中考数学专题:图形的变换练习(含答案)-
2023年 九年级数学中考复习 几何图形变换综合压轴题 专题训练(含答案)
2023年春九年级数学中考复习《几何图形变换综合压轴题》专题训练(附答案)1.如图,△ABC和△ECD都是等边三角形,直线AE,BD交于点F.(1)如图1,当A,C,D三点在同一直线上时,∠AFB的度数为,线段AE与BD的数量关系为.(2)如图2,当△ECD绕点C顺时针旋转α(0°≤α<360°)时,(1)中的结论是否还成立?若不成立,请说明理由;若成立,请就图2给予证明.(3)若AC=4,CD=3,当△ECD绕点C顺时针旋转一周时,请直接写出BD长的取值范围.2.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D、E两点分别在AC、BC上,且DE∥AB,将△CDE绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现:当α=0°时,的值为;(2)拓展探究:当0°≤α<360°时,若△EDC旋转到如图2的情况时,求出的值;(3)问题解决:当△EDC旋转至A、B、E三点共线时,若CE=5,AC=4,直接写出线段AD的长.3.已知:如图1,线段AD=5,点B从点A出发沿射线AD方向运动,以AB为底作等腰△ABC,使得AC=BC=AB.(1)如图2,当AB=10时,求证:CD⊥AB;(2)当△BCD是以BC为腰的等腰三角形时,求BC的长;(3)当AB>5时,在线段BC上是否存在点E,使得△BDE与△ACD全等,若存在,求出BC的长;若不存在,请说明理由;(4)作点A关于直线CD的对称点A′,连接CA′当CA′∥AB时,CA′=(请直接写出答案).4.如图1,在△ABC中,AE⊥BC于点E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系是:;数量关系是:;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系为:;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.5.如图,平面直角坐标系中O为原点,Rt△ABC的直角顶点A在y轴正半轴上,斜边BC 在x轴上,已知B、C两点关于y轴对称,且C(﹣8,0).(1)请直接写出A、B两点坐标;(2)动点P在线段AB上,横坐标为t,连接OP,请用含t的式子表示△POB的面积;(3)在(2)的条件下,当△POB的面积为24时,延长OP到Q,使得PQ=OP,在第一象限内是否存在点D,使得△OQD是等腰直角三角形,如果存在,求出D点坐标;如果不存在,请说明理由.6.如图1,已知△ABC中,∠ACB=90°,AC=BC=6,点D在AB边的延长线上,且CD =AB.(Ⅰ)求BD的长度;(Ⅱ)如图2,将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A'CD'.①若α=30°,A'D'与CD相交于点E,求DE的长度;②连接A'D、BD',若旋转过程中A'D=BD'时,求满足条件的α的度数.(Ⅲ)如图3,将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A'CD',若点M 为AC的中点,点N为线段A'D'上任意一点,直接写出旋转过程中线段MN长度的取值范围.7.如图①,将两个等腰直角三角形纸片OAB和OCD放置在平面直角坐标系中,点O(0,0),点A(0,+1),点B(+1,0),点C(0,1),点D(1,0).(Ⅰ)求证:AC=BD;(Ⅱ)如图②,现将△OCD绕点O顺时针方向旋转,旋转角为α(0°<α<180°),连接AC,BD,这一过程中AC和BD是否仍然保持相等?说明理由;当旋转角α的度数为时,AC所在直线能够垂直平分BD;(Ⅲ)在(Ⅱ)的情况下,将旋转角α的范围扩大为0°<α<360°,那么在旋转过程中,求△BAD的面积的最大值,并写出此时旋转角α的度数.(直接写出结果即可)8.在△ABC中,AB=AC,∠BAC=α,过点A作直线l平行于BC,点D是直线l上一动点,连接CD,射线DC绕点D顺时针旋转α交直线AB于点E.(1)如图1,若α=60°,当点E在线段AB上时,请直接写出线段AC,AD,AE之间的数量关系,不用证明;(2)如图2,若α=60°,当点E在线段BA的延长线上时,(1)中的结论是否成立?若成立,请证明;若不成立,请写出正确结论,并证明.(3)如图3,若α=90°,BC=6,AD=,请直接写出AE的长.9.有一根直尺短边长4cm,长边长10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长为16cm,如图甲,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D 与点A重合.将直尺沿射线AB方向平移,如图乙,设平移的长度为xcm,且满足0≤x ≤12,直尺和三角形纸板重叠部分的面积为Scm2.(1)当x=0cm时,S=;当x=12cm时,S=.(2)当0<x<8(如图乙、图丙),请用含x的代数式表示S.(3)是否存在一个位置,使重叠部分面积为28cm2?若存在求出此时x的值.10.如图①,C为线段BD上的一点,BC≠CD,分别以BC,BD为边在BD的上方作等边△ABC和等边△CDE,连接AE,F,G,H分别是BC,AE,CD的中点,连接FG,GH,FH.(1)△FGH的形状是;(2)将图①中的△CDE绕点C顺时针旋转,其他条件不变,(1)的结论是否成立?结合图②说明理由;(3)若BC=2,CD=4,将△CDE绕点C旋转一周,当A,E,D三点共线时,直接写出△FGH的周长.11.已知,射线AB∥CD,P是直线AC右侧一动点,连接AP,CP,E是射线AB上一动点,过点E的直线分别与AP,CP交于点M,N,与射线CD交于点F,设∠BAP=∠1,∠DCP=∠2.(1)如图1,当点P在AB,CD之间时,求证:∠P=∠1+∠2;(2)如图2,在(1)的条件下,作△PMN关于直线EF对称的△P'MN,求证:∠3+∠4=2(∠1+∠2);(3)如图3,当点P在AB上方时,作△PMN关于直线EF对称的△P'MN,(1)(2)的结论是否仍然成立,若成立,请说明理由;若不成立,请直接写出∠P,∠1,∠2之间数量关系,以及∠3,∠4与∠1,∠2之间数量关系.12.(1)如图1,平面直角坐标系中A(0,a),B(a,0)(a>0).C为线段AB的中点,CD⊥x轴于D,若△AOB的面积为2,则△CDB的面积为.(2)如图2,△AOB为等腰直角三角形,O为直角顶点,点E为线段OB上一点,且OB=3OE,C与E关于原点对称,线段AB交x轴于点D,连CD,若CD⊥AE,试求的值.(3)如图3,点C、E在x轴上,B在y轴上,OB=OC,△BDE是以B为直角顶点的等腰直角三角形,直线CB、ED交于点A,CD交y轴于点F,试探究:是否为定值?如果是定值,请求出该定值;如果不是,请求出其取值范围.13.在△ABC中,AB=AC,∠BAC=90°.(1)如图1,点P,Q在线段BC上,AP=AQ,∠BAP=15°,求∠AQB的度数;(2)点P,Q在线段BC上(不与点B,C重合),AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②用等式表示线段BP,AP,PC之间的数量关系,并证明.14.【问题背景】如图1,在Rt△ABC中,AB=AC,D是直线BC上的一点,将线段AD绕点A逆时针旋转90°至AE,连接CE,求证:△ABD≌△ACE;【尝试应用】如图2,在图1的条件下,延长DE,AC交于点G,BF⊥AB交DE于点F,求证:FG=AE;【拓展创新】如图3,A是△BDC内一点,∠ABC=∠ADB=45°,∠BAC=90°,BD =,直接写出△BDC的面积为.15.在平面直角坐标系中,A(a,0),B(0,b)分别是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点.(1)当2a2+4ab+4b2+2a+1=0时,求A,B的坐标;(2)当a+b=0时,①如图1,若D与P关于y轴对称,PE⊥DB并交DB延长线于E,交AB的延长线于F,求证:PB=PF;②如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CP=AQ时,求∠APB的大小.16.已知:在Rt△ABC中,∠C=90°,∠B=30°,BC=6,左右作平行移动的等边三角形DEF的两个顶点E、F始终在边BC上,DE、DF分别与AB相交于点G、H.(1)如图1,当点F与点C重合时,点D恰好在斜边AB上,求△DEF的周长;(2)如图2,在△DEF作平行移动的过程中,图中是否存在与线段CF始终相等的线段?如果存在,请指出这条线段,并加以证明;如果不存在,请说明理由;(3)假设C点与F点的距离为x,△DEF与△ABC的重叠部分的面积为y,求y与x的函数关系式,并写出定义域.17.在△ABC中,∠C=90°,AC=2,BC=2,点D为边AC的中点(如图),点P、Q 分别是射线BC、BA上的动点,且BQ=BP,联结PQ、QD、DP.(1)求证:PQ⊥AB;(2)如果点P在线段BC上,当△PQD是直角三角形时,求BP的长;(3)将△PQD沿直线QP翻折,点D的对应点为点D',如果点D'位于△ABC内,请直接写出BP的取值范围.18.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长.(2)如图2,在等腰直角△ABC中,AC=BC,∠ACB=90°,点M,N为边AB上两点满足∠MCN=45°,求证:点M,N是线段AB的勾股分割点;阳阳同学在解决第(2)小题时遇到了困难,陈老师对阳阳说:要证明勾股分割点,则需设法构造直角三角形,你可以把△CBN绕点C逆时针旋转90°试一试.请根据陈老师的提示完成第(2)小题的证明过程.19.问题背景如图(1),△ABD,△AEC都是等边三角形,△ACD可以由△AEB通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小.尝试应用如图(2),在Rt△ABC中,∠ACB=90°,分别以AC,AB为边,作等边△ACD和等边△ABE,连接ED,并延长交BC于点F,连接BD.若BD⊥BC,求的值.拓展创新如图(3),在Rt△ABC中,∠ACB=90°,AB=2,将线段AC绕点A顺时针旋转90°得到线段AP,连接PB,直接写出PB的最大值.20.【教材呈现】如图是苏科版九年级下册数学教材第92页的第17题.一块直角三角形木板,它的一条直角边AC长为1.5m,面积为1.5m2.甲乙两人分别按图1、图2把它加工成一个正方形的桌面,请说明哪个正方形的面积较大.【解决问题】(1)记图1、图2中的正方形面积分别为S1,S2,则S1S2.(填“>”、“<”或“=”).【问题变式】若木板形状是锐角三角形A1B1C1.某数学兴趣小组继续思考:按图3、图4、图5三种方式加工,分别记所得的正方形面积为S3、S4、S5,哪一个正方形的面积最大呢?(2)若木板的面积S仍为1.5m2.小明:记图3中的正方形为“沿B1C1边的内接正方形”,图4中的正方形为“沿A1C1边的内接正方形”,依此类推.以图3为例,求“沿B1C1边的内接正方形DEFG”的面积.设EF =x ,B 1C 1=a ,B 1C 1边上的高A 1H =h ,则S =ah .由“相似三角形对应高的比等于相似比”易得x =;同理可得图4、图5中正方形边长,再比较大小即可.小红:若要内接正方形面积最大,则x 最大即可;小莉:同一块木板,面积相同,即S 为定值,本题中S =1.5,因此,只需要a +h 最小即可.我们可以借鉴以前研究函数的经验,令y =a +h =a +=a +(a >0).下面来探索函数y =a +(a >0)的图象和性质.①根据如表,画出函数的图象:(如图6)a… 1 2 3 4 … y … 12 9 6 4 3 3 4 4…②观察图象,发现该函数有最小值,此时a 的取值 ;A .等于2;B .在1~之间;C .在~之间;D .在~2之间.(3)若在△A 1B 1C 1中(如图7),A 1B 1=5,A 1C 1=,高A 1H =4.①结合你的发现,得到S 3、S 4、S 5的大小关系是 (用“<”连接). ②小明不小心打翻了墨水瓶,已画出最大面积的内接正方形的△A 1B 1C 1原图遭到了污损,请用直尺和圆规帮他复原△A 1B 1C 1.(保留作图痕迹,不写作法)参考答案1.解:(1)∵△ABC是等边三角形,∴AC=BC,∠BAC=∠ACB=60°,∵△ECD是等边三角形,∴CE=CD,∠DCE=60°,∴∠ACB=∠DCE=60°,∴∠ACB+∠BCE=∠DCE+∠BCE,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,在△ABF中,∠AFB=180°﹣(∠BAF+∠ABF)=180°﹣(∠BAF+∠CBF+∠ABC)=180°﹣(∠BAC+∠ABC)=180°﹣(60°+60°)=60°,∴∠AFB=60°,故答案为:∠AFB=60°,AE=BD;(2)(1)中结论仍成立,证明:∵△ABC是等边三角形,∴AC=BC,∠BAC=∠ACB=60°,∵△ECD是等边三角形,∴CE=CD,∠DCE=60°,∴∠ACB=∠DCE=60°,∴∠ACB+∠BCE=∠DCE+∠BCE,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,∵∠AFB+∠CBD=∠ACB+∠CAE,∴∠AFB=∠ACB,∵∠ACB=60°,∴∠AFB=60°;(3)在△BCD中,BC+CD>BD,BC﹣CD<BD,∴点D在BC的延长线上时,BD最大,最大为4+3=7,当点D在线段BC上时,BD最小,最小为4﹣3=1,∴1≤BD≤7,即BD长的取值范围为1≤BD≤7.2.解:(1)∵∠BAC=90°,AB=AC,∴△ABC为等腰直角三角形,∠B=45°,∵DE∥AB,∴∠DEC=∠B=45°,∠CDE=∠A=90°,∴△DEC为等腰直角三角形,∴cos∠C==,∵DE∥AB,∴==,故答案为:;(2)由(1)知,△BAC和△CDE均为等腰直角三角形,∴==,又∠BCE=∠ACD=α,∴△BCE∽△ACD,∴==,即=;(3)①如图3﹣1,当点E在线段BA的延长线上时,∵∠BAC=90°,∴∠CAE=90°,∴AE===3,∴BE=BA+AE=4+3=7;由(2)知,=.故AD=.②如图3﹣2,当点E在线段BA上时,AE===3,∴BE=BA﹣AE=4﹣3=1,由(2)知,=.故AD=.综上所述,AD的长为或,故答案为:或.3.解:(1)如图2中,∵AB=10,AD=5,∴AD=DB,∵CA=CB,AD=DB,∴CD⊥AB.(2)如图1中,当AB<AD时,BC=BD.设AB=10k,则AC=BC=6k,∵AD=5,∴10k+6k=5,∴k=,∴BC=6k=.如图1﹣1中,当AB>AD时,BC=BD,同法可得10k﹣6k=5,解得k=,∴BC=6k=,综上所述,BC的值为或.(3)如图3﹣1中,当△ADC≌△BED时,BD=AC=BC,由(2)可知,BC=.如图3﹣2中,当△ADC≌△BCE时,点E与C重合,此时AB=10k=10,∴k=1,BC=6k=6.综上所述,BC的值为或6.(4)如图3中,当CA′∥AB时,∵CA′∥AB,∴∠ADC=∠A′CD,由翻折可知,∠A′CD=∠ACD,∴∠ACD=∠ADC,∴AC=AD=5,∴CA′=CA=5.故答案为5.4.解:(1)结论:BD=AC,BD⊥AC.理由:延长BD交AC于F.∵AE⊥CB,∴∠AEC=∠BED=90°.在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD,∠CAE=∠EBD,∵∠AEC=90°,∴∠ACB+∠CAE=90°,∴∠CBF+∠ACB=90°,∴∠BFC=90°,∴AC⊥BD,故答案为:BD⊥AC,BD=AC.(2)如图2中,不发生变化,设DE与AC交于点O,BD与AC交于点F.理由是:∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(SAS),∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°﹣90°=90°,∴BD⊥AC;(3)①如图3中,结论:BD=AC,理由是:∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(SAS),∴BD=AC,故答案为:BD=AC.②能;设BD与AC交于点F,由①知,△BED≌△AEC,∴∠BDE=∠ACE,∴∠DFC=180°﹣(∠BDE+∠EDC+∠DCF)=180°﹣(∠ACE+∠EDC+∠DCF)=180°﹣(60°+60°)=60°,即BD与AC的夹角中的锐角的度数为60°.5.解:(1)∵B、C两点关于y轴对称,且C(﹣8,0),∴点B(8,0),BO=CO,又∵AO⊥BC,∴AC=AB,∵∠CAB=90°,AC=AB,CO=BO,∴AO=CO=BO=8,∴点A(0,8);(2)如图1,过点P作PM⊥OB于M,∵点P的横坐标为t,∴OM=t,∴MB=8﹣t,∵∠CAB=90°,AC=AB,∴∠ABO=45°,∴∠BPM=∠ABO=45°,∴PM=MB=8﹣t,∴S△POB=×OB×PM=×8×(8﹣t)=32﹣4t;(3)∵△POB的面积为24,∴32﹣4t=24,∴t=2,∴点P(2,6),如图2,当点Q为直角顶点时,过点Q作HG⊥y轴,过点D作DG⊥HG于点G,∵PQ=OP,点P(2,6),∴点Q(4,12),∵∠OQD=90°=∠OHQ=∠QGD,∴∠OQH+∠DQG=90°=∠OQH+∠HOQ,∴∠HOQ=∠GQD,又∵OQ=QD,∴△OHQ≌△QGD(AAS),∴OH=QG=12,HQ=GD=4,∴HG=16,∴点D(16,8);当点D为直角顶点时,过点Q作HG⊥y轴,过点D作DG⊥HG于点G,过点D作DN ⊥y轴于N,同理可求△QDG≌△ODN,∴ON=QG,DN=DG,∵DN=QG+HQ=4+QG,DG=HN=12﹣ON,∴ON=QG=4,DN=DG=8,∴点D(8,4),综上所述:点D(16,8)或(8,4).6.解:(Ⅰ)如图1,过点C作CH⊥AB于H,∵∠ACB=90°,AC=BC=6,CH⊥AB,∴AB=CD=6,CH=BH=AB=3,∠CAB=∠CBA=45°,∴DH===3,∴BD=DH﹣BH=3﹣3;(Ⅱ)①如图2,过点E作EF⊥CD'于F,∵将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A′CD′,∴CD=CD'=6,∠DCD'=30°=∠CDA=∠CD'A',∴CE=D'E,又∵EF⊥CD',∴CF=D'F=3,EF=,CE=2EF=2,∴DE=DC﹣CE=6﹣2;②如图2﹣1,∵∠ABC=45°,∠ADC=30°,∴∠BCD=15°,∴∠ACD=105°,∵将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A′CD′,∴AC=A'C,CD=CD',∠ACA'=∠DCD'=α,∴CB=CA',又∵A′D=BD′,∴△A'CD≌△BCD'(SSS),∴∠A'CD=∠BCD',∴105°﹣α=15°+α,∴α=45°;如图2﹣2,同理可证:△A'CD≌△BCD',∴∠A'CD=∠BCD',∴α﹣105°=360°﹣α﹣15°,∴α=225°,综上所述:满足条件的α的度数为45°或225°;(Ⅲ)如图3,当A'D'⊥AC时,N是AC与A'D'的交点时,MN的长度最小,∵∠A'=45°,A'D'⊥AC,∴∠A'=∠NCA'=45°,∴CN=A'N=3,∵点M为AC的中点,∴CM=AC=3,∴MN的最小值=NC﹣CM=3﹣3;如图4,当点A,点C,点D'共线,且点N与点D'重合时,MN有最大值,此时MN=CM+CN=6+3,∴线段MN的取值范围是3﹣3≤MN≤6+3.7.解:(Ⅰ)∵点A(0,+1),点B(+1,0),点C(0,1),点D(1,0),∴OA=+1,OB=+1,OC=1,OD=1,∴AC=OA﹣OC=+1﹣1=,BD=+1﹣1=,∴AC=BD;(Ⅱ)由题意知,OA=OB,OC=OD,∠AOB=∠COD=90°,∴∠AOC=∠AOB﹣∠COB=90°﹣∠COB,∠BOD=∠COD﹣∠COB=90°﹣∠COB,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,如图1(注:点C在x轴上,为了不要出现误解,点C没画在x轴上),延长AC交BD 于D,连接BC,在Rt△AOB中,OA=OB,∴∠OAB=∠OBA=45°,∴∠CAB+∠ABD=∠OAB﹣∠OAC+∠ABO+∠BOD=∠OAB+∠OBA=90°,∴AC⊥BD,∵AC垂直平分BD,∴CD=BC,设点C的坐标为(m,n),∴m2+n2=1①,由旋转知,CD==,∵B(+1,0),[m﹣(+1)]2+n2=2②,联立①②解得,m=1,n=0,∴点C在x轴上,∴旋转角为∠AOC=90°,故答案为:90°;(Ⅲ)如图2,∵OA=OB=+1,∴AB=OA=2+,过点O作OH⊥AB于H,∴S△AOB=OA•OB=AB•OH,∴OH====,过点D作DG⊥AB于G,S△ABD=AB•DG=(2+)DG,要使△ABD的面积最大,则DG最大,由旋转知,点D是以O为圆心,1为半径的圆上,∴点D在HO的延长线上时,DG最大,即DG的最大值为D'H=OD'+OH=1+=,∴S△ABD最大=AB•D'H=(2+)×=,在Rt△AOB中,OA=OB,OH⊥AB,∴∠BOH=45°,∴旋转角∠BOD'=180°﹣45°=135°.8.解:(1)AC=AE+AD.证明:连接CE,∵线段DC绕点D顺时针旋转α交直线AB于点E,α=60°,∵AB=AC,∠BAC=60°,∴CB=CA=AB,∠ACB=60°,∵AD∥BC,∴∠DAF=∠ACB=60°,∵∠FDC=∠EAF=60°,∠AFE=∠DFC,∴△AFE∽△DFC,∴,∴,∵∠AFD=∠EFC,∴△AFD∽△EFC,∴∠DAF=∠FEC=60°,∴△DEC是等边三角形,∴CD=CE,∠ECD=60°,∴∠BCE=∠ACD,∴△BCE≌△ACD(SAS),∴BE=AD,∴AB=AE+BE=AE+AD,∴AC=AE+AD;(2)不成立,AD=AC+AE.理由如下:在AC的延长线上取点F,使AF=AD,连接DF,当α=60°时,∠BAC=∠EDC=60°,∵AB=AC,∴△ABC是等边三角形,∴AB=AC=BC∠BCA=60°,∵l∥BC,∴∠DAC=∠BCA=60°,∠EAD=∠ABC=60°,∵AF=AD,∴∠ADF=∠AFD=60°,AD=FD=AF,∴∠EDC=∠ADF=60°,∴∠EDC﹣∠ADC=∠ADF﹣∠ADC,即∠EDA=∠CDF,∵AD=FD,∠EAD=∠AFD=60°,∴△EAD≌△CFD(ASA),∴AE=CF,∴AD=AF=AC+CF=AC+AE;(3)AE的长为或.当点E在线段AB上,过点D作直线l的垂线,交AC于点F,如图3所示.∵△ABC中,∠BAC=90°,AC=AB,∴∠ACB=∠B=45°.∵直线l∥BC,∴∠DAF=∠ACB=45°.∵FD⊥直线l,∴∠DAF=∠DF A=45°.∴AD=FD.∵∠EDC=∠ADF=90°,∴∠ADE=∠FDC.由(1)可知DC=DE,∴△ADE≌△FDC(SAS),∴AE=CF.∵AD=,∴AF=2,∵BC=6,∴AC=AB=3,∴AE=AC﹣AF=3﹣2.当点E在线段AB的延长线上时,如图4所示.过点D作直线l的垂线,交AB于点M,同理可证得△ADC≌△MDE(SAS),∴AC=EM=3,∵AD=,∴AM=2,∴EM+AM=3+2.综合以上可得AE的长为3+2或3﹣2.9.解:(1)当x=0cm时,S=4×4÷2=8cm2;当x=12cm时,S=4×4÷2=8cm2.故答案为:8cm2;8cm2.(2)①当0<x<4时,∵△CAB为等腰直角三角形,∴∠CAB=45°,∴△ADG和△AEF都是等腰直角三角形,∴AD=DG=x,AE=EF=x+4,∴梯形GDEF的面积=×(GD+EF)×DE=×(x+x+4)×4=4x+8.②如图所示:过点C作CM⊥AB于点M.当4<x<8时,梯形GDMC的面积=(GD+CM)×DM=(x+8)(8﹣x)=﹣x2+32,梯形CMEF的面积=(EF+CM)×ME=[16﹣(x+4)+8][(x+4)﹣8]=(20﹣x)(x﹣4)=﹣x2+12x﹣40,S=梯形GDMC的面积+梯形CMEF的面积=(﹣x2+32)+(﹣x2+12x﹣40)=﹣x2+12x ﹣8.综合以上可得,S=.(3)当0<x<4时s最大值小于24,当x=4时,S=24cm2,所以当S=28cm2时,x必然大于4,即﹣x2+12x﹣8=28,解得x1=x2=6,当x=6cm时,阴影部分面积为28cm2.当8<≤12时,由对称性可知s的最大值也是小于24,不合题意舍去.∴当x=6cm时,阴影部分面积为28cm2.10.解:(1)∵△ABC和△CDE都是等边三角形,∴∠B=∠DCE=60°,AB=BC,CE=CD,∴CE∥AB,∵BC≠CD,∴CE≠AB,∴四边形ABCE是梯形,∵点F,G分别是BC,AE的中点,∴FG是梯形ABCE的中位线,∴FG∥AB,∴∠GFC=60°,同理:∠GHB=60°,∴∠FGH=180°﹣∠GFC﹣∠GHB=60°=∠GFC=∠GHB,∴△FGH是等边三角形,故答案为:等边三角形;(2)成立,理由如下:如图1,取AC的中点P,连接PF,PG,∵△ABC和△CDE都是等边三角形,∴AB=BC,CE=CD,∠BAC=∠ACB=∠ECD=∠B=60°,又F,G,H分别是BC,AE,CD的中点,∴FP=AB,FC=BC,CH=CD,PG=CE,PG∥CE,PF∥AB,∴FP=FC,PG=CH,∠GPC+∠PCE=180°,∠FPC=∠BAC=60°,∠PFC=∠B=60°,∴∠FPG=∠FPC+∠GPC=60°+∠GPC,∠GPC=180°﹣∠PCE,∴∠FCH=360°﹣∠ACB﹣∠ECD﹣∠PCE=360°﹣60°﹣60°﹣(180°﹣∠GPC)=60°+∠GPC,∴∠FPG=∠FCH,∴△FPG≌△FCH(SAS),∴FG=FH,∠PFG=∠CFH,∴∠GFH=∠GFC+∠CFH=∠GFC+∠PFG=∠PFC=60°,∴△FGH为等边三角形;(3)①当点D在AE上时,如图2,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC=2,∵△CDE是等边三角形,∴∠CED=∠CDE=60°,CE=CD=DE=4,过点C作CM⊥AE于M,∴DM=EM=DE=2,在Rt△CME中,根据勾股定理得,CM===2,在Rt△AMC中,根据勾股定理得,AM===4,∴AD=AM﹣DM=4﹣2=2,∵∠ACB=∠DCE=60°,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,∴∠ACD=∠BCE,连接BE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD=2,∠ADC=∠BEC,∵∠ADC=180°﹣∠CDE=120°,∴∠BEC=120°,∴∠BEA=∠BEC﹣∠CED=60°,过点B作BN⊥AE于N,∴∠BNE=90°,在Rt△BNE中,∠EBN=90°﹣∠BEA=30°,∴EN=BE=1,∴BN=EN=,DN=DE﹣EN=3,连接BD,根据勾股定理得,BD===2,∵点H是CD的中点,点F是BC的中点,∴FH是△BCD的中位线,∴FH=BD=,由(2)知,△FGH是等边三角形,∴△FGH的周长为3FH=3,②当点D在AE的延长线上时,如图3,同①的方法得,FH=,∴△FGH的周长为3FH=3,即满足条件的△FGH的周长为3或3.11.(1)证明:如图1中,过点P作PT∥AB.∵AB∥CD,AB∥PT,∴AB∥PT∥CD,∴∠1=∠APT,∠2=∠CPT,∴∠APC=∠APT+∠CPT=∠1+∠2.(2)证明:如图2中,连接PP′.∵∠3=∠MPP′+∠MP′P,∠4=∠NPP′+∠NP′P,∠APC=∠MP′N,∴∠3+∠4=2∠APC,∵∠APC=∠1+∠2,∴∠3+∠4=2(∠1+∠2).(3)结论不成立.结论是:∠P=∠2﹣∠1,∠4﹣∠3=2(∠2﹣∠1).理由:如图3中,设PC交AB于E,AP交NP′于F.∵AB∥CD,∴∠PEB=∠2,∵∠PEB=∠1+∠P,∴∠2=∠P+∠1,∴∠P=∠2﹣∠1.∵∠4=∠P+∠PFN,∠PFN=∠3+∠P′,∠P=∠P′,∴∠4=∠P+∠3+∠P,∴∠4﹣∠3=2∠P=2(∠2﹣∠1),∴∠4﹣∠3=2(∠2﹣∠1).12.解:(1)∵A(0,a),B(a,0)(a>0),∴OA=a,OB=a,∵△AOB的面积为2,∴S△AOB=×a×a=2,∴a=2(负值舍去),∴A(0,2),B(2,0),∵C为线段AB的中点,∴C(1,1),∴OD=BD=CD=1,∴S△CDB=×1×1=.故答案为:.(2)连AC,过点D作DM⊥BC于M,∵△AOB是等腰直角三角形,∴AO⊥BO,AO=BO,∠B=∠OAB=45°,又CO=EO,∴AO是CE的垂直平分线,∴AE=AC,不妨设AE、CD交于F,AO、CD交于G,∴∠CGA=∠OAE+∠AFC=∠OCD+∠COA,∵∠AFC=∠COA=90°,∴∠OAE=∠OCD=∠OAC,又∵∠CAD=∠CAO+∠OAB=∠OCD+∠B=∠CDA,∴CD=CA=EA,∴△AOE≌△CMD(AAS),∴OE=DM,∴===3,∴=2;(3)=2,理由如下:作点C关于y轴的对称点N,连接BN,作DM∥BC交y轴于M,∵OB=OC=ON,∠BON=90°,∴△BON等腰直角三角形,∴∠BNO=∠BMD=45°,∴∠MBD=∠OBE+∠DBE=∠OBE+∠BOE=∠BEN,又∵BD=BE,∴△BMD≌△ENB(AAS),∴EN=BM,BN=DM=BC,又∵∠BFC=∠DFM,∠BCF=∠FDM,∴△BCF≌△MDF(AAS),∴BF=MF,∴CO﹣EO=NO﹣EO=NE=BM=2BF,即=2.13.解:(1)∵在△ABC中,AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵∠APQ是△ABC的一个外角,∴∠APQ=∠B+∠BAP,∵∠BAP=15°,∴∠APQ=60°,∵AP=AQ,∴∠APQ=∠AQB=60°.(2)①图形如图2所示.②解:结论:PC2+BP2=2AP2.理由:连接MC.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵AP=AQ,∴∠APQ=∠AQP,∴∠BAP=∠CAQ,∴△ABP≌△ACQ(SAS),∴BP=CQ,∵点Q关于直线AC的对称点为M,∴AQ=AM,CQ=CM,∠CAM=∠CAQ,∠ACM=∠ACQ=45°,∴AP=AM,∠B=∠ACM=45°,∠BAP=∠CAM,BP=CM,∴∠BAC=∠P AM=90°,在Rt△APM中,AP=AM,∠P AM=90°,∴PM=,∵∠ACQ=∠ACM=45°,∴∠PCM=90°,在Rt△PCM中,∠PCM=90°,∴PC2+CM2=PM2,∴PC2+BP2=2AP2.14.【问题背景】证明:如图1,∵∠BAC=∠DAE=90°,∴∠DAB=∠EAC,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).【尝试应用】证明:如图2,过点D作DK⊥DC交FB的延长线于K.∵DK⊥CD,BF⊥AB,∴∠BDK=∠ABK=90°,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBK=∠K=45°,∴DK=DB,∵△ABD≌△ACE,∴∠ABD=∠ACE=135°,DB=EC=DK,∴∠ECG=45°,∵BF⊥AB,CA⊥AB,∴AG∥BF,∴∠G=∠DFK,在△ECG和△DKF中,,∴△ECG≌△DKF(AAS),∴DF=EG,∵DE=AE,∴DF+EF=AE,∴EG+EF=AE,即FG=AE.【拓展创新】解:如图3中,过点A作AE⊥AD交BD于E,连接CE..∵∠ADB=45°,∠DAE=90°,∴△ADE与△ABC都是等腰直角三角形,同法可证△ABD≌△ACE,∴CE=BD=2,∵∠AEC=∠ADB=45°,∴∠CED=∠CEB=90°,∴S△BDC=•BD•CE=×2×2=6.故答案为:6.15.解:(1)∵2a2+4ab+4b2+2a+1=0,∴(a+2b)2+(a+1)2=0,∵(a+2b)2≥0 (a+1)2≥0,∴a+2b=0,a+1=0,∴a=﹣1,b=,∴A(﹣1,0)B(0,).(2)①证明:如图1中,∵a+b=0,∴a=﹣b,∴OA=OB,又∵∠AOB=90°,∴∠BAO=∠ABO=45°,∵D与P关于y轴对称,∴BD=BP,∴∠BDP=∠BPD,设∠BDP=∠BPD=α,则∠PBF=∠BAP+∠BP A=45°+α,∵PE⊥DB,∴∠BEF=90°,∴∠F=90o﹣∠EBF,又∠EBF=∠ABD=∠BAO﹣∠BDP=45°﹣α,∴∠F=45o+α,∴∠PBF=∠F,∴PB=PF.②解:如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H.可得等腰直角△BQF,∵∠BOQ=∠BQF=∠FHQ=90°,∴∠BQO+∠FQH=90°,∠FQH+∠QFH=90°,∴∠BQO=∠QFH,∵QB=QF,∴△FQH≌△QBO(AAS),∴HQ=OB=OA,∴HO=AQ=PC,∴PH=OC=OB=QH,∴FQ=FP,又∠BFQ=45°∴∠APB=22.5°.16.解:(1)在Rt△ABC中,∠C=90°,∠B=30°,BC=6,∴AC=2,∠A=60°,∵△DEF是等边三角形,∴∠DCE=60°,∴∠ACD=30°,∴∠ADC=90°,∴CD=AC=3,∴△DEF的周长=9;(2)解:结论:CF=DG.理由:∵BC=6,EF=DF=DE=3,∴CF+BE=BC﹣EF=6﹣3=3,∵△DEF是等边三角形,∴∠DEF=60°,∵∠DEF=∠B+∠EGB,∴∠B=∠EGB=∠DGE=30°,∴EG=BE,∵EG+DG=CF+BE=3,∴CF=DG;(3)∵S△DEF=×32=,S△DGH=•GH•DH=•x•x=x2,y=S△DFE﹣S△DHG=﹣x2(0≤x≤3).17.解:(1)在Rt△ABC中,AC=2,BC=2,根据勾股定理得,AB===4,∴=,∵BQ=BP,∴=,∴,∵∠QBP=∠CBA,∴△BPQ∽△BAC,∴∠BQP=∠ACB=90°,∴PQ⊥AB;(2)∵点D是AC的中点,∴AD=CD=AC=1,由(1)知,PQ⊥AB,∴∠AQP=90°,∴∠PQD<90°,∵△PQD是直角三角形,∴①当∠DPQ=90°时,如图1,在Rt△ABC中,AC=2,AB=4,∴sin∠ABC==,∴∠ABC=30°,∴∠QPB=90°﹣∠ABC=60°,∴∠DPC=90°﹣∠BPQ=30°,∴CP===,∴BP=BC﹣CP=,②当∠PDQ=90°时,∴∠ADQ+∠PDC=90°,如图2,过Q作QE⊥AC于E,∴∠DEQ=90°=∠ACB,∴∠ADQ+∠DQE=90°,∴∠DQE=∠PDC,∴△EQD∽△CDP,∴,∴,设BP=t,则CP=BC﹣BP=2﹣t,在Rt△BQP中,BQ=BP cos30°=t,∴AQ=AB﹣BQ=4﹣t,在Rt△AEQ中,QE=AQ cos30°=(4﹣t)•=2﹣t,AE=AQ=2﹣t,∴DE=AD﹣AE=t﹣1,∴,∴t=或t=(大于2,舍去)∴BP=;即BP=或;(3);理由:如图3,①当点D'恰好落在边BC上时,由折叠知,PD'=PD,PQ⊥DD',由(1)知,PQ⊥AB,∴DD'∥AB,∴∠DD'C=∠ABC=30°,∴CD'=CD=,设BP=m,则CP=BC﹣BP=2﹣m,∴DP=D'P=CD'﹣CP=m﹣,在Rt△CDP中,根据勾股定理得,DP2=CP2+CD2,∴(m﹣)2=(2﹣m)2+1,∴m=,②当点D'落在D时,即PQ过点D,在Rt△CDP'中,∠P'=90°﹣∠DD'P'=30°,∴CP'===,∴BP'=BC+CP'=,综上:.18.(1)解:当MN最长时,BN===;当BN最长时,BN===,综合以上可得BN的长为或;(2)证明:如图,把△CBN绕点C逆时针旋转90°,得到△CAN',连接MN',∴△AN'C≌△BNC,∴CN'=CN,∠ACN'=∠BCN,∠CBN=∠CAN',∵∠MCN=45°,∴∠N'CA+∠ACM=∠ACM+∠BCN=45°,∴∠MCN'=∠BCM,∴△MN'C≌△MNC(SAS),∴MN'=MN,∵AC=BC,∠ACB=90°,∴∠B=∠CAM=45°,∴∠CAN'=45°,∴∠MAN'=∠CAN'+∠CAM=45°+45°=90°,在Rt△MN'A中,AN'2+AM2=N'M2,∴BN2+AM2=MN2,∴点M,N是线段AB的勾股分割点.19.问题背景解:∵△ABD,△AEC都是等边三角形,∴∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,∴∠BAD+∠BAC=∠CAE+∠BAC,∴∠DAC=∠BAE,∴△ACD≌△AEB(SAS),∴△ACD可以由△AEB绕点A顺时针旋转60°得到,即旋转中心是点A,旋转方向是顺时针,旋转角是60°;尝试应用∵△ACD和△ABE都是等边三角形,∴AC=AD,AB=AE,∠CAD=∠BAE=60°,∴∠CAB=∠DAE,∴△ADE≌△ACB(SAS),∴∠ADE=∠ACB=90°,DE=CB,∵∠ADE=90°,∴∠ADF=90°,∵∠ADC=∠ACD=60°,∴∠DCF=∠CDF=30°,∴CF=DF,∵BD⊥BC,∴∠BDF=30°,∴BF=DF,设BF=x,则CF=DF=2x,DE=3x,∴;拓展创新∵∠ACB=90°,∴点C在以AB为直径的圆上运动,取AB的中点D,连接CD,∴CD=AB=1,如图,过点A作AE⊥AB,且使AE=AD,连接PE,BE,∵将线段AC绕点A顺时针旋转90°得到线段AP,∴∠P AC=90°,P A=AC,∵∠EAD=90°,∴∠P AE=∠CAD,∴△CAD≌△P AE(SAS),∴PE=CD=1,∵AB=2,AE=AD=1,∴BE===,∴BP≤BE+PE=+1,当且仅当P、E、B三点共线时取等号,∴BP的最大值为+1.20.解:(1)由AC长为1.5m,△ABC的面积为1.5m2,可得BC=2m,如图①,设加工桌面的边长为xcm,∵DE∥CB,∴△ADE∽△ACB,∴=,即=,解得:x=;如图②,设加工桌面的边长为ym,过点C作CM⊥AB,分别交DE、AB于点N、M,∵AC=1.5m,BC=2m,∴AB===2.5(m),∵△ABC的面积为1.5m2,∴CM=m,∵DE∥AB,∴△CDE∽△CAB,∴=,即=,解得:y=,∴x>y,即S1>S2,故答案为:>.(2)①函数图象如图6所示:②观察图象,发现该函数有最小值,此时a的取值~2之间.故选D.(3)①由(2)可知,S5<S4<S3.故答案为:S5<S4<S3.②如图7,△A1B1C1即为所求作.。
中考数学总复习《图形变换综合压轴题》专项提升练习题(附答案)
中考数学总复习《图形变换综合压轴题》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________1.如图1,在Rt△ABC中∠C=90°,AC=BC=5,等腰直角三角形BDE的顶点点D是边BC上的一点,且α(0°≤α<360°).的值为________,直线AE,CD相交形成的较小角的度数为________;(1)【问题发现】当α=0°时,AECD(2)【拓展探究】试判断:在旋转过程中,(1)中的两个结论有无变化?请仅就图2的情况给出证明;(3)【问题解决】当△BDE旋转至A,D,E三点在同一条直线上时,请直接写出△ACD的面积.2.已知等边三角形ABC,过A点作AC的垂线l,点P为l上一动点(不与点A重合),连接CP,把线段CP绕点C逆时针方向旋转60°得到CQ,连QB.(1)如图1,判断线段AP与BQ的数量关系,并说明理由;(2)如图2,当点P、B在AC同侧且AP=AC时,求证:直线PB垂直平分线段CQ;(3)如图3,若等边三角形ABC的边长为4,点P、B分别位于直线AC异侧,且△APQ的面积等于√3,请直接4写出线段AP的长度.3.在中Rt△ABC中∠ABC=90°,AB=BC点E在射线CB上运动.连接AE,将线段AE绕点E顺时针旋转90°得到EF,连接CF.(1)如图1,点E在点B的左侧运动;①当BE=2,BC=2√3时,则∠EAB=_________°;②猜想线段CA,CF与CE之间的数量关系为_________.(2)如图2,点E在线段CB上运动时,第(1)间中线段CA,CF与CE之间的数量关系是否仍然成立如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.(3)点E在射线CB上运动BC=√3,设BE=x,以A,E,C,F为顶点的四边形面积为y,请直接写出y与x之间的函数关系式(不用写出x的取值范围).4.如图1,在矩形ABCD中AB=6,AD=8把AB绕点B顺时针旋转α(0<α<180°)得到,连接,过B点作BE⊥AA′于E点,交矩形ABCD边于F点.(1)求DA′的最小值;(2)若A点所经过的路径长为2π,求点A′到直线AD的距离;(3)如图2,若CF=4,求tan∠ECB的值;(4)当∠A′CB的度数取最大值时,直接写出CF的长.5.【问题探究】(1)如图1锐角△ABC中分别以AB AC为边向外作等腰直角△ABE和等腰直角△ACD 使AE=AB AD=AC∠BAE=∠CAD=90°连接BD CE试猜想BD与CE的大小关系不需要证明.【深入探究】(2)如图2四边形ABCD中AB=5BC=2∠ABC=∠ACD=∠ADC=45°求BD2的值;甲同学受到第一问的启发构造了如图所示的一个和△ABD全等的三角形将BD进行转化再计算请你准确的叙述辅助线的作法再计算;【变式思考】(3)如图3四边形ABCD中AB=BC∠ABC=60°∠ADC=30°AD=6BD =10则CD=.6.如图1所示在菱形ABCD和菱形AEFG中点A B E在同一条直线上P是线段CF的中点连接PD PG.(1)若∠BAD=∠AEF=120°请直接写出∠DPG的度数及PG的值______.PD(2)若∠BAD=∠AEF=120°将菱形ABCD绕点A顺时针旋转使菱形ABCD的对角线AC恰好与菱形AEFG的边AE在同一直线上如图2 此时(1)中的两个结论是否发生改变?写出你的猜想并加以说明.(3)若∠BAD=∠AEF=180°−2α(0°<α<90°)将菱形ABCD绕点A顺时针旋转到图3的位置求出PGPD 的值.7.如图1 在平面直角坐标系中抛物线y=ax2+bx+4与x轴交于A(﹣2 0)B两点与y轴交于点C OB=OC.连接BC点D是BC的中点.(1)求抛物线的表达式;(2)点M在x轴上连接MD将△BDM沿DM翻折得到△DMG当点G落在AC上时求点G的坐标;(3)如图2 E在第二象限的抛物线上连接DE交y轴于点N将线段DE绕点D逆时针旋转45°交ABOM直接写出点E的坐标.与点M若ON=438.[证明体验](1)如图1 在△ABC和△BDE中点A B D在同一直线上△A=△CBE=△D=90° 求证:△ABC△△DEB.(2)如图2 图3 AD=20 点B是线段AD上的点AC△AD AC=4 连结BC M为BC中点将线段BM绕点B顺时针旋转90°至BE连结DE.ME时求AB的长.[思考探究](1)如图2 当DE=√22[拓展延伸](2)如图3 点G过CA延长线上一点且AG=8 连结GE△G=△D求ED的长.9.新定义:如图1(图2图3)在△ABC中把AB边绕点A顺时针旋转把AC边绕点A逆时针旋转得到△AB′C′若∠BAC+∠BA′C′=180°我们称△AB′C′是△ABC的“旋补三角形” △AB′C′的中线AD叫做△ABC的“旋补中线” 点A叫做“旋补中心”(1)【特例感知】①若△ABC是等边三角形(如图2)BC=4则AD=________;②若∠BAC=90°(如图3)BC=6AD=_______;(2)【猜想论证】在图1中当△ABC是任意三角形时猜想AD与BC的数量关系并证明你的猜想;(提示:过点B′作B′E∥AC′且B′E=AC′连接C′E则四边形AB′EC是平行四边形.)(3)【拓展应用】如图4点A B C D都在半径为5的圆P上且AB与CD不平行AD=6△APD是△BPC的“旋补三角形” 点P是“旋补中心” 求BC的长.10.如图① 抛物线y=﹣x2+bx+c与x轴交于点A(x10) 点C(x20) 且x1x2满足x1+x2=2x1•x2=﹣3 与y轴交于点B E(m0)是x轴上一动点过点E作EP△x轴于点E交抛物线于点P.(1)求抛物线解析式.(2)如图② 直线EP交直线AB于点D连接PB.①点E在线段OA上运动若△PBD是等腰三角形时求点E的坐标;②点E在x轴的正半轴上运动若△PBD+△CBO=45° 请求出m的值.(3)如图③ 点Q是直线EP上的一动点连接CQ将线段CQ绕点Q逆时针旋转90° 得到线段QF 当m=1时请直接写出PF的最小值.11.如图△ABC与△DEF都是等腰直角三角形AC=BC DE=DF.边AB EF的中点重合于点O连接BF CD.(1)如图① 当FE△AB时易证BF=CD(不需证明);(2)当△DEF绕点O旋转到如图②位置时猜想BF与CD之间的数量关系并证明;(3)当△ABC与△DEF均为等边三角形时其他条件不变如图③ 猜想BF与CD之间的数量关系直接写出你的猜想不需证明.12.已知Rt△ABC中AC=BC△C=90° D为AB边的中点△EDF=90° △EDF绕D点旋转它的两边分别交AC CB(或它们的延长线)于E F.(1)如图1 当△EDF绕D点旋转到DE△AC于E时易证S△DEF+S△CEF与S△ABC的数量关系为__________;(2)如图2 当△EDF绕D点旋转到DE和AC不垂直时上述结论是否成立?若成立请给予证明;(3)如图3 这种情况下请猜想S△DEF S△CEF S△ABC的数量关系不需证明.13.如图① 将一个直角三角形纸片ABC放置在平面直角坐标系中点A(−2,0)点B(6,0)点C在第一象限∠ACB=90°∠CAB=30°.(1)求点C的坐标;(2)以点B为中心顺时针旋转三角形ABC得到三角形BDE点A C的对应点分别为D E.①如图② 当DE∥AB时BD与y轴交于点F求点F的坐标;②如图③ 在(1)的条件下点F不变继续旋转三角形BDE当点D落在射线BC上时求证四边形FDEB为矩形;(3)点F不变记P为线段FD的中点Q为线段ED的中点求PQ的取值范围(直接写出结果即可).14.如图在Rt△ABC中∠ACB=90∘∠A=30∘点O为AB中点点P为直线BC上的动点(不与点B C重合)连接OC OP将线段OP绕点P逆时针旋转60∘得到线段P Q连接BQ.(1)如图1 当点P在线段BC上时请直接写出线段BQ与CP的数量关系;(2)如图2 当点P在CB长线上时(1)中结论是否成立?若成立请加以证明;若不成立请说明理由;(3)如图3 当点P在BC延长线上时若∠BPO=45∘AC=√6请直接写出BQ的长.15.如图在RtΔABC中∠BAC=90°AB=AC点P是AB边上一动点作PD⊥BC于点D连接AD把AD绕点A逆时针旋转90°得到AE连接CE DE PE.(1)求证:四边形PDCE是矩形;(2)如图2所示当点P运动BA的延长线上时DE与AC交于点F其他条件不变已知BD=2CD的值;求APAF(3)点P在AB边上运动的过程中线段AD上存在一点Q使QA+QB+QC的值最小当QA+QB+QC的值取得最小值时若AQ的长为2 求PD的长.16.感知:如图① △ABC和△ADE都是等腰直角三角形∠BAC=∠DAE=90°点B在线段AD上点C在线段AE上我们很容易得到BD=CE不需要证明;(1)探究:如图② 将△ADE绕点A逆时针旋转α(0<α<90°)连结BD和CE此时BD=CE是否依然成立?若成立写出证明过程;若不成立说明理由;(2)应用:如图③ 当△ADE绕点A逆时针旋转使得点D落在BC的延长线上连接CE;①探究线段BC CD CE之间的数量关系.②若AB=AC=√2CD=1求线段DE的长.17.如图抛物线C:y=ax2+6ax+9a−8与x轴相交于A B两点(点A在点B的左侧)已知点B的横坐标是2 抛物线C的顶点为D.(1)求a的值及顶点D的坐标;(2)点P是x轴正半轴上一点将抛物线C绕点P旋转180°后得到的抛物线C1记抛物线C1的顶点为E抛物线C1与x轴的交点为F G(点F在点G的右侧).当点P与点B重合时(如图1)求抛物线C1的表达式;(3)如图2 在(2)的条件下从A B D中任取一点E F G中任取两点若以取出的三点为顶点能构成直角三角形我们就称抛物线C1为抛物线C的“勾股伴随同类函数”.当抛物线C1是抛物线C的勾股伴随同类函数时求点P的坐标.18.如图点B坐标为(5 2)过点B作BA△y轴于点A作BC△x轴于点C点D在第一象限内.(1)如图1 反比例函数y1=mx (x>0)的图象经过点B点D且直线OD的表达式为y=52x求线段OD的长;(2)将线段OD从(1)中位置绕点O逆时针旋转得到OD′(如图2)反比例函数y2=nx(x>0)的图象过点D' 交AB于点E交BC于点F连接OE OF EF.①若AE+CF=EF求n的值;②若△OEF=90°时设D′的坐标为(a b)求(a+b)2的值.19.已知正方形ABCD和等腰直角三角形BEF BE=EF△BEF=90° 按图1放置使点F在BC上取DF的中点G连接EG CG.(1)探索EG CG的数量关系和位置关系并证明;(2)将图(1)中△BEF绕点B顺时针旋转45° 再连接DF取DF中点G(见图2)(1)中的结论是否仍然成立?证明你的结论;(3)将图(1)中△BEF绕点B顺时针转动任意角度(旋转角在0°到90°之间)再连接DF取DF中点G(见图3)(1)中的结论是否仍然成立?证明你的结论.20.如图1 已知正方形BEFG点C在BE的延长线上点A在GB的延长线上且AB=BC过点C作AB的平行线过点A作BC的平行线两条平行线相交于点D.(1)证明:四边形ABCD是正方形;(2)当正方形BEFG绕点B顺时针(或逆时针)旋转一定角度得到图2 使得点G在射线DB上连接BD和DF点Q是线段DF的中点连接CQ和QE猜想线段CQ和线段QE的关系并说明理由;(3)将正方形BEFG绕点B旋转一周时当△CGB等于45°时直线AE交CG于点H探究线段CH EG AH的长度关系.参考答案1.(1)解:Rt△ABC中∵∠C=90°,AC=BC=5∴AB=√AC2+BC2=√52+52=5√2∵ED⊥BC BD=ED=√2∴EB=√DB2+DE2=2,∠B=45°∴AE=AB-EB=5√2−2,CD=BC−DB=5−√2∴AECD =5√2−25−√2=√2故答案为:√2,45°;(2)解:(1)中的两个结论不发生变化理由如下:如图延长AE CD交于F由旋转可得∠CBD=∠ABE∵AB=5√2,BC=5,BE=2,DB=√2∴ABBC =5√25=√2EBDB=2√2=√2∴ABBC=EBDB∴ΔAEB∽ΔCDB∴AECD =ABCB=√2∠EAB=∠DCB∵∠BAC+∠ACB=90°+45°=135°∴∠BAC+∠ACD+∠DCB=∠BAC+∠ACD+∠EAB=135°即∠FAC+∠ACD=135°∴∠F=180°−(∠FAC+∠ACD)=45°∴(1)中的两个结论不发生变化.(3)解:分情况讨论:如图当点D在线段AE上时过点C作CF⊥AD于点F在RtΔABD中AB=5√2,BD=√2∴AD=√AB2−DB2=√(5√2)2−(√2)2=4√3由(2)知ΔEAB∽ΔDCB∠ADC=45°AE=AD+DE=4√3+√2∴CDAE=CBAB∴CD4√3+√2=55√2∴CD=2√6+1在Rt△CDF中CF=CD·sin∠ADC=(2√6+1)·sin45°=2√3+√22∴S△ADC=12AD·CF=12×4√3×(2√3+√22)=12+√6;当点E在线段AD上时如图过点C作CF⊥AD于点F在RtΔADB中AB=5√2,DB=√2∴AD=√AB2−DB2=√(5√2)2−(√2)2=4√3∴AE=AD−DE=4√3−2由(2)知△CDB∽△AEB∴CDAE=BCAB∴CD4√3−2=55√2∴CD=2√6−1由(2)知∠ADC=45°∴CF=CD·sin45°=(2√6−1)×√22=2√3−√22∴SΔACD=12AD·CF=12×4√3×(2√3−√22)=12−√6综上△ADC的面积为12+√6或12−√6.2.(1)解:AP=BQ.理由如下:在等边△ABC中AC=BC△ACB=60°由旋转可得CP=CQ△PCQ=60°△△ACB=△PCQ△△ACB﹣△PCB=△PCQ﹣△PCB即△ACP=△BCQ△△ACP△△BCQ(SAS)△AP=BQ;(2)证明:在等边△ABC中AC=BC△ACB=60°由旋转可得CP=CQ△PCQ=60°△△ACB=△PCQ△△ACB﹣△PCB=△PCQ﹣△PCB即△ACP=△BCQ△△ACP△△BCQ(SAS)△AP=BQ△CBQ=△CAP=90°;△BQ=AP=AC=BC.△AP=AC△CAP=90°△△BAP=30° △ABP=△APB=75°△△CBP=△ABC+△ABP=135°△△CBD=45°△△QBD=45°△△CBD=△QBD即BD平分△CBQ△BD△CQ且点D是CQ的中点即直线PB垂直平分线段CQ;(3)解:AP 的长为:√3或√33或2√3+√212. 理由如下:①当点Q 在直线l 上方时 如图所示 延长BQ 交l 于点E 过点Q 作QF ⊥l 于点F由题意可得AC =BC PC =CQ △PCQ =△ACB =60°△△ACP =△BCQ△△APC △△BCQ (SAS )△AP =BQ △CBQ =△CAP =90°△△CAB =△ABC =60°△△BAE =△ABE =30°△AB =AC =4△AE =BE =4√33△△BEF =60°设AP =t 则BQ =t△EQ =4√23−t在Rt △EFQ 中 QF =√32EQ =√32(4√23−t ) △S △APQ =12AP •QF =√34 即12•t √32(4√23−t )=√34 解得t =√3或t =√33.即AP 的长为√3或√33.②当点Q 在直线l 下方时 如图所示 设BQ 交l 于点E 过点Q 作QF ⊥l 于点F由题意可得AC =BC PC =CQ △PCQ =△ACB =60°△△ACP =△BCQ△△APC △△BCQ (SAS )△AP =BQ △CBQ =△CAP =90°△△CAB =△ABC =60°△△BAE =△ABE =30°△△BEF =120° △QEF =60°△AB =AC =4△AE =BE =4√33设AP =m 则BQ =m△EQ =m −4√33在Rt △EFQ 中 QF =√32EQ =√32(m −4√33) △S △APQ =12AP •QF =√34 即12•m •√32(m −4√33)=√34 解得m =2√3+√213(m =2√3-√213 负值舍去).综上可得 AP 的长为:√3或√33或2√3+√213. 3.(1)解:①△AB =BC =2√3 BE =2 △ABC =90°△tan∠EAB =BE AB =22√3=√33△△EAB =30°故答案为:30;②过点F 作FD △BC 于D 如图3△△BAE + △AEB = 90° △DEF +△AEB =90°△△BAE = △DEF△AE = EF △ABE =△EDF = 90°△△АВЕ △△ЕDF△AB = ED = BC△FD = DC△CF =√2CD AC =√2AB =√2ED△AC + CF=√2CD +√2ED=√2 (CD + ED )=√2CE ;故答案为:AC +CF =√2CE ;(2)过F 作FH △BC 交BC 的延长线于H 如图4△△AEF =90° AE =EF易证△ABE △△EHF△FH =BE EH =AB =BC△△FHC 是等腰直角三角形△CH =BE =√22FC△EC =BC -BE =√22AC -√22FC 即CA -CF =√2CE ;(3)如图3 当点E在点B左侧运动时y=12×CE×(AB+FD)=12×(√3+x)×(√3+x)=1 2x2+√3x+32;如图4 当点E在点B右侧运动时连接AF 根据勾股定理得AE=√AB2+BE2=√3+x2由旋转得AE=EF△EC=EH-CH=BC-BE=√3−x△y=12×AE×EF+12×EC×FH=1 2x2+32+12(√3−x)x=√3 2x+32综上当点E在点B左侧运动时y=12x2+√3x+32;当点E在点B右侧运动时y=√32x+32.4.(1)解:连接BD DA′ 如图△四边形ABCD是矩形△△BAD=90°△AB=6 AD=8△BD=10由旋转可得BA′=BA=6△BA′+DA′≥BD△当点A′落在BD上时DA′最小最小值为10-6=4△DA′最小值为4;(2)解:由题意得απ×6180=2π解得:α=60°△AB=A′B△△ABA′是等边三角形△△BAA′=60° AB=A′B=AA′=6△△DAA′=30°过点A′作A′M△AD于M点△A′M=12AA′=3△点A′到直线AD的距离为3(3)解:△BC=8 CF=4△BF=4√5△△BAE+△ABE=90° △CBF+△ABE=90°△△BAE=△CBF△△AEB=△BCF=90°△△ABE△△BFC△BE CF =ABBF△BE=6√55过E作EH△BC于H点△EH∥CD△△BEH△△BFC△BE BF =EHCF=BHBC△EH=65BH=125△CH=285△tan∠ECB=EHCH =314;(4)解:当A′C与以B为圆心AB为半径的圆相切时△A′CB最大此时△BA′C=90°分两种情况:当A′在BC的上方时如图1△AB=A′B AE△AA′于E△△ABF=△A′BF△BF=BF△△ABF△△A′BF△△BA′F=△BAF=90°△C A′ F在一条直线上△S△BCF=12BC×AB=12A′B×CF△CF =BC =8如图2当A ′在BC 的下方时连接AF A ′F 则AF =A ′F△A ′B =6 BC =8△A′C =2√7过A ′作A ′P △CD 垂足落在DC 的延长线上△△BCA ′+△A ′CP =90° △A ′CP +△CA ′P =90°△△BCA ′=△CA ′P△△BA ′C =△A ′PC△△A ′BC △△PCA ′△A ′B PC =BC CA ′=A ′CPA ′△A′P =72 PC =32√7△AD 2+DF 2=A ′P 2+PF 2△82+(6−CF )2=(72)2+(32√7+CF)2△CF =83(4−√7).综上 CF 的长为8或83(4−√7).5.解:(1)BD =CE .理由是:△△BAE =△CAD△△BAE +△BAC =△CAD +△BAC 即△EAC =△BAD在△EAC 和△BAD 中{AE =AB∠EAC =∠BAD AC =AD△△EAC △△BAD△BD =CE ;(2)如图2 在△ABC 的外部 以A 为直角顶点作等腰直角△BAE使△BAE =90° AE =AB 连接EAEB EC .△△ACD=△ADC=45°△AC=AD△CAD=90°△△BAE+△BAC=△CAD+△BAC即△EAC=△BAD 在△EAC和△BAD中{AE=AB ∠EAC=∠BAD AC=AD△△EAC△△BAD△BD=CE.△AE=AB=5△BE=√52+52=5√2△ABE=△AEB=45°又△△ABC=45°△△ABC+△ABE=45°+45°=90°△EC2=BE2+BC2=(5√2)2+22=54△BD2=CE2=54.(3)如图△AB=BC△ABC=60°△△ABC是等边三角形把△ACD绕点C逆时针旋转60°得到△BCE连接DE 则BE=AD△CDE是等边三角形△DE=CD△CED=60°△△ADC=30°△△BED=30°+60°=90°在Rt△BDE中DE=√BD2−BE2=√102−62=8△CD=DE=8.6.解:(1)延长GP交CD于H如图1所示:∵在菱形ABCD和菱形AEFG中AB=CD=AD BE//CD AG=FG FG//BE∴FG//CD∴∠PFG=∠PCH ∵P是线段CF的中点∴PF=PC在△PFG和△PCH中{∠PFG=∠PCHPF=PC∠FPG=∠CPH ∴△PFG≅△PCH(ASA)∴FG=CH PG=PH∴AG=CH∴DG=DH∴DP⊥GH(三线合一)∴∠DPG=90°;∵∠BAD=120°∴∠ADC=60°∴∠PDG=∠PDH=12∠ADC=30°∴PGPD =tan∠PDG=tan30°=√33;(2)(1)中的两个结论不发生改变;理由如下:延长GP交CE于H连接DH DG如图2所示:∵四边形AEFG为菱形∴FG//EC∴∠GFP=∠HCP ∵P是线段CF的中点∴PF=PC在△PFG和△PCH中{∠GFP=∠HCPPF=PC∠FPG=∠CPH ∴△PFG≅△PCH(ASA)∴FG=CH PG=PH∵FG=AG∴AG=CH∵四边形ABCD是菱形∴AC=CD∵∠BAD=∠AEF=120°∴∠ACD=60°∴△ACD是等边三角形∴AD=CD∴∠EAG=∠ADC=60°∠DAC=∠DCA=60°∴∠GAD=180°−∠EAG−∠DAC=60°在△ADG和△CDH中{AD=CD∠GAD=∠DCHAG=CH ∴△ADG≅△CDH(SAS)∴DG=DH∠ADG=∠CDH∴DP⊥GH∴∠DPG=90°∠GDH=∠ADC=60°∴∠GDP=30°∴PGPD =tan30°=√33;(3)延长GP到H使得PH=GP连接CH DG DH延长DC交EA的延长线于点M如图3所示:同(2)可证△PFG≅△PCH∴∠GFC=∠HCF FG=CH∴FG//CH∵FG//AE∴CH//EM∴∠DCH=∠M∵CD//AB∴∠M=∠MAB∴∠DCH=∠MAB∵∠BAD=∠AEF=180°−2α∴∠EAG=∠ADC=2α∴∠GAM=180°−2α∴∠GAD=∠BAM∴∠GAD=∠DCH∵AG=FG∴AG=CH在△ADG和△CDH中{AD=CD∠GAD=∠DCHAG=CH ∴△ADG≅△CDH(SAS)∴∠ADG=∠CDH DG=DH∴∠GDH=∠ADC=2α∴∠DPG =90° ∠GDP =12∠GDH =α∴ PGPD =tanα.7.(1)解:△抛物线y =ax 2+bx +4与y 轴交于点C△点C 的坐标为(0 4)△OC =4△OB=OC =4△B (4 0)将A (-2 0)和B (4 0)的坐标分别代入y =ax 2+bx +4中得:{4a −2b +4=016a +4b +4=0解得:{a =−12b =1△y =−12x 2+x +4(2)解:△A (-2 0) C (0 4)设直线AC 的解析式为y =kx +4将点A (-2 0)代入y =kx +4中 得:−2k +4=0 解得:k =2△直线AC 的解析式为y =2x +4设G (x 2x +4)△点D 是BC 的中点△D(2 2)△翻折△△MDB△△MDG△DB=DG△(x−2)2+(2x+4−2)2=(2−4)2+(2−0)2△5x2+4x=0△x1=0,x2=−45△y1=4,y2=125△G(0 4)G(−45125)(3)解:E(2−2√13314−2√139)如图过点D作DP△OC于点P DQ△OB于点Q点D作DH△DN交OB于点H∵∠PDQ=∠NDM=90°∴∠PDQ−∠NDQ=∠NDM−∠NDQ∴∠PDN=∠QDH在ΔDPN和ΔDQH中{DP=DQ∠DON=∠DQH=90°∠PDN=∠QDH∴ΔDPN≅ΔDQH(ASA)∴DN=DH∠NDM=90°−∠PDN−∠QDM=90°−∠QDH−∠QDM=∠HDM 在ΔDMN和ΔDMH中{DN=DH∠NDM=∠HDMDM=DM∴△DMN≌△DMH(SAS)∴MN=MQ+PN△ON =43OM 设OM =x 则ON =43x QM =2-x PN =2-43x △MN =MQ +PN =4-73x在Rt △OMN 中 △MON=90°MN 2=ON 2+OM 2即(4−73x)2=(43x)2+(2−x )2△2x 2−x +9=0△x =1 x =92(舍) △N (0 43) △D (2 2)设直线DN 的解析式为y =k 1x +b 1将点N (0 43)和点D (2 2)代入y =k 1x +b 1中 得:{b 1=432k 1+b 1=2 解得:{b 1=43k 1=13△直线DN 的解析式为y =13x +43△y =−12x 2+x +4 △−12x 2+x +4=13x +43△x =2−2√133 x =2+2√133(舍) △y =14−2√139 △E (2−2√133 14−2√139). 8.解:(1)证明 △△A =90° △CBE =90°△△C +△CBA =90° △CBA +△DBE =90°△△C =△DBE (同角的余角相等).又△△A =△D =90°△△ABC △△DEB ;(2)①△M绕点B顺时针旋转90°至点E M为BC中点△△BME为等腰直角三角形BEBC =BMBC=12△BE=√22ME又△DE=√22ME△BE=DE.如图过点E作EF△AD垂足为F则BF=DF △△A=△CBE=△BFE=90°△由(1)得:△ABC△△FEB△BF AC =BEBC=12△AC=4△BF=2△AB=AD-BF-FD=20-2-2=16;②如图过点M作AD的垂线交AD于点H过点E作AD的垂线交AD于点F过D作DP△AD过E作NP△DP交AC的延长线于N△M为BC中点MH△AC∴MHAC =BMBC=BHAB=12△MH=12AC=2BH=AH△△MHB=△MBE=△BFE=90°由(1)得:∠HBM=∠FEB△MB=EB△△MHB△△BFE△BF=MH=2 EF=BH设EF=x则DP=x BH=AH=x EP=FD=20-2-2x=18-2x GN=x+8 NE=AF=2x+2由(1)得△NGE△△PED△PE NG =PDNE即18−2xx+8=x2x+2解得x1=6x2=−65(舍去)△FD=18-2x=6△ED=√EF2+FD2=√62+62=6√2.9.(1)解:①△△ABC是等边三角形BC=4△AB=AC=4∠BAC=60°△AB′=AC′=4∠B′AC′=120°△AD为等腰△AB′C′'的中线△AD⊥B′C′∠C′=30°△∠ADC′=90°在Rt△ADC′'中∠ADC′=90°AC′=4∠C′=30°△AD=12AC′=2;②△∠BAC=90°△∠B′AC′=90°在△ABC和△AB′C′'中{AB=AB′∠BAC=∠B′AC′AC=AC′△△ABC≌△AB′C′(SAS)△B′C′=BC=6△AD=12B′C′=3;故答案为:①2;②3(2)AD=12BC理由如下:证明:在图1中过点B′作B′E∥AC′且B′E=AC′连接C′E DE则四边形AB′EC是平行四边形.△∠BAC+∠B′AC′=180°∠B′AC′+∠AB′E=180°△∠BAC=∠AB′E又△AC=AC′△CA=EB′在△BAC和△AB′E中{BA=AB′∠BAC=∠AB′E CA=EB′△△BAC≌△AB′E(SAS)△BC=AE又△AD=12AE△AD=12BC;(3)如图过点P作PF⊥BC则BF=CF△PB=PC PF⊥BC△PF为△BC的中线△PF=12AD=3.在Rt△BPF中∠BFP=90°PB=5PF=3△BF=√PB2−PF2=4△BC=2BF=8.10.(1)解:△x 1 x 2满足x 1+x 2=2 x 1•x 2=﹣3△b =2 c =3△抛物线的解析式为y =﹣x 2+2x +3(2)解:①抛物线y =﹣x 2+2x +3与x 轴交于点A (x 1 0) 点C (x 20) 与y 轴交于点B △当y =0时 ﹣x 2+2x +3=0解得x 1=3 x 2=-1当x =0时y =3△A (3 0) C (-1 0) B (0 3)△△AOB 为等腰直角三角形△△BAO =45°又EP △x 轴△△ADE 为等腰直角三角形△△ADE =45°又△△PDB =△ADE△△PDB =45°设直线AB 的解析式为y =kx +b则{3k +b =0b =3 解得{k =−1b =3△直线AB 的解析式为y =-x +3△E (m 0) 直线EP 交直线AB 于点D△设点D 为(m -m +3) 点P 为(m ﹣m 2+2m +3)点E 在线段OA 上运动 若△PBD 是等腰三角形 则0<m <3当PD =PB 时△PBD 是以P 为直角顶点的等腰直角三角形△﹣m 2+2m +3-(-m +3)=m解得m=2或m=0(舍去)△点E为(2 0)当BD=BP时△PBD是以B为直角顶点的等腰直角三角形△2 m =﹣m2+2m+3-(-m+3)解得m=1或m=0(舍去)△点E为(1 0)当DB=DP时△PBD是以D为顶点的等腰三角形△△OBD=45°△BD=√2OE=√2m△√2m=﹣m2+2m+3-(-m+3)解得m=3-√2或m=0(舍去)△点E为(3-√20)综上可知点E为(2 0)或(1 0)或(3-√20)②当P在x轴上方时连接BC延长BP交x轴于点F△△BAO=△ABO=45°又△PBD+△CBO=45°△△CBP=90°△△OBF+△CBO=90°又△BCO+△CBO=90°△△OBF=△BCO△△BOC△△FOB△BO FO =OC OB△C(-1 0) B(0 3)△3 FO =1 3△OF=9△点F为(9 0)设直线PB 的解析式为y =mx +n则{9m +n =0n =3解得{m =−13n =3△直线PB 的解析式为y =-13x +3△P B 都在抛物线上△{y =−13x +3y =−x 2+2x +3解得{x =0y =3 (舍去){x =73y =209△点P 为(73 209)△m =73当P 在x 轴下方时连接BC 设BP 与x 轴交于点H△△PBD +△CBO =45° △OBH +△PBD =45°△△CBO =△OBH又OB =OB △COB =△BOH∴△BOH △△BOC (ASA )△OC =OH =1△点H (1 0)设直线BH 解析式为:y =kx +b△{k +b =0b =3 解得{k =−3b =3△直线BH 解析式为:y =-3x +3△联立方程组{y =−3x +3y =−x 2+2x +3解得{x =0y =3 (舍去){x =5y =−12△点P 为(5 -12)△m =5综上可知 m 的值为73或5. (3)解:当m =1 得点E (1 0) P (1 4)过点F 作FH △PE又PE △x 轴 △CQF =90°△△CQH +△FQH =90° △CQH +△QCH =90°°△QEC =△QHF =90°△△FQH =△QCH△线段CQ 绕点Q 逆时针旋转90° 得到线段QF△CQ=QF△△QCE △△FQH (AAS )△CE=QH QE=FH又E (1 0) C (-1 0)△CE=QH =2令Q 为(1 a )QE=FH=a△点F 的坐标为(1+a a -2)△PF=√(1+a −1)2+(a −2−4)2=√2a 2−12a +36△2>0△当a =-−122×2=3时 PF 有最小值 且最小值为3√2.11.解:(1)证明:如图① 连接OC∵ΔABC与ΔDEF都是等腰直角三角形AC=BC DE=DF.边AB EF的中点重合于点O∴OC⊥AB OC=12AB=OB OD⊥EF OD=12EF=OF∵FE⊥AB于O∴C F O三点共线在ΔBOF与ΔCOD中{∠OB=OC∠BOF=∠COD=90°OF=OD∴ΔBOF≅ΔCOD(SAS)∴BF=CD;(2)解:猜想BF=CD理由如下:如图② 连接OC OD∵ΔABC与ΔDEF都是等腰直角三角形AC=BC DE=DF.边AB EF的中点重合于点O∴OC⊥AB OC=12AB=OB OD⊥EF OD=12EF=OF∵∠BOF=∠BOC+∠COF=90°+∠COF∠COD=∠DOF+∠COF=90°+∠COF ∴∠BOF=∠COD.在ΔBOF与ΔCOD中{OB=OC∠BOF=∠COD OF=OD∴ΔBOF≅ΔCOD(SAS)∴BF=CD;(3)解:猜想BF=√33CD理由如下:如图③ 连接OC OD.∵ΔABC为等边三角形点O为边AB的中点∴∠BCO=∠ACO=30°∠BOC=90°∴tan∠BCO=OBOC=tan30°=√33∵ΔDEF为等边三角形点O为边EF的中点∴∠FDO=∠EDO=30°∠DOF=90°∴tan∠FDO=OFOD=tan30°=√33∴OBOC =OFOD=√33∵∠BOF=∠BOC+∠COF=90°+∠COF∠COD=∠DOF+∠COF=90°+∠COF∴∠BOF=∠COD∴ΔBOF∽ΔCOD∴BFCD =OBOC=√33∴BF=√33CD.12.解:(1)当△EDF 绕D 点旋转到DE △AC 时 四边形CEDF 是正方形.设△ABC 的边长AC =BC =a 则正方形CEDF 的边长为12a .△S △ABC =12a 2 S 正方形DECF =(12a )2=12a 2 即S △DEF +S △CEF =12S △ABC ;故答案为:S △DEF +S △CEF =12S △ABC ; (2)(1)中的结论成立;证明:过点D 作DM △AC DN △BC 则△DME =△DNF =△MDN =90°又△△C =90°△DM △BC DN △AC△D 为AB 边的中点由中位线定理可知:DN =12AC MD =12BC △AC =BC△MD =ND△△EDF =90°△△MDE +△EDN =90° △NDF +△EDN =90°△△MDE=△NDF在△DME 与△DNF 中{∠DME =∠DNFMD =ND ∠MDE =∠NDF△△DME △△DNF (ASA )△S △DME =S △DNF△S 四边形DMCN =S 四边形DECF =S △DEF +S △CEF由以上可知S 四边形DMCN =12S △ABC △S △DEF +S △CEF =12S △ABC .(3)连接DC证明:同(2)得:△DEC △△DBF △DCE =△DBF =135°△S △DEF =S 五边形DBFEC=S △CFE +S △DBC=S △CFE +S ΔABC2△S △DEF -S △CFE =S ΔABC2.故S △DEF S △CEF S △ABC 的关系是:S △DEF -S △CEF =12S △ABC .13.(1)解:如图 过点C 作C G ⊥x 轴∵点A(−2,0)点B(6,0)△AB=8 又∵∠ACB=90°∠CAB=30°△在Rt△ABC中BC=4 在Rt△GBC中BG=2 CG=2√3.又∵点C在第一象限△C(4,2√3);(2)①∵以点B为中心顺时针旋转三角形ABC得到三角形BDE点A C的对应点分别为D E 且DE//AB△∠FBA=∠EDB=∠CAB=30°.△在Rt△FOB中∵OB=6△OF=2√3.△F(0,2√3);②△点D落在射线BC上△∠ABD=60°.由①知∠FBA=30°△∠FBD=30°.△∠FBD=∠BDE△DE//FB.又DE=FB=4√3△四边形FDEB是平行四边形.又∠BED=90°△四边形FDEB是矩形.(3)如图连接PQ,FE∵P,Q分别为FD,DE的中点∴PQ=1EF2∵FB=4√3BE=4∵旋转则点E在以B为圆心BE为半径的圆上运动∴FB−BE≤EF≤FB+BE 即4√3−4≤EF≤4√3+4∴2√3−2≤PQ≤2√3+2 14.(1)解:CP=BQ理由:如图1 连接OQ由旋转知PQ=OP△OPQ=60°△△POQ是等边三角形△OP=OQ△POQ=60°在Rt△ABC中O是AB中点△OC=OA=OB△△BOC=2△A=60°=△POQ△△COP=△BOQ在△COP和△BOQ中{OC=OB∠COP=∠BOQOP=OQ△△COP△△BOQ(SAS);(2)解:CP=BQ理由:如图2 连接OQ由旋转知PQ=OP△OPQ=60°△△POQ是等边三角形△OP=OQ△POQ=60°在Rt△ABC中O是AB中点△OC=OA=OB△△BOC=2△A=60°=△POQ△△COP=△BOQ在△COP和△BOQ中{OC=OB∠COP=∠BOQOP=OQ△△COP△△BOQ(SAS)△CP=BQ;(3)解:BQ=√6−√22.在Rt△ABC中△A=30° AC=√6△BC=AC·tan A=√2如图③ 过点O作OH△BC于点H△△OHB=90°=△BCA△OH △AC△O 是AB 中点△CH =12BC =√22 OH =12AC =√62△△BPO =45° △OHP =90°△△BPO =△POH△PH =OH =√62△CP =PH -CH =√62-√22=√6−√22连接OQ 同(1)的方法得 BQ =CP =√6−√22. 15.(1)证明:△AB =AC △BAC =90°△△B =△ACB =45°△△DAE =△BAC =90° AD =AE△△BAD =△CAE在△BAD 和△CAE 中 {AB =AC∠BAD =∠CAE AD =AE△△BAD △△CAE (SAS )△△B =△ACE =45° BD =CE△△ECD =△ACE +△ACB =90°△PD △BC△△BDP =△ECD =90°△PD △CE△△B =△BPD =45°△PD =BD△PD =EC△四边形PDCE 是平行四边形△△PDC =90°△四边形PDCE 是矩形;(2)解△如图 过点A 作AM △BC 于点M 过点F 作FN △BC 于点N设CD =2m 则BD =2CD =4m BC =6m△AB =AC △BAC =90° AM △BC△BM =MC =3m△AM =BM =3m AB =AC =3√2m DM =CM -CD =m△BD =PD =4m△PB =4√2m△P A =√2m△△ABD △△ACE△BD =EC =4m设CN =FN =x△FN △CE△△DFN △△DEC△FN EC =DN DC△FNDN =EC DC=4m2m =2 △DN =12x△12x +x =2m△x =43m △CF =4√23 m△AF =AC -CF =3√2m -4√23m =5√23m △AP AF =√2m 5√23m=35;(3)即:如图 将△BQC 绕点B 顺时针旋转60°得到△BNM 连接QN△BQ=BN QC=NM△QBN=60°△△BQN是等边三角形△BQ=QN△QA+QB+QC=AQ+QN+MN△当点A点Q点N点M共线时QA+QB+QC值最小如图连接MC△将△BQC绕点B顺时针旋转60°得到△BNM△BQ=BN BC=BM△QBN=60°=△CBM△△BQN是等边三角形△CBM是等边三角形△△BQN=△BNQ=60° BM=CM又△AB=AC△AM垂直平分BC△AD△BC△BQD=60°△△DBQ=30°BQ△QD=12△BD=√3QD△AB=AC△BAC=90° AD△BC△AD=BD此时P与A重合设PD=x则DQ=x-2△x=√3(x-2)△x=3+√3△PD=3+√3.16.(1)解:成立理由是:△△ABC和△ADE都是等腰直角三角形△AB=AC AD=AE△将△ADE绕点A逆时针旋转α(0<α<90°)连结BD和CE△∠BAD=∠CAE△△ABD≌△ACE(SAS)△BD=CE;(2)解:①△AB=AC∠BAD=∠CAE AD=AE△△ACE≌△ABD(SAS)△BD=CE△BC+CD=BD=CE.②△△ACE≌△ABD△∠ACE=∠ABD=45°又△∠ACB=45°△∠BCE=∠ACB+∠ACE=90°在Rt△BAC中△AB=AC=√2△BC=√AB2+AC2=2又△CD=1CE=BC+CD=3△在Rt△CDE中17.(1)解:△抛物线C:y=ax2+6ax+9a−8与x轴相交于A B两点点B的横坐标是2△B (2,0)△a ×22+6a ×2+9a −8=0解得a =825△抛物线C 的解析式为:y =825x 2+4825x −12825 对称轴:x =−48252×825=−3△当x =−3时 y =825×(−3)2+4825×(−3)−12825=−8 △顶点D 的坐标为(−3,−8).△a =825 D (−3,−8).(2)△抛物线C 与x 轴相交于A B 两点△当y =0时 得:825x 2+4825x −12825=0 即(x +8)(x −2)=0解得:x 1=−8 x 2=2△A (−8,0)△点P 与点B 重合△点P 的坐标为(2,0)当抛物线C 绕点P 旋转180°后得到的抛物线C 1 且点P 与点B 重合时△在抛物线C 1中 点B 的坐标仍为(2,0)△点F 与点A 关于点P 对称△点F 的坐标为(12,0)同理点E 与点D 关于点P 对称 设E (m,n ) 则△点P 的坐标为(m−32,n−82) △{m−32=2n−82=0△{m =7n =8△点E 的坐标为(7,8)设抛物线C 1的表达式为:y =a 1(x −12)(x −2)△(7−12)×(7−2)a 1=8△a 1=−825 △y =−825(x −12)(x −2)=−825x 2+11225x −19225 △抛物线C 1的表达式为:y =−825x 2+11225x −19225.(3)根据题意可知 在构成的直角三角形三个顶点中 有两个顶点是从点E F G 中选取 有一个点是从A B D 中任取.由图可知 当点为E G 或F G 时 与A B D 中任意一点构成的三角形是钝角三角形 故只有点E F 为直角三角形其中的两个顶点.设P (m,0)又△抛物线C 绕点P 旋转180°后得到的抛物线C 1 A (−8,0) B (2,0) D (−3,−8)△E (2m +3,8) F (2m +8,0)①当A 为顶点时△在抛物线C 1中 ∠EFO 是一个锐角 点A 在点P 的左侧△∠AEF =90°△AE 2+EF 2=AF 2△(√(2m +11)2+82)2+(√52+(−8)2)2=(2m +16)2解得:m =910;②当B 为顶点时同理可得∠BEF =90°△BE 2+EF 2=BF 2△[√(2m +1)2+82)2+(√52+(−8)2)2=(2m +6)2 解得:m =5910;③当D 为顶点时分两种情况:第一种:∠DEF =90°△DE 2+EF 2=DF 2△(√(2m +6)2+(8+8)2)2+(√52+(−8)2)2=(√(2m +11)2+82)2解得:m =495第二种:∠DFE =90°△DF 2+EF 2=DE 2△(√(2m +11)2+82)2+(√52+(−8)2)2=(√(2m +6)2+(8+8)2)2 解得:m =910.△点P 的坐标为(910,0)或(5910,0)或(495,0). 18.(1)解:∵D 在直线y =52x 上 ∴设D(t,52t)∵y 1=m x 经过点B (5,2). ∴m =10.∵D(t,52t)在反比例函数的图象上∴52t 2=10 ∴t =2(负值已舍去).∴由两点间的距离公式可知:OD =√22+52=√29.(2)解:①∵函数y 2=n x 的图象经过点E ∴OA ⋅AE =OC ⋅CF =n .∵OC =5 OA =2∴AE =52CF .∴可设:AE =52t∴EF =AE +CF =72t EB =5−52t在Rt △EBF 由勾股定理得:EF 2=BF 2+BE 2 ∴494t 2=(5−52t)2+(2−t)2. 解得t =7√29−2910∴n =5t =7√29−292. ②∵∠OEF =90°∴∠AEO +∠BEF =90°∵BA ⊥y 轴 BC ⊥x 轴∴∠ABC=90°∴∠BEF+∠BFE=90°∴∠AEE=∠BFE∴△AOE∽△BEF∴OA:AE=BE:BF∵CF=n5,AE=n2,BE=5−n2,BF=2−n5∴2:n2=(5−n2):(2−n5)解得:n=85或n=10(舍)∵D′(a,b)∴ab=8 5由(1)得OD=√29∴OD′=√29∴a2+b2=29∴(a+b)2=29+2×85=1615故(a+b)2的值为1615.19.解:(1)EG=CG且EG△CG.证明如下:如图① 连接BD.△正方形ABCD和等腰Rt△BEF△△EBF=△DBC=45°.△B E D三点共线.△△DEF=90° G为DF的中点△DCB=90°△EG=DG=GF=CG.△△EGF=2△EDG△CGF=2△CDG.△△EGF+△CGF=2△EDC=90°即△EGC=90°△EG△CG.(2)仍然成立证明如下:如图② 延长EG交CD于点H.。
中考专题 图形变换(精选17题)(平移、轴对称、旋转)练习及答案
中考复习专题:图形变换(精选17题)(平移、轴对称、旋转)练习及答案一、翻折翻折:翻折是指把一个图形按某一直线翻折180º后所形成的新的图形的变化.翻折特征:平面上的两个图形,将其中一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么说这两个图形关于这条直线对称,这条直线就是对称轴.解这类题抓住翻折前后两个图形是全等的,弄清翻折后不变的要素.翻折在三大图形运动中是比较重要的,考查得较多.另外,从运动变化得图形得特殊位置探索出一般的结论或者从中获得解题启示,这种由特殊到一般的思想对我们解决运动变化问题是极为重要的,值得大家留意.1.(2012•丽水)如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( )A.①B.②C.⑤D.⑥2.(2012•济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A.12厘米B.16厘米C.20厘米D.28厘米3.(2012泰安)如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.B.(C.(2012泰安)D.4.(2012•梅州)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC 上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A.150°B.210°C.105°D.75°5.(2012绍兴)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A 与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为()A.512532⨯B.69352⨯C.614532⨯D.711352⨯6.(2012•连云港)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°角的正切值是( )A.+1B.+1 C.2.5 D.7、(2012山东滨州10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.8、.(2006年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交与点F、G(如图1),23AF ,求DE的长;(2)如果折痕FG分别与CD、AB交与点F、G(如图2),△AED的外接圆与直线BC相切,求折痕FG的长.9、.(2012•德州)如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC 于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.专题二.、旋转1. (2011四川成都,14,4分)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕A 点逆时针旋转30°后得到R t △ADE ,点B 经过的路径为 BD,则图中阴影部分的面积是___________.2.(2012中考)如图,在△ABC 中,∠ACB =90º,∠B =30º,AC =1,AC 在直线l 上.将△ABC绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得到点P 2,此时AP 2=2+3;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=3+3;…,按此规律继续旋转,直到得到点P 2012为止,则AP 2012=【 】A .2011+671 3B .2012+671 3C .2013+671 3D .2014+671 33.(2012•烟台)如图,在Rt △ABC 中,∠C=90°,∠A=30°,AB=2.将△ABC 绕顶点A 顺时针方向旋转至△AB ′C′的位置,B ,A ,C ′三点共线,则线段BC 扫过的区域面积为 .4.(2012•中考)如图,Rt △ABC 的边BC 位于直线l 上,AC=,∠ACB=90°,∠A=30°.若Rt△ABC 由现在的位置向右滑动地旋转,当点A 第3次落在直线l 上时,点A 所经过的路线的长为(结果用含有π的式子表示)B①② ③123… l5.(2012•济宁)如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是O(0,0),旋转角是90度;(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.6.(2012成都)(本小题满分10分)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=9 2 a时,P、Q两点间的距离 (用含a的代数式表示).7、(2011安徽,22,12分)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A′B′C.(1)如图(1),当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形;(2)如图(2),连接A ′A 、B ′B ,设△ACA ′ 和△BCB ′ 的面积分别为S △ACA ′ 和S △BC B′.求证:S △ACA ′ :S △BC B′ =1:3;(3)如图(3),设AC 中点为E ,A ′B ′中点为P ,AC =a ,连接EP ,当 = °时,EP 长度最大,最大值为 .Aθ A ′B ′BCA ′B ′BCAθ8、 (2011四川凉山州,21,8分)在平面直角坐标系中,已知ABC △三个顶点的坐标分别为()()()1,2,3,4,2,9.A B C ---⑴画出ABC △,并求出AC 所在直线的解析式。
2020年中考数学图形的变换专题(附答案)
2020年中考数学图形的变换专题(附答案)一、单选题(共12题;共24分)1.若△ABC与△DEF的相似比是3:2,△DEF的最长边是6cm,那么△ABC的最长边是()A. 4cmB. 9cmC. 4cm或9cmD. 以上答案都不对2.如果五边形ABCDE∽五边形POGMN且对应高之比为3:2,那么五边形ABCDE和五边形POGMN的面积之比是()A. 2:3B. 3:2C. 6:4D. 9:43.如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在A1处,已知OA=,AB=1,则点A1的坐标是( )A. (,)B. (,3)C. (,)D. (,)4.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A. 5.1米B. 6.3米C. 7.1米D. 9.2米5.设a、b、c分别为△ABC中∠A,∠B和∠C的对边,则△ABC的面积为()A. B. C. D.6.如图,在ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:① :②S△BCE=36:③S△ABE=12:④△AEF∽△ACD;其中一定正确的是()A. ①②③④B. ①④C. ②③④D. ①②③7.如图,E是平行四边形ABCD的边AB延长线上一点,DE交BC于F,连接AF,CE.则图中与△ABF面积一定相等的三角形是()A. △BEFB. △DCFC. △ECFD. △EBC8.如图,一把梯子靠在垂直水平地面的墙上,梯子AB的长是3米。
若梯子与地面的夹角为α,则梯子顶端到地面的距离BC为()A. 3sina米B. 3cosa米。
中考数学《图形的变换》总复习训练含答案解析
图形的变换一、选择题1.以下几何图形中,必定是轴对称图形的有()A.2个B.3个C.4个D.5个2.有一个四平分转盘,在它的上、右、下、左的地点分别挂着“众”、“志”、“成”、“城”四个字牌,如图1.若将位于上下地点的两个字牌对换,同时将位于左右位置的两个字牌对换,再将转盘顺时针旋转90°,则达成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则达成第9次变换后,“众”字位于转盘的地点是()A.上B.下C.左D.右3.以下图形中,既是轴对称图形,又是中心对称图形的是()A.等腰梯形B.平行四边形C.正三角形D.矩形4.如图①~④是四种正多边形的瓷砖图案.此中,是轴对称图形但不是中心对称的图形为()A.①③B.①④C.②③D.②④5.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()第1页(共19页)A.110°B.115°C.120°D.130°6.下边四张扑克牌中,图案属于中心对称图形的是图中的()A.B.C.D.7.下边的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.8.将如下图的图案按顺时针方向旋转90°后能够获得的图案是()A.B.C.D.9.若将图中的每个字母都当作独立的图案,则这七个图案中是中心对称图形的有()A.1个B.2个C.3个D.4个10.以下图形中,是轴对称图形的是()A.B.C.D.11.下边的图形中,是中心对称图形的是()第2页(共19页)A.B.C.D.二、填空题12.如图,点G是△ABC的重心,CG的延伸线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°获得△BDE,则DE=cm,△ABC的面积=cm2.13.已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为.14.将线段AB平移1cm,获得线段A′,B′则点A到点A′的距离是cm.三、解答题15.如图,方格纸中的每个小正方形的边长均为1.(1)察看图1、2中所画的“L型”图形,而后各补画一个小正方形,使图1中所成的图形是轴对称图形,图2中所成的图形是中心对称图形;(2)补画后,图1、2中的图形是否是正方体的表面睁开图?(填“是”或“不是”)16.如图,在平面直角坐标系中,△ABC和△A1B1C1对于点E成中心对称.1)画出对称中心E,并写出点E、A、C的坐标;2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P(2a+6,b+2),请画出上述平移后的△A2B2C2,并写出点A2、C2的坐标;第3页(共19页)(3)判断△A2B2C2和△A1B1C1的地点关系.(直接写出结果)17.在一平直河岸l同侧有A,B两个乡村,A,B到l的距离分别是3km和2km,AB=akm(a>1).现计划在河岸l上建一抽水站P,用输水管向两个乡村供水.方案设计:某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的表示图,设该方案中管道长度为d1,且d1=PB+BA(km)(此中BP⊥l于点p);图2是方案二的表示图,设该方案中管道长度为d2,且d2=PA+PB(km)(此中点A'与点A对于I对称,A′B与l交于点P.察看计算:(1)在方案一中,d1= km(用含a的式子表示);2)在方案二中,组长小宇为了计算d2的长,作了如图3所示的协助线,请你按小宇同学的思路计算,d2= km(用含a的式子表示).研究概括(1)①当a=4时,比较大小:d1()d2(填“>”、“=或”“<”);②当a=6时,比较大小:d1()d2(填“>”、“=或”“<”);(2)请你参照右侧方框中的方法指导,就a(当a>1时)的全部取值状况进行剖析,要使铺设的管道长度较短,应选择方案一仍是方案二?第4页(共19页)第5页(共19页)图形的变换参照答案与试题分析一、选择题1.以下几何图形中,必定是轴对称图形的有()A.2个B.3个C.4个D.5个【考点】轴对称图形.【剖析】对于某条直线对称的图形叫轴对称图形.【解答】解:全部图形沿某条直线折叠后直线两旁的部分能够完整重合,那么必定是轴对称图形的有5个,应选D.【评论】轴对称图形的判断方法:假如一个图形沿一条直线折叠后,直线两旁的部分能够相互重合,那么这个图形叫做轴对称图形.2.有一个四平分转盘,在它的上、右、下、左的地点分别挂着“众”、“志”、“成”、“城”四个字牌,如图1.若将位于上下地点的两个字牌对换,同时将位于左右位置的两个字牌对换,再将转盘顺时针旋转90°,则达成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则达成第9次变换后,“众”字位于转盘的地点是()A.上B.下C.左D.右【考点】旋转的性质.【专题】压轴题;操作型;规律型.第6页(共19页)【剖析】依据题意可知每一次变换后相当于逆时针旋转了90°,经过4次变换后会回到原始地点,因此按上述规则达成第9次变换后,相当于第一次变化后的位置关系,剖析比较可得答案.【解答】解:依据题意可知每一次变换后相当于逆时针旋转了90度,经过4次变换后会回到原始地点,因此按上述规则达成第9次变换后,“众”字位于转盘的地点是应当是第一次变换后的地点即在左侧,比较可得C切合要求.应选C.【评论】本题考察旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三因素:①定点为旋转中心;②旋转方向;③旋转角度.重点是找到旋转的方向和角度.3.以下图形中,既是轴对称图形,又是中心对称图形的是()A.等腰梯形B.平行四边形C.正三角形D.矩形【考点】中心对称图形;轴对称图形.【剖析】依据轴对称图形与中心对称图形的观点和等腰梯形、平行四边形、正三角形、矩形的性质解答.【解答】解:A、是轴对称图形,不是中心对称图形,不切合题意;B、不是轴对称图形,是中心对称图形,不切合题意;C、是轴对称图形,不是中心对称图形,不切合题意;D、是轴对称图形,也是中心对称图形,切合题意.应选D.【评论】掌握中心对称图形与轴对称图形的观点.假如一个图形沿着一条直线对折后两部分完整重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.假如一个图形绕某一点旋转180°后能够与自己重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.第7页(共19页)4.如图①~④是四种正多边形的瓷砖图案.此中,是轴对称图形但不是中心对称的图形为()A.①③B.①④C.②③D.②④【考点】中心对称图形;轴对称图形.【剖析】依据轴对称图形与中心对称图形的观点和各图的特色求解.【解答】解:①、是轴对称图形,不是中心对称图形;②、是轴对称图形,也是中心对称图形;③、是轴对称图形,不是中心对称图形;④、是轴对称图形,也是中心对称图形.知足条件的是①③,应选A.【评论】掌握好中心对称图形与轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合,中心对称图形是要找寻对称中心,旋转180度后两部分重合.5.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°【考点】翻折变换(折叠问题).【专题】压轴题.【剖析】依据折叠的性质,对折前后角相等.【解答】解:依据题意得:∠2=∠3,∵∠1+∠2+∠3=180°,∴∠2=(180°﹣50°)÷2=65°,∵四边形ABCD是矩形,第8页(共19页)AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=180°﹣65°=115°.应选B.【评论】本题考察图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,依据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.6.下边四张扑克牌中,图案属于中心对称图形的是图中的()A.B.C.D.【考点】中心对称图形;生活中的旋转现象.【剖析】依照中心对称图形的定义即可求解.【解答】解:此中A选项、C选项及D选项旋转180度后新图形中间的桃心向下,原图形中间的桃心向上,因此不是中心对称图形.应选B.【评论】本题考察中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完整重合.7.下边的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.第9页(共19页)【考点】中心对称图形;轴对称图形.【专题】惯例题型.【剖析】依据轴对称图形与中心对称图形的观点求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.应选:C.【评论】本题考察了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合,中心对称图形是要找寻对称中心,旋转180度后两部分重合.8.将如下图的图案按顺时针方向旋转90°后能够获得的图案是()A.B.C.D.【考点】生活中的旋转现象.【剖析】依据旋转的意义,找出图中眼,眉毛,嘴 5个重点处按顺时针方向旋转90°后的形状即可选择答案.【解答】解:依据旋转的意义,图片按顺时针方向旋转90°,即正立状态转为顺时针的横向状态,从而可确立为A图,应选A.【评论】本题考察了图形的旋转变化,学生主要要看清是顺时针仍是逆时针旋转,旋转多少度,难度不大,但易错.9.若将图中的每个字母都当作独立的图案,则这七个图案中是中心对称图形的有()第10页(共19页)A.1个B.2个C.3个D.4个【考点】中心对称图形.【剖析】依据中心对称图形的观点求解.【解答】解:依据中心对称图形的观点可知,图案O、I是中心对称图形;而图案L、Y、M、P、C都不是中心对称图形.应选B.【评论】解答本题要掌握中心对称图形的观点:在同一平面内,假如把一个图形绕某一点旋转180度,旋转后的图形能和原图形完整重合,那么这个图形就叫做中心对称图形,这个旋转点,就叫做中心对称点.10..以下图形中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【剖析】依据轴对称图形的定义:假如一个图形沿一条直线折叠,直线两旁的部分能够相互重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也能够说这个图形对于这条直线(成轴)对称,从而得出答案.【解答】解:A、不是轴对称图形,故A错误;B、是轴对称图形,故B正确;C、不是轴对称图形,故C错误;D、不是轴对称图形,故D错误.应选:B.【评论】本题考察了轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合.11.下边的图形中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.第11页(共19页)【剖析】依据中心对称图形的观点求解.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;应选B.【评论】本题考察了中心对称图形的知识,中心对称图形是要找寻对称中心,旋转180度后与原图重合.二、填空题12.如图,点G是△ABC的重心,CG的延伸线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°获得△BDE,则DE= 2 cm,△ABC的面积18cm2.【考点】旋转的性质.【专题】压轴题.【剖析】三角形的重心是三条中线的交点,依据中线的性质,S△ACD=S△BCD;再利用勾股定理逆定理证明BG⊥CE,从而得出△BCD的高,可求△BCD的面积.【解答】解:∵点G是△ABC的重心,DE=GD=GC=2,CD=3GD=6,GB=3,EG=GC=4,BE=GA=5,BG2+GE2=BE2,即BG⊥CE,∵CD为△ABC的中线,S△ACD=S△BCD,∴S△ABC△ACDS△BCD△BCD2.填:2,18.=S+=2S=2××BG×CD=18cm第12页(共19页)【评论】本题考察旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所组成的旋转角相等.要注意旋转的三因素:①定点﹣旋转中心;②旋转方向;③旋转角度.13.已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为 4 .【考点】等腰三角形的性质;勾股定理.【剖析】依据等腰三角形三线合一的性质及勾股定理不难求得底边上的高.【解答】解:依据等腰三角形的三线合一,知:等腰三角形底边上的高也是底边上的中线.即底边的一半是3,再依据勾股定理得:底边上的高为4.故答案为:4【评论】考察等腰三角形的三线合一及勾股定理的运用.14.将线段AB平移1cm,获得线段A′,B′则点A到点A′的距离是 1 cm.【考点】平移的性质.【专题】压轴题.【剖析】依据题意,画出图形,由平移的性质直接求得结果.【解答】解:在平移的过程中各点的运动状态是同样的,此刻将线段平移1cm,则每一点都平移1cm,即AA′=1cm,∴点A到点A′的距离是1cm.【评论】本题考察了平移的性质:由平移知识可得对应点间线段即为平移距离.学生在学习中应当借助图形,理解掌握平移的性质.三、解答题15.如图,方格纸中的每个小正方形的边长均为1.(1)察看图1、2中所画的“L型”图形,而后各补画一个小正方形,使图1中所成的图形是轴对称图形,图2中所成的图形是中心对称图形;(2)补画后,图1、2中的图形是否是正方体的表面睁开图?(填“是”或“不是”)第13页(共19页)【考点】利用旋转设计图案;利用轴对称设计图案.【专题】网格型.【剖析】(1)依据轴对称图形与中心对称的定义即可作出,第一确立对称轴,即可作出所要作的正方形;2)利用折叠的方法进行考证即可.【解答】解:(1)如图(画对一个得3分).2)图1(不是)或图2(是),图3(是).【评论】掌握轴对称的性质:沿着向来线折叠后重合.中心对称的性质:绕某一点旋转180°此后重合.16.如图,在平面直角坐标系中,△ABC和△A1B1C1对于点E成中心对称.1)画出对称中心E,并写出点E、A、C的坐标;2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P(2a+6,b+2),请画出上述平移后的△A2B2C2,并写出点A2、C2的坐标;(3)判断△A2B2C2和△A1B1C1的地点关系.(直接写出结果)第14页(共19页)【考点】作图﹣旋转变换;作图﹣平移变换.【专题】作图题;压轴题.【剖析】(1)连结对应点,对应点的中点即为对称中心,在网格中可直接得出点E、A、C的坐标;2)依据“(a+6,b+2)”的规律求出对应点的坐标A2(3,4),C2(4,2),按序连结即可;(3)由△A2B2C2和△A1B1C1的地点关系直接看出是对于原点O成中心对称.【解答】解:(1)如图,E(﹣3,﹣1),A(﹣3,2),C(﹣2,0);(4分)2)如图,A2(3,4),C2(4,2);(8分)3)△A2B2C2与△A1B1C1对于原点O成中心对称.(10分)【评论】本题考察的是平移变换与旋转变换作图.作平移图形时,找重点点的对应点也是重点的一步.平移作图的一般步骤为:①确立平移的方向和距离,先确立一组对应点;②确立图形中的重点点;③利用第一组对应点和平移的性质确立图中所相重点点的对应点;④按原图形次序挨次连结对应点,所获得的图形即为平移后的图形.第15页(共19页)作旋转后的图形的依照是旋转的性质,基本作法是①先确立图形的重点点;②利用旋转性质作出重点点的对应点;③按原图形中的方式按序连结对应点.要注意旋转中心,旋转方向和角度.中心对称是旋转180度时的特别状况.17.在一平直河岸l同侧有A,B两个乡村,A,B到l的距离分别是3km和2km,AB=akm(a>1).现计划在河岸l上建一抽水站P,用输水管向两个乡村供水.方案设计:某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的表示图,设该方案中管道长度为d1,且d1=PB+BA(km)(此中BP⊥l于点p);图2是方案二的表示图,设该方案中管道长度为d2,且d2=PA+PB(km)(此中点A'与点A对于I对称,A′B与l交于点P.察看计算:1)在方案一中,d1=a+2km(用含a的式子表示);2)在方案二中,组长小宇为了计算d2的长,作了如图3所示的协助线,请你按小宇同学的思路计算,d2= km(用含a的式子表示).研究概括(1)①当a=4时,比较大小:d1()d2(填“>”、“=或”“<”);②当a=6时,比较大小:d1()d2(填“>”、“=或”“<”);(2)请你参照右侧方框中的方法指导,就a(当a>1时)的全部取值状况进行剖析,要使铺设的管道长度较短,应选择方案一仍是方案二?第16页(共19页)【考点】作图—应用与设计作图.【专题】压轴题;阅读型;方案型.【剖析】运用勾股定理和轴对称求出d2,依据方法指导,先求d12﹣d22,再依据差进行分类议论选用合理方案.【解答】解:(1)∵A和A'对于直线l对称,PA=PA',d1=PB+BA=PB+PA'=a+2;故答案为:a+2;2)由于BK2=a2﹣1,A'B2=BK2+A'K2=a2﹣1+52=a2+24因此d2= .研究概括:(1)①当a=4时,d1=6,d2= ,d1<d2;②当a=6时,d1=8,d2= ,d1>d2;∴(2)=4a﹣20.①当4a﹣20>0,即a>5时,d12﹣d22>0,d1﹣d2>0,d1>d2;第17页(共19页)②当4a﹣20=0,即a=5时,d12﹣d22=0,d1﹣d2=0,d1=d2③当4a﹣20<0,即a<5时,d12﹣d22<0,d1﹣d2<0,d1<d2综上可知:当a>5时,选方案二;当a=5时,选方案一或方案二;当1<a<5(缺a>1不扣分)时,选方案一.【评论】本题为方案设计题,综合考察了学生的作图能力,运用数学知识解决实际问题的能力,以及察看研究和分类议论的数学思想方法.第18页(共19页)中考数学《图形的变换》总复习训练含答案解析第19页(共19页)21 / 2121。
2020年中考复习专题练习 图形的变换 (含答案)
2020年中考复习专题练习图形的变换(含答案)第一部分知识梳理图形的变换包括平移、对称和旋转一、平移:、把一个图形整体沿某一个方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,平移前后对应点的连线平行或在同一直线上且相等。
在平面直角坐标系下,平移前后图形个点的对应点的横坐标都加上(或减去)同一个常数a,同时纵坐标都加上(或减去)同一个常数b二、、对称包括轴对称和中心对称(一)轴对称:1、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线轴对称,这条直线叫做对称轴,2、轴对称的性质①如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
②轴对称的两个图像是全等形③轴对称的两个图形中对应线段或对应线段所在直线的交点在对称轴上3.对称点的坐标:(1)点P(a,b)关于x轴对称的点的坐标为P1( a,-b )。
(2)点P(a,b)关于y轴对称的点的坐标为P2(-a ,b)。
(3)点P(a,b)关于原点对称的点的坐标为P3(-a,-b)。
(二)中心对称1、把一个图形绕着某点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于该点成中心对称,这点叫做对称中心,2、中心对称的性质①如果两个图形城中心对称,那么对称点的连线必经对称中心,并且被对称中心平分。
②成中心对称的两个图像是全等形三、旋转1、在平面内。
把一个平面图形绕着平面某一点O转动一定的角度,叫做图形旋转,点O叫旋转中心,转动的角叫旋转角2、旋转的性质(1)对应点到旋转中心的距离相等(2)对应点与旋转中心所连线段的夹角等于旋转角(3)旋转前后的两个图像全等第二部分中考链接1.(2018•海南)如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3) B.(3,﹣1) C.(﹣3,1) D.(﹣5,2)2.(2018•黄石)如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是()A.(﹣1,6)B.(﹣9,6) C.(﹣1,2) D.(﹣9,2)1题图2题图3题图4题图3.(2018•宜宾)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 C.D.4.(2018•温州)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(﹣1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B 的对应点B′的坐标是()A.(1,0)B.(,)C.(1,)D.(﹣1,)5.(2019枣庄)在平面直角坐标系中,将点(1,2)A-向上平移3个单位长度,再向左平移2个单位长度,得到点A',则点A'的坐标是()A.(1,1)-B.(1,2)--C.(1,2)-D.(1,2)6.(2019)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点A n,则点A2019的坐标是()A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)7.(2019枣庄)如图,将ABC沿BC边上的中线AD平移到A B C'''的位置.已知ABC的面积为16,阴影部分三角形的面积9.若1AA'=,则A D'等于()A.2 B.3 C.4 D.327题图9题图12题图13题图8. (2019乐山)下列四个图形中,可以由图1通过平移得到的是( )()A()B()C()D图1B9、(2019江苏苏州)如图,菱形ABCD的对角线AC,BD交于点O,416AC BD==,,将ABOV沿点A到点C的方向平移,得到A B C'''V,当点A'与点C重合时,点A与点B'之间的距离为()A.6 B.8 C.10 D.1210.(2018•长沙)在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是.11.(2018•宿迁)在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是.12.(2018•曲靖)如图:图象①②③均是以P为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依次规律,PP2018= 个单位长度.13.(2018•株洲)如图,O为坐标原点,△OAB是等腰直角三角形,∠OAB=90°,点B的坐标为(0,2),将该三角形沿x轴向右平移得到Rt△O′A′B′,此时点B′的坐标为(2,2),则线段OA在平移过程中扫过部分的图形面积为.二、对称(一)轴对称1.(2018•淄博)下列图形中,不是轴对称图形的是()A.B.C.D.2 (2019年山东省德州市)下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.3. (2019年山东省菏泽市)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4. (2019年山东省济宁市)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5. (2019年山东省青岛市)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(2018•枣庄)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2)C.(﹣2,2) D.(2,﹣2)7.(2018•滨州)如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A. B. C.6 D.38.(2018•贵港)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6B.3C.2D.4.59.(2019聊城)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P 的坐标为()A.(2,2)B.(,)C.(,)D.(3,3)7题图10、(2019的值为(11.(2019A.m=3,n=2B.m=-3,n=2C.m=2,n=3D.m=-2,n=312. (2019年西藏)如图,在矩形ABCD中,AB=6,AD=3,动点P满足S△PAB=S矩形ABCD,则点P 到A、B两点距离之和PA+PB的最小值为()A.2B.2C.3D.13.(2018•东营)在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为.(二)折叠1.(2018•青岛)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕相交于点F.已知EF=,则BC的长是()A. B. C.3 D.1题图2题图3题图4题图2.(2018•烟台)对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O 折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为()A .7B .6C .5D .43. (2019辽宁大连)如图,将矩形纸片ABCD 折叠,使点C 与点A 重合,折痕为EF ,若AB =4,BC =8.则D ′F 的长为( )A .2 B .4 C .3 D .24、(2018•泰安)如图,在矩形ABCD 中,AB=6,BC=10,将矩形ABCD 沿BE 折叠,点A 落在A'处,若EA'的延长线恰好过点C ,则sin ∠ABE 的值为 .5.(2018威海)如图,将矩形ABCD (纸片)折叠,使点B 与AD 边上的点K 重合,EG 为折痕;点C 与AD 边上的点K 重合,FH 为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC 的长.5题图 6题图6、(2019潍坊)如图,在矩形ABCD 中,AD =2.将∠A 向内翻折,点A 落在BC 上,记为A’,折痕为DE .若将∠B 沿EA’向内翻折,点B 恰好落在DE 上,记为B’,则AB =__________.7.(2019青岛)如图,在正方形纸片ABCD 中,E 是CD 的中点,将正方形纸片折叠,点B 落在线段AE 上的点G 处,折痕为AF .若AD =4cm ,则CF 的长为 cm .7题图 8题图 9题图 10题图8、(2019随州)如图,已知正方形ABCD 的边长为a ,E 为CD 边上的一点(不与端点重合),将△ADE 沿AE 对折至△AFE,延长EF 交边BC 于点G ,连接AG ,CF.给出下列判断: ①∠EAG=45°;②若DE=a 31,则AG∥CF;③若E 为CD 的中点,则△GFC 的面积为2101a ; ④若CF=FG ,则DE=a )12( ;⑤BG·DE+AF·GE=a².其中正确的是 .(写出所有正确判断的序号).9. (2019西藏)如图,把一张长为4,宽为2的矩形纸片,沿对角线折叠,则重叠部分的面积为 .10、 (2019四川资阳)如图,在△ABC 中,已知AC =3,BC =4,点D 为边AB 的中点,连结CD ,过点A 作AE ⊥CD 于点E ,将△ACE 沿直线AC 翻折到△ACE ′的位置.若CE ′∥AB ,则CE ′= .11.(2019天津)如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE ,折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若DE=5,则GE 的长为 .D 1A 1G P F E C DBA11题图 12题图 13题图12. (2019浙江杭州)如图,把某矩形纸片ABCD 沿EF 、GH 折叠(点E 、H 在AD 边上,点F 、G 在BC 边上),使得点B 、点C 落在AD 边上同一点P 处,A 点的对称点为A'点,D 点的对称点为D'点,若∠FPG=90°,△A'EP 的面积为4,△D'PH 的面积为1,则矩形ABCD 的面积等于________.13. (2019甘肃天水)如图,在矩形ABCD 中,AB =3,AD =5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么sin∠EFC 的值为 .中心对称1. (2019贵港)若点P (m -1,5)与点Q (3,2-n )关于原点成中心对称,则m +n 的值是( )A. 1B. 3C. 5D. 72. (2019山东枣庄)下列图形,可以看作中心对称图形的是( )A .B .C .D .三、旋转1、(2018济宁)如图,在平面直角坐标系中,点 A ,C 在 x 轴上,点 C 的坐标为(﹣1,0),AC=2.将 Rt △ABC 先绕点 C 顺时针旋转 90°,再向右平移 3 个单位长度, 则变换后点 A 的对应点坐标是( )A .(2,2) B .(1,2) C .(﹣1,2) D .(2,﹣1)1题图 2题图 3题图2.(2018•淄博)如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A ,B ,C 的距离分别为3,4,5,则△ABC 的面积为( )A. B. C. D.3.(2018•德州)如图,等边三角形ABC 的边长为4,点O 是△ABC 的中心,∠FOG=120°,绕点O 旋转∠FOG ,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD=OE ;②S △ODE =S △BDE ;③四边形ODBE的面积始终等于;④△BDE 周长的最小值为6.上述结论中正确的个数是( )A .1 B .2 C .3 D .44.(2018•聊城)如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA=5,OC=3.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C的对应点C的坐标为()1A.(﹣,) B.(﹣,) C.(﹣,) D.(﹣,)4题图5题图6题图5.(2018青岛)如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B 的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)6.(2019聊城)如图,在等腰直角三角形ABC中,∠BAC=90°,一个三角尺的直角顶点与BC 边的中点O重合,且两条直角边分别经过点A和点B,将三角尺绕点O按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB,AC分别交于点E,F时,下列结论中错误的是()A.AE+AF=AC B.∠BEO+∠OFC=180° C.OE+OF=BC D.S四边形AEOF=S△ABC7. (2019青岛)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)7题图8题图9题图8. (2019枣庄)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为()A.4 B.2C.6 D.29. (2019天津)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB 上,点B的对应点为E,连接BE,下列结论一定正确的是()A.AC=ADB.AB⊥EBC. BC=DED.∠A=∠EBC10. (2019湖北荆州)在平面直角坐标系中,点A的坐标为(1,),以原点为中心,将点A 顺时针旋转30°得到点A',则点A'的坐标为()A.(,1)B.(,﹣1)C.(2,1)D.(0,2)11. (2019湖北宜昌)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(﹣1,2+)B.(﹣,3)C.(﹣,2+)D.(﹣3,)12.(2018•枣庄)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.11题图12题图13题图14题图13.(2018•潍坊)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.14. (2019广西贺州)如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC 于点F,将△ADE绕点A顺时针旋转90°得△ABG,则CF的长为.15. (2019湖北随州)如图,在平面直角坐标系中,Rt△ABC的直角顶点C的坐标为(1,0),点A在x轴正半轴上,且AC=2.将△ABC先绕点C逆时针旋转90°,再向左平移3个单位,则变换后点A的对应点的坐标为______.16. (2019内蒙古包头)如图,在△ABC中,∠CAB=55°,∠ABC=25°,在同一平面内,将△ABC绕A点逆时针旋转70°得到△ADE,连接EC,则tan∠DEC的值是.16题图17题图18题图19题图17 (2019新疆)如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为.18、(2019海南)如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连结EF.若AB=3,AC=2,且α+β=∠B,则EF=.19. (2019湖北十堰)如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF最大时,S△ADE=.20.(2018•临沂)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E 在BD 上时.求证:FD=CD ;(2)当α为何值时,GC=GB ?画出图形,并说明理由.21、(2018菏泽)问题情境:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将矩形纸片ABCD 沿对角线AC 剪开,得到ABC ∆和ACD ∆.并且量得2AB cm =,4AC cm =. 操作发现:(1)将图1中的ACD ∆以点A 为旋转中心,按逆时针方向旋转α∠,使BAC α∠=∠,得到如图2所示的'AC D ∆,过点C 作'AC 的平行线,与'DC 的延长线交于点E ,则四边形'ACEC 的形状是________.(2)创新小组将图1中的ACD ∆以点A 为旋转中心,按逆时针方向旋转,使B 、A 、D 三点在同一条直线上,得到如图3所示的'AC D ∆,连接'CC ,取'CC 的中点F ,连接AF 并延长至点G ,使FG AF =,连接CG 、'C G ,得到四边形'ACGC ,发现它是正方形,请你证明这个结论. 实践探究:(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将ABC ∆沿着BD 方向平移,使点B 与点A 重合,此时A 点平移至'A 点,'A C 与'BC 相交于点H ,如图4所示,连接'CC ,试求tan 'C CH ∠的值.22.(2018•宁波)如图,在△ABC 中,∠ACB=90°,AC=BC ,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,连结DE 交BC 于点F ,连接BE .(1)求证:△ACD ≌△BCE ;(2)当AD=BF 时,求∠BEF 的度数.23.(2018•自贡)如图,已知∠AOB=60°,在∠AOB 的平分线OM 上有一点C ,将一个120°角的顶点与点C 重合,它的两条边分别与直线OA 、OB 相交于点D 、E .(1)当∠DCE 绕点C 旋转到CD 与OA 垂直时(如图1),请猜想OE +OD 与OC 的数量关系,并说明理由;(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD、OE与OC之间又有怎样的数量关系?请写出你的猜想,不需证明.24.(2018•岳阳)已知在Rt△ABC中,∠BAC=90°,CD为∠ACB的平分线,将∠ACB沿CD所在的直线对折,使点B落在点B′处,连结AB',BB',延长CD交BB'于点E,设∠ABC=2α(0°<α<45°).(1)如图1,若AB=AC,求证:CD=2BE;(2)如图2,若AB≠AC,试求CD与BE的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC绕点C逆时针旋转角(α+45°),得到线段FC,连结EF交BC于点O,设△COE的面积为S1,△COF的面积为S2,求(用含α的式子表示).25.(2019日照)如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG =CH,直线GH绕点O逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).(1)求证:四边形EHFG是平行四边形;(2)若∠α=90°,AB=9,AD=3,求AE的长.26.(2019菏泽)如图,△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC =∠DAE =90°.(1)如图1,连接BE ,CD ,BE 的廷长线交AC 于点F ,交CD 于点P ,求证:BP ⊥CD ;(2)如图2,把△ADE 绕点A 顺时针旋转,当点D 落在AB 上时,连接BE ,CD ,CD 的延长线交BE 于点P ,若BC =6,AD =3,求△PDE 的面积.27.(2019济南)小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在ABC ∆中,AB AC =,M 是平面内任意一点,将线段AM 绕点A 按顺时针方向旋转与BAC ∠相等的角度,得到线段AN ,连接NB .(1)如图1,若M 是线段BC 上的任意一点,请直接写出NAB ∠与MAC ∠的数量关系是 ,NB 与MC 的数量关系是 ;(2)如图2,点E 是AB 延长线上点,若M 是CBE ∠内部射线BD 上任意一点,连接MC ,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由. (二)拓展应用如图3,在111ABC ∆中,118A B =,11160A B C ∠=,11175B A C ∠=,P 是11B C 上的任意点,连接1AP ,将1A P 绕点1A 按顺时针方向旋转75,得到线段1A Q ,连接1B Q .求线段1B Q 长度的最小值.28. (2019年北京市)已知∠AOB=30°,H 为射线OA 上一定点,,P 为射线OB 上一点,M为线段OH 上一动点,连接PM ,满足∠OMP 为钝角,以点P 为中心,将线段PM 顺时针旋转150°,得到线段PN ,连接ON . (1)依题意补全图1; (2)求证:∠ OMP=∠OPN ;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.备用图图1BAOB29、(2019年江苏省苏州市)如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G(1)求证:EF BC =; (2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.30 (2019年湖北省荆州市)如图①C ,D 分别在OE 和OF 上,现将△OEF 绕点O 逆时针旋转α角(0°<α<90°),连接AF ,DE (如图②). (1)在图②中,∠AOF = ;(用含α的式子表示)(2)在图②中猜想AF 与DE 的数量关系,并证明你的结论.位似1. (2019甘肃武威市)如图,将图形用放大镜放大,应该属于()A.平移变换B.相似变换C.旋转变换D.对称变换2.(2018菏泽)如图,OAB∆与OCD∆是以点O为位似中心的位似图形,相似比为3:4,90OCD∠=,60AOB∠=,若点B的坐标是(6,0),则点C的坐标是.[来源:学&科& Z&X3. (2019滨州)在平面直角坐标系中,△ABO三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0).以原点O为位似中心,把这个三角形缩小为原来的,得到△CDO,则点A的对应点C的坐标是.3. (2019辽宁本溪)在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相们比为,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为.其它1.(2018•枣庄)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.2.(2018•徐州)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.3.(2018•黑龙江)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).4.(2018•广西)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B (4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)5.(2018•眉山)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC 的顶点都在格点上,请解答下列问题:(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(﹣4,﹣2),请直接写出直线l的函数解析式.6.(2018•吉林)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是对称图形;(3)求所画图形的周长(结果保留π).7. (2019年四川省广安市)在数学活动课上,王老师要求学生将图1所示的3×3正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个3×3的正方形方格画一种,例图除外)8. (2019年黑龙江省伊春市)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).9.(2018•德州)再读教材:宽与长的比是(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计,下面,我们用宽为2的矩形纸片折叠黄金矩形.(提示:MN=2)第一步,在矩形纸片一端,利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②,把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线AB ,并把AB 折到图①中所示的AD 处.第四步,展平纸片,按照所得的点D 折出DE ,使DE ⊥ND ,则图④中就会出现黄金矩形.问题解决:(1)图③中AB=(保留根号);(2)如图③,判断四边形BADQ 的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由. 实际操作(4)结合图④,请在矩形BCDE 中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.答案与提示 平移1、C2、C3、A4、C5、A6、C7、B8、D9、C 10、(1,1) 11、(5,1) 12、673 13、41、解:∵点B 的坐标为(3,1),∴向左平移6个单位后,点B 1的坐标(﹣3,1),故选:C .2、解:由题意P (﹣5,4),向右平移4个单位,再向下平移2个单位,点P 的对应点P'的坐标是(﹣1,2),故选:C .3、解:如图,∵S △ABC =9、S △A′EF =4,且AD 为BC 边的中线,∴S △A′DE =S △A′EF =2,S △ABD =S △ABC =, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',∴A′E∥AB ,∴△DA′E∽△DAB ,则()2=,即()2=,解得A′D=2或A′D=﹣(舍),故选:A .4、解:∵点A 与点O 对应,点A (﹣1,0),点O (0,0), ∴图形向右平移1个单位长度,∴点B 的对应点B'的坐标为(0+1,),即(1,),故选:C .5.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,∴点(1,2)A -向上平移3个单位长度,再向左平移2个单位长度后,得到点A '横坐标为121-=-,纵坐标为231-+=,A ∴'的坐标为(1,1)-.故选A .6.解:A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,1),A 6(3,1),…, 2019÷4=504…3,所以A 2019的坐标为(504×2+1,0),则A 2019的坐标是(1009,0). C 7.解:16ABCS=、9A EFS'=,且AD 为BC 边的中线,1922A DEA EFSS ''∴==,182ABDABCS S ==,将ABC沿BC 边上的中线AD 平移得到A B C ''',//A E AB ∴',∴DA E DAB '∽,则2()A DE ABDSA D AD S''=,即2992()1816A D A D '=='+,解得,3A D '=或37-(舍),故选B . 8、平移前后的图像的大小、形状、方向是不变的,故选D.9、由菱形的性质得28AO OC CO BO OD B O '''======,90AOB AO B ''∠=∠=oAO B ''∴V为直角三角形10AB '∴==故选C10、解:∵将点A′(﹣2,3)向右平移3个单位长度,∴得到(1,3),∵再向下平移2个单位长度,∴平移后对应的点A′的坐标是:(1,1).故答案为:(1,1). 11、解:∵将点(3,﹣2)先向右平移2个单位长度,∴得到(5,﹣2),∵再向上平移3个单位长度,∴所得点的坐标是:(5,1).故答案为:(5,1)12、解:由图可得,P 0P 1=1,P 0P 2=1,P 0P 3=1;P 0P 4=2,P 0P 5=2,P 0P 6=2;P 0P 7=3,P 0P 8=3,P 0P 9=3; ∵2018=3×672+2,∴点P 2018在正南方向上,∴P 0P 2018=672+1=673,故答案为:673.13、解:∵点B 的坐标为(0,2),将该三角形沿x 轴向右平移得到Rt △O′A′B′,此时点B′的坐标为(2,2),∴AA′=BB′=2,∵△OAB 是等腰直角三角形,∴A(,),∴AA′对应的高,∴线段OA 在平移过程中扫过部分的图形面积为2×=4.故答案为:4.二、对称 (一)轴对称 1、C2、解:A 、是轴对称图形,不是中心对称图形,故本选项错误, B 、是中心对称图形但不是轴对称图形,故本选项正确, C 、不是轴对称图形,也不是中心对称图形,故本选项错误, D 、是轴对称图形,也是中心对称图形,故本选项错误.故选:B .3、解:A 、不是轴对称图形,是中心对称图形,故此选项错误; B 、是轴对称图形,不是中心对称图形,故此选项错误; C 、是轴对称图形,也是中心对称图形,故此选项正确;D 、不是轴对称图形,是中心对称图形,故此选项错误;故选:C .4、解:A、既是中心对称图形也是轴对称图形,故此选项正确;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:A.5、解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.6、B7、解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.故选:D.8、解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值,其PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB==3,由S=AC•BD=AB•E′M得×6×6=3•E′M,解得:E′M=2,菱形ABCD即PE+PM的最小值是2,故选:C.9.解:∵在Rt△ABO中,∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(0,2),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+2,解得,,∴P(,),10、∵点A(1,-3x轴的对称点A'的坐标为(1,3)∴把(1,3 A11、A,B关于y故选B12、解:设△ABP中AB边上的高是h.∵S△PAB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=6,AE=2+2=4,∴BE===2,即PA+PB的最小值为2.故选:A.13、解:取点B关于x轴的对称点B′,则直线AB′交x轴于点M.点M即为所求.设直线AB′解析式为:y=kx+b 把点A(﹣1,﹣1)B′(2,﹣7)代入解得∴直线AB′为:y=﹣2x﹣3,当y=0时,x=﹣∴M坐标为(﹣,0)故答案为:(﹣,0)(二)折叠1、解:∵沿过点E的直线折叠,使点B与点A重合,∴∠B=∠EAF=45°,∴∠AFB=90°,∵点E为AB中点,∴EF=AB,EF=,∴AB=AC=3,∵∠BAC=90°,∴BC==3,故选:B.2、、解:连接AC、BD,如图,∵点O为菱形ABCD的对角线的交点,∴OC=AC=3,OD=BD=4,∠COD=90°,在Rt△COD中,CD==5,∵AB∥CD,∴∠MBO=∠NDO,在△OBM和△ODN中,∴△OBM≌△ODN,∴DN=BM,∵过点O折叠菱形,使B,B′两点重合,MN是折痕,∴BM=B'M=1,∴DN=1,∴CN=CD﹣DN=5﹣1=4.故选:D.3、解:连接AC交EF于点O,如图所示:∵四边形ABCD是矩形,∴AD=BC=8,∠B=∠D=90°,AC===4,∵折叠矩形使C与A重合时,EF⊥AC,AO=CO=AC=2,∴∠AOF=∠D=90°,∠OAF=∠DAC,∴则Rt△FOA∽Rt△ADC,∴=,即:=,解得:AF=5,∴D′F=DF=AD﹣AF=8﹣5=3,故选:C.4、解:由折叠知,A'E=AE,A'B=AB=6,∠BA'E=90°,∴∠BA'C=90°,在Rt△A'CB中,A'C==8,设AE=x,则A'E=x,∴DE=10﹣x,CE=A'C+A'E=8+x,在Rt△CDE中,根据勾股定理得,(10﹣x)2+36=(8+x)2,∴x=2,∴AE=2,在Rt△ABE中,根据勾股定理得,BE==2,∴sin∠ABE==,故答案为:.5、解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF=FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++.6、7.解:设BF=x,则FG=x,CF=4﹣x.。
图形的变换复习中考题选及答案
初三数学第二章图形与变换复习知识总结定义要素性质画图步骤坐标规律、平移不改变图1形的形状和大小,、首先作出平移1由平移得到的图形的方向。
全形与原来的图、确定平移的距21、左右平移,横、平移前后2。
等平离坐标变化,纵坐标在平面内,将一个图两个图形的对应点3、画出决定图形不变。
形沿某一个方向移动平移方向大小和形状的对应平行(或在的连线2一定的距离,这样的平移距离、上下平移,纵点,对应角和对应同一条直线上)且坐标变化,横坐标变换叫做图形的平移线段移相等。
不变。
、按原来图形的4、平移前后两个3连接方式补充完整平图形的对应线段图形。
行(或在同一条直线上)且相等。
、确定旋转中心1、旋转不改变图1及旋转方向、旋转形的形状和大小,平面上任意点角由旋转得到的图形(a,b、找出表示图形2)全形的与原来图1的关键点。
、按逆时针方向等。
旋转90度,得到旋、将图形的关键3在平面内,将一个图、在旋转前后的2(-b,a)旋转中心点与旋转中心连接形绕一个定点按某一对应两个图形中,2、按逆时针方向旋转方向起来,然后按旋转个方向转动一定的角点到旋转中心的距旋转180 旋转角度方向将它们旋转一度,这样的变换叫做度,得到离相等。
(-a,-b)定的角度得到此关图形的旋转转、任意一对对应33 键点的对应点。
、按逆时针方向点与旋转中心的连旋转、按原图形的顺4270度,得到相的所线成角都(b,-a应)对这连序接些旋转角度相等。
即点,所得图形就是等。
旋转后的图形。
以坐标原点为位似中心的位似变换的坐标规律:原来图 1、确定位似中心形上点的坐标为、分别连接位似2(x,y),所求图如果两个多边形是中心和能代表原图位形上点的坐标为位似图形,那么图形的关键点每对对应点所在直线(a, b), 所求图对应形上任意一对、根据位似比,3 交于一点的相似图形形与原来图形的位点到位似中心的距找出所作的位似图叫做位似图形似比为 k,那么:形的对应点离之比都等于对应似a、顺次连接上述4 边的比?k或-k x各点,得到放大或b缩小的图形?k或-k y潍坊六年中考题选——平移与旋转部分(2007—2012)1、(2007潍坊)如图,两个全等的长方形ABCD与CDEF,旋转长方形ABCD能和长方形CDEF重合,则可1 / 27A以作为旋转中心的点有() D.无数个个 2个 C.3A.1个 B.AOOAB△Rt △OAB,31)(绕2、(2008潍坊)如图,在平面直角坐标系中,,若将的坐标为的顶点3/2,3分之根号3??60BBB点到达.点的坐标是点,则点逆时针旋转后,y?AA B?B A x C O B9第题第7题第8题3cm2,AB?°,?BAC?30°ABC??90ABC△ABC Rt△,将中,20093、(潍坊)如图,已知????BCC、A、△AB AC经过的最短路线的绕顶点顺时针旋转至三点在同一条直线上,则点的位置,且D cm长度是(.)32π34.. C A.8 B38π. D3的三个顶点ABC个单位的正方形,△4、(2009?潍坊)在如图所示的方格纸中,每个小方格都是边长为1 90°后的△A′B′C′.绕点O逆时针旋转ABC都在格点上(每个小方格的顶点叫格点).画出△答案:1.A33)(, 2.233.D4.解:2 / 27平移、旋转、位似全国中考各省市2012年中考试卷选一.选择题(共11小题)第1题第2题第3题第4题1.(2012?江西)如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电D)线( A. a户最长 B. b户最长 C. c户最长 D.三户一样长2.(2012?义乌市)如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD 的周C)长为( A. 6 B. 8 C. 10 D. 123.(2012?青岛)如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A 的对应点B )A′的坐标是(A.(6,1) B.(0,1) C.(0,﹣3) D.(6,﹣3)4.(2012?绍兴)在如图所示的平面直角坐标系内,画在透明胶片上的?ABCD,点A的坐标是(0,B) A′(落在点5,﹣1)处,则此平移可以是(2).现将这张胶片平移,使点A 个单位个单位,再向下平移1. A 先向右平移5 个单位先向右平移 B. 5个单位,再向下平移3 先向右平移4个单位,再向下平移1个单位. C 个单位个单位,再向下平移3先向右平移D. 4C.(2012?本溪)下列各网格中的图形是用其图形中的一部分平移得到的是(5 )D B. A .C..3 / 27第6题第7题第8题6.(2012?淄博)如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕C)上,则的值为(的对应点N恰好落在OA 点C逆时针旋转75°,点ED... B. C A7.(2012?泰安)如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形A)绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为(OABCA. B. C.(2,﹣2) D.(,﹣)(﹣,)(,﹣)8.(2012?牡丹江)如图,A(,1),B(1,).将△AOB绕点O旋转150°得到△A′OB′,则此时点A的对应点A′的坐标为()A. B.(﹣2,0)(﹣,﹣1)C.(﹣1,﹣)或(﹣2,0)D.(﹣,﹣1)或(﹣2,0)第9题第10题第11题9.(2012?玉林)如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是()A. B. C. D.10.(2012?钦州)图中两个四边形是位似图形,它们的位似中心是()A.点M B.点N C.点O D.点P11.(2012?毕节地区)如图,在平面直角坐标系中,以原点O为位中心,将△ABO扩大到原来的2倍,得到△A′B′O.若点A的坐标是(1,2),则点A′的坐标是()A.(2,4) B.(﹣1,﹣2) C.(﹣2,﹣4) D.(﹣2,﹣1)二.填空题(共13小题)4 / 27第12题第13题第14题第16题12.(2012莆田)如图,△A′B′C′是由△ABC沿射线AC方向平移2cm得到,若AC=3cm,则A′C=__cm.13.(2012?济南)如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于 _________ .14.(2012?娄底)如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至AB,A、B 的1111坐标分别为(2,a)、(b,3),则a+b= _________ .15.(2012?鞍山)在平面直角坐标系中,将点P(﹣1,4)向右平移2个单位长度后,再向下平移3个单位长度,得到点P,则点P的坐标为 _________ .1116.(2012?玉林)如图,两块相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一块绕直角顶点B逆时针旋转到△A′BC′的位置,点C′在AC上,A′C′与AB相交于点D,则C′D=_________ .第17题第18题第19题第20题17.(2012?无锡)如图,△ABC中,∠C=30°.将△ABC绕点A顺时针旋转60°得到△ADE,AE 与BC交于F,则∠AFB= _________ °.18.(2012?青岛)如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C逆时针旋转至△A′B′C′,使得点A′恰好落在AB上,连接BB′,则BB′的长度为_________ .19.(2012?六盘水)两块大小一样斜边为4且含有30°角的三角板如图水平放置.将△CDE绕C 点按逆时针方向旋转,当E点恰好落在AB上时,△CDE旋转了_度,线段CE旋转过程中扫过的面积为 _____.20.(2012?吉林)如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=10,BD=9,则△AED的周长是 _________ .第21题第22题第23题第24题5 / 2721.(2012?哈尔滨)如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C= _﹣x+3与x轴、y轴分别交于A、B22.(2012?钦州)如图,直线y=两点,把△AOB绕点A旋转90°后得到△AO′B′,则点B′的坐标是 _________ .23.(2012?鄂州)已知,如图,△OBC中是直角三角形,OB与x轴正半轴重合,∠OBC=90°,且OB=1,BC=,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的m倍,使OB=OC,得到△OBC,将111△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的m倍,使OB=OC,得到△OBC,…,如此继续221121下去,得到△OBC,则m= _________ .点C的坐标是_________ .20122012201224.(2012?威海)如图,在平面直角坐标系中,△ABC的顶点坐标分别为(4,0),(8,2),(6,4).已知△ABC的两个顶点的坐标为(1,3),(2,5),若△ABC与△ABC位似,则△ABC的第三111111111个顶点的坐标为_________ .三.解答题(共5小题)第25题第26题第27题25.(2012?莱芜)如图1,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转α角(0°<α<180°),得到△AB′C′(如图2).(1)探究DB′与EC′的数量关系,并给予证明;(2)当DB′∥AE时,试求旋转角α的度数.26.(2012?武汉)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,3),(﹣4,1),先将线段AB沿一确定方向平移得到线段AB,点A的对应点为A,点B1的坐标为(0,2),在将线段AB绕11111远点O顺时针旋转90°得到线段AB,点A1的对应点为点A.222(1)画出线段AB,AB;2112(2)直接写出在这两次变换过程中,点A经过A到达A的路径长.2127.(2012?丹东)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)(1)画出△ABC向下平移4个单位得到的△ABC,并直接写出C点的坐标;1111(2)以点B为位似中心,在网格中画出△ABC,使△ABC与△ABC位似,且位似比为2:1,并直接写出2222C点的坐标及△ABC的面积.2226 / 27第28题第29题28.(2012?桂林)如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).(1)作出与△ABC关于x轴对称的△ABC,并写出A、B、C的坐标;111111=.,使为位似中心,在原点的另一侧画出△ABC (2)以原点O22229.(2012?锦州)如图所示,图中的小方格都是边长为1的正方形,△ABC与△A'B'C'是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)直接写出△ABC与△A′B′C′的位似比;(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.平移、旋转、位似全国中考各省市2012年中考试卷选参考答案与试卷解读一.选择题(共11小题)1.(2012?江西)如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A. a户最长 B. b户最长 C. c户最长 D.三户一样长考点:生活中的平移现象。
【备战2023中考】中考数学一轮复习基础练——图形的变换(含答案)
【备战2023中考】中考数学一轮复习基础练——图形的变换时间:45分钟满分:80分一、选择题(每题4分,共32分)1.下列图形中,既是中心对称图形又是轴对称图形的是()2.如图,将△ABC沿BC方向平移1 cm得到对应的△A′B′C′.若B′C=2 cm,则BC′的长是()A.2 cm B.3 cm C.4 cm D.5 cm(第2题)(第3题)3.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1-∠2的度数是()A.32°B.45°C.60°D.64°4.几何体的三视图如图所示,这个几何体是()(第4题)(第5题)5.如图,△ABC与△DEF位似,点O为位似中心,已知OA∶OD=1∶2,则△ABC与△DEF的周长比为()A.1∶2 B.1∶3 C.1∶4 D.1∶56.如图,在等腰直角三角形ABC中,∠ACB=90°,点D为△ABC内一点,将线段CD绕点C 逆时针旋转90°后得到CE ,连接BE ,若∠DAB =15°,则∠ABE =( ) A .75° B .78° C .80°D .92°(第6题) (第7题)7.如图,在矩形ABCD 中,AB =5,AD =3,点E 为BC 边上一点,把△CDE 沿DE 翻折,点C 恰好落在AB 边上的点F 处,则CE 的长是( ) A .1 B.43 C.32D.538.如图,在平面直角坐标系中,点A ,B 的坐标分别为(0,2),(-1,0),将△ABO 绕点O 顺时针旋转得到△A 1B 1O ,若AB ⊥OB 1,则点A 1的坐标为( )(第8题)A.⎝ ⎛⎭⎪⎫255,455B.⎝ ⎛⎭⎪⎫455,255 C.⎝ ⎛⎭⎪⎫23,43 D.⎝ ⎛⎭⎪⎫45,85 二、填空题(每题4分,共16分)9.若点A 与点B (2,-3)关于y 轴对称,则点A 的坐标为________.10.如图,这个图案绕着它的中心旋转α(0°<α<360°)后能够与它本身重合,则α可以为________.(写出一个即可)(第10题)11.利用尺规作图,如图,作△ABC 边BC 上的高正确的是________.(第11题)12.在平面直角坐标系中,有A(3,-3),B(5,3)两点,现另取一点C(1,n),当AC+BC的值最小时,n的值为________.三、解答题(共32分)13.(14分)如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,点A,B,C的坐标分别为A(1,2),B(3,1),C(2,3),先以原点O为位似中心在第三象限内画一个△A1B1C1,使它与△ABC位似,且相似比为21,然后再把△ABC绕原点O逆时针旋转90°得到△A2B2C2.(1)画出△A1B1C1,并直接写出点A1的坐标;(2)画出△A2B2C2,并求出在旋转过程中,点A到点A2所经过的路径长.(第13题)14.(18分)如图,在△ABC中,∠ABC=135°,AC=3,现将△ABC绕点A顺时针旋转90°得到△ADE,再将线段ED绕点E顺时针旋转90°得到线段EF,连接BD,BF,DF.(第14题)(1)求证:B,D,E三点共线;(2)求BF的长.答案一、1.A 2.C 3.D 4.C 5.A 6.A 7.D 8.A 二、9.(-2,-3) 10.60°(答案不唯一) 11.② 12.-1三、13.解:(1)如图所示,△A 1B 1C 1即为所求,点A 1的坐标为(-2,-4).(第13题)(2)如图所示,△A 2B 2C 2即为所求.∵点A 的坐标为(1,2),故由勾股定理得OA =12+22=5, ∴点A 到点A 2所经过的路径长为90×π×5180=5π2.14.(1)证明:由旋转性质可知△ABC ≌△ADE ,AB =AD ,BC =DE =FE ,∠BAD =∠DEF=90°, ∴∠ADB =45°.∵∠ADE =∠ABC =135°,∴∠ADB +∠ADE =45°+135°=180°, 即B ,D ,E 三点共线.(2)解:由(1)易得△ABD 和△EDF 都是等腰直角三角形, ∴BD AB =DFDE = 2.∵DE =BC ,∴BD AB =DFBC= 2.由(1)可知B ,D ,E 三点共线,∠EDF =45°, ∴∠BDF =180°-∠EDF =180°-45°=135°, ∴∠BDF =∠ABC , ∴△ABC ∽△BDF , ∴BF AC =BDAB = 2. ∵AC =3,∴BF =3 2.。
辽宁省中考数学试题分类汇编)——图形的变换(含答案)
辽宁省数学中考试题分类——图形的变换一.轴对称图形(共1小题)1.(2019•铁岭)下面四个图形中,属于轴对称图形的是()A.B.C.D.二.关于x轴、y轴对称的点的坐标(共1小题)2.(2020•大连)平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)三.轴对称-最短路线问题(共2小题)3.(2020•鞍山)如图,在平面直角坐标系中,已知A(3,6),B(﹣2,2),在x轴上取两点C,D(点C在点D左侧),且始终保持CD=1,线段CD在x轴上平移,当AD+BC 的值最小时,点C的坐标为.4.(2020•营口)如图,△ABC为等边三角形,边长为6,AD⊥BC,垂足为点D,点E和点F分别是线段AD和AB上的两个动点,连接CE,EF,则CE+EF的最小值为.四.翻折变换(折叠问题)(共3小题)5.(2020•盘锦)如图,在矩形ABCD中,AB=1,BC=2,点E和点F分别为AD,CD上的点,将△DEF沿EF翻折,使点D落在BC上的点M处,过点E作EH∥AB交BC于点H,过点F作FG∥BC交AB于点G.若四边形ABHE与四边形BCFG的面积相等,则CF的长为.6.(2020•葫芦岛)一张菱形纸片ABCD的边长为6cm,高AE等于边长的一半,将菱形纸片沿直线MN折叠,使点A与点B重合,直线MN交直线CD于点F,则DF的长为cm.7.(2020•沈阳)如图,在矩形ABCD中,AB=6,BC=8,对角线AC,BD相交于点O,点P为边AD上一动点,连接OP,以OP为折痕,将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F.若△PDF为直角三角形,则DP的长为.五.旋转的性质(共2小题)8.(2020•大连)如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°9.(2020•阜新)如图,在△ABC中,∠ABC=90°,AB=BC=2.将△ABC绕点B逆时针旋转60°,得到△A1BC1,则AC边的中点D与其对应点D1的距离是.六.作图-旋转变换(共1小题)10.(2020•阜新)如图,△ABC 在平面直角坐标系中,顶点的坐标分别为A (4,4),B (1,1),C (4,1).(1)画出与△ABC 关于y 轴对称的△A 1B 1C 1;(2)将△ABC 绕点O 1顺时针旋转90°得到△A 2B 2C 2,弧AA 2是点A 所经过的路径,则旋转中心O 1的坐标为 ;(3)求图中阴影部分的面积(结果保留π).七.几何变换综合题(共3小题)11.(2020•锦州)已知△AOB 和△MON 都是等腰直角三角形(√22OA <OM =ON ),∠AOB =∠MON =90°.(1)如图1:连AM ,BN ,求证:△AOM ≌△BON ; (2)若将△MON 绕点O 顺时针旋转,①如图2,当点N 恰好在AB 边上时,求证:BN 2+AN 2=2ON 2;②当点A,M,N在同一条直线上时,若OB=4,ON=3,请直接写出线段BN的长.12.(2020•葫芦岛)在等腰△ADC和等腰△BEC中,∠ADC=∠BEC=90°,BC<CD,将△BEC绕点C逆时针旋转,连接AB,点O为线段AB的中点,连接DO,EO.(1)如图1,当点B旋转到CD边上时,请直接写出线段DO与EO的位置关系和数量关系;(2)如图2,当点B旋转到AC边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由;(3)若BC=4,CD=2√6,在△BEC绕点C逆时针旋转的过程中,当∠ACB=60°时,请直接写出线段OD的长.13.(2020•沈阳)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,①求证:P A=DC;②求∠DCP的度数;(2)如图2,当α=120°时,请直接写出P A和DC的数量关系.(3)当α=120°时,若AB=6,BP=√31,请直接写出点D到CP的距离为.八.平行线分线段成比例(共1小题)14.(2020•营口)如图,在△ABC中,DE∥AB,且CDBD =32,则CECA的值为()A .35B .23C .45D .32九.相似三角形的性质(共1小题)15.(2019•沈阳)已知△ABC ∽△A 'B 'C ',AD 和A 'D '是它们的对应中线,若AD =10,A 'D '=6,则△ABC 与△A 'B 'C '的周长比是( ) A .3:5B .9:25C .5:3D .25:9一十.相似三角形的判定与性质(共7小题)16.(2019•鞍山)如图,正方形ABCD 和正方形CGFE 的顶点C ,D ,E 在同一条直线上,顶点B ,C ,G 在同一条直线上.O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于点H ,连接FH 交EG 于点M ,连接OH .以下四个结论:①GH ⊥BE ;②△EHM ∽△FHG ;③BC CG=√2−1;④S △HOM S △HOG=2−√2,其中正确的结论是( )A .①②③B .①②④C .①③④D .②③④17.(2019•营口)如图,在△ABC 中,DE ∥BC ,AD AB=23,则S △ADE S 四边形DBCE的值是( )A .45B .1C .23D .4918.(2020•锦州)如图,在△ABC 中,D 是AB 中点,DE ∥BC ,若△ADE 的周长为6,则△ABC 的周长为 .19.(2020•大连)如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为.20.(2020•鞍山)如图,在菱形ABCD中,∠ADC=60°,点E,F分别在AD,CD上,且AE=DF,AF与CE相交于点G,BG与AC相交于点H.下列结论:①△ACF≌△CDE;②CG2=GH•BG;③若DF=2CF,则CE=7GF;④S四边形ABCG=√34BG2.其中正确的结论有.(只填序号即可)21.(2020•锦州)如图,▱ABCD的对角线AC,BD交于点E,以AB为直径的⊙O经过点E,与AD交于点F,G是AD延长线上一点,连接BG,交AC于点H,且∠DBG=12∠BAD.(1)求证:BG是⊙O的切线;(2)若CH=3,tan∠DBG=12,求⊙O的直径.22.(2020•朝阳)如图,以AB为直径的⊙O经过△ABC的顶点C,过点O作OD∥BC交⊙O于点D,交AC于点F,连接BD交AC于点G,连接CD,在OD的延长线上取一点E ,连接CE ,使∠DEC =∠BDC . (1)求证:EC 是⊙O 的切线;(2)若⊙O 的半径是3,DG •DB =9,求CE 的长.一十一.位似变换(共2小题)23.(2019•盘锦)如图,点P (8,6)在△ABC 的边AC 上,以原点O 为位似中心,在第一象限内将△ABC 缩小到原来的12,得到△A ′B ′C ′,点P 在A ′C ′上的对应点P ′的坐标为( )A .(4,3)B .(3,4)C .(5,3)D .(4,4)24.(2020•盘锦)如图,△AOB 三个顶点的坐标分别为A (5,0),O (0,0),B (3,6),以点O 为位似中心,相似比为23,将△AOB 缩小,则点B 的对应点B '的坐标是 .一十二.作图-位似变换(共2小题)25.(2020•朝阳)如图所示的平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣3,2),B (﹣1,3),C (﹣1,1),请按如下要求画图:(1)以坐标原点O 为旋转中心,将△ABC 顺时针旋转90°,得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)以坐标原点O为位似中心,在x轴下方,画出△ABC的位似图形△A2B2C2,使它与△ABC的位似比为2:1.26.(2020•丹东)如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,点A,B,C的坐标分别为A(1,2),B(3,1),C(2,3),先以原点O为位似中心在第三象限内画一个△A1B1C1.使它与△ABC位似,且相似比为2:1,然后再把△ABC绕原点O逆时针旋转90°得到△A2B2C2.(1)画出△A1B1C1,并直接写出点A1的坐标;(2)画出△A2B2C2,直接写出在旋转过程中,点A到点A2所经过的路径长.一十三.相似形综合题(共1小题)27.(2020•营口)如图,在矩形ABCD中,AD=kAB(k>0),点E是线段CB延长线上的一个动点,连接AE,过点A作AF⊥AE交射线DC于点F.(1)如图1,若k=1,则AF与AE之间的数量关系是;(2)如图2,若k≠1,试判断AF与AE之间的数量关系,写出结论并证明;(用含k的式子表示)(3)若AD=2AB=4,连接BD交AF于点G,连接EG,当CF=1时,求EG的长.一十四.解直角三角形的应用(共1小题)28.(2020•鞍山)图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN为立柱的一部分,灯臂AC,支架BC与立柱MN分别交于A,B两点,灯臂AC与支架BC交于点C,已知∠MAC=60°,∠ACB=15°,AC=40cm,求支架BC的长.(结果精确到1cm,参考数据:√2≈1.414,√3≈1.732,√6≈2.449)一十五.解直角三角形的应用-坡度坡角问题(共1小题)29.(2020•阜新)如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角α=20°,两树间的坡面距离AB=5m,则这两棵树的水平距离约为m(结果精确到0.1m,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364).一十六.解直角三角形的应用-仰角俯角问题(共2小题)30.(2020•盘锦)如图,某数学活动小组要测量建筑物AB的高度,他们借助测角仪和皮尺进行了实地测量,测量结果如下表.测量项目测量数据测角仪到地面的距离CD=1.6m点D到建筑物的距离BD=4m从C处观测建筑物顶部A的仰角∠ACE=67°从C处观测建筑物底部B的俯角∠BCE=22°请根据需要,从上面表格中选择3个测量数据,并利用你选择的数据计算出建筑物AB(结果精确到0.1米,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36.sin22°的高度.≈0.37,cos22°≈0.93,tan22°≈0.40)(选择一种方法解答即可)31.(2020•葫芦岛)如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB,在观测点C处测得大桥主架顶端A的仰角为30°,测得大桥主架与水面交汇点B的俯角为14°,观测点与大桥主架的水平距离CM为60米,且AB垂直于桥面.(点A,B,C,M在同一平面内)(1)求大桥主架在桥面以上的高度AM;(结果保留根号)(2)求大桥主架在水面以上的高度AB.(结果精确到1米)(参考数据sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,√3≈1.73)一十七.解直角三角形的应用-方向角问题(共5小题)32.(2020•大连)如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m ,则图书馆A 到公路的距离AB 为( )A .100mB .100√2mC .100√3mD .200√33m33.(2020•朝阳)为了丰富学生的文化生活,学校利用假期组织学生到红色文化基地A 和人工智能科技馆C 参观学习如图,学校在点B 处,A 位于学校的东北方向,C 位于学校南偏东30°方向,C 在A 的南偏西15°方向(30+30√3)km 处.学生分成两组,第一组前往A 地,第二组前往C 地,两组同学同时从学校出发,第一组乘客车,速度是40km /h ,第二组乘公交车,速度是30km /h ,两组同学到达目的地分别用了多长时间?哪组同学先到达目的地?请说明理由(结果保留根号).34.(2020•锦州)如图,某海岸边有B ,C 两码头,C 码头位于B 码头的正东方向,距B 码头40海里.甲、乙两船同时从A 岛出发,甲船向位于A 岛正北方向的B 码头航行,乙船向位于A 岛北偏东30°方向的C 码头航行,当甲船到达距B 码头30海里的E 处时,乙船位于甲船北偏东60°方向的D 处,求此时乙船与C 码头之间的距离.(结果保留根号)35.(2020•丹东)如图,小岛C和D都在码头O的正北方向上,它们之间距离为6.4km,一艘渔船自西向东匀速航行,行驶到位于码头O的正西方向A处时,测得∠CAO=26.5°,渔船速度为28km/h,经过0.2h,渔船行驶到了B处,测得∠DBO=49°,求渔船在B处时距离码头O有多远?(结果精确到0.1km)(参考数据:sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50,sin49°≈0.75,cos49°≈0.66,tan49°≈1.15)36.(2020•营口)如图,海中有一个小岛A,它周围10海里内有暗礁,渔船跟踪鱼群由东向西航行,在B点测得小岛A在北偏西60°方向上,航行12海里到达C点,这时测得小岛A在北偏西30°方向上,如果渔船不改变方向继续向西航行,有没有触礁的危险?并说明理由.(参考数据:√3≈1.73)一十八.简单几何体的三视图(共1小题)37.(2020•阜新)下列立体图形中,左视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球一十九.简单组合体的三视图(共9小题)38.(2020•盘锦)如图中的几何体是由六个完全相同的小正方体组成的,它的主视图是()A.B.C.D.39.(2020•锦州)如图,是由五个相同的小立方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.40.(2020•沈阳)如图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.41.(2020•营口)如图所示的几何体是由四个完全相同的小正方体搭成的,它的俯视图是()A.B.C.D.42.(2020•辽阳)如图是由一个长方体和一个圆锥组成的几何体,它的主视图是()A.B.C.D.43.(2019•铁岭)如图所示几何体的主视图是()A.B.C.D.44.(2019•盘锦)如图,是由4个大小相同的正方体组成的几何体,该几何体的俯视图是()A.B.C.D.45.(2019•朝阳)如图是由5个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.46.(2019•沈阳)如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是()A.B.C.D.2019年、2020年 辽宁省数学中考试题分类(12)——图形的变换参考答案与试题解析一.轴对称图形(共1小题)1.【解答】解:A 、不属于轴对称图形,故此选项错误; B 、不属于轴对称图形,故此选项错误; C 、属于轴对称图形,故此选项正确; D 、不属于轴对称图形,故此选项错误; 故选:C .二.关于x 轴、y 轴对称的点的坐标(共1小题)2.【解答】解:点P (3,1)关于x 轴对称的点的坐标是(3,﹣1) 故选:B .三.轴对称-最短路线问题(共2小题)3.【解答】解:把A (3,6)向左平移1得A ′(2,6),作点B 关于x 轴的对称点B ′,连接B ′A ′交x 轴于C ,在x 轴上取点D (点C 在点D 左侧),使CD =1,连接AD , 则AD +BC 的值最小, ∵B (﹣2,2), ∴B ′(﹣2,﹣2),设直线B ′A ′的解析式为y =kx +b , ∴{−2k +b =−22k +b =6, 解得:{k =2b =2,∴直线B ′A ′的解析式为y =2x +2, 当y =0时,x =﹣1, ∴C (﹣1,0), 故答案为:(﹣1,0).4.【解答】解:过C作CF⊥AB交AD于E,则此时,CE+EF的值最小,且CE+EF的最小值=CF,∵△ABC为等边三角形,边长为6,∴BF=12AB=12×6=3,∴CF=2−BF2=√62−32=3√3,∴CE+EF的最小值为3√3,故答案为:3√3.四.翻折变换(折叠问题)(共3小题)5.【解答】解:设CF=x,CH=y,则BH=2﹣y,∵四边形ABHE与四边形BCFG的面积相等,∴2﹣y=2x,∴y=2﹣2x,由折叠知,MF=DF=1﹣x,EM=ED=CH=y=2﹣2x,∠EMF=∠D=90°,∴∠EMH+∠CMF=90°,∵∠C=90°,∴∠CMF+∠CFM=90°,∴∠EMH=∠MFC,∵∠EHM=∠C=90°,∴△EMH ∽△MFC , ∴EM MF=EH MC ,即2−2x 1−x=√(1−x)2−x 2,解得,x =38.经检验,x =38是原方程的解, 故答案为:38.6.【解答】解:①根据题意画出如图1:∵菱形纸片ABCD 的边长为6cm , ∴AB =BC =CD =AD =6, ∵高AE 等于边长的一半, ∴AE =3,∵sin ∠B =AEAB =12, ∴∠B =30°,将菱形纸片沿直线MN 折叠,使点A 与点B 重合, ∴BH =AH =3, ∴BG =BHcos30°=2√3,∴CG =BC ﹣BG =6﹣2√3, ∵AB ∥CD ,∴∠GCF =∠B =30°,∴CF =CG •cos30°=(6﹣2√3)×√32=3√3−3, ∴DF =DC +CF =6+3√3−3=(3√3+3)cm ; ②如图2,BE =AE =3, 同理可得DF =3√3−3.综上所述:则DF 的长为(3√3+3)或(3√3−3)cm . 故答案为:(3√3+3)或(3√3−3).7.【解答】解:如图1,当∠DPF =90°时,过点O 作OH ⊥AD 于H ,∵四边形ABCD 是矩形,∴BO =OD ,∠BAD =90°=∠OHD ,AD =BC =8, ∴OH ∥AB , ∴OH AB=HD AD=OD BD=12,∴OH =12AB =3,HD =12AD =4,∵将△AOP 折叠,点A 的对应点为点E ,线段PE 与OD 相交于点F , ∴∠APO =∠EPO =45°, 又∵OH ⊥AD ,∴∠OPH =∠HOP =45°, ∴OH =HP =3, ∴PD =HD ﹣HP =1; 当∠PFD =90°时,∵AB =6,BC =8,∴BD =√AB 2+AD 2=√36+64=10,∵四边形ABCD 是矩形,∴OA =OC =OB =OD =5,∴∠DAO =∠ODA ,∵将△AOP 折叠,点A 的对应点为点E ,线段PE 与OD 相交于点F ,∴AO =EO =5,∠PEO =∠DAO =∠ADO ,又∵∠OFE =∠BAD =90°,∴△OFE ∽△BAD ,∴OF AB =OE BD , ∴OF 6=510,∴OF =3,∴DF =2,∵∠PFD =∠BAD ,∠PDF =∠ADB ,∴△PFD ∽△BAD ,∴PD BD =DF AD , ∴PD 10=28,∴PD =52,综上所述:PD =52或1,故答案为52或1. 五.旋转的性质(共2小题)8.【解答】解:∵∠ACB =90°,∠ABC =40°,∴∠CAB=90°﹣∠ABC=90°﹣40°=50°,∵将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,∴∠A′BA=∠ABC=40°,A′B=AB,∴∠BAA′=∠BA′A=12(180°﹣40°)=70°,∴∠CAA'=∠CAB+∠BAA′=50°+70°=120°.故选:D.9.【解答】解:连接BD、BD1,如图,∵∠ABC=90°,AB=BC=2,∴AC=√22+22=2√2,∵D点为AC的中点,∴BD=12AC=√2,∵△ABC绕点B逆时针旋转60°,得到△A1BC1,∴BD1=BD,∠DBD1=60°,∴△BDD1为等边三角形,∴DD1=BD=√2.故答案为√2.六.作图-旋转变换(共1小题)10.【解答】解:(1)如图,△A1B1C1为所作;(2)旋转中心O1的坐标为(2,0),故答案为(2,0);(3)设旋转半径为r,则r2=22+42=20,∴阴影部分的图形面积为:S阴影=14⋅πr2−12×2×4−12×2×2+12×1×1=5π−112.七.几何变换综合题(共3小题)11.【解答】(1)证明:如图1中,∵∠AOB=∠MON=90°,∴∠AOM=∠BON,∵AO=BO,OM=ON,∴△AOM≌△BON(SAS).(2)①证明:如图2中,连接AM.同法可证△AOM≌△BON,∴AM=BN,∠OAM=∠B=45°,∵∠OAB=∠B=45°,∴∠MAN=∠OAM+∠OAB=90°,∴MN2=AN2+AM2,∵△MON是等腰直角三角形,∴MN2=2ON2,∴NB2+AN2=2ON2.②如图3﹣1中,设OA交BN于J,过点O作OH⊥MN于H.∵△AOM≌△BON,∴AM=BN,∠OAM=∠OBN,∵∠AJN=∠BJO,∴∠ANJ=∠JOB=90°,∵OM=ON=3,∠MON=90°,OH⊥MN,∴MN=3√2,MH=HN═OH=3√2 2,∴AH=√OA2−OH2=42−(322)2=√462,∴BN=AM=MH+AH=√46+3√22.如图3﹣2中,同法可证AM=BN=√46−3√22.12.【解答】解:(1)DO⊥EO,DO=EO;理由:当点B旋转到CD边上时,点E必在边AC上,∴∠AEB=∠CEB=90°,在Rt△ABE中,点O是AB的中点,∴OE=OA=12AB,∴∠BOE=2∠BAE,在Rt△ABD中,点O是AB的中点,∴OD=OA=12AB,∴∠DOE=2∠BAD,∴OD=OE,∵等腰△ADC,且∠ADC=90°,∴∠DAC=45°,∴∠DOE=∠BOE+∠DOE=2∠BAE+2∠BAD=2(∠BAE+∠DAE)=2∠DAC=90°,∴OD⊥OE;(2)仍然成立,理由:如图2,延长EO到点M,使得OM=OE,连接AM,DM,DE,∵O是AB的中点,∴OA=OB,∵∠AOM=∠BOE,∴△AOM≌△BOE(SAS),∴∠MAO=∠EBO,MA=EB,∵△ACD和△CBE是等腰三角形,∠ADC=∠CEB=90°,∴∠CAD=∠ACD=∠EBC=∠BCE=45°,∵∠OBE=180°﹣∠EBC=135°,∴∠MAO=135°,∴∠MAD=∠MAO﹣∠DAC=90°,∵∠DCE=∠DCA+∠BCE=90°,∴∠MAD=∠DCE,∵MA=EB,EB=EC,∴MA=EC,∵AD=DC,∴△MAD≌△ECD,∴MD=ED,∠ADM=∠CDE,∵∠CDE+∠ADE=90°,∴∠ADM+∠ADE=90°,∴∠MDE=90°,∵MO=EO,MD=DE,∴OD=12ME,OD⊥ME,∵OE=12 ME,∴OD=OE,OD⊥OE;(3)①当点B在AC左侧时,如图3,延长EO到点M,使得OM=OE,连接AM,DM,DE,同(2)的方法得,△OBE≌△OAM(SAS),∴∠OBE=∠OAM,OM=OE,BE=AM,∵BE=CE,∴AM=CE,在四边形ABECD中,∠ADC+∠DCE+∠BEC+∠OBE+∠BAD=540°,∵∠ADC=∠BEC=90°,∴∠DCE=540°﹣90°﹣90°﹣∠OBE﹣∠BAD=360°﹣∠OBE=360°﹣∠OAM﹣∠BAD,∵∠DAM+∠OAM+∠BAD=360°,∴∠DAM=360°﹣∠OAM﹣∠BAD,∴∠DAM=∠DCE,∵AD=CD,∴△DAM≌△DCE(SAS),∴DM=DE,∠ADM=∠CDE,∴∠EDM=∠ADM+∠ADE=∠CDE+∠ADE=∠ADC=90°,∵OM=OE,∴OD=OE=12ME,∠DOE=90°,在Rt△BCE中,CE=√22BC=2√2,过点E作EH⊥DC交DC的延长线于H,在Rt△CHE中,∠ECH=180°﹣∠ACD﹣∠ACB﹣∠BCE=180°﹣45°﹣60°﹣45°=30°,∴EH=12CE=√2,根据勾股定理得,CH=√3EH=√6,∴DH=CD+CH=3√6,在Rt△DHE中,根据勾股定理得,DE=√EH2+DH2=2√14,∴OD=√22DE=2√7,②当点B在AC右侧时,如图4,同①的方法得,OD=OE,∠DOE=90°,连接DE,过点E作EH⊥CD于H,在Rt△EHC中,∠ECH=30°∴EH=12CE=√2,根据勾股定理得,CH=√6,∴DH=CD﹣CH=√6,在Rt△DHE中,根据勾股定理得,DE=2√2,∴OD=√22DE=2,即:线段OD的长为2或2√7.13.【解答】(1)①证明:如图1中,∵将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,∴PB=PD,∵AB =AC ,PB =PD ,∠BAC =∠BPD =60°,∴△ABC ,△PBD 是等边三角形,∴∠ABC =∠PBD =60°,∴∠PBA =∠DBC ,∵BP =BD ,BA =BC ,∴△PBA ≌△DBC (SAS ),∴P A =DC .②解:如图1中,设BD 交PC 于点O .∵△PBA ≌△DBC ,∴∠BP A =∠BDC ,∵∠BOP =∠COD ,∴∠OBP =∠OCD =60°,即∠DCP =60°.(2)解:结论:CD =√3P A .理由:如图2中,∵AB =AC ,PB =PD ,∠BAC =∠BPD =120°,∴BC =2•AB •cos30°=√3BA ,BD ═2BP •cos30°=√3BP ,∴BC BA =BD BP =√3,∵∠ABC =∠PBD =30°,∴∠ABP =∠CBD ,∴△CBD ∽△ABP ,∴CD PA =BC AB =√3,∴CD =√3P A .(3)过点D 作DM ⊥PC 于M ,过点B 作BN ⊥CP 交CP 的延长线于N . 如图3﹣1中,当△PBA 是钝角三角形时,在Rt △ABN 中,∵∠N =90°,AB =6,∠BAN =60°,∴AN =AB •cos60°=3,BN =AB •sin60°=3√3,∵PN =√PB 2−BN 2=√31−27=2,∴P A =3﹣2=1,由(2)可知,CD =√3P A =√3,∵∠BP A =∠BDC ,∴∠DCA =∠PBD =30°,∵DM ⊥PC ,∴DM =12CD =√32如图3﹣2中,当△ABP 是锐角三角形时,同法可得P A =2+3=5,CD =5√3,DM =12CD =5√32,综上所述,满足条件的DM 的值为√32或5√32. 故答案为√32或5√32. 八.平行线分线段成比例(共1小题)14.【解答】解:∵DE ∥AB ,∴CE AE =CD BD =32, ∴CE CA 的值为35,故选:A .九.相似三角形的性质(共1小题)15.【解答】解:∵△ABC ∽△A 'B 'C ',AD 和A 'D '是它们的对应中线,AD =10,A 'D '=6, ∴△ABC 与△A 'B 'C '的周长比=AD :A ′D ′=10:6=5:3.故选:C .一十.相似三角形的判定与性质(共7小题)16.【解答】解:如图,∵四边形ABCD 和四边形CGFE 是正方形,∴BC =CD ,CE =CG ,∠BCE =∠DCG ,在△BCE 和△DCG 中,{BC =CD ∠BCE =∠DCG CE =CG∴△BCE ≌△DCG (SAS ),∴∠BEC =∠BGH ,∵∠BGH +∠CDG =90°,∠CDG =∠HDE ,∴∠BEC +∠HDE =90°,∴GH ⊥BE .故①正确;∵△EHG 是直角三角形,O 为EG 的中点,∴OH =OG =OE ,∴点H 在正方形CGFE 的外接圆上,∵EF =FG ,∴∠FHG =∠EHF =∠EGF =45°,∠HEG =∠HFG ,∴△EHM ∽△FHG ,故②正确;∵△BGH ≌△EGH ,∴BH =EH ,又∵O 是EG 的中点,∴HO ∥BG ,∴△DHN ∽△DGC ,∴DN DC =HN CG ,设EC 和OH 相交于点N .设HN =a ,则BC =2a ,设正方形ECGF 的边长是2b ,则NC =b ,CD =2a ,∴b−2a 2a =a 2b ,即a 2+2ab ﹣b 2=0,解得:a =(﹣1+√2)b ,或a =(﹣1−√2)b (舍去),则2a 2b =√2−1, ∴BC CG =√2−1,故③正确;∵△BGH ≌△EGH ,∴EG =BG ,∵HO 是△EBG 的中位线,∴HO =12BG ,∴HO =12EG ,设正方形ECGF 的边长是2b ,∴EG =2√2b ,∴HO =√2b ,∵OH ∥BG ,CG ∥EF ,∴OH ∥EF ,∴△MHO ∽△MFE ,∴OM EM =OH EF =√2b 2b =√22, ∴EM =√2OM ,∴OM OE =(1+√2)OM =1+√2=√2−1, ∴S △HOMS △HOE =√2−1,∵EO =GO ,∴S △HOE =S △HOG ,∴S △HOMS △HOG =√2−1,故④错误,故选:A .17.【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴S △ADE S △ABC =(AD AB )2=49, ∴S △ADE S 四边形DBCE =45,故选:A .18.【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∵D 是AB 的中点,∴AD AB =12, ∴△ADE 的周长△ABC 的周长=12 ∵△ADE 的周长为6,∴△ABC 的周长为12,故答案为:12.19.【解答】解:在矩形 中,AD ∥BC ,∴△DEF ∽△BCF ,∴DE BC =DF BF ,∵BD =√BC 2+CD 2=10,BF =y ,DE =x ,∴DF =10﹣y ,∴x 8=10−y y ,化简得:y =80x+8,∴y 关于x 的函数解析式为:y =80x+8, 故答案为:y =80x+8.20.【解答】解:∵ABCD 为菱形,∴AD =CD ,∵AE =DF ,∴DE =CF ,∵∠ADC =60°,∴△ACD 为等边三角形, ∴∠D =∠ACD =60°,AC =CD ,∴△ACF ≌△CDE (SAS ),故①正确;过点F 作FP ∥AD ,交CE 于P 点.∵DF =2CF ,∴FP :DE =CF :CD =1:3,∵DE =CF ,AD =CD ,∴AE =2DE ,∴FP :AE =1:6=FG :AG ,∴AG =6FG ,∴CE =AF =7GF ,故③正确;过点B 作BM ⊥AG 于M ,BN ⊥GC 于N ,∵∠AGE =∠ACG +∠CAF =∠ACG +∠GCF =60°=∠ABC ,即∠AGC +∠ABC =180°,∴点A 、B 、C 、G 四点共圆,∴∠AGB =∠ACB =60°,∠CGB =∠CAB =60°,∴∠AGB =∠CGB =60°,∴BM =BN ,又AB =BC ,∴△ABM ≌△CBN (HL ),∴S 四边形ABCG =S 四边形BMGN ,∵∠BGM =60°,∴GM=12BG,BM=√32BG,∴S四边形BMGN=2S△BMG=2×12×12BG×√32BG=√34BG2,故④正确;∵∠CGB=∠ACB=60°,∠CBG=∠HBC,∴△BCH∽△BGC,∴BCBG =BHBC=CHCG,则BG•BH=BC2,则BG•(BG﹣GH)=BC2,则BG2﹣BG•GH=BC2,则GH•BG=BG2﹣BC2,当∠BCG=90°时,BG2﹣BC2=CG2,此时GH•BG=CG2,而题中∠BCG未必等于90°,故②不成立,故正确的结论有①③④,故答案为:①③④.21.【解答】(1)证明:∵AB为⊙O的直径,∴∠AEB=90°,∴∠BAE+∠ABE=90°,∵四边形ABCD为平行四边形,∴四边形ABCD为菱形,∴∠BAE=12∠BAD,∵∠DBG=12∠BAD.∴∠BAE=∠DBG,∴∠DBG+∠ABE=90°,∴∠ABG=90°,∴BG是⊙O的切线;(2)∵∠ABG=∠AEB=90°,∠HAB=∠BAE,∴△ABH∽△AEB,∴AB2=AE•AH,∵tan∠DBG=1 2,∴设HE=x,则BE=2x,∵CH=3,∴AE=CE=3+x,∴AH=AE+HE=3+2x,∴AB2=(3+x)•(3+2x),∵AB2=BE2+AE2=(2x)2+(3+x)2,∴(3+x)•(3+2x)=(2x)2+(3+x)2,解得x=1或0(舍去),∴AB2=(3+1)(3+2)=20,∴AB=2√5,即⊙O的直径为2√5.22.【解答】解:(1)证明:如图,连接OC,∵AB是直径,∴∠ACB=90°,∵OD∥BC,∴∠CFE=∠ACB=90°,∴∠DEC+∠FCE=90°,∵∠DEC=∠BDC,∠BDC=∠A,∴∠DEC=∠A,∵OA=OC,∴∠OCA =∠A ,∴∠OCA =∠DEC ,∵∠DEC +∠FCE =90°,∴∠OCA +∠FCE =90°,即∠OCE =90°,∴OC ⊥CE ,又∵OC 是⊙O 的半径,∴CE 是⊙O 切线.(2)由(1)得∠CFE =90°,∴OF ⊥AC ,∵OA =OC ,∴∠COF =∠AOF ,∴CD̂=AD ̂, ∴∠ACD =∠DBC ,又∵∠BDC =∠BDC ,∴△DCG ∽△DBC ,∴DC DB =DG DC ,∴DC 2=DG •DB =9,∴DC =3,∵OC =OD =3,∴△OCD 是等边三角形,∴∠DOC =60°,在Rt △OCE 中tan60°=CE OC, ∴√3=CE 3, ∴CE =3√3.一十一.位似变换(共2小题)23.【解答】解:∵点P (8,6)在△ABC 的边AC 上,以原点O 为位似中心,在第一象限内将△ABC 缩小到原来的12,得到△A ′B ′C ′, ∴点P 在A ′C ′上的对应点P ′的坐标为:(4,3).故选:A.24.【解答】解:如图,∵△OAB∽△OA′B′,相似比为3:2,B(3.6),∴B′(2,4),根据对称性可知,△OA″B″在第三象限时,B″(﹣2,﹣4),∴满足条件的点B′的坐标为(2,4)或(﹣2,﹣4).故答案为(2,4)或(﹣2,﹣4).一十二.作图-位似变换(共2小题)25.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.26.【解答】解:(1)如图所示:点A1的坐标为(﹣2,﹣4);(2)如图所示:由勾股定理得OA =√12+22=√5,点A 到点A 2所经过的路径长为90×π×√5180=√5π2. 一十三.相似形综合题(共1小题)27.【解答】解:(1)AE =AF .∵AD =AB ,四边形ABCD 矩形,∴四边形ABCD 是正方形,∴∠BAD =90°,∵AF ⊥AE ,∴∠EAF =90°,∴∠EAB =∠F AD ,∴△EAB ≌△F AD (ASA ),∴AF =AE ;故答案为:AF =AE .(2)AF =kAE .证明:∵四边形ABCD 是矩形,∴∠BAD =∠ABC =∠ADF =90°,∴∠F AD +∠F AB =90°,∵AF ⊥AE ,∴∠EAF =90°,∴∠EAB +∠F AB =90°,∴∠EAB =∠F AD ,∵∠ABE +∠ABC =180°,∴∠ABE =180°﹣∠ABC =180°﹣90°=90°, ∴∠ABE =∠ADF .∴△ABE ∽△ADF ,∴AB AD =AE AF ,∵AD =kAB ,∴AB AD =1k , ∴AE AF =1k , ∴AF =kAE .(3)解:①如图1,当点F 在线段DC 上时,∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,∵AD =2AB =4,∴AB =2,∴CD =2,∵CF =1,∴DF =CD ﹣CF =2﹣1=1.在Rt △ADF 中,∠ADF =90°,∴AF =√AD 2+DF 2=√42+12=√17, ∵DF ∥AB ,∴∠GDF =∠GBA ,∠GFD =∠GAB , ∴△GDF ∽△GBA ,∴GF GA =DF BA =12, ∵AF =GF +AG ,∴AG =23AF =23√17. ∵△ABE ∽△ADF ,∴AE AF =AB AD =24=12, ∴AE =12AF =12×√17=√172. 在Rt △EAG 中,∠EAG =90°,∴EG =√AE 2+AG 2=(172)2+(2173)2=5√176, ②如图2,当点F 在线段DC 的延长线上时,DF =CD +CF =2+1=3,在Rt △ADF 中,∠ADF =90°,∴AF =√AD 2+DF 2=√42+32=5.∵DF ∥AB , ∵∠GAB =∠GFD ,∠GBA =∠GDF ,∴△AGB ∽△FGD ,∴AGFG =ABFD =23, ∵GF +AG =AF =5, ∴AG =2,∵△ABE ∽△ADF ,∴AEAF =AB AD =24=12, ∴AE =12AF =12×5=52,在Rt △EAG 中,∠EAG =90°,∴EG =√AE 2+AG 2=√(52)2+22=√412.综上所述,EG 的长为5√176或√412. 一十四.解直角三角形的应用(共1小题)28.【解答】解:如图2,过C 作CD ⊥MN 于D ,则∠CDB =90°,∵∠CAD =60°,AC =40(cm ),∴CD =AC •sin ∠CAD =40×sin60°=40×√32=20√3(cm ),∵∠ACB =15°,∴∠CBD =∠CAD ﹣∠ACB =45°,∴BC =√2CD =20√6≈49(cm ),答:支架BC 的长约为49cm .一十五.解直角三角形的应用-坡度坡角问题(共1小题)29.【解答】解:过点A 作水平面的平行线AH ,作BH ⊥AH 于H ,由题意得,∠BAH =α=20°,在Rt △BAH 中,cos ∠BAH =AH AB ,∴AH =AB •cos ∠BAH ≈5×0.940≈4.7(m ),故答案为:4.7.一十六.解直角三角形的应用-仰角俯角问题(共2小题)30.【解答】解:选择CD =1.6m ,BD =4m ,∠ACE =67°,过C 作CE ⊥AB 于E ,则四边形BDCE 是矩形,∴BE =CD =1.6m ,CE =BD =4m ,在Rt △ACE 中,∵∠ACE =67°,∴tan ∠ACE =AE CE , ∴AE 4≈2.36,∴AE ≈9.4m ,∴AB =AE +BE =9.4+1.6=11.0(m ),答:建筑物AB 的高度为11.0m .31.【解答】解:(1)∵AB 垂直于桥面,∴∠AMC =∠BMC =90°,在Rt △AMC 中,CM =60,∠ACM =30°,tan ∠ACM =AM CM, ∴AM =CM •tan ∠ACM =60×√33=20√3(米),答:大桥主架在桥面以上的高度AM 为20√3米;(2)在Rt △BMC 中,CM =60,∠BCM =14°,tan ∠BCM =BM CM ,∴MB =CM •tan ∠BCM ≈60×0.25=15(米),∴AB =AM +MB =15+20√3≈50(米)答:大桥主架在水面以上的高度AB 约为50米.一十七.解直角三角形的应用-方向角问题(共5小题)32.【解答】解:由题意得,∠AOB =90°﹣60°=30°,∴AB =12OA =100(m ),故选:A .33.【解答】解:作BD ⊥AC 于D .依题意得,∠BAE =45°,∠ABC =105°,∠CAE =15°,∴∠BAC =30°,∴∠ACB =45°.在Rt △BCD 中,∠BDC =90°,∠ACB =45°,∴∠CBD =45°,∴∠CBD =∠DCB ,∴BD =CD ,设BD =x ,则CD =x ,在Rt △ABD 中,∠BAC =30°,∴AB =2BD =2x ,tan30°=BD AD, ∴√33=x AD , ∴AD =√3x ,在Rt △BDC 中,∠BDC =90°,∠DCB =45°,∴sin ∠DCB =BD BC =√22,∴BC =√2x ,∵CD +AD =30+30√3,∴x +√3x =30+30√3,∴x =30,∴AB =2x =60,BC =√2x =30√2,第一组用时:60÷40=1.5(h);第二组用时:30√2÷30=√2(h),∵√2<1.5,∴第二组先到达目的地,答:第一组用时1.5小时,第二组用时√2小时,第二组先到达目的地.34.【解答】解:过D作DF⊥BE于F,∵∠ADE=∠DEB﹣∠A=60°﹣30°=30°,∴∠A=∠ADE,∴AE=DE,∵∠B=90°,∠A=30°,BC=40(海里),∴AC=2BC=80(海里),AB=√3BC=40√3(海里),∵BE=30(海里),∴AE=(40√3−30)(海里),∴DE=(40√3−30)(海里),在Rt△DEF中,∵∠DEF=60°,∠DFE=90°,∴∠EDF=30°,∴DF=√32DE=(60﹣15√3)(海里),∵∠A=30°,∴AD=2DF=120﹣30√3(海里),∴CD=AC﹣AD=80﹣120+30√3=(30√3−40)海里,答:乙船与C码头之间的距离为(30√3−40)海里.35.【解答】解:设B处距离码头O有xkm,在Rt△CAO中,∠CAO=26.5°,∵tan∠CAO=CO OA,∴CO=AO•tan∠CAO=(28×0.2+x)•tan26.5°≈2.8+0.5x(km),在Rt△DBO中,∠DBO=49°,∵tan∠DBO=DO BO,∴DO=BO•tan∠DBO=x•tan49°≈1.15x(km),∵DC=DO﹣CO,∴6.4=1.15x﹣(2.8+0.5x),∴x≈14.2(km).因此,B处距离码头O大约14.2km.36.【解答】解:没有触礁的危险;理由:如图,过点A作AN⊥BC交BC的延长线于点N,由题意得,∠ABE=60°,∠ACD=30°,∴∠ACN=60°,∠ABN=30°,∴∠ABC=∠BAC=30°,∴BC=AC=12海里,在Rt△ANC中,AN=AC•sin60°=12×√32=6√3海里,∵AN=6√3海里≈10.38海里>10海里,∴没有危险.一十八.简单几何体的三视图(共1小题)37.【解答】解:A.左视图与主视图都是正方形,故选项A不合题意;B.左视图是圆,主视图都是矩形,故选项B符合题意;C.左视图与主视图都是三角形;故选项C不合题意;D.左视图与主视图都是圆,故选项D不合题意;故选:B.一十九.简单组合体的三视图(共9小题)38.【解答】解:从正面看第一层是3个小正方形,第二层右边1个小正方形.故选:B.39.【解答】解:观察图形可知,这个几何体的俯视图是.故选:A.40.【解答】解:从几何体的正面看,底层是三个小正方形,上层的中间是一个小正方形.故选:D.41.【解答】解:从上面看易得俯视图:.故选:C.42.【解答】解:从正面看,“底座长方体”看到的图形是矩形,“上部圆锥体”看到的图形是等腰三角形,因此选项C的图形符合题意,故选:C.43.【解答】解:从正面可看到的图形是:故选:B.44.【解答】解:从上面看得到的图形是:故选:B.45.【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:故选:C.46.【解答】解:从上面看易得上面一层有3个正方形,下面左边有一个正方形.故选:A.。
图形的变换贵州中考数学题汇总及答案
图形的变换贵州中考数学题汇总及答案为了帮助各位贵州考生熟悉图形的变化在中的考察形式,帮大家带来了一份贵州中考数学题之图形的变换的汇总,附有答案,希望能对大家有帮助,更多内容欢送关注!1. (xx贵州贵阳3分)以下四个几何体中,主视图、左视图与俯视图是全等图形的几何体是【】A.圆锥B.圆柱C.三棱柱D.球【答案】D。
【考点】简单几何体的三视图。
190187【分析】根据几何体的三种视图,进展选择即可:A、圆锥的主视图、左视图都是等腰三角形,俯视图是圆形,不符合题意,故此选项错误;B、圆柱的主视图、左视图可以都是矩形,俯视图是圆形,不符合题意,故此选项错误;C、三棱柱的主视图、左视图都是矩形,俯视图是三角形,不符合题意,故此选项错误;D、球的三视图都是相等的圆形,故此选项正确。
应选D。
2. (xx贵州毕节3分)王老师有一个装文具用的盒子,它的三视图如下图,这个盒子类似于【】A.圆锥B.圆柱C.长方体D.三棱柱【答案】D。
【考点】由三视图判断几何体。
【分析】根据三视图的知识可使用排除法来解答:如图,俯视图为三角形,故可排除B 、C.主视图以及侧视图都是矩形,可排除A,应选D。
3. (xx贵州六盘水3分)如图是教师每天在黑板上书写用的粉笔,它的主视图是【】A. B. C. D.【答案】C。
【考点】简单几何体的三视图。
【分析】该几何体是圆台,主视图即从正面看到的图形是等腰梯形。
应选C。
4. (xx贵州黔东南4分)如图,矩形ABCD边AD沿拆痕AE折叠,使点D落在BC上的F处,AB=6,△ABF的面积是24,那么FC 等于【】A.1B.2C.3D.4【答案】B。
【考点】翻折变换(折叠问题),折叠的性质,矩形的性质,勾股定理。
【分析】由四边形ABCD是矩形与AB=6,△ABF的面积是24,易求得BF的长,然后由勾股定理,求得AF的长,根据折叠的性质,即可求得AD,BC的长,从而求得答案:∵四边形ABCD是矩形,∴∠B=90°,AD=BC。
中考数学总复习《图形变换综合压轴题》专题测试卷(附答案)
中考数学总复习《图形变换综合压轴题》专题测试卷(附答案)1.线段AB与CD的位置关系如图1所示AB=CD=m,AB与CD的交点为O,且∠AOC=60°,分别将AB和AC平移到CE,BE的位置(如图2).(1)求CE的长和∠DCE的度数;(2)在图2中求证:AC+BD>m.2.如图,在Rt△ABC中∠ACB=90°,∠B=30°将Rt△ABC绕点C顺时针旋转得到Rt△A′B′C,且点B′、A′、B在同一直线上.请仅用无刻度的直尺完成以下作图.(1)在图1中,作出一个以AB为边的等边三角形;(2)在图2中,作出一个菱形.3.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别A(1,4),B(2,0),C(3,2)(1)画出将△ABC沿AC翻折得到的△AB1C1;(2)画出将△ABC沿x轴翻折得到的△A2BC2;(3)观察发现:△A2BC2可由△AB1C绕点(填写坐标)旋转得到(4)在旋转过程中,点B1经过的路径长为.∠ABC.以点B为旋转中心,4.如图1,在△ABC中BA=BC,D、E是AC边上的两点,且满足∠DBE=12将△CBE按逆时针方向旋转得到△ABF,连接DF.(1)求证:DF=DE;(2)如图2,若AB⊥BC,其他条件不变.求证:DE2=AD2+EC2.5.如图,将矩形ABCD绕着点B逆时针旋转得到矩形GBEF,使点C恰好落到线段AD上的E点处,连接CE,连接CG交BE于点H.(1)求证:CE平分∠BED;(2)取BC的中点M,连接MH,求证:MH∥BG;(3)若BC=2AB=4,求CG的长.6.已知,△ABC为等边三角形,点D,E为直线BC上两动点,且BD=CE.点F,点E关于直线AC成轴对称,连接AE,顺次连接A,D,F.(1)如图1,若点D,点E在边BC上,试判断△ADF的形状并说明理由;(2)如图2,若点D,点E在边BC外,求证:∠BAD=∠FDC.7.如图,正方形ABCD中∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交BC、DC(或它们的延长线)于点M、N.(1)如图1,求证:MN=BM+DN;(2)当AB=6,MN=5时,求△CMN的面积;(3)当∠MAN绕点A旋转到如图2位置时线段BM、DN和MN之间有怎样的数量关系?请写出你的猜想并证明.8.如图1 在△ABC中AB=AC点DE、分别在边AB、AC上AD=AE连接DC点P、Q、M分别为DE、BC、DC的中点连接MQ、PM.(1)求证:PM=MQ;(2)当∠A=50°时求 PMQ的度数;(3)将△ADE绕点A沿逆时针方向旋转到图2的位置若∠PMQ=120°判断△ADE的形状并说明理由.9.已知△ABC∠ACB=90°AC=BC=4D是射线CB上一点连接AD将AD绕点A逆时针旋转90°点D落在点E处连接BE交射线AC于点F.(1)如图1当点D与点C重合时求AF的长;(2)如图2当点D在线段BC上时连接CE在点D的运动过程中请问△AEC的面积是否会发生变化?如果不会求出它的面积;如果会请说明理由;(3)当BD=1时求AF的长.10.在等边△BCD中DF⊥BC于点F点A为直线DF上一动点以点B为旋转中心把BA顺时针旋转60°至BE.(1)如图1 点A在线段DF上连接CE求证:CE=DA;(2)如图2 点A在线段FD的延长线上请在图中画出BE并连接CE当∠DEC=45°时连接AC求出∠BAC的度数;(3)在点A的运动过程中若BD=6求EF的最小值11.如图一个含60°角的纸片顶点与等边△ABC的点B重合将该纸片绕点B旋转使纸片60°角的一边交直线AC于点D在另一边上截取点E使BE=BD连接AE.(1)当点D在边AC上时如图① 求证:AC=AD+AE;(2)当点D在边AC所在直线上如图②、如图③时线段AD,AC,AE之间又有怎样的数量关系?请直接写出结论.(3)在图③中AD、BE交于点K若AE=4,BC=6则AD=_______ DK=______.12.已知四边形ABCD中AB⊥AD,BC⊥CD AB=BC,∠ABC=120°∠MBN=60°,∠MBN绕B点旋转它的两边分别交AD,DC(或它们的延长线)于E、F.(1)当∠MBN绕B点旋转到AE=CF时(如图1)求证:AE+CF=EF.(2)当∠MBN绕B点旋转到AE≠CF时在图2种情况下求证:AE+CF=EF.(3)当∠MBN绕B点旋转到AE≠CF时在图3种情况下上述结论是否成立?若成立请给予证明;若不成立线段AE,CF EF又有怎样的数量关系?请写出你的猜想不需证明.13.如图在平行四边形ABCD中AC是对角线AB=AC点E是BC边上一点连接AE将AE绕着点A 顺时针旋转α得到线段AF.(1)如图1 若α=∠BAC=90°连接BF BF=3BC=8求△ABE的面积;(2)如图2 若α=2∠BAC=120°连接CF交AB于H求证:2AH+CE=AD;(3)若在(2)的条件下3CE=BC=9点P为AB边上一动点连接EP将线段EP绕着点E顺时针旋转60°得到线段EQ连接CQ当线段CQ取得最小值时直接写出四边形BHQE的面积.14.已知:正方形ABCD以A为旋转中心旋转AD至AP连接BP、DP.(1)若将AD顺时针旋转30°至AP如图1所示求∠BPD的度数?(2)若将AD顺时针旋转α度(0°<α<90°)至AP求∠BPD的度数?(3)若将AD逆时针旋转α度(0°<α<180°)至AP请分别求出0°<α<90°、α=90°、90°<α<180°三种情况下的∠BPD的度数(图2、图3、图4).15.已知如图1正方形ABCD的边长为5点E、F分别在边AB、AD的延长线上且BE=DF连接EF.(1)证明:EF⊥AC;(2)将△AEF绕点A顺时针方向旋转当旋转角α满足0°<α<45°时设EF与射线AB交于点G与AC交于点H如图所示试判断线段FH、HG、GE的数量关系并说明理由.(3)若将△AEF绕点A旋转一周连接DF、BE并延长EB交直线DF于点P连接PC试说明点P的运动路径并求线段PC的取值范围.16.【问题思考】如图1 点E是正方形ABCD内的一点过点E的直线AQ以DE为边向右侧作正方形DEFG 连接GC直线GC与直线AQ交于点P则线段AE与GC之间的关系为______.【问题类比】如图2 当点E是正方形ABCD外的一点时【问题思考】中的结论还成立吗?若成立请证明你的结论;若不成立请说明理由;【拓展延伸】如图3 点E是边长为6的正方形ABCD所在平面内一动点【问题思考】中其他条件不变则动点P到边AD的最大距离为______(直接写出结果).17.(1)【问题发现】如图1 在Rt△ABC中AB=AC∠BAC=90°点D为BC的中点以BD为一边作正方形BDFE点F恰好与点A重合则线段CF与AE的数量关系为_______;(2)【拓展探究】在(1)的条件下如果正方形BDFE绕点B顺时针旋转连接CF AE BF线段CF与AE 的数量关系有无变化?请仅就图2的情形给出证明;(3)【问题解决】当AB=AC=6且(2)中的正方形BDFE绕点B顺时针旋转到E F C三点共线时求出线段AE的长.18.综合与实践:问题情景:如图1、正方形ABCD与正方形AEFG的边AB AE(AB<AE)在一条直线上正方形AEFG以点A为旋转中心逆时针旋转设旋转角为α在旋转过程中两个正方形只有点A重合其它顶点均不重合连接BE DG.(1)操作发现:当正方形AEFG旋转至如图2所示的位置时求证:BE=DG;(2)操作发现:如图3 当点E在BC延长线上时连接FC求∠FCE的度数;(3)问题解决:如图4 如果α=45°AB=2AE=4√2请直接写出点G到BE的距离.19.如图①在正方形ABCD中连接BD点E是边AB上的一点EF⊥AB交BD于点F点P是FD的中点连接EP、CP.(1)如图① 探究EP与CP有何关系并说明理由;(2)若将△BEF绕点B顺时针旋转90° 得到图② 连接FD取FD的中点P连接EP、CP请问在该条件下①中的结论是否成立并说明理由;(3)如果把△BEF绕点B顺时针旋转180° 得到图③ 同样连接FD取FD的中点P连接EP、CP请你直接写出EP与CP的关系.20.综合与实践问题情境:数学活动课上老师向大家展示了一个图形变换的问题.如图1.将正方形纸片ABCD折叠使边AB AD都落在对角线AC上展开得折痕AE AF连接EF.试判断△AEF的形状.独立思考:(1)请解答问题情境提出的问题并写出证明过程.实践探究:(2)如图2.将图1中的∠EAF绕点A旋转使它的两边分别交边BC CD于点P Q连接PQ.请猜想线段BP PQ DQ之间的数量关系并加以证明.问题解决:(3)如图3.连接正方形对角线BD若图2中的∠PAQ的边AP AQ分别交对角线BD于点M N将图3中的正方形纸片沿对角线BD剪开如图4所示.若BM=7DN=24求MN的长.参考答案1.(1)解:∵将AB和AC平移到CE,BE的位置∵AB=CE,AB∥CE∵∠AOC=∠DCE∵∠AOC=60°AB=CD=m∵∠DCE=60°CE=AB=m;(2)证明:如图连接DE由(1)得:∠DCE=60°CE=AB=m∵AB=CD=m∵CD=CE∵△CDE是等边三角形∵DE=CD=m∵将AB和AC平移到CE,BE的位置∵AC=BE在△BDE中BD+BE>DE即AC+BD>m.2.(1)解:△ADB是等边三角形即为所求理由如下:如图延长AC交BB′于一点D∵∠ACB=90°∠CBA=30°将Rt△ABC绕点C顺时针旋转得到Rt△A′B′C ∵∠A=60°,∠B′=30°,BC=B′C∵∠B′BC=30°,∠ABD=60°∵∠BDA=180°−60°−60°=60°∵△ADB是等边三角形;(2)解:四边形ABDE是菱形即为所求理由如下:过点D作DE平行于AB交BC的延长线于一点即为点E连接AE如图:由(1)知△ADB是等边三角形且∠ACB=90°∵BC⊥AD∵DC=AC∵∠DEB =∠ABC∵∠DCE =∠ACB∵△DCE ≌△ACB∵BC =EC∵四边形ABDE 是菱形.3.解:(1)如图:(2)如图:(3)(5 0)(4)B 1经过的路径是以(5 0)为圆心 BB 1为半径的圆弧∵C =14×2×π×3=32π;4.(1)证明:∵∠DBE =12∠ABC∵∠ABD +∠CBE =∠DBE =12∠ABC∵△ABF 由△CBE 旋转而成∵BE =BF ∠ABF =∠CBE∵∠DBF =∠DBE在△DBE 与△DBF 中{BE =BF ∠DBE =∠DBF BD =BD∵△DBE ≌△DBF (SAS )(2)证明:∵将△CBE按逆时针方向旋转得到△ABF∵BA=BC∠ABC=90°∵∠BAC=∠BCE=45°∵图形旋转后点C与点A重合CE与AF重合∵AF=EC∵∠FAB=∠BCE=45°∵∠DAF=90°在Rt△ADF中DF2=AF2+AD2∵AF=EC∵DF2=EC2+AD2同(1)可得DE=DF∵DE2=AD2+EC2.5.(1)证明:∵将矩形ABCD绕着点B逆时针旋转得到矩形GBEF使点C恰好落到线段AD上的E点处∴BE=BC∴∠BEC=∠BCE∵AD∥BC∴∠BCE=∠DEC∴∠BEC=∠DEC∴CE平分∠BED;(2)证明:过点C作CN⊥BE于N如图:∵CE平分∠BED CD⊥DE CN⊥BE∴CD=CN∴BG=AB=CD=CN∵∠BHG=∠NHC∠GBH=∠CNH=90°BG=CN∴△BHG≌△NHC(AAS)∴GH=CH即点H是CG中点∵点M是BC中点∴MH是△BCG的中位线∵MH∥BG;(3)解:过点C作CN⊥BE于N过G作GR⊥BC于R如图:∵BC=2AB=4∴BG=AB=CD=CN=2∴CN=12 BC∴∠NBC=30°∵∠GBE=90°∴∠GBR=60°∴BR=12BG=1GR=√3BR=√3在Rt△GRC中CG=√GR2+CR2=√(√3)2+(1+4)2=2√7∴CG的长为2√7.6.解:(1)△ADF为等边三角形理由如下:∵△ABC为等边三角形∵AB=AC,∠ABC=∠ACB=60°.在△ABD和△ACE中{AB=AC∠ABC=∠ACBBD=CE∴△ABD≅△ACE(SAS)∴AD=AE,∠BAD=∠CAE.∵点F 点E关于直线AC成轴对称∴AF=AE,∠CAF=∠CAE ∴AD=AF,∠CAF=∠BAD.∵∠BAD+∠DAC=60°∴∠CAF+∠DAC=60°即∠DAF=60°,∵△ADF为等边三角形.(2)∵△ABC为等边三角形∵AB=AC,∠ABC=∠ACB=60°.在△ABD和△ACE中{AB=AC∠ABC=∠ACBBD=CE∴△ABD≅△ACE(SAS)∴AD=AE,∠BAD=∠CAE.∵点F 点E关于直线AC成轴对称∴AF=AE,∠CAF=∠CAE ∴AD=AF,∠CAF=∠BAD.∵∠BAD+∠DAC=60°∴∠CAF+∠DAC=60°∵△ADF为等边三角形.∴∠ADF=∠FDC+∠ADC=60°∵∠BAD+∠ADC=∠ABC=60°∵∠BAD=∠FDC7.(1)解:如图将△ABM绕点A逆时针旋转90°得到△ADM′则:△ABM≌△ADM′∵AM=AM′,BM=DM′,∠BAM=∠DAM′∵四边形ABCD为正方形∵∠BAD=90°∵∠MAN=45°∵∠MAB+∠NAD=45°∵∠M′AD+∠NAD=∠M′AN=45°∵∠MAN=∠M′AN又∵AM=AM′,AN=AN∵△AMN≌△AM′N(SAS)∵MN=M′N=M′D+DN=BM+DN;(2)解:∵四边形ABCD为正方形∵AD=AB=6S正方形=62=36∵△AMN≌△AM′N∵MN′=MN=5∵S△AMN=S△AM′N=12M′N⋅AD=12×5×6=15∵△ABM≌△ADM′∵S△ABM+S△ADN=S△ABM′+S△ADN=S△AM′N=15∵S△CMN=S正方形−S△AMN−S△ADN−S△AMB=36−15−15=6;(3)解:DN=BM+MN理由如下:如图将△ABM绕点A逆时针旋转90°得到△ADM′连接MN 则:∠MAM′=90°△ABM≌△ADM′∵AM=AM′,BM=DM′,∠BAM=∠DAM′∵∠MAN=45°∵∠M′AN=∠M′AM−∠MAN=90°−45°=45°∵∠MAN=∠M′AN又∵AM=AM′,AN=AN∵△AMN≌△AM′N(SAS)∵MN=M′N∵DN=M′D+M′N=BM+MN.8.(1)证明:∵AB=AC AD=AE∵BD=CE∵P M分别为DE DC的中点∵PM=12CE PM∥CE∵M Q分别为DC CB的中点∵MQ=12DB MQ∥OB∵PM=MQ;(2)解:∵点P、Q、M分别为DE、BC、DC的中点∵MQ∥DB PM∥AC∵∠MQC=∠B∵∠PMQ=∠DMP+∠DMQ=∠ACD+∠BCD+∠MQC=∠ACD+∠BCD+∠B =180°−50°=130°;(3)解:∵ADE是等边三角形理由如下:由旋转的性质可知∠BAC=∠DAE∵∠BAD=∠CAE在△BAD和△CAE中{AB=AC ∠BAD=∠CAE AD=AE∵∵BAD∵∵CAE(SAS)∵BD=CE∠ABD=∠ACE ∵P M为DE DC的中点∵PM∥EC∵∠PMD=∠ECD∵M Q为DC BC的中点∵MQ∥DB∵∠MQC=∠DBC∵∠MPQ=∠DMP+∠DMQ=∠DCE+∠MQC+∠MCQ=∠ACD+∠ACE+∠DBC+∠MCQ=∠ACD+∠MCQ+∠DBC+∠ABD=∠ACB+∠ABC=120°∵∠BAC=180°−120°=60°∵∠DAE=∠BAC=60°又∵AD=AE∵∵ADE是等边三角形.9.(1)解:∵将AD绕点A逆时针旋转90°∵AD=AE,∠DAE=90°∵点D与点C重合∵AC=AE∵BC=AC=AE又∵∠AFE=∠BFC∠EAF=∠BCF=90°∵△BCF≌△EAF(AAS)∵AF=CF∵AC=BC=4∵AF=CF=2;(2)解:△AEC的面积不会变化理由如下:如图过点E作EH⊥AC于H∵将AD绕点A逆时针旋转90°∵AD=AE,∠DAE=90°=∠ACB∵∠DAC+∠CAE=90°=∠DAC+∠ADC∵∠ADC=∠CAE∵△ADC≌△EAH(AAS)∵EH =AC =4∵S △ACE =12×AC ⋅EH =8;(3)解:当点D 在线段BC 上时∵BD =1,BC =4∵CD =3∵△ADC ≌△EAH∵CD =AH =3∵CH =1∵∠EHF =∠ACB =90° ∠AFE =∠BFC ,AC =EH =BC∵△EFH ≌△BFC(AAS)∵FH =FC =12 ∵AF =AF +FH =72;当点D 在线段CB 的延长线时 过点E 作EH ⊥直线AC 于H∵BD =1,BC =4∵CD =5同理可证△ACD ≌△EHA∵CD =AH =5∵CH =1同理可证:△BCF ≌△EHF∵FH =FC =12 ∵AF =AC +FC =92综上所述:AF 的长为72或92.10.(1)解:由旋转得 BA =BE ∠ABE =60°∵△BCD 是等边三角形∵BD=BC∠DBC=60°∵∠ABE=∠DBC∵∠DBA+∠ABC=∠ABC+∠CBE ∵∠DBA=∠CBE在△DBA与△CBE中{BD=BC ∠DBA=∠CBE BA=BE∵△DBA≌△CBE(SAS)∵DA=CE.(2)解:如图3由(1)可知△DBA≌△CBE∵DA=CE∠BDA=∠BCE又∵△BCD是等边三角形∵∠BDC=∠BCD=60°DB=DC∵DB=DC∵∵BCD是等腰三角形∵DF⊥BC∵∠BDF=12∠BDC=30°∵∠BDA=180°−∠BDF=150°∵∠BCE=150°∠CDA=360°−∠BDA−∠BDC=150°∵∠DCE=∠BCE−∠BCD=90°∵∠DEC=45°∵∠EDC=45°∵∠DEC=∠EDC ∵CE=CD∵DB=DC=DA∵∠BAD=180°−∠BDA2=15°∠CAD=180°−∠CDA2=15°∵∠BAC=∠BAD+∠CAD=30°.(3)解:∵由图1可知当点A在线段DF上时∠BCE=∠BDA=30°;由图3可知当点A在线段FD的延长线上时∠BCE=∠BDA=150°;由图4可知当点A在线段DF的延长线上时∠BCE=∠BDA=30°;∵综上所述当点A在直线DF上运动时直线CE与直线BC的夹角始终为30°即点E的运动轨迹为一条直线过点F作FE′⊥EC于点E′则当点E运动到点E′时此时EF的长度最短∵BD=CD=BC=6DF⊥BC∵CF=12BC=3又∵FE′⊥EC∠BCE=30°∵FE′=12CF=32∵EF的最小值为32.11.((1)证明:∵△ABC是等边三角形∵AB=BC∠ABC=60°.∵∠EBD=60°∵∠EBA+∠ABD=∠CBD+∠ABD即:∠ABE=∠CBD∵BD=BE∵△ABE≌△CBD(SAS)∵AE=CD.∵AC=AD+CD∵AC=AD+AE.(2)如图2 当点D在CA的延长线时∵∵DBE=∵ABC=60°∵∵DBE+∵ABD=∵ABC+∵ABD即∵ABE=∵CBD∵AB=BC BE=BD∵∵ABE∵△CBD(SAS)∵AE=CD=AC+AD∵AD=AE-AC;如图3 当点D在AC的延长线上时∵∵ABC=∵DBE=60°∵∵ABC-∵CBE=∵DBE-∵CBE即∵ABE=∵CBD∵AB=BC BD=BE∵△ABE∵△CBD(SAS)∵AE=CD=AD-AC∵AC=AD-AE;综上当点D在CA延长线时AD=AE-AC;当点D在AC的延长线上时AC=AC-AE;(3)解:由(2)得∵ABE∵∵CBD∵CD=AE=4 ∵BAE=∵BCD=180°-∵ACB=120°∵AD=AC+CD=6+4=10 ∵CAE=∵BAE-∵BAC=60°∵∵CAE=∵ACB∵AE∵BC∵∵AKE∵∵CKB∵AK CK =AEBC=46∵AK =23CK又∵AK +CK =AC =BC =6∵53 CK =6∵CK =185∵DK =CK +CD =185+4=385.12.解:(1)∵AB ⊥AD,BC ⊥CD,∵∠A =∠C ,在△ABE 与△CBF 中{AB =BC ∠A =∠C AE =CF ∵△ABE ≅△CBF(SAS),∵∠ABE =∠CBF,BE =BF,∵∠ABC =120°,∠MBN =60°,∵∠ABE =∠CBF =30°,∵AE =12BE,CF =12BF,∵∠MBN =60°,BE =BF∵△BEF 为等边三角形∵BE =BF =EF,∵AE =CF =12EF,∵AE +CF =EF;(2)如图 将Rt △ABE 顺时针旋转120°得△BCG∵BE=BG,AE=CG,∠A=∠BCG,∵AB=BC,∠ABC=120°,∵点A与点C重合∵∠A=∠BCF=90°,∵∠BCG+∠BCF=180°,∵点G、C、F三点共线∵∠ABC=120°,∠MBN=60°,∠ABE=∠CBG,∵∠GBF=60°,在△GBF与△EBF中{BG=BE∠GBF=∠EBFBF=BF∵△GBF≅△EBF(SAS),∵FG=EF,∵EF=AE+CF;(3)不成立EF=AE−CF理由如下:如图将RtΔABE顺时针旋转120° 得ΔBCG∵AE=CG由(2)同理得点C、F、G三点共线∵AB=BC,∠ABC=120°,∵点A与点C重合∵BG=BE,∵∠ABC=∠ABE+∠CBE=120°,∵∠CBG+∠CBE=∠GBE=120°,∵∠MBN=60°,∵∠GBF=60°,在ΔBFG与ΔBFE中{BG=BE∠GBF=∠EBFBF=BF∵△BFG≅△BFE(SAS)∵GF=EF,∵EF=AE−CF.13.(1)解:如图:过点A作BC的垂线交BC于点M∵α=∠BAC=90°∴∠FAB=∠EAC在△FAB和△EAC{FA=EA ∠FAB=∠EAC BA=CA∴△FAB≅△EAC(SAS)∴FB=CE又∵BF=3BC=8∴BE=BC−CE=8−3=5又∵∠BAC=90°AB=AC ∴AM=12BC=4∴S△ABE=12BE×AM=12×5×4=10.(2)解:在BH上截取BP=CE连接CP∵α=2∠BAC=120°∵∠BAC=60°∵AB=AC∵△ABC是等边三角形∵∠B=∠ACB=60°BC=AC 在△CBP和△ACE中{BP=CE∠B=∠ACB=60°BC=AC∴△CBP≅△ACE∴CP=AE=AF∠BPC=∠AEC=60°+∠BAE ∴∠APC=180°−(∠BAE+60°)∵∠FAB=120°−∠BAE∴∠APC=∠FAB在△AHF和△CPH中{∠APC=∠FAB ∠AHF=∠PHC CP=AF∵△AHF≅△PHC(AAS)∴AH=PH∵BP=CE∴AB=BC=AD=AH+PH+CE=2AH+CE.(3)解:如图:∵3CE=BC=9∵CE=3BE=BC−CE=6,连接EH由(2)可知∠BAC=∠ABC=60°∵△BHE是等边三角形∵∠BEH=60°,BE=HE∵将线段EP绕着点E顺时针旋转60°得到线段EP1∵PE=P1E∠PEP1=60°即∠HEP1=∠BEP,在△BPE和△HEP1中{PE=P1E∠HEP1=∠BEPBE=HE,∵△BEP≅△HEP1(SAS),∵∠B=∠EHP1=60°,∵∠BEH=60°∵∠BEH=∠EHP1=60°,∵HP1∥BC点P1的轨迹为过点H且平行BC的直线过H作HP1∥BC其延长线角CD于M过C作CQ⊥BP1于Q由点到直线的距离垂线段最短可知:当CQ⊥MH时即CQ有最小值∵BH∥CM,BC∥HM∵四边形BHMC是平行四边形∵CM=BH=6∠HMC=∠B=60°∵∠QCM=30°∵MQ=12CM=3∵CQ=√CM2−MQ2=3√3∵边形BHQE的面积为BE⋅CQ=6×3√3=18√3.14.(1)解:∵AD顺时针旋转30°至AP∵AD=AP∠PAD=30°∵∠APD=12(180°−30°)=75°∵四边形ABCD为正方形∵AB=AD=AP∠BAD=90°∵∠BAP=90°−30°=60°∵∠BPA=12(180°−60°)=60°∵∠BPD=60°+75°=135°.(2)∵AD顺时针旋转α至AP ∵AD=AP∠PAD=α∵∠APD=12(180°−α)=90°−α2∵四边形ABCD为正方形∵AB=AD=AP∠BAD=90°∵∠BAP=90°−α∵∠BPA=12[180°−(90−α)]=45°+α2∵∠BPD=(90°−α2)+(45°+α2)=135°.(3)①当0°<α<90°时∵AD逆时针旋转α至AP∵AD=AP∠PAD=α∵∠APD=12(180°−α)=90°−α2∵四边形ABCD为正方形∵AB=AD=AP∠BAD=90°∵∠BAP=90°+α∵∠BPA=12[180°−(90+α)]=45°−α2∵∠BPD=(90°−α2)−(45°−α2)=45°.②当α=90°时∵AD逆时针旋转90°至AP∵AD=AP∠PAD=90°∵四边形ABCD为正方形∵AB=AD=AP∠BAD=90°∵∠BAP=90°+90°=180°即点P、A、B三点共线∵∠BPD=∠APD=12(180°−90°)=45°.③当90°<α<180°时∵AD逆时针旋转α至AP∵AD=AP∠PAD=α∵∠APD=12(180°−α)=90°−α2∵四边形ABCD为正方形∵AB=AD=AP∠BAD=90°∵∠BAP=360°−90°+α=270°−α∵∠BPA=12[180°−(270°−α)]=α2−45°∵∠BPD=(90°−α2)+(α2−45°)=45°.15.(1)证明:如图1:∵四边形ABCD是正方形∴AD=AB∠DAC=∠BAC∵BE=DF ∴AD+DF=AB+BE即AF=AE∴AC⊥EF.(2)解:FH2+GE2=HG2理由如下:如图2过A作AK⊥AC截取AK=AH连接GK、EK∵∠CAB=45°∴∠CAB=∠KAB=45°∵AG=AG∴△AGH≅△AGK(SAS)∴GH=GK由旋转得:∠FAE=90°AF=AE∵∠HAK=90°∴∠FAH=∠KAE∴△AFH≅△AEK(SAS)∴∠AEK=∠AFH=45°FH=EK∵∠AEH=45°∴∠KEG=45°+45°=90°Rt△GKE中KG2=EG2+EK2即:FH2+GE2=HG2.(3)解:如图3∵AD=AB∠DAF=∠BAE AE=AF∴△DAF≅△BAE(SAS)∴∠DFA=∠BEA∵∠PNF=∠ANE∴∠FPE=∠FAE=90°∴将△AEF绕点A旋转一周总存在直线EB与直线DF垂直∴点P的运动路径是:以BD为直径的圆如图4当P与C重合时PC最小PC=0当P与A重合时PC最大为5√2.∴线段PC的取值范围是:0≤PC≤5√2.16.解:问题思考:设AQ和BC交于点H∵四边形ABCD和四边形DEFG都为正方形∵∠ADC=∠EDG=90°DA=DC,DE=DG ∵∠ADC−∠EDC=∠EDG−∠EDC即∠ADE=∠CDG∵△DAE≌△DCG(SAS)∵AE=CG∠DAE=∠DCG∵∠DAB=∠DCB=90°∵∠DAE+∠HAB=∠DCG+∠PCH即∠BAH=∠PCH∵∠AHB=∠CHP∵∠B=∠CPA=90°即AE⊥CG故答案为:AE=GC AE⊥GC;问题类比:问题思考中的结论仍然成立理由如下:设AQ和BC交于点H∵四边形ABCD和四边形DEFG都为正方形∵∠ADC=∠EDG=90°DA=DC,DE=DG ∵∠ADC−∠EDC=∠EDG−∠EDC即∠ADE=∠CDG∵△DAE≌△DCG(SAS)∵AE=CG∠DAE=∠DCG∵∠DAB=∠DCB=90°∵∠DAE+∠HAB=∠DCG+∠PCH即∠BAH=∠PCH∵∠AHB=∠CHP∵∠B=∠CPA=90°即AE⊥CG故答案为:AE=GC AE⊥GC;拓展应用:∵∠CPA=90°∵点P的运用轨迹即为以AC为直径的⊙O上如图:当点P位于AD右侧PH⊥AD且经过圆心O时动点P到边AD的距离最大∵正方形的边长为6∵AC=6√2OH=3∵OP=OC=12AC=3√2∵PH=OH+OP=3+3√2即动点P到边AD的最大距离为3+3√2故答案为:3+3√2.17.(1)解:如图1 ∵四边形BDFE是正方形∵FE=BE∠E=90°∵BF=√BE2+FE2=√2FE2=√2FE∵点F与点A重合AB=AC∵CF=AC=AB=BF FE=AE∵CF=√2AE故答案为:CF=√2AE;(2)无变化理由如下:证:如图2 ∵EB=EF∠BEF=90°∵∠EBF=∠EFB=45°BF=√EB2+EF2=√2EB2=√2EB∵AB=AC∠BAC=90°∵∠ABC=∠ACB=45°BC=√AB2+AC2=√2AB2=√2AB∵BF EB =BCAB=√2∠CBF=∠ABE=45°−∠ABF∵△CBF∽△ABE∵CF AE =BCAB=√2∵CF=√2AE;(3)如图2 E F C三点共线且点F在线段CE上∵BC=√2AB AB=AC=6∵BC=√2×6=6√2由(1)得BD=12BC∵BE=EF=BD=12×6√2=3√2∵∠BEC=90°∵CE=√BC2−BE2=√(6√2)2−(3√2)2=3√6∵CF=CE−EF=3√6−3√2∵CF=√2AE∵AE=√22CF=√22×(3√6−3√2)=3√3−3;如图3 E F C三点共线且点F在线段CE的延长线上∵BF EB =BCAB=√2∠CBF=∠ABE=45°+∠CBE∵△CBF∽△ABE∵CF AE =BCAB=√2∵CF=√2AE∵∠BEF=90°∵∠BEC=180°−∠BEF=90°∵CE=√BC2−BE2=√(6√2)2−(3√2)2=3√6∵CF=CE+EF=3√6+3√2∵AE=√22CF=√22×(3√6+3√2)=3√3+3综上所述线段AE的长为3√3−3或3√3+3.18.(1)证明:∵四边形ABCD是正方形∵AB =AD ∠BAE +∠EAD =90°又∵四边形AEFG 是正方形∵AE =AG ∠EAD +∠DAG =90°∵∠BAE =∠DAG .在△ABE 与△ADG 中{AB =AD,∠BAE =∠DAG AE =AG,∵△ABE ≅△ADG (SAS )∵BE =DG ;(2)解;过F 作FH ⊥BE 垂足为H∵∠AEF =∠ABE =∠EHF =90°∵∠AEB +∠FEH =90° ∠FEH +∠EFH =90°∵∠AEB =∠EFH∵四边形AEFG 是正方形∵AE =EF在△ABE 与△EHF 中{∠ABE =∠EHF ∠AEB =EFH AE =EF∵△ABE≌△EHF (AAS )∵AB =EH BE =FH∵AB =BC =EH∵BC +EC =EH +EC∵BE =CH =FH又∵∠EHF =90°∵∠FCE=45°(3)解:如图连接GB GE过点B作BH⊥AE于点H ∵GE是正方形AEFG的对角线∵∠AEG=45°∵∠EAB=45°∵AB∥GE∵S△BEG=S△AEG=12S正方形AEFG=12×4√2×4√2=16∵AB=2∵BH=AH=√2∵HE=4√2−√2=3√2在Rt△BHE中BE=√(√2)2+(3√2)2=2√5设点G到BE的距离为h∵S△BEG=12×BE×ℎ∵1 2×2√5×ℎ=16解得:ℎ=16√55∵点G到BE的距离为16√55.19.解:(1)EP=CP且EP⊥CP.证明:过PH⊥AB于点H延长HP交CD于点I作PK⊥AD于点K.则四边形PIDK是正方形四边形AKPH是矩形∴AK=HP KD=DI=PI=AH∵AD=CD∴IC=HP ∵AD∥PH∥EF P是DF的中点∴HA=HE∴HE=PI 在Rt△HPE和Rt△ICP中{HE=PI ∠PHE=∠CIP HP=IC∴Rt△HPE≌Rt△ICP(SAS)∴EP=CP∠HPE=∠PCI∠HEP=∠CPI∴∠HPE+∠CPI=90°∴∠EPC=90°∴EP⊥CP;(2)成立.证明:图2中作PH⊥BC则EF∥PH∥CD又∵P是DF的中点∴EH=CH 则PH是EC的中垂线∴PE=CP∵EF=EB∴EF+CD=EC ∵P是DF的中点EH=CH则PH=12(EF+CD)∴PH=12 EC∴△EPC是等腰直角三角形∴EP=CP且EP⊥CP;(3)图3中延长FE交DC延长线于M连MP.∵∠AEM=90°∠EBC=90°∠BCM=90°∴四边形BEMC是矩形.∴BE=CM∠EMC=90°由图(2)可知∵BD平分∠ABC∠ABC=90°∴∠EBF=45°又∵EF⊥AB∴△BEF为等腰直角三角形∴BE=EF∠F=45°.∴EF=CM.∵∠EMC=90°∴MP=12FD=FP.∵BC=EM BC=CD∴EM=CD.∵EF=CM∴EF+EM=CM+DC 即FM=DM又∵FP=DP∠CMP=12∠EMC=45°∴∠F=∠PMC.在△PFE和△PMC中{FP=MP ∠F=∠PMC EF=CM∴△PFE≌△PMC(SAS).∴EP=CP∠FPE=∠MPC.∵∠FMC=90°MF=MD FP=DP∴MP⊥FD∴∠FPE+∠EPM=90°∴∠MPC+∠EPM=90°即∠EPC=90°∴EP⊥CP.20.(1)解∵ ∵AEF是等腰三角形理由如下∵∵四边形ABCD是正方形∵AB=AD=BC=CD∵BAD=∵B=∵D=90°∵∵ABC∵ADC都是等腰三角形∵∵BAC=∵DAC=45°根据题意得∵∵BAE=∵CAE=22.5° ∵DAF=∵CAF=22.5°(∠BAC+∠DAC)=45°∵BAE=∵DAF=22.5°∵∠EAF=12∵∵B=∵D=90° AB=AD∵∵BAE∵∵DAF(ASA)∵AE=AF∵∵AEF是等腰三角形;(2)解∵ PQ=BP+DQ理由如下∵如图延长CB到T使得BT=DQ.∵AD=AB∵ADQ=∵ABT=90° DQ=BT∵∵ADQ∵∵ABT(SAS)∵AT=AQ∵DAQ=∵BAT由(1)得∵∵P AQ=45°∵∵P AT=∵BAP+∵BAT=∵BAP+∵DAQ=45°∵∵P AT=∵P AQ=45°∵AP=AP∵∵P AT∵∵P AQ(SAS)∵PQ=PT∵PT=PB+BT=PB+DQ∵PQ=BP+DQ;(3)解:如图将∵ADN绕点A顺时针旋转90°得到∵ABR连接RM.∵∵BAD=90° ∵MAN=45°∵∵DAN+∵BAM=45°∵∵DAN=∵BAR∵∵BAM+∵BAR=45°∵∵MAR=∵MAN=45°∵AR=AN AM=AM∵∵AMR∵∵AMN(SAS)∵ RM=MN∵∵D=∵ABR=∵ABD=45°∵∵RBM=90°∵RM2=BR2+BM2∵ DN=BR MN=RM∵BM2+DN2=MN2.∵BM=7DN=24∵MN=√72+242=25.。
初三数学15 图形变换(平移、旋转、对称)-2024年中考数学真题分项汇编(全国通用)(解析版)
专题15 图形变换(平移、旋转、对称)一.选择题1.(2022·山东威海)图1是光的反射规律示意图.其中,PO是入射光线,OQ是反射光线,法线KO⊥MN,∠POK是入射角,∠KOQ是反射角,∠KOQ=∠POK.图2中,光线自点P射入,经镜面EF反射后经过的点是( )A.A点B.B点C.C点D.D点【答案】B【分析】根据光反射定律可知,反射光线、入射光线分居法线两侧,反射角等于入射角并且关于法线对称,由此推断出结果.【详解】连接EF,延长入射光线交EF于一点N,过点N作EF的垂线NM,如图所示:∠为入射角由图可得MN是法线,PNM因为入射角等于反射角,且关于MN对称∠由此可得反射角为MNB所以光线自点P射入,经镜面EF反射后经过的点是B故选:B.【点睛】本题考查了轴对称中光线反射的问题,根据反射角等于入射角,在图中找出反射角是解题的关键.2.(2022·湖南永州)剪纸是我国具有独特艺术风格的民间艺术,反映了劳动人民对现实生活的深刻感悟.下列剪纸图形中,是中心对称图形的有( )① ② ③ ④A .①②③B .①②④C .①③④D .②③④【答案】A【分析】根据中心对称图形的定义判断即可;【详解】解:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;∴是中心对称图形的是:①②③;故选:A .【点睛】本题主要考查中心对称图形的定义,掌握中心对称图形的定义是解题的关键.3.(2022·江苏无锡)雪花、风车….展示着中心对称的美,利用中心对称,可以探索并证明图形的性质,请思考在下列图形中,是中心对称图形但不一定是轴对称图形的为( )A .扇形B .平行四边形C .等边三角形D .矩形【答案】B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、扇形是轴对称图形,不是中心对称图形,故此选项不合题意;B 、平行四边形不一定是轴对称图形,是中心对称图形,故此选项符合题意;C 、等边三角形是轴对称图形,不是中心对称图形,故此选项不合题意;D 、矩形既是轴对称图形,又是中心对称图形,故此选项不合题意;故选:B .【点睛】此题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心是解题关键.4.(2022·贵州遵义)在平面直角坐标系中,点(),1A a 与点()2,B b -关于原点成中心对称,则a b +的值为( )A .3-B .1-C .1D .3【答案】C【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,求得,a b 的值即可求解.【详解】解:∵点(),1A a 与点()2,B b -关于原点成中心对称,∴2,1a b ==-211a b ∴+=-=,故选C .【点睛】本题考查了关于原点对称的两个点,横坐标、纵坐标分别互为相反数,代数式求值,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.5.(2022·内蒙古赤峰)下列图案中,不是轴对称图形的是( )A .B .C .D .【答案】A【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【详解】A 不是轴对称图形;B 、C 、D 都是轴对称图形;故选:A .【点睛】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.(2022·山东青岛)如图,将ABC 先向右平移3个单位,再绕原点O 旋转180︒,得到A B C ''' ,则点A 的对应点A '的坐标是( )A .(2,0)B .(2,3)--C .(1,3)--D .(3,1)--【答案】C【分析】先画出平移后的图形,再利用旋转的性质画出旋转后的图形即可求解.【详解】解:先画出△ABC平移后的△DEF,再利用旋转得到△A'B'C',由图像可知A'(-1,-3),故选:C.【点睛】本题考查了图形的平移和旋转,解题关键是掌握绕原点旋转的图形的坐标特点,即对应点的横纵坐标都互为相反数.7.(2022·四川内江)如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE是Rt△ABC经过某些变换得到的,则正确的变换是( )A.△ABC绕点C逆时针旋转90°,再向下平移1个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移3个单位D.△ABC绕点C顺时针旋转90°,再向下平移3个单位【答案】D【分析】观察图形可以看出,Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可.【详解】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选:D.【点睛】本题考查的是坐标与图形变化,旋转和平移的知识,掌握旋转和平移的概念和性质是解题的关键.8.(2022·广西)如图,在△ABC中,点A(3,1),B(1,2),将△ABC向左平移2个单位,再向上平移1个单位,则点B的对应点B′的坐标为()A.(3,-3)B.(3,3)C.(-1,1)D.(-1,3)【答案】D【分析】根据图形的平移性质求解.【详解】解:根据图形平移的性质,B′(1-2,2+1),即B′(-1,3);故选:D.【点睛】本题主要考查图形平移的点坐标求解,掌握图形平移的性质是解题的关键.9.(2022·湖南郴州)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形和中心对称图形的定义判断即可.【详解】解:A、该图形是轴对称图形,不是中心对称图形,故A选项错误;B、该图形既是轴对称图形,也是中心对称图形,故B选项正确;C、该图形不是轴对称图形,是中心对称图形,故C选项错误;D、该图形既不是轴对称图形,也不是中心对称图形,故D选项错误.故答案为B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,中心对称图形是要寻找对称中心旋转180度后与原图重合.10.(2022·广西贵港)若点(,1)A a -与点(2,)B b 关于y 轴对称,则-a b 的值是( )A .1-B .3-C .1D .2【答案】A【分析】根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数解答即可.【详解】∵点(,1)A a -与点(2,)B b 关于y 轴对称,∴a =-2,b =-1,∴a -b =-1,故选A .【点睛】本题考查了关于y 轴对称的点坐标的关系,代数式求值,解题的关键在于明确关于y 轴对称的点纵坐标相等,横坐标互为相反数.11.(2022·江苏常州)在平面直角坐标系xOy 中,点A 与点1A 关于x 轴对称,点A 与点2A 关于y 轴对称.已知点1(1,2)A ,则点2A 的坐标是( )A .(2,1)-B .(2,1)--C .(1,2)-D .(1,2)--【答案】D【分析】直接利用关于x ,y 轴对称点的性质分别得出A ,2A 点坐标,即可得出答案.【详解】解:∵点1A 的坐标为(1,2),点A 与点1A 关于x 轴对称,∴点A 的坐标为(1,-2),∵点A 与点2A 关于y 轴对称,∴点2A 的坐标是(-1,﹣2).故选:D .【点睛】此题主要考查了关于x ,y 轴对称点的坐标,正确掌握关于坐标轴对称点的性质是解题关键.12.(2022·北京)图中的图形为轴对称图形,该图形的对称轴的条数为( )A .1B .2C .3D .5【答案】D 【分析】根据题意,画出该图形的对称轴,即可求解.【详解】解∶如图,一共有5条对称轴.故选:D【点睛】本题主要考查了轴对称图形,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.13.(2022·山东临沂)剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题,以下关于鱼的剪纸中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称图形和中心对称图形的概念进行判断即可.【详解】A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.不是轴对称图形,是中心对称图形,故本选项不合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.既是轴对称图形,也是中心对称图形,故本选项符合题意;故选:D.【点睛】本题考查了轴对称图形和中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称;熟练掌握知识点是解题的关键.14.(2022·山东聊城)如图,在直角坐标系中,线段11A B 是将ABC 绕着点()3,2P 逆时针旋转一定角度后得到的111A B C △的一部分,则点C 的对应点1C 的坐标是( )A .(-2,3)B .(-3,2)C .(-2,4)D .(-3,3)【答案】A 【分析】根据旋转的性质解答即可.【详解】解:∵线段11A B 是将ABC 绕着点()3,2P 逆时针旋转一定角度后得到的111A B C △的一部分,∴A 的对应点为1A ,∴190APA ∠=︒,∴旋转角为90°,∴点C 绕点P 逆时针旋转90°得到的1C 点的坐标为(-2,3),故选:A .【点睛】本题主要考查了旋转的性质,练掌握对应点与旋转中心的连线是旋转角和旋转角相等是解答本题的关键.15.(2022·湖南)如图,点O 是等边三角形ABC 内一点,2OA =,1OB =,OC =AOB ∆与BOC ∆的面积之和为( )AB C D 【答案】C【分析】将AOB ∆绕点B 顺时针旋转60︒得BCD ∆,连接OD ,得到BOD 是等边三角形,再利用勾股定理的逆定理可得90COD ∠=︒,从而求解.【详解】解:将AOB ∆绕点B 顺时针旋转60︒得BCD ∆,连接OD ,OB OD ∴=,60BOD ∠=︒,2CD OA ==,BOD ∴∆是等边三角形,1OD OB ∴==,∵222214OD OC +=+=,2224CD ==,222OD OC CD ∴+=,90DOC ∴∠=︒,AOB ∴∆与BOC ∆的面积之和为21112BOC BCD BOD COD S S S S +=+=+⨯= C .【点睛】本题主要考查了等边三角形的判定与性质,勾股定理的逆定理,旋转的性质等知识,利用旋转将AOB ∆与BOC ∆的面积之和转化为BOC BCD S S + ,是解题的关键.16.(2022·内蒙古呼和浩特)如图,ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到EDC △,使点B 的对应点D 恰好落在AB 边上,AC 、ED 交于点F .若BCD α∠=,则EFC ∠的度数是(用含α的代数式表示)( )A .1902α︒+B .1902α︒-C .31802α︒-D .32α【答案】C【分析】根据旋转的性质可得,BC =DC ,∠ACE =α,∠A =∠E ,则∠B =∠BDC ,利用三角形内角和可求得∠B ,进而可求得∠E ,则可求得答案.【详解】解:∵将ABC 绕点C 顺时针旋转得到EDC △,且BCD α∠=∴BC =DC ,∠ACE =α,∠A =∠E ,∴∠B =∠BDC ,∴1809022B BDC αα︒-∠=∠==︒-,∴90909022A E B αα∠=∠=︒-∠=︒-︒+=,∴2A E α∠=∠=,318018018022EFC ACE E ααα∴∠=︒-∠-∠=︒--=︒-,故选:C .【点睛】本题考查了旋转变换、三角形内角和、等腰三角形的性质,解题的关键是掌握旋转的性质.17.(2022·内蒙古赤峰)如图,点()2,1A ,将线段OA 先向上平移2个单位长度,再向左平移3个单位长度,得到线段''O A ,则点A 的对应点'A 的坐标是( )A .()3,2-B .()0,4C .()1,3-D .()3,1-【答案】C 【分析】根据点向上平移a 个单位,点向左平移b 个单位,坐标P (x ,y )⇒P (x ,y +a )⇒P (x +a ,y +b ),进行计算即可.【详解】解:∵点A 坐标为(2,1),∴线段OA 向h 平移2个单位长度,再向左平移3个单位长度,点A 的对应点A ′的坐标为(2-3,1+2),即(-1,3),故选C .【点睛】此题主要考查了坐标与图形的变化--平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.18.(2022·黑龙江绥化)如图,线段OA 在平面直角坐标系内,A 点坐标为()2,5,线段OA 绕原点O 逆时针旋转90°,得到线段OA ',则点A '的坐标为( )A .()5,2-B .()5,2C .()2,5-D .()5,2-【答案】A 【分析】如图,逆时针旋转90°作出OA ',过A 作AB x ⊥轴,垂足为B ,过A '作A B x ''⊥轴,垂足为B ',证明()A OB BOA AAS '∠ ≌,根据A 点坐标为()2,5,写出5AB =,2OB =,则5OB '=,2A B '=,即可写出点A 的坐标.【详解】解:如图,逆时针旋转90°作出OA ',过A 作AB x ⊥轴,垂足为B ,过A '作A B x ''⊥轴,垂足为B ',∴90A BO ABO ∠'=∠=︒,OA OA '=,∵18090A OB AOB A OA '∠+∠=︒-∠'=︒,90AOB A ∠+∠=︒,∴A OB A ∠'=∠,∴()A OB BOA AAS '∠ ≌,∴OB AB '=,A B OB '=,∵A 点坐标为()2,5,∴5AB =,2OB =,∴5OB '=,2A B '=,∴()5,2A '-,故选:A .【点睛】本题考查旋转的性质,证明A OB BOA '∠ ≌是解答本题的关键.19.(2022·海南)如图,点(0,3)(1,0)A B 、,将线段AB 平移得到线段DC ,若90,2ABC BC AB ∠=︒=,则点的坐标是( )A .(7,2)B .(7,5)C .(5,6)D .(6,5)【答案】D 【分析】先过点C 做出x 轴垂线段CE ,根据相似三角形找出点C 的坐标,再根据平移的性质计算出对应D 点的坐标.【详解】如图过点C 作x 轴垂线,垂足为点E ,∵90ABC ∠=︒∴90ABO CBE ∠+∠=︒∵90CBE BCE +=︒∠∴ABO BCE Ð=Ð在ABO ∆和BCE ∆中,90ABO BCE AOB BEC =⎧⎨==︒⎩∠∠∠∠ ,∴ABO BCE ∆∆∽,∴12AB AO OB BC BE EC === ,则26BE AO == ,22EC OB ==∵点C 是由点B 向右平移6个单位,向上平移2个单位得到,∴点D 同样是由点A 向右平移6个单位,向上平移2个单位得到,∵点A 坐标为(0,3),∴点D 坐标为(6,5),选项D 符合题意,故答案选D【点睛】本题考查了图像的平移、相似三角形的判定与性质,利用相似三角形的判定与性质找出图像左右、上下平移的距离是解题的关键.20.(2022·广西)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神下列的四个图中,能由如图所示的会徽经过平移得到的是( )A .B .C .D .【答案】D【分析】根据平移的特点分析判断即可.【详解】根据题意,得不能由平移得到,故A 不符合题意;不能由平移得到,故B 不符合题意;不能由平移得到,故C 不符合题意;能由平移得到,故D 符合题意;故选D .【点睛】本题考查了平移的特点,熟练掌握平移的特点是解题的关键.21.(2022·广西)如图,在ABC 中,4,CA CB BAC α==∠=,将ABC 绕点A 逆时针旋转2α,得到AB C '' ,连接B C '并延长交AB 于点D ,当B D AB '⊥时, 'BB的长是( )A B C D 【答案】B【分析】先证'60B AD ∠=︒,再求出AB 的长,最后根据弧长公式求得 'BB.【详解】解:,'CA CB B D AB =⊥ ,12AD DB AB ∴==,AB C '' 是ABC 绕点A 逆时针旋转2α得到,'AB AB ∴=,1'2AD AB =,在'Rt AB D ∆中,1cos ''2AD B AD AB ∠==,'60B AD ∴∠=︒,,'2CAB B AB αα∠=∠= ,11'603022CAB B AB ∴∠=∠=⨯︒=︒,4AC BC == ,cos304AD AC ∴=︒==2AB AD ∴==BB ∴'的长=60180AB π=,故选:B .【点睛】本题考查了图形的旋转变换,等腰三角形的性质,三角函数定义,弧长公式,正确运算三角函数定义求线段的长度是解本题的关键.22.(2022·内蒙古包头)如图,在Rt ABC 中,90,30,2ACB A BC ∠=︒∠=︒=,将ABC 绕点C 顺时针旋转得到A B C '' ,其中点A '与点A 是对应点,点B '与点B 是对应点.若点B '恰好落在AB 边上,则点A 到直线A C '的距离等于( )A .B .C .3D .2【答案】C【分析】如图,过A 作AQ A C '⊥于,Q 求解4,AB AC == 结合旋转:证明60,,90,B A B C BC B C A CB '''''∠=∠=︒=∠=︒ 可得BB C '△为等边三角形,求解60,A CA '∠=︒ 再应用锐角三角函数可得答案.【详解】解:如图,过A 作AQ A C '⊥于,Q由90,30,2ACB A BC ∠=︒∠=︒=,4,AB AC ∴===结合旋转:60,,90,B A B C BC B C A CB '''''∴∠=∠=︒=∠=︒BB C '∴ 为等边三角形,60,30,BCB ACB ''∴∠=︒∠=︒60,A CA '∴∠=︒sin 60 3.AQ AC ∴=︒== ∴A 到A C '的距离为3.故选C【点睛】本题考查的是旋转的性质,含30︒的直角三角形的性质,勾股定理的应用,等边三角形的判定与性质,锐角三角函数的应用,作出适当的辅助线构建直角三角形是解本题的关键.23.(2022·内蒙古通辽)冬季奥林匹克运动会是世界上规模最大的冬季综合性运动会,下列四个图是历届冬奥会图标中的一部分,其中是轴对称图形的为( )A .B .C .D .【答案】A【分析】根据轴对称图形的定义,即可求解.【详解】解:A 、是轴对称图形,故本选项符合题意;B 、不是轴对称图形,故本选项不符合题意;C 、不是轴对称图形,故本选项不符合题意;D 、不是轴对称图形,故本选项不符合题意;故选:A【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.24.(2022·四川内江)2022年2月第24届冬季奥林匹克运动会在我国北京成功举办,以下是参选的冬奥会会徽设计的部分图形,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】A.不是轴对称图形,也不是中心对称图形,故A 错误;B.不是轴对称图形,也不是中心对称图形,故B 错误;C.既是轴对称图形,也是中心对称图形,故C 正确;D.不是轴对称图形,也不是中心对称图形,故D 错误.故选:C .【点睛】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.25.(2022·广西河池)如图,在Rt △ABC 中,90ACB ∠︒=,6AC =,8BC =,将Rt ABC 绕点B 顺时针旋转90°得到Rt A B C ''' .在此旋转过程中Rt ABC 所扫过的面积为( )A .25π+24B .5π+24C .25πD .5π【答案】A 【分析】根据勾股定理定理求出AB ,然后根据扇形的面积和三角形的面积公式求解.【详解】解:∵90ACB ∠︒=,6AC =,8BC =,∴10AB ==,∴Rt ABC 所扫过的面积为2901016825243602ππ⋅⋅+⨯⨯=+.故选:A .【点睛】本题主要考查了旋转的性质,扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解答的关键.26.(2022·上海)有一个正n 边形旋转90 后与自身重合,则n 为( )A .6B .9C .12D .15【答案】C【分析】根据选项求出每个选项对应的正多边形的中心角度数,与90 一致或有倍数关系的则符合题意.【详解】如图所示,计算出每个正多边形的中心角,90 是30 的3倍,则可以旋转得到.A. B. C. D.观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合故选C .【点睛】本题考查正多边形中心角与旋转的知识,解决本题的关键是求出中心角的度数并与旋转度数建立关系.27.(2022·贵州毕节)矩形纸片ABCD 中,E 为BC 的中点,连接AE ,将ABE △沿AE 折叠得到AFE △,连接CF .若4AB =,6BC =,则CF 的长是( )A .3B .175C .72D .185【答案】D 【分析】连接BF 交AE 于点G ,根据对称的性质,可得AE 垂直平分BF ,BE =FE ,BG =FG =12BF ,根据E 为BC 中点,可证BE =CE =EF ,通过等边对等角可证明∠BFC =90°,利用勾股定理求出AE ,再利用三角函数(或相似)求出BF ,则根据FC =【详解】连接BF ,与AE 相交于点G ,如图,∵将ABE △沿AE 折叠得到AFE △∴ABE △与AFE △关于AE 对称∴AE 垂直平分BF ,BE =FE ,BG =FG =12BF∵点E 是BC 中点∴BE =CE =DF =132BC =∴5AE ===∵sin BE BG BAE AE AB ∠==∴341255BE AB BG AE ⋅⨯===∴12242225BF BG ==⨯=∵BE =CE =DF ∴∠EBF =∠EFB ,∠EFC =∠ECF∴∠BFC =∠EFB +∠EFC =180902︒=︒∴185FC ==故选 D 【点睛】本题考查了折叠对称的性质,熟练运用对称性质证明相关线段相等是解题的关键.二.填空题28.(2022·山东临沂)如图,在平面直角坐标系中,ABC 的顶点A ,B 的坐标分别是()0,2A ,()2,1B -.平移ABC 得到A B C ''' ,若点A 的对应点A '的坐标为()1,0-,则点B 的对应点B '的坐标是_____________.【答案】()1,3-【分析】根据点A 坐标及其对应点A '的坐标的变化规律可得平移后对应点的横坐标减小1,纵坐标减小2,即可得到答案.【详解】 平移ABC 得到A B C ''' ,点()0,2A 的对应点A '的坐标为()1,0-,∴ABC 向左平移了1个单位长度,向下平移了2个单位长度,即平移后对应点的横坐标减小1,纵坐标减小2,∴()2,1B -的对应点B '的坐标是()1,3-,故答案为:()1,3-.【点睛】本题考查了平移坐标的变化规律,即左减右加,上加下减,熟练掌握知识点是解题的关键.29.(2022·广西贵港)如图,将ABC 绕点A 逆时针旋转角()0180αα︒<<︒得到ADE ,点B 的对应点D 恰好落在BC 边上,若,25DE AC CAD ⊥∠=︒,则旋转角α的度数是______.【答案】50︒【分析】先求出65ADE ∠=︒,由旋转的性质,得到65∠=∠=︒B ADE ,AB AD =,则65ADB ∠=︒,即可求出旋转角α的度数.【详解】解:根据题意,∵,25DE AC CAD ⊥∠=︒,∴902565ADE ∠=︒-︒=︒,由旋转的性质,则65∠=∠=︒B ADE ,AB AD =,∴65ADB B ∠=∠=︒,∴180665550BAD ︒-∠=︒=︒-︒;∴旋转角α的度数是50°;故答案为:50°.【点睛】本题考查了旋转的性质,三角形的内角和定理,解题的关键是熟练掌握旋转的性质进行计算.30.(2022·广西贺州)如图,在平面直角坐标系中,OAB 为等腰三角形,5OA AB ==,点B 到x 轴的距离为4,若将OAB 绕点O 逆时针旋转90︒,得到OA B ''△,则点B '的坐标为__________.【答案】(4,8)-【分析】过B 作BC OA ⊥于C ,过B '作BD x ⊥轴于D ,构建OB D OBC '∆≅∆,即可得出答案.【详解】过B 作BC OA ⊥于C ,过B '作BD x ⊥轴于D ,∴90B DO BCO '∠=∠=︒,∴2390∠+∠= ,由旋转可知90BOB '∠=︒,OB OB '=,∴1290∠+∠=︒,∴13∠=∠,∵OB OB '=,13∠=∠,B DO BCO '∠=∠,∴OB D OBC '∆≅∆,∴B D OC '=,4OD BC ==,∵5AB AO ==,∴3AC ===,∴8OC =,∴8B D '=,∴(4,8)B '-.故答案为:(4,8)-.【点睛】本题考查了旋转的性质以及如何构造全等三角形求得线段的长度,准确构造全等三角形求得线段长度是解题的关键.31.(2022·四川泸州)点()2,3-关于原点的对称点的坐标为________.【答案】()2,3-【分析】根据两个点关于原点对称时,它们的坐标符号相反,可以直接得到答案.【详解】点()2,3-关于原点对称的点的坐标是()2,3-故答案为:()2,3-【点睛】本题主要考查了关于原点对称的点的坐标特点,两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P ′(-x ,-y ).32.(2022·吉林)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角()0360αα︒<<︒后能够与它本身重合,则角α可以为__________度.(写出一个即可)【答案】60或120或180或240或300(写出一个即可)【分析】如图(见解析),求出图中正六边形的中心角,再根据旋转的定义即可得.【详解】解:这个图案对应着如图所示的一个正六边形,它的中心角3601606︒∠==︒,0360α︒<<︒ ,∴角α可以为60︒或120︒或180︒或240︒或300︒,故答案为:60或120或180或240或300(写出一个即可).【点睛】本题考查了正多边形的中心角、图形的旋转,熟练掌握正多边形的性质是解题关键.33.(2022·贵州铜仁)如图,在边长为2的正方形ABCD 中,点E 为AD 的中点,将△CDE 沿CE 翻折得△CME ,点M 落在四边形ABCE 内.点N 为线段CE 上的动点,过点N 作NP //EM 交MC 于点P ,则MN +NP 的最小值为________.【答案】8 5【分析】过点M作MF⊥CD于F,推出MN+NP的最小值为MF的长,证明四边形DEMG为菱形,利用相似三角形的判定和性质求解即可.【详解】解:作点P关于CE的对称点P′,由折叠的性质知CE是∠DCM的平分线,∴点P′在CD上,过点M作MF⊥CD于F,交CE于点G,∵MN+NP=MN+NP′≤MF,∴MN+NP的最小值为MF的长,连接DG,DM,由折叠的性质知CE为线段DM的垂直平分线,∵AD=CD=2,DE=1,∴CE∵12CE×DO=12CD×DE,∴DO∴EO∵MF⊥CD,∠EDC=90°,∴DE ∥MF ,∴∠EDO =∠GMO ,∵CE 为线段DM 的垂直平分线,∴DO =OM ,∠DOE =∠MOG =90°,∴△DOE ≌△MOG ,∴DE =GM ,∴四边形DEMG 为平行四边形,∵∠MOG =90°,∴四边形DEMG 为菱形,∴EG =2OE GM = DE =1,∴CG ,∵DE ∥MF ,即DE ∥GF ,∴△CFG ∽△CDE ,∴FG CG DE CE =,即1FG , ∴FG =35,∴MF =1+35=85,∴MN +NP 的最小值为85.故答案为:85.【点睛】此题主要考查轴对称在解决线段和最小的问题,熟悉对称点的运用和画法,知道何时线段和最小,会运用勾股定理和相似三角形的判定和性质求线段长度是解题的关键.34.(2022·山东潍坊)小莹按照如图所示的步骤折叠A 4纸,折完后,发现折痕AB ′与A 4纸的长边AB 恰好重合,那么A 4纸的长AB 与宽AD 的比值为___________.1【分析】判定△AB ′D ′是等腰直角三角形,即可得出AB AD ,再根据AB ′= AB ,再计算即可得到结论.【详解】解:∵四边形ABCD 是矩形,∴∠D =∠B =∠DAB =90°,由操作一可知:∠DAB ′=∠D ′AB ′=45°,∠AD ′B ′=∠D =90°,AD =AD ′,∴△AB ′D ′是等腰直角三角形,∴AD =AD ′= B ′D ′,由勾股定理得AB ,又由操作二可知:AB ′=AB ,=AB ,∴AB AD ,∴A 4纸的长AB 与宽AD 1:1.【点睛】本题主要考查了矩形的性质以及折叠变换的运用,解题的关键是理解题意,灵活运用所学知识解决问题.35.(2022·山东潍坊)如图,在直角坐标系中,边长为2个单位长度的正方形ABCO 绕原点O 逆时针旋转75︒,再沿y 轴方向向上平移1个单位长度,则点B ''的坐标为___________.【答案】(1)+【分析】连接OB ,OB '由题意可得∠BOB '=75°,可得出∠COB '=30°,可求出B '的坐标,即可得出点B ''的坐标.【详解】解:如图:连接OB ,OB ',作B M '⊥y 轴∵ABCO是正方形,OA=2∴∠COB=45°,OB=∵绕原点O逆时针旋转75︒∴∠BOB'=75°∴∠COB'=30°∵OB'=OB=∴MB'MO∴B'(∵沿y轴方向向上平移1个单位长度∴B''(1)故答案为:(1)【点睛】本题考查了坐标与图形变化﹣旋转,坐标与图形变化﹣平移,熟练掌握网格结构,准确确定出对应点的位置是解题的关键.36.(2022·湖南永州)如图,图中网格由边长为1的小正方形组成,点A为网格线的交点.若线段OA绕原点O顺时针旋转90°后,端点A的坐标变为______.【答案】()2,2-【分析】根据题意作出旋转后的图形,然后读出坐标系中点的坐标即可.【详解】解:线段OA 绕原点O 顺时针旋转90°后的位置如图所示,∴旋转后的点A 的坐标为(2,-2),故答案为:(2,-2).【点睛】题目主要考查图形的旋转,点的坐标,理解题意,作出旋转后的图形读出点的坐标是解题关键.三.解答题37.(2022·湖南)如图所示的方格纸(1格长为一个单位长度)中,AOB ∆的顶点坐标分别为(3,0)A ,(0,0)O ,(3,4)B .(1)将AOB ∆沿x 轴向左平移5个单位,画出平移后的△111AO B (不写作法,但要标出顶点字母);(2)将AOB ∆绕点O 顺时针旋转90︒,画出旋转后的△222A O B (不写作法,但要标出顶点字母);(3)在(2)的条件下,求点B 绕点O 旋转到点2B 所经过的路径长(结果保留)π.【答案】(1)见解析(2)见解析(3)52π【分析】(1)利用平移变换的性质分别作出A ,O ,B 的对应点1A ,1O ,1B 即可;(2)利用旋转变换的性质分别作出A ,O ,B 的对应点2A ,2O ,2B 即可;(3)利用弧长公式求解即可.(1)解:如图,111A O B ∆即为所求;(2)解:如图,222A O B ∆(即△A 2OB 2)即为所求;(3)解:在Rt AOB ∆中,5OB ==,905253602l ππ∴=⨯⨯=.【点睛】本题考查作图-旋转变换,平移变换,勾股定理、弧长公式等知识,解题的关键是掌握平移变换,旋转变换的性质.38.(2022·湖北荆州)如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【答案】(1)见解析(2)见解析【分析】对于(1),以AC为公共边的有2个,以AB为公共边的有2个,以BC为公共边的有1个,一共有5个,作出图形即可;对于(2),△ABC是等腰直角三角形,以BC为对角线的菱形只有1个,作出图形即可.(1)如图所示.。
中考数学图形的变换专题复习题及答案
热点11 图形的变换(时间:100分钟总分:100分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.在图形的平移中,下列说法中错误的是()A.图形上任意点移动的方向相同; B.图形上任意点移动的距离相同C.图形上可能存在不动点; D.图形上任意对应点的连线长相等2.如图所示图形中,是由一个矩形沿顺时针方向旋转90•°后所形成的图形的是()A.(1)(4) B.(2)(3) C.(1)(2) D.(2)(4)3.在旋转过程中,确定一个三角形旋转的位置所需的条件是()①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角.A.①②④ B.①②③ C.②③④ D.①③④4.如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是(• )A.△COD B.△OAB C.△OAF D.△OEF5.下列说法正确的是()A.分别在△ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,•则△ADE•是△ABC 放大后的图形;B.两个位似图形的面积比等于位似比;新课标第一网C.位似多边形中对应对角线之比等于位似比;D.位似图形的周长之比等于位似比的平方6.下面选项中既是中心对称图形又是轴对称图形的是()A.等边三角形 B.等腰梯形 C.五角星 D.菱形7.下列图形中对称轴的条数多于两条的是()A.等腰三角形 B.矩形 C.菱形 D.等边三角形8.在如图所示的四个图案中既包含图形的旋转,•又有图形的轴对称设计的是()9.钟表上2时15分,时针与分针的夹角是()A.30° B.45° C.22.5° D.15°10.如图1,已知正方形ABCD的边长是2,如果将线段BD绕点B旋转后,点D•落在CB的延长线上的D′处,那么tan∠BAD′等于()A.1 B.2 C.22D.22(1) (2) (3)二、填空题(本大题共8小题,每小题3分,共24分)11.一个正三角形至少绕其中心旋转________度,就能与本身重合,•一个正六边形至少绕其中心旋转________度,就能与其自身重合.12.如图2中图案,可以看作是由一个三角形通过_______次旋转得到的,每次分别旋转了__________.13.如图3,在梯形ABCD中,将AB平移至DE处,则四边形ABED是_______四边形.14.已知等边△ABC,以点A为旋转中心,将△ABC旋转60°,•这时得到的图形应是一个_______,且它的最大内角是______度.15.•如果两个位似图形的对应线段长分别为3cm•和5cm,•且较小图形的周长为30cm,则较大图形周长为________.16.将如左图所示,放置的一个Rt△ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体的主视图是右图所示四个图形中的_______(只填序号).17.如图4,一张矩形纸片,要折叠出一个最大的正方形纸,小明把矩形的一个角沿折痕翻折上去,使AB边和AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他的判定方法是________.(4) (5)18.如图5,有一腰长为5cm,底边长为4cm的等腰三角形纸片,•沿着底边上的中线将纸片剪开,得到两个全等的直角三角形纸片,用这两个直角三角形纸片拼成的平面图形中有_______个不同的四边形.三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)19.如图,平移图中的平行四边形ABCD使点A移动至E点,作出平移后的图形.20.如图,作出Rt△ABC绕点C顺时针旋转90°、180°、270°后的图案,•看看得到的图案是什么?21.如图,P是正方形内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若BP=3,求PP′.22.如图所示,四边形ABCD是正方形,E点在边DE上,F点在线段CB•的延长线上,且∠EAF=90°.(1)试证明:△ADE≌△ABF.(2)△ADE可以通过平移、翻转、旋转中的哪种方法到△ABF的位置.(3)指出线段AE与AF之间的关系.23.如图,魔术师把4张扑克牌放在桌子上,如图(1),然后蒙住眼睛,请一位观众上台把某一张牌旋转180°,魔术师解开蒙具后,看到四张牌如图(2)所示,•他很快确定了哪一张牌被旋转过,你能说明其中的奥妙吗?24.如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点,将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中的阴影部分).若∠A=120°,•AB=4cm,求梯形ABCD的高CD.25.如图,正方形ABCD 内一点P ,使得PA :PB :PC=1:2:3,请利用旋转知识,•证明∠APB=135°.(提示:将△ABP 绕点B 顺时针旋转90°至△BCP ′,连结PP ′)答案:一、选择题1.C 2.B 3.A 4.C 5.C 6.D 7.D 8.D 9.C 10.B二、填空题11.120 50 12.4,72°,144°,216°,288° 13.平行 14.菱形,12015.•50cm 16.(2) 17.对角线平分内角的矩形是正方形 18.4三、解答题19.解:略 20.解:略.21.解:由放置的性质可知PBP ′=∠ABC=90°,BP ′=BP=3,在Rt △PBP ′中,PP ′=22'BP BP +=32.22.解:(1)90909090EAF BAF BAE BAD DAE BAE ∠=︒⇒∠+∠=︒⎫⇒⎬∠=︒⇒∠+∠=︒⎭∠EAF=∠EAD , 而AD=AB ,∠D=∠ABF=90°,故△ADE ≌△ABF .(2)可以通过旋转,将△ADE 绕点A 顺时针旋转90°就可以到△ABF 的位置.(3)由△ADE ≌△ABF 可知AE=AF .23.解:图(1)与图(2)中扑克牌完全一样,说明被旋转过的牌是中心对称图形,而图中只有方块4是中心对称图形,故方块4被旋转过.24.解:由题意可知△ABD ≌△EBD ,∴∠ADB=∠EDB,由于AD∥BC,∴∠ADB=∠DBE.∴∠EDB=∠DBE,∴ED=EB,∴DE=AB=4cm.∵∠CDE=30°,∴CD=DE·cos30°=4×32=23.25.证明:旋转后图形如图,设AP=x,PB=2x,PC=3x,则由旋转的性质可知CP′=x,BP′=2x,∠PBP′=90°,∴PP′=22x,所以∠BP′P=45°.在△PP′C中,P′P2+P′C2=8x2+x2=9x2,又∵PC2=9x2,∴P′P2+P′C2=PC2.∴∠PP′C=90°,∴∠BP′C=90°+45°=135°.∴∠APB=135°.。
初三数学(青岛版)图形的变换复习(中考题选)带答案
初三数学第二章图形与变换复习(NO:005)知识总结1、(2012浙江)如图,将周长为8的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边形ABFD 的周长为 102、(2012绍兴)在如图所示的平面直角坐标系内,画在透明胶片上的▱ABCD ,点A 的坐标是(0,2).现将这张胶片平移,使点A 落在点A′(5,﹣1)处,则此平移可以是( B )A . 先向右平移5个单位,再向下平移1个单位B . 先向右平移5个单位,再向下平移3个单位C . 先向右平移4个单位,再向下平移1个单位D . 先向右平移4个单位,再向下平移3个单位3、(2012湖北咸宁,6,3分)如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1∶2,点A 的坐标为(1,0),则E 点的坐标为( C ).A .(2,0)B .(23,23) C .(2,2) D .(2,2)4、(2012年广西玉林市,10,3)如图,正方形ABCD 的两边BC 、AB 分别在平面直角坐标系内的x 轴、y 轴的正半轴上,正方形A ′B ′C ′D ′与正方形ABCD 是以AC 的中点O ′为中心的位似图形,已知AC=23,若点A ′的坐标为(1,2),则正方形A ′B ′C ′D ′与正方形ABCD 的相似比是( B )5、(2012聊城)如图,在方格纸中,△ABC 经过变换得到△DEF,正确的变换是( B ) A .把△ABC 绕点C 逆时针方向旋转90°,再向下平移2格 B .把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格 C .把△ABC 向下平移4格,再绕点C 逆时针方向旋转180° D .把△ABC 向下平移5格,再绕点C 顺时针方向旋转180°6、(2012山东德州)由图中左侧三角形仅经过一次平移、旋转或轴对称变换,不能得到的图形是( C )A B DF(第6题)(A ) (C ) (D )(B )7、(2007潍坊)如图,两个全等的长方形ABCD 与CDEF ,旋转长方形ABCD 能和长方形CDEF 重合,则可以作为旋转中心的点有( A )A .1个B .2个C .3个D .无数个8、(2008潍坊)如图,在平面直角坐标系中,Rt OAB △的顶点A的坐标为,若将OAB △绕O 点逆时针旋转60后,B 点到达B '点,则B '点的坐标是)23,33(第7题 第8题 第9题9、(2009潍坊)如图,已知Rt ABC △中,9030ABC BAC AB ∠=∠==°,°,,将ABC △绕顶点C 顺时针旋转至A B C '''△的位置,且A C B '、、三点在同一条直线上,则点A 经过的最短路线的长度是( D )cm .A .8B.C .32π3D .8π310、(2012广东汕头)如图,将△ABC 绕着点C 顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是 80011、(2012贵州六盘水)两块大小一样斜边为4且含有30°角的三角板如图5水平放置.将△CDE 绕C 点按逆时针方向旋转,当E 点恰好落在AB 上时,△CDE 旋转了 30 度.第10题第11题 第12题12、(2012中考)如图,在△ABC 中,∠ACB =90º,∠B =30º,AC =1,AC 在直线l 上.将△ABC 绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得 到点P 2,此时AP 2=2+3;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=3 +3;…,按此规律继续旋转,直到得到点P 2012为止,则AP 2012=【 】A .2011+671 3B .2012+671 3C .2013+671 3D .2014+671 3'B①② ③1P 2 P 3 … l又∵2012÷3=670…2,∴AP 2012=670(3+3)+(2+3)=2012+6713故选B .13、(2012山东泰安)如图,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴上,∠B=120°,OA=2,将菱形OABC 绕点O 顺时针旋转105°至OA B C '''的位置,则点B '的坐标为(2,2-)14、(2012广州)如图4,在等边△ABC 中,AB=6,D 是BC 上一点,且BC=3BD ,△ABD 绕点A 旋转后得到△ACE ,则CE 的长度为 2 。
中考数学专题测试十六图形变换(含答案)
专题十六 图形的变换(时间:90分钟 满分:100分)一、选择题(每小题4分,共48分)1.(20XX 年重庆市)下列图形中,是中心对称图形的是 ( )2.(20XX 年宜昌市)如图,用数学的眼光欣赏这个蝴蝶图案, 它的一种数学美体现在蝴蝶图案的 ( ) A .轴对称性 B .用字母表示数 C .随机性 D .数形结合3.(20XX 年潍坊市)如图,阴影部分是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正方形涂黑,得到新的图形(阴影部分),其中不是轴对称图形的是 ( )4.(20XX 年铜仁市)将如图所示的直角三角形绕直线∠旋转一周,得到的立体图形是( )5.(20XX 年无锡市)一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那么下列图案中不符合要求的是 ( )6.(20XX 年广东省)将图中的箭头缩小到原来的12,得到的图形是 ( )7.(20XX 年天津)下列汽车标志中,可以看作是中心对称图形的是 ( )8.(20XX 年北京)下列图形中,既是中心对称图形又是轴对称图形的是 ( ) A .等边三角形 B .平行四边形 C .梯形 D .矩形 9.(20XX 年黄石)有如下图形:①函数y =x +1的图象;②函数y =1x图象;③一段弧;④平行四边形.其中一定是轴对称图形的有 ( )A .1个B .2个C .3个D .4个10.(20XX 年扬州)如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2.将△ABC 绕点C 按顺时针方向旋转n 度后得到△EDC ,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )A .30,2B .60,2C .60,32D .60,311.(20XX 年菏泽)如图所示,已知在三角形纸片ABC 中,BC =3,AB =6,∠BCA =90°,在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为 ( )A .6B .3C .23D .312.(20XX 年乐山)直角三角板ABC 的斜边AB =12 cm ,∠A =30°,将三角板ABC 绕C 顺时针旋转90°至三角板A'B'C'的位置后,再沿CB 方向向左平移,使点B'落在原三角板ABC 的斜边AB 上,则三角板A'B'C'平移的距离为 ( ) A .6 cm B .4 cm C .(6-23)cm D .(43-6)cm 二、填空题(每小题4分,共20分)13.(20XX 年德州)长为1,宽为a 的矩形纸片(12<a <1), 如图那样折一下,剪下一个边长等于矩形宽度的正方形 (称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作),如此反复操作下去.若在第n 次操作后,剩下的矩形为正方形,则操作终止,当n =3时,a 的值为______.14.(20XX 年荆州)如图,长方体的底面边长分别为2 cm 和4 cm ,高为5 cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为______.15.(20XX年泰州)如图,△ABC的三个顶点都在5×5的网络(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点B顺时针旋转到△A'BC'的位置,且点A'、C'仍落在格点上,则线段AB 扫过的图形的面积是______平方单位(结果保留π).16.(20XX年绍兴)取一张矩形纸片按照图(1)、图(2)中的方法对折,并沿图(3)中过矩形顶点的斜线(虚线)剪开,将剪下的①这部分展开,平铺在桌面上,若平铺的这个图形是正六边形,则这张矩形纸片的宽和长之比为______.17.(20XX年泉州)等边三角形、平行四边形、矩形、圆,四个图形中,既是轴对称图形又是中心对称图形的是______.三、解答题(共32分)18.(10分)(20XX年孝感)如图,网格中每个小正方形的边长为1,请你认真观察图(1)中的三个网格中阴影部分构成的图案,解答下列问题:(1)这三个图案都具有以下共同特征:都是_______对称图形,都不是_______对称图形;(2)请在图(2)中设计出一个面积为4,且具备上述特征的图案,要求所画图案不能与图(1)中给出的图案相同.19.(10分)(20XX年呼和浩特市)如图,四边形ABCD是正方形,点E是边BC的中点且∠AEF=90°,EF交正方形外角平分线CF于点F,取边AB的中点G,连接EG.(1)求证:EG=CF;(2)将△ECF绕点E逆时针旋转90°,请在图中直接画出旋转后的图形,并指出旋转后CF与EG的位置关系.20.(12分)(20XX年杭州市)在平面上,七个边长均为1的等边三角形,分别用①至⑦表示(如图).从④⑤⑥⑦组成的图形中,取出一个三角形,使剩下的图形经过一次平移,与①②③组成的图形拼成一个正六边形.(1)你取出的是哪个三角形?写出平移的方向和平移的距离;(2)将取出的三角形任意放置在拼成的正六边形所在平面上,问:正六边形没有被三角形盖住的面积能否等于52?请说明理由.参考答案1.B2.A3.D4.B5.D6.A7.A8.D9.C 10.C 11.C 12.C 13.35或3414.13cm 15.13416.317.圆、矩形18.(1)中心轴(2)答案不唯一19.(1)略(2)平行图略20.(1)⑦;向上平移一个单位(2)可以。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热点11 图形的变换
(时间:100分钟总分:100分)
一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.在图形的平移中,下列说法中错误的是()
A.图形上任意点移动的方向相同; B.图形上任意点移动的距离相同
C.图形上可能存在不动点; D.图形上任意对应点的连线长相等
2.如图所示图形中,是由一个矩形沿顺时针方向旋转90•°后所形成的图形的是()
A.(1)(4) B.(2)(3) C.(1)(2) D.(2)(4)
3.在旋转过程中,确定一个三角形旋转的位置所需的条件是()
①三角形原来的位置;②旋转中心;③三角形的形状;
④旋转角.
A.①②④ B.①②③ C.②③④D.①③④
4.如图,O是正六边形ABCDEF的中心,下列图形中
可由△OBC平移得到的是(• )
A.△COD B.△OAB C.△OAF D.△OEF
5.下列说法正确的是()
A.分别在△ABC的边AB、AC的反向延长线上取
点D、E,使DE∥BC,•则△ADE•是△ABC放大后的
图形;
B.两个位似图形的面积比等于位似比;
C.位似多边形中对应对角线之比等于位似比;
D.位似图形的周长之比等于位似比的平方
6.下面选项中既是中心对称图形又是轴对称图形的是
()
A.等边三角形 B.等腰梯形 C.五角
星 D.菱形
7.下列图形中对称轴的条数多于两条的是()
A.等腰三角形 B.矩形 C.菱形
D.等边三角形
8.在如图所示的四个图案中既包含图形的旋转,•又有图
形的轴对称设计的是()
9.钟表上2时15分,时针与分针的夹角是()
A.30° B.45° C.22.5°D.15°
10.如图1,已知正方形ABCD的边长是2,如果将线段
BD绕点B旋转后,点D•落在CB的延长线上的D′处,
那么tan∠BAD′等于()
A.1 B. C. D.2
(1) (2)
(3)
二、填空题(本大题共8小题,每小题3分,共24分)
11.一个正三角形至少绕其中心旋转________度,就
能与本身重合,•一个正六边形至少绕其中心旋转
________度,就能与其自身重合.
12.如图2中图案,可以看作是由一个三角形通过
_______次旋转得到的,每次分别旋转了
__________.
13.如图3,在梯形ABCD中,将AB平移至DE处,
则四边形ABED是_______四边形.
14.已知等边△ABC,以点A为旋转中心,将△ABC旋
转60°,•这时得到的图形应是一个_______,且
它的最大内角是______度.
15.•如果两个位似图形的对应线段长分别为3cm•和
5cm,•且较小图形的周长为30cm,则较大图形周长
为________.
16.将如左图所示,放置的一个Rt△ABC(∠C=90°)
绕斜边AB旋转一周,所得到的几何体的主视图是右图
所示四个图形中的_______(只填序号).
17.如图4,一张矩形纸片,要折叠出一个最大的正方形
纸,小明把矩形的一个角沿折痕翻折上去,使AB边和
AD边上的AF重合,则四边形ABEF就是一个最大的
正方形,他的判定方法是________.
(4)
(5)
18.如图5,有一腰长为5cm,底边长为4cm的等腰三角形纸片,•沿着底边上的中线将纸片剪开,得到两个全等的直角三角形纸片,用这两个直角三角形纸片拼成的平面图形中有_______个不同的四边形.
三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)
19.如图,平移图中的平行四边形ABCD使点A移动至E点,作出平移后的图形.
20.如图,作出Rt△ABC绕点C顺时针旋转90°、180°、270°后的图案,•看看得到的图案是什么?
21.如图,P是正方形内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若BP=3,求PP′.
22.如图所示,四边形ABCD是正方形,E点在边DE 上,F点在线段CB•的延长线上,且∠EAF=90°.(1)试证明:△ADE≌△ABF.
(2)△ADE可以通过平移、翻转、旋转中的哪种方法到△ABF的位置.
(3)指出线段AE与AF之间的关系.
23.如图,魔术师把4张扑克牌放在桌子上,如图(1),然后蒙住眼睛,请一位观众上台把某一张牌旋转180°,魔术师解开蒙具后,看到四张牌如图(2)所示,•他很快确定了哪一张牌被旋转过,你能说明其中的奥妙吗?
24.如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点,将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中的阴影部分).若∠A=120°,•AB=4cm,求梯形ABCD的高CD.
25.如图,正方形ABCD内一点P,使得PA:PB:PC=1:2:3,请利用旋转知识,•证明∠APB=135°.(提示:将△ABP绕点B顺时针旋转90°至△BCP′,
连结PP′)
答案:
一、选择题
1.C 2.B 3.A 4.C 5.C 6.D 7.D 8.D 9.C 10.B
二、填空题
11.120 50 12.4,72°,144°,216°,288° 13.平行 14.菱形,120
15.•50cm 16.(2) 17.对角线平分内角的矩形是正方形 18.4
三、解答题
19.解:略 20.解:略.
21.解:由放置的性质可知PBP′=∠ABC=90°,
BP′=BP=3,在Rt△PBP′中,PP′==3.
22.解:(1)∠EAF=∠EAD,而AD=AB,∠D=∠ABF=90°,故△ADE≌△ABF.
(2)可以通过旋转,将△ADE绕点A顺时针旋转90°就可以到△ABF的位置.
(3)由△ADE≌△ABF可知AE=AF.23.解:图(1)与图(2)中扑克牌完全一样,说明被旋转过的牌是中心对称图形,
而图中只有方块4是中心对称图形,故方块4被旋转过.
24.解:由题意可知△ABD≌△EBD,
∴∠ADB=∠EDB,由于AD∥BC,∴∠ADB=∠DBE.
∴∠EDB=∠DBE,∴ED=EB,∴DE=AB=4cm.
∵∠CDE=30°,∴CD=DE·cos30°=4×=2.
25.证明:旋转后图形如图,设AP=x,PB=2x,PC=3x,
则由旋转的性质可知CP′=x,BP′=2x,∠PBP′=90°,
∴PP′=2x,所以∠BP′P=45°.
在△PP′C中,
P′P2+P′C2=8x2+x2=9x2,
又∵PC2=9x2,∴P′P2+P′C2=PC2.
∴∠PP′C=90°,∴∠BP′C=90°+45°=135°.
∴∠APB=135°.
=========================== =========================== =====
适用版本:
人教版,苏教版, 鲁教版,北京版,语文A版,语文S版,冀教版,沪教版,北大师大版,人教版新版,外研版,新起点,牛津译林,华师大版,湘教版,新目标,苏科版,粤沪版,北京版,岳麓版
适用学科:
语文,数学,英语,科学,物理,化学,生物,政治,历史,地理
适用年级:
一年级,二年级,三年级,四年级,五年级,六年级,七年级,八年级,九年级,小一,小二,小三,小四,小五,小六,初一,初二,初三,高一,高二,高三,中考,高考,小升初
适用领域及关键字:
100ceping,51ceping,52ceping,ceping,xu exi,zxxx,zxjy,zk,gk,xiti,教学,教学研究,在线教学,在线学习,学习,测评,测评网,学业测评, 学业测评网,在线测评, 在线测评网,测试,在线测试,教育,在线教育,中考,高考,中小学,中小学学习,中小学在线学习,试题,在线试题,练习,在线练习,在线练习,小学教育,初中教育,高中教育,小升初复习,中考复习,高考复习,教案,学习资料,辅导资料,课外辅导资料,在线辅导资料,作文,作文辅导,文档,教学文档,真题,试卷,在线试卷,答案,解析,课题,复习资料,复习专题,专项练习,学习网,在线学习网,学科网,在线学科网,在线题库,
试题库,测评卷,小学学习资料,中考学习资料,单元测试,单元复习,单元试卷,考点,模拟试题,模拟试卷,期末考试,期末试卷,期中考试,期中试卷
=========================== =========================== =====
本卷由《100测评网》整理上传,专注于中小学生学业检测,练习与提升.。