 (2) 第二章热力学第一定律 (6) 第三章热力学第二定律 (24) 第四章多组分系统热力学 (51) 第五章化学平衡 (66) 第六章相平衡 (76) 第七章电化学 (85) 第八章量子力学基础 (107) 第九章统计热力学初步 (111) 第十一章化学动力学 (117)

第一章气体的pVT性质 1.1 物质的体膨胀系数与等温压缩率的定义如下 试推出理想气体的,与压力、温度的关系。 解:根据理想气体方程 1.5 两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。若将其中的一个球加热到100 °C,另一个球则维持0 °C,忽略连接细管中气体体积,试求该容器内空气的压力。 解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。 标准状态: 因此, 1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。

(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。 (2)隔板抽取前后,H2及N2的摩尔体积是否相同? (3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后 即在上述条件下混合,系统的压力认为。 (2)混合气体中某组分的摩尔体积怎样定义? (3)根据分体积的定义 对于分压 1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。重复三次。求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。 解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。 设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数 为,则,。重复上面的过程,第n 次充氮气后,系统的摩尔分数为 , 因此 。 1.13 今有0 °C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals方程计 算其摩尔体积。实验值为。

乙醇脱水制备乙烯综合性实验设计

第29卷第3期2014年6月 大学化学 UNIVERSITY CHEMISTRY Vol.29No.3 Jun.2014 乙醇脱水制备乙烯综合性实验设计* 马新起 郭泉辉 杨显 (河南大学化学化工学院精细化学与工程研究所 河南开封475004) 摘要 从实验设计的思路二实验目的二实验设备二实验操作流程二实验思考题二实验数据记录和实验结果的处理等方面介绍乙醇脱水制备乙烯综合性实验的设计与实现过程三 关键词 高等教育 综合性实验 实验设计 随着高等教育改革的进一步深化,各高等院校更加注重对大学生创新意识二创新精神和创新能力的培养,对于理工科院校来说,进一步强化学生的工程实践能力是很重要的[1?3]三学生通过系统的实验训练,可以初步了解和掌握所学理论知识的运用,培养实践能力二分析问题能力和创新能力[4?6]三学生在学过乙烯的相关内容后,对以石油路线制备乙烯的过程有了一定的了解;同时也了解了利用可再生的生物质为原料制备生物乙醇二再以生物乙醇制备乙烯的路线[7?9]三 本文从实验设计的思路二实验目的二实验主要设备二实验操作流程二实验思考题二实验数据记录方法和实验结果的处理方法等方面,介绍我们利用本校现有实验装置开设的一个乙醇脱水制备乙烯综合性实验的设计与实现过程三希望借此为理工科院校实验教学改革提供一些参考三本文介绍的实验可作为化学化工类本科生的必修或选修实验三 1 实验设计的思路 笔者在本科生的专业课教学中主要是主讲及辅导化工工艺学和化工实验等课程三为了使学生熟悉后石油时代替代能源开发和利用的方法及其重要性,掌握利用生物乙醇制备乙烯的原理二工艺过程及自控系统二产物分析检测的方法,培养学生的实践能力和创新能力[10?11],笔者根据对石油路线制乙烯的工艺过程的了解,利用现有实验装置作为平台,开设了乙醇脱水制备乙烯的综合性实验三 乙醇催化脱水制备乙烯综合性实验综合运用了先修课程中学过的有机化学二化工原理二化学反应工程二化工仪表与自动化二仪器分析二化工工艺学等内容三先修课程所学内容在综合实验中的应用见表1三 表1摇先修课程所学内容在综合实验中的应用 先修课程先修课对应内容实验使用内容 有机化学烯烃的制备乙烯的制备方法 化工工艺学烃类裂解制乙烯乙醇制乙烯二数据处理 化工原理流体输送物料的输送与计量 化学反应工程反应器的型式固定床反应器 化工原理传热设备冷凝冷却器的选择 化工仪表与自动化仪表二自动化控制在线控制系统 仪器分析气相色谱反应产物的分析检测 *基金资助:河南大学第十二批校级教学改革研究资助项目(No.20120046)

乙醇脱水反应研究

? 化工专业实验报告 实验名称:__乙醇脱水反应研究实验___ 实验人员:___骆加威同组人:__聂新宇吴锋 实验地点:天大化工技术实验中心__630___室 实验时间:___2012年3月29日 班级/学号:__2009级___化工2班___3009214146 学号 ___1 实验组号 指导老师:_____郭红宇 实验成绩:_________________

乙醇脱水反应研究实验 一、实验目的及要求 1.掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产 物的反应条件对正、副反应的影响规律和生成的过程; 2.学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常 操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法; 3.学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床 层温度分布; 4.学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体 成分。了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择; 5.学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体 流量。 二、实验原理 乙烯是重要的基本有机化工产品。乙烯主要来源于石油化工,但是由乙醇脱水制乙烯在南非、非洲、亚洲的一些国家中仍占有重要地位。 乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增不变的可逆反应。提高反应温度、降低反应压力,都能提高反应转化率。乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。有人认为在生成产物的决定步骤中,生成乙烯要断裂C—H 键,需要的活化能较高,所以要在高温才有和于乙烯的生成。 乙醇在催化剂存在下受热发生脱水反应,既可分子内脱水生成乙烯,也可分子间脱水生成乙醚。现有的研究报道认为,乙醇分子内脱水可看成单分

相关文档
最新文档