色谱分析法导论
仪器分析学习 第6章 色谱法导论-气相色谱

* 用时间表示 单位: s或cm
(1)保留时间 tR
试样从进样开始到柱后出现峰极大点
时所经历的时间(O´B)
(2)死时间
t 0
不被固定相吸附或溶解的气体(如:空
* 用体积表示 单位:mL
(1)保留体积 VR
从进样开始到出现峰极大所通过的
载气体积。 VR=tRF0 F0:柱出口处载气流速 mL/min
精选ppt
2)评价柱效的参数
理论塔板数(n)
n5.5(4tR )21(6tR)2
W 1/2
W
理论塔板高度(H) 有效理论塔板数
H L n
n有效 5.54 (W tR '1
)2
16 (tR ' )2 W
2
有效理论塔板高度
注意事项:
L H 有效 n有效
(1)n大,柱效高,分离好,前提是两组分分配系数K应有差
H A B /u C gu C luA B /u Cu
由此可知:流动相线速u一定时,仅在A、B、C较小时,塔板高 度H才能较小,柱效才较高;反之柱效较低,色谱 峰将展宽。
这一方程对选择色谱分离条件具有实际指导意义,它指出 了色谱柱填充的均匀程度,填料颗粒的大小,流动相的种 类及流速,固定相的液膜厚度等对柱效的影响。
3) 塔板之间无分子扩散(忽略试样 的纵相扩散)
4) 组分在所有塔板上的分配精选系ppt 数保 持常数
精馏塔示意图
精选ppt
2、塔板理论之推导结论
1) 当组分进入色谱柱后,在每块塔板上进行两相间的分配, 塔板数越多,组分在柱内两相间达到分配平衡的次数也越 多,柱效越高,分离就越好。
n L H
n50 流出曲线呈基本对称的峰形; 当 n 达 103-106 流出曲线趋近于正态分布;
第十三章色谱分析法导论

18
4.温控系统
作用对象:气化室、柱箱、检测器 控温方式:恒温和程序升温
19
5.检测系统
作用:将经色谱柱分离后顺序流出的化学组分 的信息转变为便于纪录的电信号,然后对被分 离物质的组成和含量进行鉴定和测量。
常用的检测器: 氢火焰离子化检测器 热导池检测器 电子捕获检测器(ECD 质谱检测器
20
3.分离系统
17
色谱柱:U型或螺旋型金属管(内径2~6mm,长1~ 3m)、 固定液、 载体(担体)组成。
包括:填充柱和毛细管柱
填充柱:多为U形或螺旋形;内填固定相。 毛细管柱:分为涂壁、多孔层和涂载体开管柱,内径 0.1 ~ 0.5mm,长达几十至100m,通常弯成直径 10 ~ 30cm的螺旋状;其特点为渗透性好、传质快, 分离效率高(n可达106)、分析速度快、样品量小。
记录了各个组分流出色谱柱的情况,又叫色谱 流出曲线。
24
1. 基线 ➢ 在实验操作条件下,色谱柱后没有组分流出的
曲线叫基线。 ➢ 稳定情况下是一条直线 ➢ 基线上下波动称为噪音
25
2. 色谱峰的高度(峰高,h )
➢ 色谱峰最高点与基线之间的距离 ➢ 峰高低与组分浓度有关,峰越高越窄越
好
h
3. 色谱峰的宽度(区域宽度)
根据色谱图可得到的重要信息:
32
(1)色谱峰个数
—判断样品中所含组分的最少个数
(2)色谱峰的位置即保留值
—进行定性分析
(3)色谱峰的h 、A
—进行定量分析
(4)色谱峰的位置及峰的宽度 —可评价色谱柱效(分离效能)
(5)色谱峰两峰间的距离 —可评价固定相或流动相选择是否合适
33
四、气相色谱的应用
色谱分析法

组分在固定相中的质量 k 组分在流动相中的质量
分配比又称容量因子。
2013-7-1 色谱分析法导论 10
分配系数和分配比值决定于组分及固定相热力学性质。除 了与温度、压力有关外,还与流动相及固定相的性质有关。
分配比k与分配系数K的关系为:
MS VS MS VS cs VS k K/ Mm MS V cm Vm m Vm
2013-7-1
色谱分析法导论
8
(一) 分离原理
当试样由载气携带 进入色谱柱与固定相 接触时,被固定相溶 解或吸附。 随着载气的不断通 入,被溶解或吸附的 组分又从固定相中挥 发或脱附, 挥发或脱附下的组 分随着载气向前移动 时又再次被固定相溶 解或吸附。 随着载气的流动, 溶解、挥发,或吸附 、脱附的过程反复地 进行。
14
5. 分配系数 K 与保留值的关系
VR =K Vs 将反映色谱行为的保留值与反映热力学性质的分配系 数K直接联系起来。
6. 分配比 k 与保留值的关系
tR tM t k R tM tM
tR= tM(1+ k )
k 是衡量色谱柱对组分保留能力的参数, k值越大, 保留时间越长。
2013-7-1
20
二、速率理论
速率理论方程式(也称范弟姆特方程式):
B H A Cu u
H:理论塔板高度,u:流动相的线速度(cm/s)
A、B、C为常数,分别代表涡流扩散项、分子扩散
项系数和传质阻力项系数。
(1956年荷兰学者van Deemter(范第姆特)等在研究气 液色谱时提出。该理论模型对气相、液相色谱都适用。)
tR 2 tR 2 n 5.54( ) 16( ) Y1/ 2 Wb
2013-7-1 色谱分析法导论 17
色谱分析法导论

第14章色谱分析法导论【14-1】在仪器分析中,色谱的独特特点是什么?答:具有能同时进行分离和分析的特点。
【14-2】导致谱带展宽的因素有哪些?【14-3】哪些参数可以改进色谱分离的分离度以及怎样在色谱图上测定这些参数?【14-4】影响选择性因子的参数有哪些?【14-5】如何控制和调节容量因子?【14-6】色谱柱效n由哪些因素决定?如何提高柱效?答:根据速率理论,影响n的因素有:(1)固定相,包括固定相的粒径、填充均匀程度、固定液种类、液膜厚度等。
(2)流动相,包括流动相的种类、组成、流速(3)柱温。
提高柱效的方法有:(1)优化流动相组成、流速及柱温来优化柱效。
(2)增大柱长可以增加理论塔板数,但会使分析时间增长。
(3)降低塔板高度H。
【14-7】色谱定量分析中,为什么要定量校正因子?校正因子有几种表示方法?实验中如何测定定量校正因子?【14-8】已知某色谱峰的半峰宽为4.708mm,求此色谱峰的峰底宽。
答:8.000mm【14-9】组分A,B在某气液色谱柱上的分配系数分别为495和467。
试问在分离时哪个组分先流出色谱柱?答:根据分配系数的定义:,K值表示组分与固定相作用力的差异,K值大,说明组分与固定相的亲和力越大,其在柱中滞留的时间长。
由于A组分的分配系数大于B组分,因此B组分先流出色谱柱。
【14-10】组分A从色谱柱流出需15.0min,组分B流出需25.0min,而不被色谱柱保留的组分P流出色谱柱需2.0min。
问:(1)B组分相对于A组分的相对保留时间是多少?(2)A组分相对于B的相对保留时间是多少?(3)组分A在柱中的容量因子是多少?(4)组分A通过流动相的时间占通过色谱柱的总时间的百分之几?(5)组分B通过固定相上平均停留时间是多少?解:(1)=(25.0-2.0)/(15.0-2.0)=17.7(2)=(15.0-2.0)/(25.0-2.0)=0.57(3)=(15.0-2.0)/2.0=6.5(4)2.0/15.0×100%=13.3%(5)=25.0-2.0=23.0min【14-11】已知某组分峰的峰底宽为40s,保留时间为400s,(1)计算此色谱柱底理论塔板数;(2)若柱长为1.00m,求此理论塔板高度。
第15章-色谱分析法导论

k 值越大,说明组分在固定相中的量越多,相当于柱的
容量大,因此又称分配容量。 它是衡量色谱柱对被分离组分保留能力的重要参数。
k 值也取决于组分及固定相热力学性质。它不仅随柱温、
柱压变化而变化,而且还与流动相及固定相的体积有关。
23
3、分配系数和分配比之间的关系
k cSVS cMVM
17
§15-2 色谱分离原理
一、分离原理 气相色谱分离过程是在色谱柱内完成的,气固色谱和
气液色谱,两者的分离机理不同。 气固色谱的固定相: 多孔性的固体吸附剂颗粒,其分离是基于固体吸附剂
对试样中各组分的吸附能力的不同。 气液色谱的固定相: 由担体和固定液所组成,其分离是基于固定液对试样
中各组分的溶解能力的不同。
图15-1色谱原型
1
1906年, Tsweet 发现色谱分离现象
碳酸钙 (固定相)
色石素油混醚合液 (流动相) 色谱柱
色带
2
植物色素分离图示
3
Chromatography
Tswett将这种方法命名为色谱 法(Chromatography),很显然 色谱法 (Chromatography)这个 词是由希腊语中“色”的写法 (chroma)和“书写”(graphein) 这两个词根组成的。
2)死时间( tM ): 不与固定相作用的气体(如空气)的保留时间。
因为这种物质不被固定相吸附 或溶解,故其流动速度将与流动相 的流动速度相近。
测定流动相平均线速度u0时, 可用柱长 L 与 tM 的比值计算。
uu0 L tM
29
3)调整保留时间( tR ' ):
tR' = tR - tM
30
色谱分析

四、色谱分离过程
色谱分离过程是在色谱柱内完成。以填充柱为例
填充柱类型 气固(液固)色谱 固定相
气液(液液)色谱
多孔性的固体吸附剂颗粒 由担体和固定液所组成
分离机理
固体吸附剂对试样中各组 固定液对试样中各组分 分的吸附能力的不同 的溶解能力的不同
吸附与脱附的不断重复 溶解与挥发的不断重复
分离过程
五、色谱流出曲线(色谱图)及有关术语
5)流动相以不连续方式加入,即以
一个一个的塔板体积加入。
2、塔板分离过程
3 、柱效能指标
对于一个色谱柱来说,其分离能力(叫柱 效能)的大小主要与塔板的数目有关,塔板数 越多,分配次数越多,分离效果越好,柱效能
越高。
色谱柱的塔板数可以用理论塔板数和有效
塔板数来表示。
(1)理论塔板数n
对于一个柱子来说,其理论塔板数可由下式计算:
5. 速率理论的要点
(1)组分分子在柱内运行的多路径与涡流扩散、浓度梯度所 造成的分子扩散及传质阻力使气液两相间的分配不能瞬间达 到平衡等因素是造成色谱峰扩展、柱效下降的主要原因。
(2)通过选择适当的固定相粒度、载气种类、液膜厚度及 载气流速可提高柱效。 (3)速率理论为色谱分离和操作条件选择提供了理论指导。 阐明了流速和柱温对柱效及分离的影响。 (4) 各种因素相互制约,选择最佳条件,才能使柱效达到 最高。
传质阻力导致C ↑,H ↑ ,n ↓分离变差 。 C与扩散系 数、液膜厚度等有关
4. 载气流速与柱效-最佳流速
载气流速高时,传质阻力项 是影响柱效的主要因素
载气流速低时,分子扩散项成 为影响柱效的主要因素
H – u 曲线与最佳流速
由于流速对这两项完全相反的作用,以塔板高度H对载气流速
色谱法导论PPT课件

色谱法的应用领域
01
02
03
04
化学分析
色谱法广泛应用于化学分析领 域,用于分离和测定复杂有机 化合物、无机离子和金属配合 物等。
生物医药
在生物医药领域,色谱法用于 分离和纯化生物分子、药物成 分以及检测药物残留等。
环境监测
在环境监测领域,色谱法用于 检测空气、水和土壤中的有害 物质,如有机污染物、重金属 等。
新型硅胶基质固定相
硅胶基质固定相具有良好的热稳定性和化学稳定性, 可用于分离各种极性化合物。
新型聚合物固定相
聚合物固定相具有高选择性、高柱效和良好的耐受性, 可用于分离复杂样品。
新型手性固定相
手性固定相可用于拆分光学异构体,为手性化合物的 分离提供了新的解决方案。
色谱仪器的发展
高效液相色谱仪
高效液相色谱仪具有高分离效能、高灵敏度和广 泛应用的特点,已成为色谱分析的重要手段。
食品成分分析
色谱法用于分析食品中的营养成分,如脂肪、蛋白 质、糖类等,以评估食品的质量和营养价值。
食品添加剂检测
色谱法用于检测食品中添加剂的含量,确保食品的 安全性和合规性。
食品污染物检测
色谱法用于检测食品中的污染物,如农药残留、重 金属等,保障食品安全和消费者健康。
在环境监测中的应用
01
空气污染物的分离 与测定
食品工业
在食品工业中,色谱法用于检 测食品中的添加剂、农药残留 和营养成分等。
02
色谱法的基本原理
分离原理
分离原理
色谱法通过流动相和固定相之 间的相互作用,使不同组分在 固定相和流动相之间的分配系 数不同,从而实现各组分的分 离。
分配系数
各组分在固定相和流动相之间 的分配系数决定了它们在色谱 分离中的行为。分配系数越大 ,组分在固定相上的保留越强 ,越难以被洗脱。
色谱分析法导论课件

检测原理基于物质与 检测器之间的相互作 用,如热导、光吸收、 荧光等。
定量原理
通过比较标准品和样品的色谱峰面积或峰高进行定量。
01
02
标准品和样品需在同一条件下进行分析,以获得准确的定量结果。
定量方法包括外标法和内标法,选择合适的定量方法可以提高
03
分析准确度。
03
色谱分析法的分类
按固定相的状态分类
实验操作步骤
色谱柱的安装与条件设置
流动相的准备与泵的操作
样品的处理与进样
检测器的操作与数据采集
按照操作规程正确安装色谱柱, 并根据实验需求设置色谱柱的 温度、压力等条件。确保色谱 柱的稳定性和分离效果。
根据实验方案准备适量的流动 相,并按照操作规程启动泵, 调整流动相的流速和组成。确 保流动相的稳定性和均匀性。
实验环境设置
根据实验需求,设置实验室温度、湿度等环境条件,确保 实验过程中环境因素的一致性和稳定性。
仪器设备检查
检查色谱仪、检测器、泵等设备是否正常工作,确保仪器 处于良好状态。同时,对仪器进行必要的校准和调整,以 保证实验结果的准确性。
安全措施准备
根据实验中可能存在的安全隐患,准备必要的安全防护措 施,如佩戴防护眼镜、手套等,确保实验人员的安全。
环境监测
在环境监测中,色谱分析法用于空气、 水体、土壤等环境样品中污染物的检 测和分析,如有机氯农药、多环芳烃 等持久性有机污染物。
生物医药
在生物医药领域,色谱分析法用于蛋 白质、核酸等生物大分子的分离和纯 化,以及药物成分的分析和质量控制。
食品检测
在食品检测中,色谱分析法用于食品 中添加剂、农药残留、重金属等有害 物质的检测和分析,以确保食品安全。
第五章-色谱分析法概论

Fc:流动相平均体积流速,(单位:cm3·min-1).
(5) 保留体积VR
指从进样开始到被测组分在柱后出现浓度极大点时所通过 的流动相的体积。保留时间与保留体积关系:
VR = Fc·tR (6)调整保留体积VR
某组分的保留体积扣除死体积后,称为该组分的调整保留体 积。
VR = VR VM = tR Fc
3. 保留值与容量因子的关系
k' K1KVs KVs
Vm VM
将色谱过程基本方程代入:
k' VR VM Vs
Vs VM
可得: k' VRVMVR ' tR ' tRtM
VM VM tM tM
将该式改为: VRVM(1k')
tRtM(1k')
tR
L u
(1
k
')
4.相对保留值 2 ,1
某组分2的调整保留值与组分1的调整保留值之比,称为相对
取决于组分在固定相上的热力学性质。
2、分离度的定义
分离度又叫分辨率或分辨度,既能反映柱效率又能反映选择
性的指标,是衡量分离效能的总指标。
定义:
Rs
1 2
{ 根据流动相的
气相色谱(GC) 气-液色谱(GLC)
物态可分为
液相色谱(LC) 液-固色谱(LSC)
液-液色谱(LLC)
按固定相的固 定方式分类
填充柱色谱 柱色谱 毛细管柱色谱
平板色谱 纸色谱 薄层色谱
平板色谱
根据分离机理 可分为
吸附色谱 分配色谱 离子交换色谱 排阻色谱
色谱法的特点和应用
1.分离效能高 2.灵敏度高 可检测10-11~10-13g,适于痕量分析.色
色谱分析法导论 优秀课件

色谱法的特点
“三高”、“一快”、“一广”
高选择性——可将性质相似的组分分开 高效能——反复多次利用组分性质的差异
产生很好分离效果 高灵敏度——10-11~10-13g,适于痕量分析 分析速度快——几~几十分钟完成分离
一次 可以测多种样品 应用范围广——气体,液体、固体物质
化学衍生化再色谱分离、分析
下来。组分从色谱柱流出时,各个组分在检测器上所产 生的信号随时间变化,所形成的曲线叫色谱图。
记录了各个组分流出色谱柱的情况,又叫色谱流出 曲线。
2.基线(baseline)
在实验操作条件下, 色谱柱后没有组分 流出的曲线叫基线。
稳定情况下,一 条直线。
基线上下波动称 为噪音。
3. 色谱峰(peak)是流出曲线上的突起部分。 正常色谱峰、拖尾峰和前延峰
▪ 色谱法:混合物在流动相的携带下通过 色谱柱分离出几种组分的方法。
固定相:
(1)固体吸附剂:CaCO3、Al 2O3等 (2)液体固定相(载体+固定液——高沸点有
机化合物,涂在载体上)
色谱分离法一定是先分离。后分析
一定具有两相;固定相和流动相
分离:利用组分在两相中分配系数或吸附能力的 差异进行分离
1.死时间(dead time) t0——不被固定相吸附或溶解的组 分流经色谱柱所需的时间。
2.保留时间 tR(retention time) 组分流经色谱柱时 所需时间。进样开 始到柱后出现最大 值时所需的时间。 操作条件不变时, 一种组分有一个tR定 值,定性参数。
3.调整保留时间t’R
(adjusted retention
第二节 色谱过程和基本原理
一、色谱过程 实现色谱操作的基本条件是必须具备相对运
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第14章色谱分析法导论【14-1】 在仪器分析中,色谱的独特特点是什么? 答:具有能同时进行分离和分析的特点。
【14-2】 导致谱带展宽的因素有哪些?【14-3】 哪些参数可以改进色谱分离的分离度以及怎样在色谱图上测定这些参数? 【14-4】 影响选择性因子α的参数有哪些? 【14-5】 如何控制和调节容量因子k '?【14-6】 色谱柱效n 由哪些因素决定?如何提高柱效?答:根据速率理论,影响n 的因素有: (1)固定相,包括固定相的粒径、填充均匀程度、固定液种类、液膜厚度等。
(2)流动相,包括流动相的种类、组成、流速 (3)柱温。
提高柱效的方法有: (1)优化流动相组成、流速及柱温来优化柱效。
(2)增大柱长可以增加理论塔板数,但会使分析时间增长。
(3)降低塔板高度H 。
【14-7】 色谱定量分析中,为什么要定量校正因子?校正因子有几种表示方法?实验中如何测定定量校正因子?【14-8】 已知某色谱峰的半峰宽为4.708mm ,求此色谱峰的峰底宽。
答:8.000mm【14-9】 组分A ,B 在某气液色谱柱上的分配系数分别为495和467。
试问在分离时哪个组分先流出色谱柱?答:根据分配系数的定义:agc K c =,K 值表示组分与固定相作用力的差异,K 值大,说明组分与固定相的亲和力越大,其在柱中滞留的时间长。
由于A 组分的分配系数大于B 组分,因此B 组分先流出色谱柱。
【14-10】 组分A 从色谱柱流出需15.0min ,组分B 流出需25.0min ,而不被色谱柱保留的组分P 流出色谱柱需2.0min 。
问:(1)B 组分相对于A 组分的相对保留时间是多少? (2)A 组分相对于B 的相对保留时间是多少? (3)组分A 在柱中的容量因子是多少?(4)组分A 通过流动相的时间占通过色谱柱的总时间的百分之几? (5)组分B 通过固定相上平均停留时间是多少? 解:(1)/B A t t =(25.0-2.0)/(15.0-2.0)=17.7 (2)/A B t t =(15.0-2.0)/(25.0-2.0)=0.57(3)A k =(15.0-2.0)/2.0=6.5 (4)2.0/15.0×100%=13.3%(5)0B t t -=25.0-2.0=23.0min【14-11】 已知某组分峰的峰底宽为40s ,保留时间为400s , (1)计算此色谱柱底理论塔板数; (2)若柱长为1.00m ,求此理论塔板高度。
解:(1)此色谱柱的理论塔板数为:224001616160040R n Y t ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭块(2)此柱的理论塔板高度为:3100.6251600L H mm n ===【14-12】 某两组分混合物,经色谱分离后,所得数据如下:M t =2.00cm 1()R t =5.00cm 2()R t =7.00cm1/21()W =0.50cm 1/22()W =0.80cm 1h =15.00cm2h =12.00cm已知载气平均体积流速为20mL·min -1,柱长为2m ,纸速为2cm·min -1,画出色谱图,并计算:1()Rt ',2()R t ';M V ;1()R V ',2()R V ';1k ',2k ';α;1A ,2A ;1n ,2n ;1H ,2H ;R ;u ;1()n 有效,2()n 有效;1()H 有效,2()H 有效。
解:色谱图略。
'11() 5.00 2.00 3.003.00 1.5min 2minR R m t t t cmcmcm -=-=-===⋅'21()7.00 2.00 5.005.00 2.5min 2min R R m t t t cmcmcm -=-=-===⋅mLmL Fc t V mL mL Fc t V mL mL cm Fc t V R R R R m m 50min 205.2)()(30min 205.1)()(20min 20min 200.212'2'11'1'11=⋅⨯=⨯==⋅⨯=⨯==⋅⨯⋅=⨯=----667.135)()(5.225)(5.123)(1'2'2''21''1=========R R m R m R t t t t k t t k α111/211.065() 1.065150.57.988A h w =⨯⨯=⨯⨯= 221/221.065() 1.065120.810.224A h w =⨯⨯=⨯⨯=22111/21()55.54[] 5.54[]554()0.5R t n w =⨯=⨯= 22221/22()75.54[] 5.54[]424.16()0.8R t n w =⨯=⨯=R 2R 11/211/222[(t )(t )]2(75)R 1.811.699[(w )(w )] 1.699(0.50.8)--===+⨯+‘22R 111/21(t )35.54[] 5.54[]199.44(w )0.5n =⨯=⨯=有效 ’22R 221/22(t )5n 5.54[] 5.54[]216.41(w )0.8=⨯=⨯=有效112 3.61554L H mm n === 222 4.72424.16L H mm n ===1m1L 22cm min 2.00t 2cm minu --===⋅⋅ 11L 210.03mm n 199.44H ===有效 2L 29.24mm n 216.41H ===有效2 【14-13】 混合试样品进入气液色谱柱后,测定各组份的保留时间为:空气45s ,丙烷1.5 min ,正戊烷2.35 min ,丙酮2.45min ,丁醛3.95 min ,二甲苯15.0 min 。
当使用正戊烷作基准组分时,计算各有机化合物对正戊烷的相对保留值。
解:由题意得:450.75min M t s ==根据公式:222,111''MMt t t R R t t t R Rγ-==-所以:丙烷: 1.50.750.4692.350.75γ-==-丙酮: 2.450.751.062.350.75γ-==- 丁醛: 3.950.7522.350.75γ-==- 二甲苯:150.758.912.350.75γ-==- 【14-14】 在某气象色谱分析中得到以下数据:死时间为1.0min ,保留时间为5.0min ,固定液体积为2.0mL ,载气平均体积流速为50mL·min -1。
试计算:(1)容量因子;(2)死体积;(3)保留体积;(4)分配系数。
解:(1)容量因子''5.0 1.04.01.0R R M M M t t t k t t --====(2)死体积:150min 1.0min 50M c M V F t mL mL -=⋅=⋅⨯= (3)保留体积:150min 5.0min 250R c R V F t mL mL -=⋅=⋅⨯= (4)分配系数:'504.01002M s V mLK k V mL=⋅=⨯= 【14-15】 已知某色谱柱的理论塔板数为3600,组分a 和b 在该柱上的保留时间分别为100s 和110s (空气在此柱上的保留时间为10s ),求其分离度R 。
解:''()1101010()100109R b R a t t α-===- ''()1001010R b bm t k t ===''110/911060()()()() 1.36110/91144b b k R k αα--====+或()()()4R B R A R B t t R t -=⋅1.3643600110100-110=⨯= 【14-16】 若a ,b 二组分的保留时间分别为20min 和21min ,死时间为1min ,计算: (1)组分b 的容量因子;(2)欲望达到分离度过R 为2时所需的理论塔板数。
解:(1) 组分b 的容量因子'()()'211201R b R b MbMMt t t k t t --==== (2)由于()()()R B R A R B t t R t -=,则: 欲达到R=2的所需理论塔板数为:2()22()()2116162282242120R B R B R A t n R t t ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪ ⎪--⎝⎭⎝⎭【14-17】 在1根已知有8100块理论塔板的色谱柱上,异辛烷和正辛烷的调整保留时间为800s 和815s ,并设()1/1k k +=,试问:(1)如果一个含有上述两组分的样品通过这根柱子,所得到的分离度为多少? (2)假定调整保留时间不变,当使分离度达到1.0时,所需的塔板数为多少? (3)假定调整保留时间不变,当使分离度为1.5时,所需要的塔板数为多少?解:(1)115()()0.4141815k R k -===+αα (2)由1122218100()472340.414R n n R n =⇒=⨯=2()块 (3)31.5R =时,同理,3106276n =块【14-18】 已知某色谱柱的有效塔板数为1600块,组分A 和B 在该柱上的调整保留时间分别为90s 和100s ,求其分辨率R 。
解:由2'16R nY t ⎛⎫⎪= ⎪⎝⎭有效得Y 1=9s ,Y 2=10s 。
()()()()''''122121211212222210090 1.05910MMSR R R R R R t t t ttt t t RY YY YY Y-+----=====++++【14-19】 在一根填充好的气相色谱柱上分离x 和y 两组分。
第一次进样后测得1()R x t '为10.8cm ;1()R y t '为11.2cm ,两组分没有分开;适当降低柱温后再次进样,测得2()R x t '为11.3cm ,2()Ry t '为13.6cm 。
试通过计算简单说明:(1)第一次进样时为什么分不开?(2)第二次进样时分离的可能性如何?解:(1),11.21.04 1.110.8y x R Y X R t t α'===<',故分不开; (2),13.61.2 1.111.2y x R Y X Rt t α'===>',故能分开。
【14-20】 某两组分混合物在1.0m 长的柱子上初试分离,所得分离度为1.0,分析时间为6min ;若通过增加柱长使分离度增加到1.5。