泛函分析讲义
泛函分析第一讲
线性算子和线性泛函
第二章 泛函分析
绪论
2.1 距离空间
第二章 泛函分析
一、距离空间的定义
lim
n
xn
x
0, N, 当 n 时N,有
dx, y x y
x y 0, x y 0当且仅当 x y
xy yx
xy xz zy
xn x
第二章 泛函分析
第一节 距离空间
一、距离空间的定义
第一节 距离空间
一、距离空间的定义
例2.1.2 设 X ,d 是距离空间,对任意 x, y X ,源自定义x,y
d
1+d
x,xy, y ,则
X
,
也是距离空间.
证明 三角不等式 d(x, y) d(x, z) d(z, y),
第二章 泛函分析
第一节 距离空间
一、距离空间的定义
例2.1.3 空间l p p 1.
x0 X. 如果d (xn , x0 ) 0, n , 则称该点列 xn
收敛于 x0 , 并记为
lim
n
xn
x0
或
xn x0 n
定理1 距离空间 X ,d 中,收敛点列的极限是唯一的.
第二章 泛函分析
第一节 距离空间
二、距离空间中的收敛
例2.1.5 在Rn 中,点列的收敛为按坐标收敛.
♣ 泛函分析在微分方程、概率论、函数论、计算 数学、控制论、最优化理论、连续介质力学、量 子物理等以及一些工程技术学科都有重要作用.
第二章 泛函分析
绪论
二、泛函分析课程内容 1.空间 集合 + 一定的结构
距离空间 赋范线性空间 内积空间 Banach空间 Hilbert空间
泛函分析讲义(中文版-武汉大学).
则称 d 是 X 上的度量(距离)函数,称 X 为度量(距离)空间.有时为了明确,记为 ( X , d ) .
度量空间的子集合 E ,仍以 d 为 E 上度量构成的度量空间称为 ( X , d ) 的子空间.
例 1 对于 n 维空间Φ n 中的点 x = (x1, , xn ) 和 y = ( y1, , yn ) ,定义
利用 Zorn 引理可以证明: 任一线性空间必存在极大线性无关集合,这一集合即是 X 的 Hamel 基.换句话说,任一线性空间必存在 Hamel 基.
凸集和子空间是线性空间中时常用到的子集. X 的子集 E 称为是凸的,若 ∀x, y ∈ E ,
0 ≤ r ≤ 1 , rx + (1 − r) y ∈ E .对于任一集合 E ⊂ X ,记
容易验证 X 是线性空间. 今后对于有限维空间,无穷序列空间和函数空间将分别采用以上规定的线性运算.许多
在经典分析、代数、复变、实变、微分方程中遇到的空间都是线性空间。 注意:定义 1 与线性代数中关于线性空间的叙述是一致的,但是其内涵要比线性代数中
广泛得多。因为在线性代数中限定所考虑的对象为 n 数组。这一点很重要,例如在线性代数 中有一个结论:任何 n +1 个向量必线性相关。对于现在的空间,这一结论却不必成立。
实际上在Φ
n
上还可以定义其他度量,例如
d1 ( x,
y)
=
max
1≤i≤n
xi
−
yi
,此时 (Φ n , d1) 仍是度
量空间.但须注意应把 (Φ n , d1) 与 (Φ n , d ) 视为不同的度量空间.此外注意今后当说到Φ n 是
度量空间时,总意味着它带有欧氏度量.
(53页幻灯片)泛函分析PPT课件
泛函分析的产生
十九世纪后数学发展进入了一个崭新阶段
对欧几里得第五公设的研究,引出了非欧几何 对于代数方程求解的研究,建立并发展了群论 对数学分析的研究又建立了集合论
二十世纪初出现了把分析学一般化的趋势
瑞典数学家弗列特荷姆和法国数学家阿达玛发表的著作 希尔伯特空间的提出
分析学中许多新理论的形成,揭示出分析、几何、代数的许多概念和方 法常常存在相似的地方
泛函分析导 引
泛函分析概览
形成于20世纪30年代的数学分支 从变分问题,积分方程和理论物理的研究中发 展而来 综合运用了函数论,几何学,代数学的观点
➢ 可看成是无限维向量空间的解析几何及数学分 析
研究内容
无限维向量空间上的函数,算子和极限理论 研究拓扑线性空间到拓扑线性空间之间满足各 种拓扑和代数条件的映射
设 f (x) 是定义在[a, b]上的有界函数
并任在意[a取, bξ]上i 任∈意[x取i-1一,xi]组(i分=1点,2,a…=x,n0<),x1…作<和xn式-1<xn=b,
n
S f (i )xi
i1
若其极限存在则称Riemann可积
nHale Waihona Puke b(R) a f (x)dx lxim0 i1 f
在数学上,把无限维空间到无限维空间的变换叫做算 子
研究无限维线性空间上的泛函数和算子理论,就产生 了一门新的分析数学,叫做泛函分析。
泛函分析的特点
把古典分析的基本概念和方法
一般化 几何化
从有限维到无穷维
泛函分析对于研究现代物理学是一个有力的工具
从质点力学过渡到连续介质力学,就要由有穷自由度系 统 过渡到无穷自由度系统 现代物理学中的量子场理论就属于无穷自由度系统
泛函分析讲义
第三章 赋范空间3.1. 范数的概念“线性空间”强调元素之间的运算关系,“度量空间”则强调元素之间的距离关系,两者的共性在于:只研究元素之间的关系,不研究元素本身的属性。
为了求解算子方程,需要深入地了解函数空间的结构与性质,为此,我们不仅希望了解函数之间的运算关系和距离关系,还希望了解函数本身的属性。
那么,究竟需要了解函数的什么属性呢?3.1.1. 向量的长度为了回答上述问题,我们需要从最简单的函数空间——欧氏空间——中寻找灵感。
回想一下,三维欧氏空间中的元素被称为“向量”,向量最重要的两大属性是:长度和方向,向量的许多重要性质都是由其长度和方向所决定的。
这一章的任务就是将欧氏空间中向量的长度推广为(以函数空间为原型的)一般线性空间中元素的广义长度,下一章的任务就是将欧氏空间中向量的方向推广为(以函数空间为原型的)一般线性空间中元素的广义方向。
可以想象:其元素具有广义长度和广义方向的线性空间必将像欧氏空间那样,呈现出丰富多彩的性质,并且这些性质必将有助于求解算子方程。
图3.1.1. 三维欧氏空间中向量的大小和方向矩阵论知识告诉我们:可以为欧氏空间中的向量赋予各种各样的长度,并且可以根据问题需要来选择最合适的向量长度。
实际上,可以在数域F 上的n 维欧式空间n F 上定义向量12(,,,)n x x x x 的如下三种长度(称为“范数”):● 2-范数(也称为欧氏范数):2x =● 1-范数:11n k k x x ==∑;● ∞-范数:1max k k nx x ∞≤≤=。
图3.1.2. 三种向量范数对应的“单位圆” 图3.1.3. “单位圆”集合的艺术形式下一节将谈到:就分析性质而言,这三种向量范数没有任何区别。
我们注意到:通常将2或3中两个向量之间的距离定义为两者的差向量的长度。
由此可知:如果有了长度的概念,就可以诱导出距离;反之则不然。
因此,长度是比距离更本质的概念。
3.1.2. 范数的定义我们希望将向量范数的概念推广到(以函数空间为原型的)无限维线性空间的场合。
部分习题解-黎永锦《泛函分析讲义》的Word文档
泛函分析讲义-黎永锦134部分习题解答意义深刻的数学问题从来不是一找出解答就完事了,好象遵循着的格言,每一代的数学家都重新思考并重新改造他们前辈所发现的解答,并把这 解答纳入当代流行的概念和符号体系之中L. Bers (贝尔斯)(1914-1993,美国数学家)习题一1.2 设∑=∞≤∈=n i ii i x R x x l 11}||,|){(,对任意1)(),(l y y x x i i ∈==,∑∞=-=1||),(i iiy x y x d ,||sup ),(i i y x y x -=ρ, 试证明d 和ρ为X 上的两个度量,且存在序列1}{l x n ⊂,1l x o ∈,使得0),(0→x x n ρ,但),(0x x d n 不收敛于0.1.2证明:(1)只须按度量定义验证即可知道为上的两个度量(,)d x y 和(,)x y ρ为 1l 上的两个度量.(2)取111(,,,,0,)n x n n n= 当i n ≤时,()1n i n x = , 当i n >时()0n ix =,则1n x l ∈且()1(,0)sup |0|0n n inx xρ=-=→,但()111(,0)|0|1nn n in i i d x x∞===-==∑∑.因此(,0)0n x ρ→,但),(0x x d n 不收敛于0.黎永锦-部分习题解答1351.4 试找出一个度量空间),(d X ,在X 中有两点y x ,,但不存在X z ∈,使得=),(z x d ),(21),(y x d z y d =. 1.4 证明:在2R 上取离散度量(,)d x y =0, 1,.x y x y ⎧=⎨≠⎩当时当时,则对于x y ≠,有(,)1d x y =,但不存在2z R ∉,使得12(,)(,)(,)d x z d y z d x y ==.1.6 在∞l 中,设F 为的非空子集,G 为开集,试证明G F +为开集.1.6证明:由(,)sup ||i i d x y x y =-可知,对任意,x y l ∞∈,有(,)(,0)d x y d x y =-,若G 是开集,则对于任意,x F y G ∈∈,有开球(,)U y r G ⊂.故(,)x U y r x G +⊂+,因而G x r y x U +⊂+),(,从而对任意,x F x G ∈+是开集,由()x FF G x G ∈+=+ 可知F G +是开集.1.8 在∞l 中,设|){(i x M =只有限个i x 不为0},试证明M 不是紧集. 1.8证明:取()()n n i x x =,当i n >时,()0n ix =当i n ≤时,()1n i i x = ,则n x M ∈,且lim n n x x →= ,这里112(1,,,,)n x = ,但x M ∉,因此M 不是闭集,所以M 不是紧集.1.10 设),(d X 为度量空间,X F ⊂,试证明CC F F )(0=.1.10证明:对于任意0x F ∈,有0(,)U x r F ⊂,故φ=C F r x U ),(,因而C C F x )(∈,从而C C F F )(0⊂.对于任意C C F x )(∈,有()Cx F ∉,因而存在φ=C F r x U ),(,故(,)U x r F ⊂,从而0x F ∈,故0)(F F C C ⊂.所以,0()C CF F ⊂.1.12 设),(d X 为度量空间,X F ⊂,试证明}|),(inf{),(F y y x d F x d ∈=为X 到 ),0[+∞的连续算子.泛函分析讲义-黎永锦1361.12 证明:对于任意,x z X ∈,有.(,)inf{(,)|}inf{(,)(,)|}(,)inf{(,)|}(,)(,)d x F d x y y F d x z d y z y F d x z d y z y F d x z d z F =∈≤+∈=+∈=+故(,)(,)(,)d x F d z F d x z -≤类似地,有(,)(,)(,)d z F d x F d z x -≤因此|(,)(,)|(,)d x F d z F d x z -≤所以,0n x x →时,必有0(,)(,)n d x F d x F →,即(,)d x F 是连续函数. 1.14 设),(d X 为度量空间,F 为闭集,试证明存在可列个开集n G ,使n G F =.1.14 证明:由于F 是闭集,因此{|(,)0}F x d x F ==,又因为(,)d x F 是连续的,所以对任意1,{|(,)}n n x d x F <是开集,从而对于开集1{|(,)}n n G x d x F =<,有1{|(,)0}{|(,)1/}n F x d x F x d x F n ∞====< ,所以1n n F G ∞== .1.16 试证明∞l 是完备的度量空间.1.16证明:设{}n x 为 ∞l 的Cauchy 列,则对于任意0ε>,存在 N,使得n N >时有()()(,)sup ||n p n n p n i i d x x x x ε++=-<.故对每个固定的i,有()()||(,1)n p n i i x x n N p ε+-<>>.因此(){}n i x 是Cauchy 列.因而存在i x ,使得()lim n ii n x x →∞=,令()i x x =,则由可知(1)||N i i x x ε+-≤故黎永锦-部分习题解答137(1)||||N i i x x ε+≤+由于(1)1()N N ix x l ++∞=∈,因此存在常数1N M +使得11sup ||N i N x M ++≤<+∞.又由()()||n p n ii x x ε+-<可知||n i i x x ε-<对任意i 及n N ∈成立.故()(,)sup ||n n i i d x x x x ε=-<所以,n x x →,即l ∞是完备的度量空间. 1.18 证明0c 中的有界闭集不一定是紧集.1.18 证明:令{()|||1}i i M x x =≤,则M 是0c 的有界闭集,但M 是不紧集.1.20 设),,1[+∞=X |/1/1|),(y x y x d -=,试证明),(d X 为度量空间,但不是完备的. 1.20证明:容易验证|/1/1|),(y x y x d -=是),(d X 的度量.取X x n ∈,),1[+∞∈=n x n ,则}{n x 为X 的Cauchy 列,但}{n x 没有极限点,因此}{n x 不是收敛列,所以不是完备的.1.22 试证明度量空间),(d X 上的实值函数f 是连续的当且仅当对于任意R ∈ε,})(|{ε≤x f x 和})(|{ε≥x f x 都是),(d X 的闭集.1.22证明: 若度量空间),(d X 上的函数f 是连续的,则明显地,对于任意R ∈ε,})(|{ε≤x f x 和})(|{ε≥x f x 都是),(d X 的闭集.如果对于任意R ∈ε,})(|{ε≤x f x 和})(|{ε≥x f x 都是),(d X 的闭集,则于任意R ∈21,εε,容易知道})(|{})(|{\})(|{2121εεεε≥≤=<<x f x x f x X x f x 是开集,对于R 上的开集G ,有G 的构成区间),(n n βα,使得),(n n G βα =,因而)(1G f -是开集,所以f 是连续的.1.24 设R 为实数全体,试在R 上构造算子T ,使得对任意R y x ∈,,y x ≠,都有||||y x Ty Tx -<-,但T 没有不动点.泛函分析讲义-黎永锦1381.24证明:(1) 设R 为实数全体,12:,tan T R R Tx x x π-→=+- 则对任意,,x y R x y ∈≠,由'()()()()f x f y f x y ξ-=-可知22|()()|||||1f x f y x y x y ξξ-=-<-+ 但f(x)没有不动点.实际上,若()x f x = ,则1tan 2x π-=,因而矛盾.(2) 设),,1[+∞=X 11:,x T X X Tx x +→=+ 则对任意,,x y R x y ∈≠,由'()()()()f x f y f x y ξ-=-可知21|()()|[1]||||(1)f x f y x y x y ξ-=--<-+但f(x)没有不动点.实际上,若()x f x =,则110x +=,矛盾,所以f(x)没有不动点.1.25 设函数),(y x f 在)},(],,[|),{(+∞-∞∈∈=y b a x y x H 上连续,处处都有偏导数),('y x f y ,且满足+∞<≤≤<M y x f m y ),('0试证明0),(=y x f 在],[b a 上有唯一的连续解)(x y ϕ=. 提示:定义:],[],[:b a C b a C T →为),(1ϕϕϕx f MT -= 证明T 为压缩算子,然后利用S. Banach 不动点定理.1.26 设),(d X 为度量空间,T 为X 到X 的算子,若对任意X y x ∈,,y x ≠,都有 ),(),(y x d Ty Tx d <,且T 有不动点,试证明T 的不点是唯一的.1.26证明:反证法,假设A 有两个不动点12,x x ,使得1122,A x x A x x ==,则121212(,)(,)(,)d x x d Ax Ax d x x =<但这与12x x ≠矛盾,所以A 只有唯一的不动点.黎永锦-部分习题解答1391.27 设),(d X 为度量空间,且X 为紧集,T 为X 到X 的算子,且y x ≠时,有),(),(y x d Ty Tx d <,试证明T 一定有唯一的不动点.证明思路:构造X 上的连续泛函),(),(y x d Ty Tx d <,利用紧集上的连续泛函都可以达到它的下确界,证明存在X x ∈0,使得}|)({inf )(0X x x f x f ∈=,0x 就是T 的不动点. 1.28 试构造一个算子22:R R T →,使得T 不是压缩算子,但2T 是压缩算子.1.28证明:定义)0,(),(:221x x x T →,则T 不是压缩算子,但2T )0,0(),(:21→x x 是压缩算子.1.30 设||),(),,1[y x y x d X -=+∞=,x x Tx X X T /13/,:+=→,试证明T 是压缩算子. 1.30证明:由 x x Tx /13/+=,可知|/13//13/|||y y x x Ty Tx +--=-),(32|||131|2y x d y x ≤--=ξ,所以T 是压缩算子.习题二2.2 设X 为赋范线性空间,||||⋅为X 上的范数,定义⎩⎨⎧≠+-==.y x 1||||;y x ,0),(时当时当,y x y x d试证明),(d X 为度量空间,且不存在X 上的范数1||||⋅,使得1||||),(y x y x d -=. 2.2证明:由度量的定义可知是X 上的度量.假设存在X 上的范数1||||⋅,使得1(,)||||d x y x y =-,则对于,K x X λ∈∈,一定有11||||||||||x x λλ=⋅.泛函分析讲义-黎永锦140如果取001,,||||12x X x λ=∈=,则 001000013||||||||1||||||1122x x x λλλ=+=⋅+=+= , 但是1)11(21)1||(||||||||||00100=+=+=x x λλ,因此11||||||||||x x λλ=⋅不成立,所以一定不存在X 上的范数1||||⋅,使得1(,)||||d x y x y =-.2.4设M 是赋范空间X 的线性子空间,若M 是X 的开集,证明M X =.2.4证明:由于M 是线性子空间,因此0M ∈.由M 是开集可知存在(0,){|||||}U x x M εε=<⊂.因而对于任意,0x M x ∈≠,有),0(2εεU x∈,从而M x∈2ε,因为M 是线性子空间,所以x M ∈,即M X =.2.6设X 是赋范线性空间,若λλλλ→∈∈n n n X x x K ,,,,且x x n →,试证明x x n n λλ→.2.6证明:由n x x →可知存在0M >,使得||||x M ≤,故||||||||||||||||||||||||||||||||0n n n n n n n n n n n x x x x x x x x x M x x λλλλλλλλλλλλ-≤-+-≤-⋅+⋅-≤-+⋅-→所以,n n x x λλ→.2.10 在∞l 中,若M 是∞l 中只有有限个坐标不为零的数列全体,试证明M 是∞l 的线性子空间,但M 不是闭的.2.10证明:明显地M 是线性子空间,取112(1,,,,0,0)n n x = ,则n x M ∈ 且0n x x →,但1102(1,,,,0,0)n x M =∉ ,所以M 不是闭的子空间.2.12 设R R f →:,满足)()()(y f x f y x f +=+对任意X y x ∈,成立,若f 在R 上连续,试证明f 是线性的.黎永锦-部分习题解答1412.12证明:由)()()(y f x f y x f +=+可知,)()(x nf nx f =对所有正整数N n ∈都成立.并且)()()(m x mf m x m x m x f x f =+⋅⋅⋅++=,故)(1)(x f mm x f =对所有正整数N m ∈都成立.因此所有正有理数Q q ∈都有)()(x qf qx f =成立,由)()())((x f x f x x f -+=-+和)0()0()0(f f f +=可知0)0(=f 并且)()(x f x f -=-,因而)()(x qf qx f =对所有有理数Q q ∈都有成立.由于f 在R 上连续,因此,对于任意R ∈α,有Q q n ∈,使得α→n q ,从而)()(lim )(lim )(x f x f q x q f x f n n n n αα===∞→∞→,所以f 是线性的.2.14设X 是有限维Banach 空间,n i i x 1}{=为X 的Schauder 基,试证明存在*∈X f i ,使得1)(=i i x f ,且0)(=j i x f ,对j i ≠成立.2.14证明:令{|}i j M span x i j =≠,则M 是 n-1维的闭子空间,且i i x M ∉,由Hahn Banach -定理可知存在*,||||1i g X x ∈=,使得()(,)i i i i g x d x M =,且()0g x =对任意i x M ∈成立,令(,)ii i g i d x M f = ,则*i f X ∈,且()1,()0i i i j f x f x ==,对任意i j≠成立.2.16设X 是赋范空间,M 为X 的闭线性子空间,M X x \0∈,试证明存在*∈X f ,使得),(1||||,1)(00M x d f x f ==,且0)(=x f ,对所有M x ∈成立.2.16证明: 由M 是闭线性子空间,M X x \0∈因此,因此0(,)0d x M >存在*,||||1g X g ∈=,使得00()(,)g x d x M =,且()0g x =对于任意x M ∈成立.令0(,)gd x M f =,则00||||10(,)(,)()1,||||g d x M d x M f x f ===,且()0f x =对任意x M ∈成立.2.18设X 是严格凸空间,试证明对任意,0,0,,≠≠∈y x X y x 且||||||||||||y x y x +=+时,有0>λ 使得x y λ=.2.18证明:假设存在00,x y ,使得0000||||||||||||x y x y +=+,但00x y λ≠,对任意0λ>成泛函分析讲义-黎永锦142立,则0000||||||||xy x y ≠,故有0000000000||||||||||||||||||||||||||||||||||||||||1x x y yx y x x y y ++⋅+⋅<因而0000||||||||||||1x yx y ++< 但这与0000||||||||||||x y x y +=+矛盾,所以||||||||||||y x y x +=+时,有x y λ=对某个0λ>成立.2.20试证明1l 和∞l 都不是严格凸的赋范线性空间. 2.20证明:在1l 中,取1111(,0,,0,0,,0),(0,,0,,0,,0)2222x y == ,则||||1,||||1x y ==,且x y ≠,但||||2x y +=,因而1l 不是严格凸的.类似的,在∞l 中,取(1,0,1,0,0,,0),(1,1,0,,0)x y == ,则 ||||1,||||1x y ==,且x y ≠,但 ||||2x y +=,所以l ∞不是严格凸的.2.22举例说明在赋范线性空间中,绝对收敛的级数不一定是收敛级数.2.22证明:令{()|N 0}i i i X x x R i N x =∈>=存在某个,使得时,有,定义1||||||()||||i i i x x x ∞===∑,则(,||||)X ⋅是赋范空间,取12(0,0,,0,,0,0,,0)n n x = ,则1211||||nni i x∞∞===∑∑,因此1ni x∞=∑绝对收敛,但级数1ni x∞=∑不收敛.2.24 设是X 赋范线性空间,,,X x x n ∈x x n →,试证明对任意*∈X f ,有)||||()||||(x xf x x f n n →. 2.24证明:由x x n →可知, ||||||||x x n →,因而,||||||||x xx x n n →,所以, ≤-|)||||()||||(|x x f x x f n n 0||||||||||||||||→-x xx x f n n . 2.26在]1,0[C 中,]},[),()(|)({b a C x b x a x t x M ∈==,试证明M 是]1,0[C 的完备线性子空间.黎永锦-部分习题解答1432.26证明:容易验证M 是]1,0[C 的线性子空间.由于]1,0[C 是完备赋范线性空间,M 是]1,0[C 的闭子空间,因此M 是]1,0[C 的完备线性子空间.2.28 在2R 中,取范数||||||||21x x x +=,}|)0,{(11R x x M ∈=,则M 为2R 的线性子空间,对20)1,0(R x ∈=,试求出M y ∈0,使得),(||||000M x d y x =-.2.28证明:由于1||})1,(inf{||}|||inf{||),(100≥=∈-=x M y y x M x d ,并对于M y ∈=)0,0(0,有1||)1,0(||||||00==-y x ,所以1),(0=M x d ,且),(||||000M x d y x =-.习题三3.2 设1)(l x i ∈,算子11:l l T →, 1)(),3(l x x x Tx i i i∈==任意,试证明T 是线性有界算子,并求||||T .3.2证明: 由T 的定义可知T 是线性算子,且||||31||31||)3(||||||1x x x Tx i i i =≤=∑∞=, 因此13||||T ≤,从而T 是线性有界算子.取0(1,0,,0)x = ,则01x l ∈,且0||||1x =,故01||||||||3T Tx ≥=,所以1||||3T =. 3.4 设),(Y X L T ∈,试证明||||sup ||||1||||Tx T x <=.3.4证明:由于||||||||sup ||||supsup 111T x Txx Tx Tx x x x =≤≤≠<<,因此Tx T x 1||||sup ||||<≥.对于任意10n >,由||||sup ||||||||sup ||||||||sup||||1||||0||||0||||Tx x xT x Tx T x x x =≠≠===可知,有||||1n x =,使得1||||||||n n Tx T ≥-,故111||(1)||(1)(||||)n n n n T x T -≥--,因而111||||1sup ||||||(1)||(1)(||||)n n n n x Tx T x T <≥-≥--对任意n 成立泛函分析讲义-黎永锦144从而||||1||||sup ||||x T Tx <≤,所以||||sup ||||1||||Tx T x <=3.6 设X 是赋范空间,X x ∈α,若对任意*f X ∈,有+∞<|)(|sup ααx f ,试证明+∞<||||sup ααx .3.6 证明:定义*:,()()T X K T f f x ααα→=,则T α是*X 到K 的线性有界算子,且对于任意*f X ∈,有sup |()|sup |()|T f f x ααα=<+∞因为任意赋范空间X 的共轭空间 *X 都是完备的,因此由一致有界原理,有sup ||||T α<+∞.由αT 的定义可知||)(||sup |)(||sup ||||1||||1||||αααx f f T T f f ====故||||||||T x αα=,所以,sup ||||x α<+∞.3.7 设X ,Y 是赋范空间,}0{≠X , 试证明Y 是Banach 空间当且仅当),(Y X L 是Banach 空间.证明思路:明显地,只需证明),(Y X L 是Banach 空间时,Y 是Banach 空间.由于}0{≠X ,因此有1||||,00=∈x X x ,故由Hahn-Banach 定理存在1||||=f ,使得1||||)(00==x x f .若Y y n ∈}{是Cauchy 列,定义算子列),(Y X L T n ∈为n n y x f x T )(=,则),(Y X L T n ∈,并且||||||||n m n m y y T T -=-,因而}{n T 为),(Y X L 的Cauchy 列,所以存在),(Y X L T ∈,使得T T n →.不难证明0Tx y n →,从而Y 是Banach 空间.3.8 设X 是Banach 空间,*X f n ∈且对任意)()(lim ,x f x f X x n n =∈∞→,试证明*∈X f .3.8证明: 由于lim ()()n n f x f x →∞=,因此sup{|()|}n f x <∞对任意x 成立,由X 是Banach黎永锦-部分习题解答145空间可知sup{||||}n f M <<∞因而|()|||||||||||||n n f x f x M x ≤⋅<,所以|()|||||f x M x ≤,即f 是X 的线性连续泛函. 3.10 设X ,Y 是赋范空间,Y X T →:是线性算子,且T 是满射,若存在0>M ,使得||||||||x M Tx ≥对任意X x ∈成立,试证明1-T 是线性连续算子,且MT1||||1≤-. 3.10 证明:由||||||||Tx M x ≥可知T 是单射,因而1T -存在,且对于任意y Y ∈,由T 满射可知存在x X ∈,使得y Tx =,容易验证T 是线性算子,故1111||||||||||||||||||||T y T Tx x Tx y --==≤=,所以,1T -连续,且11||||MT-≤.3.12 设X 是Banach 空间,f 是X 上的非零线性泛函,试证明f 一定是开映射. 3.12证明:由0f ≠可知存在00x ≠,使得0()1f x =,故对于X 的开集G 及任意()f G α∈,必有x G ∈,使得()f x α=,由于是G 开集,故有0ε>,使(,)U x G ε⊂,因此对00,||||||x x x λλε+<,有0x x G λ+∈,因而0()f x x G λ+∈,但00()()()f x x f x f x λλαλ+=+=+,故(,)()f G αεαε-+⊂ ,即α为G 的内点,所以()f G 为开集,即f 一定开映射.3.13 设X 是赋范空间,T 是从X 到X 的线性算子,X T D =)(,S 是从*X 到*X 的线性算子,*=X S D )(若对任意*∈∈X f X x ,,有)())((Tx f x Sf =,试证明T 和S 都是线性连续算子.证明思路:先证S 为闭算子,从而S 是线性连续算子,然后利用Hahn-Banach 定理的推论可泛函分析讲义-黎永锦146知, 当0≠Sx 时,存在1||||,*=∈f X f ,使得||||)(Sx Sx f =,不难进一步证明T 为是线性连续算子.3.14 设X ,Y 是赋范空间,T 为X 到Y 的闭线性算子,F 为X 的紧集,试证明)(F T 为Y 的闭集.3.14证明:若()n y T F ∈,且0n y y →,则存在n x F ∈使得()n n y f x =,由于F 是紧集,因此存在k n x ,使得0k n x x →,且0x F ∈.由0y Tx k n →及T 是闭线性算子可知0y Tx =,所以0()y T F ∈,即)(F T 是闭集.3.15 设X 为Banach 空间,T 为X 到X 的线性算子,若T T =2,且)(T N 和)(T R 都是闭的,试证明),(X X L T ∈.证明思路:由于T 的定义域为X ,因此明显地,只需证明T 为闭线性算子.设有点列X x n ∈}{,X y x ∈,,当∞→n 时,x x n →,y Tx n →.由)(T R 是闭的,)(T R Tx n ∈可知必有X x ∈0,使得0Tx y =.由于T T=2,因此0)(2=-=-n n n n Tx x T x Tx T ,即)(T N x Tx n n ∈-.由)(T N 是闭的,可得)()(lim T N x Tx x y n n n ∈-=-∞→,从而0)(=-x y T .因此y Tx Tx T Ty Tx ====00)(,所以T 为闭线性算子.由闭图像定理可知),(X X L T ∈3.16 设X ,Y 赋范空间,),(,Y X L T T n ∈,若n T 强收敛于T ,试证明n T 弱收敛于T . 3.16证明:由于n T 强收敛于,因此T 对任意x X ∈,有||||0n T x Tx -→,故对于任意*f Y ∈,有|()()||()|||||||||0n n n f T x f Tx f T x Tx f T x Tx -=-≤⋅-→,所以n T 弱收敛于T .黎永锦-部分习题解答147习题四4.2 试证明∞=l l *1.4.2证明:对于任意1x l ∈,有11lim ni ii i n i i x x ex e ∞→∞====∑∑,故对于任意*1f l ∈,有11()lim ()lim ()nni i i i n n i i f x f x e x f e →∞→∞====∑∑由于1111|()||||()|||||||||||||||||n n n niiiiiiii i i i x f e x f e x f e x f ====≤≤⋅⋅=⋅∑∑∑∑因此由1()i x x l =∈可知1||n ii x =∑收敛,从而1()niii x f e =∑绝对收敛,且11|()||()|sup |()|sup |()|||||i i i i i i i f x x f e f e x f e x ∞∞===≤=⋅∑∑令()(())i i y f e α==,则y l ∞∈,且对于任意,都1()i x x l =∈,有1()i i i f x x α∞==∑ 且||||||||f y =.反过来,对于任意 ()i y l α∞=∈,则定义f 为11(),()i iii f x x x x l α∞==∀=∈∑则f 是上的线性连续泛函,且||||sup ||||||i f y α==,所以 ∞=l l *1 4.4 试证明1*l l ≠∞.4.4证明: 用反证法,假设 *1l l ∞=,则由于1l 是可分的,因此是l ∞可分的,但这与1l 不可分矛盾,所以1*l l ≠∞泛函分析讲义-黎永锦1484.6 试证明在2l 中强收敛比按坐标收敛强.4.6证明:若()(0)202(),()n n i i x x l x x l =∈=∈,且0n x x →,则()(0)21/21(||)0n i i i x x ∞=-→∑因此,对于任意i 有()(0)()(0)21/21||(||)n n iii i i xxx x ∞=-≤-∑从而()(0)n ii x x →,所以强收敛比按坐标收敛强.4.7 设X 是无穷维的赋范空间,试证明*X 一定也是无穷维的赋范空间.证明思路:对于任意的自然数n ,由于X 是无穷维的赋范空间,因此存在n 个线性无关的的X e e e n ∈⋅⋅⋅,,,21,由Hahn-Banach 定理,不难证明存在*21,,,X f f f n ∈⋅⋅⋅,使得都成立对任意并且j i e f e f j i i i ≠==,0)(,1)(,从而只需证明n f f f ,,,21⋅⋅⋅是线性无关的,则n X >)dim(*,所以*X 一定也是无穷维的赋范空间.4.8设X 是赋范空间,X x x n ∈,,x x wn −→−,若}{n x 是相对紧的,试证明x x n −→−. 4.8证明:由于{}n x 是相对紧的,因此存在子列{}k n x 收敛于y ,但n x 弱收敛于x ,因此对于任意*f X ∈,有()()k n f x f x →.由{}k n x 收敛于y 可知|()()|||||k kn n f x f y f x y -≤⋅-→,从而()()f x f y =,对任意成*f X ∈立.因而x y =.故k n x x →,所以x x n −→−. 4.10设Y X ,为赋范空间,),(Y X L T ∈,若x x w n −→−,试证明Tx Tx wn −→− 4.10证明:对于任意*g Y∈,定义X 上的泛函()()f x g T x =,则由|()||()||||||f x g T x g T x =≤⋅⋅,可知f 是X 上的线性连续泛函,由于n x 弱收敛x ,因黎永锦-部分习题解答149此()()n f x f x →,因而()()n g Tx g Tx →,所以n Tx 弱收敛Tx .4.12 设X 为Banach 空间,*,,,X f f X x x n n ∈∈n x 弱收敛于x ,且n f 收敛于f ,试证明)()(x f x f n n →.4.12证明:由于n x 弱收敛于x 时,有0M >,使得||||n x M ≤<∞,因此|()()||()()||()()||||||||||()()||||||()()|n n n n n n n n n n n f x f x f x f x f x f x f f x f x f x M f f f x f x -≤-+-≤-⋅+-≤-+-所以,当n x 弱收敛于x ,且n f 收敛于f 时,有()()n n f x f x →.4.14设Y X ,是Banach 空间,),(Y X L T ∈,且1-T 存在且有界,试证明*T 的逆存在且*11*)()(--=T T .4.14证明:由 **11*()()T T T T I --==及 1**1*()()T T TT I --==可知*1()T -存在,并且*11*)()(--=T T .4.16设X 是赋范空间,}{,0n w n x span M x x =−→−,试证明M x ∈0. 4.16证明:反证法,假设0x M ∉,则由于M 是闭子空间,因此0(,)0d x M >,故由Hahn Banach-定理可知存在*f X ∈,使得00()(,)f x d x M =且对于任意 ,()0x M f x ∈=,所以00()0,()(,)0n f x f x d x M ==>,但这与n x 弱收敛于0x 矛盾,因而n x 弱收敛0x 时,一定有0x M ∈.习题五泛函分析讲义-黎永锦1505.2设X 是内积空间,X y ∈,试证明),()(y x x f =是X 上的线性连续泛函,且||||||||y f =.5.2证明: 由()(,)f x x y =可知f 线性泛函,且|()||(,)|||||||||f x x y x y =≤⋅,因此f 是X 上的连续线性泛函,并且||||||||f y ≤,取||||y y x =,则||||||||1,|()||(,)|(,)||||y y x f x x y y y ====,所以,||||||||f y =.5.4 设X 是内积空间,X e e n ∈,,1 ,若=),(j i e e ⎩⎨⎧=≠.1j,0j i ,i试证明n e e ,,1 线性无关.5.4证明:若12,,,n e e e X ∈ ,且=),(j i e e ⎩⎨⎧=≠.1j ,0j i ,i则对于i K α∈,当10ni ii eα==∑时,有1(,)0ni i i i i e e αα===∑.因此120n ααα==== ,所以12,,,n e e e 线性无关.5.6 设M 是Hilbert 空间X 的闭真子空间,试证明⊥M 含有非零元素.5.6 证明: 由M 是X 的真子空间,因而对\x X M ∈,存在0x M ⊥∈,使得 00x x y =+,由x M ∉及0x M ∈可知00x x -≠所以0y ≠,且y M ⊥∈,即M ⊥含有非零元.5.8 设M 是Hilbert 空间X 的闭真子空间,试证明⊥⊥=M M .5.8证明:由于M M⊥⊥⊂,因此只须证MM ⊥⊥⊂.对于任意x M ⊥⊥∈有y M ⊥∈使得0x x y =+,由M M ⊥⊥⊂可知0x M ⊥⊥∈,故0x x M ⊥⊥-∈,因此0y x x M ⊥⊥=-∈,所以y y ⊥,因而0y =,从而MM ⊥⊥⊂.黎永锦-部分习题解答1515.9 设f 是实内积空间3R 上的线性连续泛函,若32132)(x x x x f ++=,试求X y ∈,使得),()(y x x f =.5.9 解答:取)3,2,1(,3=∈y R y ,则一定有32132)(x x x x f ++=. 5.10 设M 是内积空间X 的非空子集,试证明⊥⊥⊥⊥=M M . 5.10 证明:由()MM ⊥⊥⊥⊥⊥⊥=可知, M M ⊥⊥⊥⊥⊂.反过来,对任意x M ⊥⊥⊥∈,及y M M⊥⊥∈⊂,可知(,)0x y =,因而x y ⊥对于任意y M ∈成立,故x M ⊥∈因此M M ⊥⊥⊥⊥⊂,所以M M ⊥⊥⊥⊥=.5.12 设X 是Hilbert 空间,M 、N 是X 的闭真空间,N M ⊥,试证明N M +是X 的闭子空间.5.12证明:明显地N M +是X 的线性子空间,因此只须证N M +在X 中是闭的,若,,n n n n x y M N x M y N +∈+∈∈,且n n x y z +→,则由于X 是Hilbert 空间,M 是闭子空间,因此,,z x y x M y M ⊥=+∈∈,故,n n x x M y y M ⊥-∈-∈.因而22222||||||||||||||()||||||0n n n n n n n n x x y y x x y y x y x y x y z -+-=-+-=+-+=+-→,所以,n n x x y y →→,故,,z x y x M y N =+∈∈,即N M +是的X 闭子空间. 5.14 设X 是内积空间,X y x ∈,,试证明y x ⊥的充要条件为对任意K ∈α,有||||||||y x y x αα-=+.5.14 证明:若x y ⊥,则对任意K α∈,有2222||||(,)(,)(,)(,)(,)||||||||||x y x y x y x x x y y x y y x y αααααααα+=++=+++=+ 且2222||||||||||||||x y x y αα+=+ 因此||||||||y x y x αα-=+.泛函分析讲义-黎永锦152反过来,若K α∈,有||||||||y x y x αα-=+,则由(,)(,)(,)(,)(,)x y x y x x x y y x y y αααααα++=+++和(,)(,)(,)(,)(,)x y x y x x x y y x y y αααααα--=--+可知2(,)2(,)0x y y x αα+=令(,)x y α= ,则22|(,)||(,)|0x y x y += 因而(,)0x y =,所以x y ⊥.5.16设X 是内积空间,X y x ∈,,试证明y x ⊥当且仅当对任意K∈α,有||||||||x y x ≥+α.5.16证明:若x y ⊥,则对任意K α∈,有x y α⊥,因此 22222||||||||||||||||||x y x y x αα+=+≥,所以||||||||x y x ≥+α.反过来,若对任意K α∈,有||||||||x y x ≥+α,则 令2(,)||||x y y α=-,由22||||||||0x y x α+-≥及|||||),(|),(|||||),(||||||),(||||||),(|),(||),(),(),(),(),(),(),(),(),(224222222≥-=+--=++=-+++=-++y y x y y y y x y y x y y x y y x y y x x x y y x y y x x x x x y x y x αααααααα因此(,)0x y =,所以,x y ⊥.5.17 设}|{N i e i ∈是内积空间X 的正交规范集,试证明黎永锦-部分习题解答153|||||||||),)(,(|1y x e y e x i ii⋅≤∑∞=对任意X y x ∈,成立.5.17证明:由于{|}i e i N ∈是X 的正交规范集,因此对任意,x y X ∈,有222211|(,)|||||,|(,)|||||ii i i x e x y e y ∞∞==≤≤∑∑故21/221/2111|(,)(,)|[|(,)|][|(,)|]||||||||iiiii i i x e y e x e x e x y ∞∞∞===≤=⋅∑∑∑5.18设}|{N i e i ∈为Hilbert 空间的正交规范集,}{i e span M =,试证明M x ∈时,有i i i e e x x ∑∞==1),(.5.18证明:若x M ∈,则由于{}i e 是正交规范集,因此221|(,)|||||ii x e x ∞=≤∑.因为X 是完备的,所以由22||(,)|||(,)|0n p n p iiii ni nx e e x e ++===→∑∑ 可知1(,)i ii x e e ∞=∑是收敛级数,记1(,)iii y x e e ∞==∑,则1(,)((,),)(,)(,)0j i i j j j i x y e x x e e e x e x e ∞=-=-=-=∑故x y M -⊥,由,x y M ∈,可知x y M -∈,因而x y x y -⊥-,所以,0x y -=,即ii iee x x ∑∞==1),(.泛函分析讲义-黎永锦1545.19设}{n x 是Hilbert 空间X 的正交集,试证明1{}ii x ∞=∑弱收敛当且仅当21||||ii x ∞=<∞∑.5.19证明:若1ii x ∞=∑弱收敛,则存在0M >,使得M x ni i≤∑=||||1对任意n 成立,故由{}ix 是正交集可知22211||||||||ii i i x x M ∞∞===≤∑∑,所以21||||i i x ∞=<∞∑.反之,若21||||ii x ∞=<∞∑,则由0||||||||2121→=∑∑++=++=pn n i ipn n i ix x 可知1{}i i x ∞=∑是X 的Cauchy 列,所以1i i x ∞=∑在Hilbert 空间X 中收敛,因而1i i x ∞=∑弱收敛.5.20设}|{∧∈=ααe S 是内积空间X 的正交规范集,则对于任意}|),{(,∧∈∈ααe x X x 中最多只有可列个不为零,且22|||||),(|x e x i ≤∑∧∈α.5.20证明:若Λ是有限集,则明显地,有22|||||),(|x e x i≤∑∧∈α若Λ不是有限集,则对于任意}1),(|{,me x e S N m m ≥=∈αα,只能是有限集,因而'1m m S S ∞== 是可数集,且对任意'\e S S α∈,有(,)0x e α=,故22|||||),(|x e x i ≤∑∧∈α5.21 设X 是Hilbert 空间,),(X X L T ∈,若1-T 存在,且),(1X X L T∈-,试证明1*)(-T 存在且*11*)()(--=T T .5.21 证明:由于X 是Hilbert 空间,且),(1X X L T∈-,因此1*()T -存在.对于任意,x y X ∈,有11**1*(,)(,)(,())(,())x y T Tx y Tx T y x T T y ---===黎永锦-部分习题解答155又因为11*1**(,)(,)(,)(,())x y TT x y T x T y x T T y ---===,所以,*1*1**()()T T T T --=,因而*11*)()(--=T T .5.22 设X 是Hilbert 空间,),(,X X L T T n ∈,若T T n →,试证明**T T n →.5.22证明:由***()n n T T T T -=-及*||()||||||n n T T T T -=-,可知n T T →时,有**||||||||0n n T T T T -=-→,因此**T T n →.5.24 若X 是Hilbert 空间,),(,X X L T S ∈是自伴算子,R ∈βα,,试证明T S βα+是自伴算子.5.24证明:由于,S T 是自伴算子,因此*S S = ,且*T T =,所以对于***,,()R S T S T S T αβαβαβαβ∈+=+=+.5.25 设X 是Hilbert 空间,),(X X L T ∈,若T 是自伴算子,N n ∈,试证明n T 是自伴算子.5.25证明:由于*T T =,因此***()()()n nnT T T T T T =⋅⋅⋅== ,所以n T 是自伴的.5.26 设X 是复H i l b e r t 空间,),(X X L T ∈若试证明存在唯一的自伴算子),(,21X X L T T ∈,使得21iT T T +=,且21*iT T T -=.5.26 证明:令**111222(),()iT T T T T T =+=-,则),(,21X X L T T ∈,且*1212,T T iT T T iT =+=-由于***1111*******11122222()(),[()]()()iii T T T T T T T T T T T T T T =+=+==-=--=-=因此1T 和2T 都是自伴算子.假设存在自伴算子12,(,)S S L X X ∈,使得12T S iS =+,则1212S iS T iT +=+且**12121212()()S iS S iS T iT T iT -=+=+=-,因此1122,S T S T ==.泛函分析讲义-黎永锦156所以,存在唯一的自伴算子),(,21X X L T T ∈,使得*1212,T T iT T T iT =+=-. 5.27 设X 是Hilbert 空间,T T X X L T T n n →∈),,(,,若n T 是正规算子,试证明T 是正规算子.5.27 证明:由于n T 是正规,因此**n n n T T T T =故************************||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||n n n n n n n n n n n n n n n nn n n nn n n n n T T TT TT T T T T T T TT T T TT T T TT T T TT TT TT T T T T T T T T T T T T T T T T T T T T T -≤-+-+-≤-+-≤-+-⋅-+-≤⋅-+⋅-+⋅-+⋅**||n T -由n T T →可知**n T T →,所以**||||0T T TT -=即T 是正规算子.5.28 设X 是复H i l b e r t 空间,),(X X L T ∈,试证明T 是正规算子当且仅当||||||||*Tx x T =对于任意X x ∈成立.5.28 证明:若T 是正规算子,则**T T TT =,因此对于任意x X ∈,有**((),)0T T TT x x -=,故**(,)(,)T Tx x TT x x =,因此**(,)(,)Tx Tx T x T x =,所以*||||||||T x T x =对任意x X ∈成立.反之,若对任意x X ∈有*||||||||T x Tx =,则**(,)(,)Tx Tx T x T x =,故**(,)(,)T Tx x TT x x =.因而**((),)0T T TT x x -=对任意x X ∈成立.所以**0TT T T -=,即是T 正规算子.5.29 设X 是Hilbert 空间, T 是X 到X 的线性算子,若对任意,x y X ∈,有(,)(,)Tx y x Ty =,试证明T 是连续线性算子.5.29 证明:由于()D T X =,因此只须证T 是闭线性算子,若00,n n x x Tx y →→,则对于黎永锦-部分习题解答157任意y X ∈,有000(,)lim(,)lim(,)(,)(,)n n n n y y Tx y x Ty x Ty Tx y →∞→∞====故00(,)(,)y y Tx y =对任意y X ∈成立,因此00Tx y =,因而T 是闭线性算子,所以由闭图象定理可知T 是连续的.学年论文可选的题目学完一门课程,如能对所学内容做些比较系统的整理和思考,对加深该课程的理解和进一步学习都会有很好的帮助.学年论文的写作,可以提高阅读有关文献资料的能力,学会从书本和论文中了解有关信息、得到启发.并可有目的、有计划地搜集相关资料,可以养成独立思考和研究探索的好习惯. 下面的一些题目和思路可供参考:1. 抽象空间的球具有哪些奇怪的性质,在度量空间和赋范空间中,它们的性质有哪些不同,如开球的闭包一定是与开球球心和半径一样的闭球吗?开球有可能是闭集吗?2. 不动点定理的推广和应用,特别是在微分方程中的一些应用.3. 度量空间和赋范空间中,序列的各种收敛性的相互关系.4. 度量空间和赋范空间中,紧、完备、闭、有界等的相互关系.5. 凸集和凸函数的性质.6. 线性连续泛函和可加泛函的性质.7. 一致有界原理的应用.8. 逆算子定理或闭算子定理的应用. 9. Hahn-Banach 定理及其推广和应用. 10. 内积空间中的正交性的推广.11. 平面几何的有关概念和性质在Hilbert 空间的推广.泛函分析讲义-黎永锦12. 数学分析中的Fourier 级数相关概念在内积空间的推广.13. 赋范空间中的级数收敛的判别法.158。
应用泛函分析讲义第1章
在经济学中的应用
金融数学
在金融数学中,泛函分析用于描 述和解析金融市场的动态行为, 如期权定价和风险评估。
计量经济学
在计量经济学中,泛函分析用于 建立经济数据的统计模型,如时 间序列分析和回归分析。
微观经济学
在微观经济学中,泛函分析用于 描述和解析市场供需关系和个体 行为,如消费者选择和生产者行 为。
02
线性空间与线性映射
线性空间的基本概念
线性空间
由满足加法和标量乘法封闭性的元素集合构成。
基与维数
线性空间中线性无关的元素个数称为该空间的 维数,而线性无关的元素组称为该空间的基。
线性子空间
线性空间中的子集,满足子集中的元素也满足线性空间的定义。
线性映射的基本概念
01
02
03
线性映射
将一个线性空间的元素映 射到另一个线性空间的元 素,且满足线性映射的运 算性质。
感谢您的观看
THANKS
03 范数的性质包括非负性、正齐次性、三角不等式 等。
向量的模与向量范数的关系
向量的模是向量范数的特例,即当范 数定义为向量与零向量之间的距离时 ,模即为该距离。
向量的模和范数具有相同的性质,如 非负性、正齐次性和三角不等式等。
向量范数的性质
非负性
向量范数总是非负的,即对于任意向量x,有||x|| ≥ 0。
收敛序列的性质
收敛序列是稳定的,即对于任意给定的$varepsilon > 0$,存 在一个正整数$N$,使得当$n, m > N$时,有$|a_n - a_m| <
varepsilon$。
收敛性的判定
可以通过比较序列的各项大小、利用极限的性质或者通过 级数收敛的判定定理来判断序列的收敛性。
应用泛函分析教案
应用泛函分析教案第一章:泛函分析基础1.1 集合与函数的概念集合的基本运算函数的定义与性质函数的图像与性质1.2 赋范线性空间与内积空间赋范线性空间的概念内积的定义与性质内积空间的性质1.3 线性算子与对偶空间线性算子的定义与性质对偶空间的概念与性质常用的线性算子与对偶空间第二章:赋范线性空间的基本定理2.1 泛函分析的基本定理闭图像定理共鸣定理开映射定理2.2 赋范线性空间的完备性完备性的定义与性质博尔查诺-魏尔斯特拉斯定理帕奇-弗雷歇定理2.3 赋范线性空间的同调性质同调序列与同调群直和、半直和与同调性质维数定理与同调性质的关系第三章:希尔伯特空间与自伴算子3.1 希尔伯特空间的概念与性质内积空间的进一步研究希尔伯特空间的特点与性质希尔伯特空间的对偶空间3.2 自伴算子的性质自伴算子的定义与性质自伴算子的谱分解自伴算子的对偶性质3.3 谱定理与自伴算子的应用谱定理的定义与证明自伴算子在量子力学中的应用自伴算子在偏微分方程中的应用第四章:赋范线性空间的框架4.1 框架的概念与性质框架的定义与构造框架的性质与例子框架在信号处理中的应用4.2 Riesz表示定理Riesz表示定理的定义与证明Riesz表示定理的应用框架与Riesz表示定理的关系4.3 框架的推广与变种广义框架的概念与性质框架的推广到其他赋范线性空间框架的变种与推广第五章:应用泛函分析解决问题5.1 泛函分析在数学物理中的应用偏微分方程的解的存在性与唯一性量子力学中的算子方法连续介质力学中的泛函分析方法5.2 泛函分析在信号处理中的应用框架在信号处理中的应用小波分析与泛函分析的关系信号处理中的其他泛函分析方法5.3 泛函分析在其他学科中的应用泛函分析在概率论与统计学中的应用泛函分析在优化与控制理论中的应用泛函分析在其他科学领域中的应用第六章:Banach空间与不动点定理6.1 Banach空间的概念与性质Banach空间的基本定义Banach空间的例子Banach空间的性质6.2 不动点定理及其应用不动点定理的定义与证明合同映射与不动点不动点定理在优化问题中的应用6.3 算子方程的解法算子方程的定义算子方程的解法算子方程解的存在性与唯一性第七章:Hilbert空间上的正交基与正交分解7.1 正交基的概念与性质正交基的定义正交基的性质正交基的构造方法7.2 正交分解定理正交分解定理的定义与证明正交分解的应用格拉姆-施密特正交化方法7.3 正交投影与不变子空间正交投影的概念与性质不变子空间的概念与性质正交投影在量子力学中的应用第八章:算子的谱理论8.1 谱映射定理谱映射定理的定义与证明谱映射定理的应用谱映射定理的推广8.2 算子的本征值与本征函数算子的本征值与本征函数的定义算子的谱定理算子的本征值与本征函数的应用8.3 算子的扩张与restriction算子的扩张与restriction 的定义扩张与restriction 的性质扩张与restriction 在应用中的例子第九章:泛函分析在现代数学中的应用9.1 泛函分析在代数学中的应用向量空间与线性代数环、域与代数结构泛函分析与代数拓扑的关系9.2 泛函分析在几何学中的应用向量丛与纤维丛微分几何与泛函分析度量空间与测地线9.3 泛函分析在物理学中的应用量子力学与算子方法连续介质力学与偏微分方程统计物理学与泛函分析第十章:泛函分析的前沿问题与展望10.1 泛函分析的发展历程泛函分析的起源与早期发展泛函分析的主要里程碑泛函分析在现代数学中的地位10.2 泛函分析的前沿问题希尔伯特空间中的谱理论非线性泛函分析与动力系统算子代数与量子计算10.3 泛函分析的未来展望泛函分析在数学其他领域的影响泛函分析与其他学科的交叉泛函分析在科技应用的潜力重点和难点解析重点一:泛函分析的基本概念与性质集合的基本运算、函数的定义与性质、函数的图像与性质是泛函分析的基础知识,需要重点掌握。
实变函数与泛函分析课件
巴拿赫空间的性质
巴拿赫空间与连续线性映射
连续线性映射
连续线性映射的定义
连续线性映射的性质
线性算子的谱理论
03 空间上的算子与变换
有界线性算子
有界线性算子的定义:在某空 间上有界且线性
重要性质:有界线性算子可以 扩展为全空间上的有界线性算
子
谱定理:有界线性算子的谱分 解定理
空间上的算子与变换部分的习题与解答
01
02
总结词:空间上的算子 与变换部分主要涉及线 性算子、有界算子、 紧 算子等不同类型的算子 的定义、性质和计算方 法,以及空间上的变换 和约化定理的应用。
详细描述
03
04
05
1. 线性算子的定义和性 2. 有界算子和紧算子的 质,包括线性算子的有 定义和性质,以及在各 界性、紧性、谱性质等, 种空间中的存在性和构 以及在各种空间(例如, 造方法。 Hilbert空间、Banach 空间等)中的应用。
映射与变换
序关系
介绍映射的概念及基本性质,如一一映射、 满射、单射等。
讨论集合中的序关系,如偏序、全序、反 对称序等,以及相关的概念如最大元、最 小元、上界、下界等。
实数函数
01
函数的定义
介绍函数的概念及基本性质,如定 义域、值域、单调性等。
函数的极限
介绍函数极限的定义、性质及其计 算方法。
03
02
03
线性空间
01
数乘性质
02
中间元素性质
03
正交性
内积空间与Hilbert空间
内积空间的定义
1
内积空间的定义
2
正交性
3
内积空间与Hilbert空间
泛函分析讲义00
(4) A Ι (B Υ C) = ( A Ι B) Υ ( A Ι C) ;
A Υ (B Ι C) = (A Υ B) Ι (A Υ C)
(5) A Ι B ⊂ A, A Ι B ⊂ B.
(6) A Υ B ⊃ A, A Υ B ⊃ B.
( ) (7) Ac c = A, X c = φ,φ c = X .
xn
−
x
→
0 ,则称 x 为 {xn }的极限,记为 xn
→
x
或
lim
n→∞
xn
=
x。
定义 1 设{xn }是一数列,如果当 m, n → ∞ 时,有 xm − xn → 0 ,那末就说
{xn }是一个基本数列或柯西数列。
定理 1(柯西收敛原理)数列 {xn }收敛的充分必要条件是,它是一个基本列.
,...;
k
= 1,2,..., n),
则 A 为可数集。 例 1 有理数全体成一可数集合。
证明:设
Ai
=
⎧1 ⎩⎨ i
,
2 i
,
3 i
,...⎬⎫(i ⎭
= 1,2,3...), 则
Ai 是可数集,于是由定理 4
知全
∞
Υ 体正有理数 Q + = Ai 成一可数集,因正负有理数集通过ϕ (r) = −r 成为 1—1 对 i =1
f −1 (B0 ) = {x : x ∈ A. f (x) ∈ B0 }
一般情况下,
( ) f f −1 (B0 ) ⊂ B0
若 A0 ⊂ A, 则有
f (−1 f ( A0 )) ⊃ A0
第 3 页 共 25 页
定义 1 设 A, B 是两个集,如果存在一个从 A 到 B 的双射 f ,则称 A 与 B 是
泛函分析ppt课件
∈X都有ρ(Tx, Ty)<aρ(x, y),则称T是压缩映照
定理:完备距离空间 X 上的压缩映照T,必 存 唯一的不动点x*,使得Tx*=x*. (Banach压 缩映 照定理)
距离空间:不动点原理
应用:微分方程,代数方程,积分方程解的唯一存在 性
n
S f (i )xi
i 1
若其极限存在则称Riemann可积
b
n
(R) a f (x)dx lxim0 i1 f (i )xi
从Riemann积分到Lebesgue积分
Riemann积分的思想是,将曲边梯形分成若干个小 曲 边梯形,并用每一个小曲边梯形的面积用小矩形 来代 替,小矩形的面积之和就是积分值的近似。剖 分越精 细,近似程度越好。
距离空间:定义
设 X 是非空集合,对于X中的任意两元素x与y,按某一法则都
对 应唯一的实数ρ(x, y),并满足以下三条公理(距离公理)
:
1. 非负性: ρ(x, y) ≥0, ρ(x, y) =0当且仅当x=y; 2. 对称性: ρ(x, y) =ρ(y, x);
3. 三角不等式;对任意的x, y, z
例子:Fredholm第二类积分方程
b
x(s) f (s) a K (s,t)x(t)dt
对充分小的| λ |,可证
当f ∈ C[a, b], K(s, t)∈ C[a, b; a, b]时有唯一连续解 当f ∈ L2[a, b], K(s, t)∈ L2 [a, b; a, b]时有唯一平方可积解
(x, y) (a b )2 1/ 2 i i i
则 Rn是距离空 间
距离空间: Lp[a,b]
泛函分析ppt课件
傅里叶变换与小波变换的应用
傅里叶变换的应用
傅里叶变换在信号处理、图像处理、语音处理等领域 有着广泛的应用。例如,在信号处理中,可以通过傅 里叶变换将信号从时域转换到频域,从而方便地进行 信号的分析和合成。在图像处理中,可以通过傅里叶 变换对图像进行频域滤波,从而实现图像的降噪和增 强。在语音处理中,可以通过傅里叶变换对语音信号 进行分析和处理,从而实现语音的识别、压缩和加密 等任务。
REPORTING
在物理学中的应用:量子力学与相对论
量子力学
泛函分析在量子力学中有着广泛的应用,如波函数的形式化 描述、薛定谔方程的推导等。
相对论
泛函分析也被用于相对论中的时空变换和场方程的构造,以 及在广义相对论中研究黑洞的性质等。
在工程学中的应用:控制理论、电气工程等
控制理论
泛函分析在控制理论中有着重要的应用 ,如研究系统的稳定性、时域响应等。
PART 05
泛函分析在信号处理中的 应用
REPORTING
信号处理的基本概念
信号的定义与分类
信号是传递或表达某些信息的数据或数据流。它可以分为 离散信号和连续信号,离散信号是离散时间点的数据,而 连续信号是连续时间点的数据。
信号处理的定义与目的
信号处理是对信号进行变换、分析和解释的过程,目的是 从原始信号中提取有用的信息,或者将原始信号变换为另 一种形式,使其更易于分析和理解。
其他应用
泛函分析还可以应用于滤波器设计、压缩感知等领域。例如,基于小波变换的压缩感知方 法可以在保持信号质量的同时,实现信号的压缩和存储。
实例分析:信号的傅里叶变换与小波变换
傅里叶变换的基本原理
傅里叶变换是一种将时域信号转换到频域的方法。它将一个时域信号表示为一系列不同频率的正弦和 余弦函数的线性组合。通过傅里叶变换,我们可以将信号从时域转换到频域,从而可以更好地分析信 号的频率特性。
泛函分析讲义张恭庆答案
泛函分析讲义张恭庆答案【篇一:《泛函分析》课程标准】>英文名称:functional analysis课程编号:407012010 适用专业:数学与应用数学学分数:4一、课程性质泛函分析属于数学一级科下的基础数学二级学科,在数学与应用数学专业培养方案中学科专业教育平台中专业方向课程系列的一门限选课程。
二、课程理念1、培育理性精神,提高数学文化素养基础数学研究数学本身的内在规律,是整个数学学科的基础,它在数学学科其他领域、物理学、工程及社会科学中都有着广泛的应用。
《泛函分析》课程是数学与应用数学本科学生的专业课程之一,是数学分析、高等代数、实变函数等基础课程的后继课程,是研究生学习的基础,。
它不仅在数学学科占有十分重要的地位,而且在其他学科领域也有广泛的应用,掌握泛函分析的方法对学生更好地理解基础课程的理论将有很大的益处。
该课程培养学生的抽象思维能力、逻辑推理能力,体现知识、能力和素质的统一,符合应用型人才培养的目标要求。
2、良好的学习状态,提高综合解题能力本课程面对的是数学与应用数学专业四年级的学生。
学生刚刚结束教育实习,准备考研的学生进入紧张复习阶段,另一部分学生开始准备找工作。
《泛函分析》这门课内容比较抽象,课时又少,所以,如何让学生安保持良好的学习状态,是本门课要面对的一个重要问题,也是学生要面对的一个具体问题。
需要师生共同努力去正确面对才能顺利完成本门课的教学任务。
为学习研究生课程和现代数学打下必要的基础;进一步提高学生的数学素养。
3、内容由浅入深本课程的框架结构是根据教学对象和教学任务来安排的:“度量空间”泛函分析的基本概念之一,十分重要。
首先,引入度量空间的概念,并在引入度量的基础上定义了度量空间中的极限、稠密集、可分空间、连续映照、柯西点列、完备度量空间,对于一般的度量空间,给出了度量空间的完备化定理,并证明了压缩映照原理。
然后,在度量空间上定义线性运算并引入范数,就得到线性赋范空间以及巴拿赫空间。
泛函分析第三讲
A 是列紧集当且仅当 A中函数是一致有界和 等度连续的.
如果存在 M 0,使得 f A和x a,b, 有 f x M,则称函数族 A是一致有界的.
如果 0, 存在 0, x, y a,b,f A, 只要 dx, y , 就有 f x f y ,
对于x x1, x2 ,, xn ,定义
x x1 2 x2 2 xn 2 ,
则 Rn是Banach空间.
第二章 泛函分析
第二节 赋范线性空间及Banach空间
一、赋范线性空间
例2 空间Ca,b.对于xtCa,b,定义
x max xt at b
则 Ca, b是Banach空间.
第二章 泛函分析
第一节 距离空间
二、紧集与列紧集
定义5 设 X , d 是一个距离空间,A, B X.
0是给定的数, 如果对 A 中的任何点 x,必有 B中
的点 x,使得dx, x ,则称 B是 A的一个 -网.
定义6 设 X , d 是一个距离空间,A X.
如果对任意 0,A中总存在有限的 - 网,
二、紧集与列紧集
定理6 设A 是距离空间 X的紧集,f : A R是连续的,则 (1) f 在 A上有界; (2) f在 A 上可取到最大值和最小值.
第二章 泛函分析
第一节 距离空间
2.2 赋范线性空间及Banach空间
第二章 泛函分析
一、赋范线性空间
1. 赋范线性空间的定义
定义1 设 X 是复(或实)的线性空间,
一、赋范线性空间
3. Banach空间的定义 定义3 设 X 为赋范线性空间, d是由范数 诱导的距离,如果X是完备的距离空间, 称 X 为Banach空间.
泛函分析讲义
泛函分析讲义第五章Banach代数1代数准备知识2 Banach代数2.1 Banach代数的定义2.2 Banach代数的极大理想与Gelfand表示3例与应用4 c’代数5 Hilbert空间上的正常算子5.1 Hilbert空间上正常算子的连续算符演算5.2正常算子的谱族与谱分解定理5.3正常算子的谱集6在奇异积分算子中的应用第六章无界算子1 闭算子2 cayley变换与自伴算子的谱分解2.1 cayley变换2.2自伴算子的谱分解3无界正常算子的谱分解3.1 B0rel可测函数的算子表示3.2无界正常算子的谱分解?4 自伴扩张4.1 闭对称算子的亏指数与自伴扩张4.2 自伴扩张的判定准则5自伴算子的扰动5.1稠定算子的扰动5.2自伴算子的扰动5.3 自伴算子的谱集在扰动下的变化?6无界算子序列的收敛性6.1预解算子意义下的收敛性6.2图意义下的收敛性第七章算子半群1无穷小生成元1.1无穷小生成元的定义和性质1.2 Hme—Yosida定理2无穷小生成元的例子3单参数酉群和Stone定理3.1单参数酉群的表示——stone定理3.2 stone定理的应用1.B0chner定理2.Schr6dinger方程的解3.遍历(ergodic)定理3.3 Trotter乘积公式4 Markov过程4.1 Markov转移函数4.2扩散过程转移函数5散射理论5.1波算子5.2广义波算子6发展方程第八章无穷维空间上的测度论1 C[O,T]空间上的wiener测度1.1 C[O,T]空间上wiener 测度和wiener积分1.2 Donsker泛函和Donske卜Lions定理1.3 Feynman—Kac公式2 Hilbert空间上的测度2.1 Hilbert—Schmidt算子和迹算子2.2 Hilbert空间上的测度2.3 Hilbert空间的特征泛函3 Hilbert空间上的Gauss测度3.1 Gauss测度的特征泛函3.2 Hilbert空间上非退化Gauss测度的等价性清词丽句必为邻2015-09-21 04:05 | 豆瓣:烟波浩渺1980杜甫的《戏为六绝句》(其五)不薄今人爱古人,清词丽句必为邻。
泛函分析讲义第八章
第八章 有界线性算子和连续线性 泛函
§1 有界线性算子和连续线性泛函 §2 有界线性算子空间和共轭空间
显然,赋范线性空间中的相似算子显然是有界算子。 注意区别有界算子与有界函数。
(3)连续性与有界性的关系 设T是赋范线性空间X到赋范线性空间Y中的线性算子,则T 为有界算子的充要条件为T是X上连续算子。
4、算子的范数 T为赋范线性空间X的子空间D(T)到赋范线性空间Y中的线 性算子,称
|| Tx || 为算子T在D(T)上的范数。 || T || sup x 0 || x ||
的线性算子,如果存在常数 x c ,是对所有
则称T是D(T)到Y中的有界线性算子。
D(T),有 ||T x||c|| x||
换句话说,设X,Y是两个赋范线性空间,T是X到Y的
线性算子,如果算子T将其定义域中每个有界集映射成Y中
的有界集,就称T是有界线性算子,简称为有界算子。不 是有界的算子成为无界算子。
• 设X是内积空间,M是X完备子空间,则对每个 x∈X,存在唯一的y∈M,使得 •
||x y || d ( x , M )
xn (t ) t n ,则 x n 1 ,但
n 1 T x m a x |n t | n n 0 t 1
,
所以
T T x n n
,T是无界算子。
§2 有界线性算子空间和共轭空间
1、有界线性B(X → Y) 算子全体所成空间 设X,Y都是赋范线性空间,B(X→Y)是X到Y的有界线性算
泛函分析 课件第一章
i 1
Ai x | 0 x 1
Ai x | 0 x 2
1 1 A x | x (2)设 i , i 1, 2,.... i i
则
1 1 Ai x | x , n n i 1
4、逆映射 设 为A到B上的一一映射.作B到A的映射如下:如果 : x | y 令 : y | x , 确实使唯一的
x 与 y 相对应,即 是映射,
11 1 : B A
则称
是 的逆映射 ,也记为
注:逆映射是反函数概念的推广。例如,任何一个严格单调的函数都可
d c 11 : x b ( x a) c a
故(a,b)与(c,d)对等。
定理 1 对任何集合A、B、C均有
(1) (3) A B B
若
(2) A
A
A
(4) A B, B C A C
定理 2 设{An}和{Bn}是两列分别彼此互不相交的集列,
An
Bn , n 1,2,... , 则
集合表示方法:
列举法:将其元素一一列举出来。
特征描述法:将元素所具有的特征义命题的形式描述出来。
p Q {x | x q , p Z , q Z , q 0}
定理1:对任何集合A、B、C,均有
(1)A A
(2)A B,B A,则A = B
(3)A B,B C,则A C 其中(2)是经常用于证明两个集合相等。
§2 集合的运算
1、和集或并集 A B x | x A 或 x B
A x | 存在某个 使x A
2、交集
泛函分析讲义(孙义静)
H is a linear manifold, then 0.
H if and only if M
Th3.4 (Riesz Representation Theorem) 设 H 是 Hilbert 空间, f: H 则存在唯一h H 使得 f h 是线性连续泛函。 h, h , h H, 且 f h .
K 是闭集
唯一性 设 h
k k 2 h 2 h k k k
inf
K
h h
k , h k k k h
k k k
inf
K
h
k 。
2 h 2 h
4 h
k 2
4d =0 。
Th2.6 设 H 是 Hilbert 空间,K 则对任意h
H是闭线性子空间。 K使得 h k K.
H,存在唯一的 k
Th2.11 If H is a Hilbert space, M M
注:设 X 是线性空间, X=span {x , x , 线性无关集,则 m n.
, x }, {y , y ,
, y }是 X 中的
(orthonormal basis) 和代数基 (Hamel basis) : 内积空间的标准正交基 1,无穷维 Hilbert 空间,最大标准正交集肯定不是最大线性无关集。 2,无穷维 Hilbert 空间,最大线性无关集中元素个数> . K
Def. 5.1 If H, K are Hilbert spaces, there is a linear surjection U: H s.t. Uh , Uh isomorphic. Th 5.2 设 H, K 是内积空间, T: H 则 Th h , h H iff Th , Th K 是线性算子。 h ,h h ,h H. h ,h h ,h
应用泛函分析讲义ppt第1章
应用泛函分析
泛函分析的研究内容
泛函分析的基本概念形成于19世纪末到20世纪初,而作 为一门独立的数学分支则出现于上世纪30年代。经过上世纪 40至50年代的发展,使其成为一门足够成熟的学科。它不断 地渗透到各种应用领域,包括连续介质力学、电磁场理论、 控制理论和系统科学等。
在某种意义上说,泛函分析提供了一种知识框架,它把 数学分析中有关函数性态分析的结论,线性代数中有关向量 与向量空间、线性变换的概念,古典变分法中关于泛函变分 的概念,微分方程中定性分析与求解的概念等,纳入统一的 框架中;同时按泛函分析的理论体系,给出统一的分析和处 理。
应用泛函分析
泛函分析的研究内容
其次要把有限维空间上的线性变换推广到一般度量空间上 的算子理论,特别是赋范线性空间上的线性算子理论。事实上, 相当广泛的一类实际系统,都可以用某些抽象空间,以及存在 于这些空间上的算子描述。算子理论,特别是线性算子理论, 这是泛函分析的主要研究内容。算子的性态,诸如连续性、有 界性、紧性和闭性等,又是算子理论研究的重点。 算子方程求解及线性算子的能解性研究,给各种代数方程 和微分方程求解,以及控制系统综合等,提供了理论基础。对 偶空间和伴随模型算子的研究,是算子理论的一个主要组成部 分。在算子理论中,还要把矩阵特征值的概念,推广到一般线 性算子的谱特性。
应用泛函分析
泛函分析的研究对象
经典的数学分析是与经典力学的成就密切相关的,主要 用来描述和分析物质作有限自由度连续运动的各种特性。在 此,主要研究一元函数或多元函数的性态,诸如单调性、连 续性、可微性和可积性等,对连续函数建立了各种微积分运 算。
数学的抽象把三维立体空间中向量的概念,推广到任意 有限维线性空间;同时把力学中简单的坐标变换,推广到一 般的线性变换,并且由此引出矩阵对线性变换的表示,以及 矩阵的运算等,这些都是线性代数的研究内容。
91国优教材:泛函分析讲义
91国优教材:泛函分析讲义泛函分析讲义一、泛函分析的基本概念1、定义泛函分析又称为泛函相似性。
它是一种数学的技术,可以在极端情况下精准地求解和分析复杂的函数关系。
2、概念向量空间,空间中所有向量的集合;泛函,一个函数的集合,可以表述成 f: 某特定的n 向量变量集合→某特定的m 向量变量值集合,其中 n,m>0;泛函分析,对于给定的一个泛函 f 和泛函中多个变量空间 Xi (i=1,2,3,..m),求解 f 中部分变量取特定值下另外部分变量的取值范围。
3、性质(1)泛函分析属于泛函理论的应用,它可以求解复杂的函数关系。
(2)泛函分析可以帮助我们对于复杂系统中的变量进行有针对性的分析。
(3)泛函分析可以有效地提高系统的分析效率和精确度。
二、泛函分析法的特点1、函数可以没有限制地拓展泛函分析法不仅可以求解多元函数,还可以求解多项式函数,甚至是非常大的函数。
当有不同复杂度函数相互连接时,也可以采用泛函分析方法。
2、精确度较高泛函分析的结果能接近实际的变量取值情况。
3、适用范围广泛泛函分析可以应用到许多不同领域,比如机械、电子、建筑等等。
1、应用于元件分析泛函分析可以用于分析电路元件及其特性参数,以便精确地计算出所需要的结果。
2、应用于系统模拟泛函分析可以用来模拟系统的特性参数,预测系统性能,以优化系统的整体结构和设计。
3、用于参数估算泛函分析可以用于分析复杂的系统结构,在给定的参数的情况下,估算出系统的性能状态。
4、用于控制设计泛函分析可以帮助设计及优化某一系统的控制算法,便于提高系统的应用性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章赋范空间. 范数的概念“线性空间”强调元素之间的运算关系,“度量空间”则强调元素之间的距离关系,两者的共性在于:只研究元素之间的关系,不研究元素本身的属性。
为了求解算子方程,需要深入地了解函数空间的结构与性质,为此,我们不仅希望了解函数之间的运算关系和距离关系,还希望了解函数本身的属性。
那么,究竟需要了解函数的什么属性呢向量的长度为了回答上述问题,我们需要从最简单的函数空间——欧氏空间——中寻找灵感。
回想一下,三维欧氏空间中的元素被称为“向量”,向量最重要的两大属性是:长度和方向,向量的许多重要性质都是由其长度和方向所决定的。
这一章的任务就是将欧氏空间中向量的长度推广为(以函数空间为原型的)一般线性空间中元素的广义长度,下一章的任务就是将欧氏空间中向量的方向推广为(以函数空间为原型的)一般线性空间中元素的广义方向。
可以想象:其元素具有广义长度和广义方向的线性空间必将像欧氏空间那样,呈现出丰富多彩的性质,并且这些性质必将有助于求解算子方程。
图 三维欧氏空间中向量的大小和方向矩阵论知识告诉我们:可以为欧氏空间中的向量赋予各种各样的长度,并且可以根据问题需要来选择最合适的向量长度。
实际上,可以在数域F 上的n 维欧式空间n F 上定义向量12(,,,)n x x x x =的如下三种长度(称为“范数”):● 2-范数(也称为欧氏范数):221nkk x x==∑;● 1-范数:11nk k x x ==∑;● ∞-范数:1max k k nxx ∞≤≤=。
图 三种向量范数对应的“单位圆” 图 “单位圆”集合的艺术形式下一节将谈到:就分析性质而言,这三种向量范数没有任何区别。
我们注意到:通常将2或3中两个向量之间的距离定义为两者的差向量的长度。
由此可知:如果有了长度的概念,就可以诱导出距离;反之则不然。
因此,长度是比距离更本质的概念。
范数的定义我们希望将向量范数的概念推广到(以函数空间为原型的)无限维线性空间的场合。
定义 设X 是数域F 上的线性空间,⋅是定义在X 上、取值为实数的函数。
如果下列条件满足:(1)正定性:对于任意x X ∈,都有0x ≥,并且等号成立当且仅当0x =; (2)正齐性:对于任意x X ∈,F α∈,都有x x αα=⋅; (3)三角不等式:x y x y +≤+;则称⋅是X 上的范数(norm )。
称赋予了范数的线性空间为赋范线性空间(normed linear space ),或者简称为赋范空间(normed space )。
图 三角不等式示意图常用的范数下面列出常用的赋范空间。
例:设X 是数域F 上的紧度量空间,用()F C X 表示定义在X 上、在F 中取值的全体连续映射的集合。
可以在()F C X 上定义如下范数:对于()F f C X ∈,{}sup():f f x x X=∈。
例:对于1p≤<∞,可以在()pL X上定义如下范数:对于()pf L X∈,()1/()ppp Xf f x dx=⎰。
例:可以在()L X∞上定义如下范数:对于()f L X∞∈,{}sup():f ess f x x X∞=∈。
注释:函数的1-范数、2-范数、∞-范数分别是向量的1-范数、2-范数、∞-范数的自然推广。
(为什么)例:对于1p≤<∞,可以在p l上定义如下范数:对于1{}pk kx x l∞==∈,1/1ppkpkx x∞=⎡⎤=⎢⎥⎣⎦∑。
例:可以在l∞上定义如下范数:对于1{}k kx x l∞∞==∈,{}sup:kx x k∞=∈。
上述五种范数是泛函分析中最重要的范数,我们将其称为标准范数。
例:设(),X⋅是赋范线性空间,Y是X的线性子空间,Y⋅是范数⋅在Y上的限制,则Y⋅是Y上的范数。
上述例子表明:可以从较大的赋范线性空间出发,“从大到小”地构造许许多多较小的赋范线性空间。
例:设()1,X⋅和()2,Y⋅是同一个数域上的赋范线性空间,则在笛卡尔积X Y⨯上可以定义如下范数:对于任意(,)x y X Y∈⨯,12(,)x y x y =+,则⋅是X Y ⨯上的范数。
上述例子表明:可以从较小的赋范线性空间出发,“从小到大”地构造无穷无尽的赋范线性空间。
范数就像灵魂一样重要:有范数的元素就有了精气神;反之,没有范数的元素就像是孤魂野鬼,完全没有实在感。
. 范数的基本性质赋范线性空间具有许多独特的性质,这些性质在研究其分析性质时特别有用。
范数诱导度量一方面,赋范空间是线性空间。
另一方面,下列定理告诉我们:赋范空间还是度量空间。
因此,赋范空间是线性空间与度量空间的合体,是为求解算子方程而生的。
定理 设(),X ⋅是赋范空间,定义映射:d X X ⨯→如下:对于任意,x y X ∈,(,)d x y x y =-,则(,)X d 是度量空间。
以下称该度量为范数诱导度量,称相应的度量空间为诱导度量空间。
下面列出常用的范数诱导度量。
例:可以用n 维向量空间n F 上的2-范数2⋅诱导n F 上的如下度量:对于任意1212(,,,),(,,,)n n n x x x x y y y y F ==∈,1/2221(,)nk kkd x y f g x y=⎡⎤=-=-⎢⎥⎣⎦∑。
例:可以用例中定义的范数⋅诱导()FC X上的如下度量:对于任意,()Ff g C X∈,{}(,)sup()():d f g f g f x g x x X=-=-∈。
例:对于1p≤≤∞,可以用()pL X上的范数p⋅诱导()pL X上的如下度量:对于任意,()pf g L X∈,1/(,)()()ppp Xd f g f g f x g x dx⎡⎤=-=-⎣⎦⎰。
例:对于1p≤≤∞,可以用p l上的范数p⋅诱导p l上的如下度量:对于{},{}pn nx x y y l==∈,1/1(,)ppk kpkd x y x y x y∞=⎡⎤=-=-⎢⎥⎣⎦∑。
上述度量都是第二章最后一节介绍的标准度量,由此可见:范数与度量是紧密联系在一起的。
极限运算律赋范空间满足下列极限运算交换律。
定理:设(),X⋅是数域F上的赋范空间,则下列性质成立:(1)极限运算-代数运算交换律:设{}nx和{}ny是X中的收敛序列,,Fαβ∈,则lim()lim limn n n nn n nx y x yαβαβ→∞→∞→∞+=+。
(2)极限运算-范数运算交换律:设{}nx是X中的收敛序列,则lim lim n n n n x x →∞→∞=。
赋范空间的上述性质使极限运算变得十分便捷。
范数的等价性我们知道,在同一个线性空间上可以赋予各种不同的范数。
于是,就自然产生了如下问题:赋范空间的分析性质是否会随着范数的改变而改变为了回答上述问题,我们希望将某个线性空间上的所有可能的范数划分为若干类,使得(a )来自同一类中的两个范数对应的赋范空间的分析性质完全相同,(b )来自不同类中的两个范数对应的赋范空间的分析性质不完全相同。
为了实现这个目的,数学家给出了如下定义。
定义 设1⋅和2⋅是线性空间X 上的两个范数。
如果存在正数m 和M ,使得所有x X ∈均满足121m x x M x ≤≤,则称1⋅与2⋅等价。
这个等价关系是标准的等价关系,即是同时满足自反性、对称性和传递性。
按照这个等价关系,就可以将同一个线性空间上的所有范数分为若干等价类。
下列定理表明:属于同一等价类的两个范数对应的赋范空间的确具有完全相同的分析性质。
定理 设1⋅和2⋅是线性空间X 上的两个等价范数。
1d 和2d 分别表示由1⋅和2⋅诱导的度量。
(1) 设{}k x 是X 中的序列,则12d d k k x x x x −−→⇔−−→。
(2) 设{}k x 是关于1d 的Cauchy 列⇔{}k x 是关于2d 的Cauchy 列。
(3) 1(,)X d 完备⇔2(,)X d 完备。
扩张子空间为了求得线性算子方程的通解,我们希望从它的一组解出发,通过代数运算和极限运算产生它的全部解。
为此,现引入如下定义。
定义 设X 是赋范空间,S 是X 的非空子集,则S 的扩张集Sp S 定义为由S 的全体有限线性组合组成的集合的闭包,即是1:,,,Sp k j j j j j S x X x x k x S F αα=⎧⎫=∈=∈∈∈⎨⎬⎩⎭∑。
由此可见,Sp S 是由S 中元素通过代数运算和极限运算能够产生的最大集合。
扩张集有下列重要性质。
定理 Sp S 是X 的包含S 的、最小的闭线性子空间。
Riesz 引理Riesz 引理是由匈牙利数学家Riesz (1880-1956)发现的,对揭示无限维赋范线性空间与有限维线性空间的本质区别具有重要作用。
Riesz 引理:设X 是赋范空间,Y 是X 的闭线性真子空间,01α<<。
则存在x X ∈,使得(1)1x =,(2)对于所有的y Y ∈,都有x y α->。
图 匈牙利数学家Riesz. 有限维赋范空间有限维线性空间是最简单的线性空间。
实际上,根据定理,有限维线性空间的代数结构已经完全清楚了。
这一节的目的是研究有限维赋范空间的分析结构。
可以将有限维线性空间视为度量空间,理由如下:设X 是n 维线性空间,{}12,,,n e e e 是X 的基,则可以定义X 上的如下范数:对于X 中任意元素1n k k k x e λ==∑,令1/221n k k x λ=⎡⎤=⎢⎥⎣⎦∑。
这样定义的范数值将会随着基的改变而改变。
然而,我们有如下惊人的结论: 定理 同一个有限维线性空间上的所有范数均等价。
综合定理和可知:有限维赋范线性空间的分析性质是完全确定的,不依赖于范数的选择。
因此在处理实际问题时,可以根据需要选择合适的范数。
对于有限维线性空间,我们还有如下进一步的结论:定理 有限维赋范空间是完备的,即是说其诱导度量空间是完备的。
综上所述,数域F上的n维线性空间与n F不仅具有相同的代数结构,而且具有相同的分析性质。
实际上,矩阵论的一部分内容,就是研究n F的分析性质。
最后,我们还有定理赋范空间的有限维子空间是闭集。
综上所述,有限维赋范空间的代数结构和分析结构都是十分简单的,是完全被人类所掌握。
. 无限维赋范空间无限维的烦恼众所周知,“无限”比“有限”要复杂得多。
因此自然可以想象:无限维赋范空间将失去有限维赋范空间的许多优美性质。
实际上,我们有与定理至定理完全对立的下列结论。
定理同一个无限维线性空间上的某些范数不等价。
定理无限维赋范空间不一定是完备的。
定理赋范空间的无限维子空间不一定是闭集。
甚至对于无限维赋范空间X而言,形如{}x X x∈=之类:1:1x X x∈≤、{}的集合都不再是闭集,这极大地妨碍了极限运算的实施。
看来,最一般的无限维赋范空间已经超出了人类的认知能力。