17色谱分析法概论

合集下载

色谱分析法概述

色谱分析法概述

气相色谱法
流动相为气体,根据物质在固定相中 的吸附、溶解等作用的不同进行分离。
液相色谱法
流动相为液体,根据物质在固定相中 的吸附、溶解等作用的不同进行分离。
按分离机制分类
吸附色谱法
利用物质在固定相上的吸附作用进行分离。
分配色谱法
利用物质在固定相和流动相之间的分配平衡 进行分离。
离子交换色谱法
利用物质在固定相上的离子交换作用进行分 离。
缺点
01
02
03
04
样品处理要求高
在进行色谱分析之前,需要对 样品进行预处理,如提取、纯
化等,较为繁琐。
仪器成本高
色谱分析仪器通常较为昂贵, 需要较高的投资成本。
分析时间长
色谱分析法通常需要一定的时 间来完成分离和检测过程。
对操作人员要求高
色谱分析法的操作较为复杂色谱分析法的未来发展
03 色谱分析法的操作流程
样品前处理
01
02
03
样品收集
根据分析目的,选择合适 的采样方法,确保采集到 具有代表性的样品。
样品制备
将采集的样品进行破碎、 混合、稀释等操作,以便 于后续的分离和检测。
样品净化
去除样品中的杂质,降低 干扰,提高检测的准确性 和可靠性。
分离操作
固定相选择
根据待测组分的性质,选择合适的固定相,实现组分 的吸附或分离。
色谱分析法概述
目录
• 色谱分析法简介 • 色谱分析法的分类 • 色谱分析法的操作流程 • 色谱分析法的优缺点 • 色谱分析法的未来发展
01 色谱分析法简介
色谱分析法的定义
定义
色谱分析法是一种分离和分析复杂混合物中各组分的方法,通过利用不同物质 在固定相和流动相之间的吸附、溶解等相互作用的不同,实现各组分的分离和 分析。

第十七章 色谱分析法概论

第十七章  色谱分析法概论

在流动相和固定中具有不同的分配系数,分配系数的大小
反映了组分在固定相上的溶解-挥发 或 吸附-解吸的能力。
分配系数大的组分在固定相上溶解或吸附能
力强,因此在柱内的移动速度慢;分配系数小的
组分在固定相上溶解或吸附能力弱,因此在柱内 的移动速度快。
经过一定时间后,由于分配系数的差别,使
各组分在柱内形成差速移行,达到分离的目的。
空间总和)
当色谱柱载气流速为F0(ml/min)时,它与死时间的 关系为:
V0(M) = tM· 0 F
(VM 大,色谱峰展宽,柱效低)
4. 保留值:定性参数,是在色谱分离过程中,试样中各组分
在色谱柱内滞留行为的一个指标。 (它可用保留时间、保留体积和相对保留值等表示) (1)保留时间 tR (retention time): 从进样到柱后出现待测组分浓度最大值时(色谱峰顶点) 所需要的时间,称为该组分的保留时间。如图中tR(1)、 tR(2) 所示,
把这些色 带称为 “ 色谱图 ” (chromatography), 相
应的方法叫作“色谱法”
色谱法是一种分离技术:
其中的一相固定不动,称为固定相 另一相是携带试样混合物流过此固 定相的流体(气体或液体),称为 流动相
各组分被分离后,可进一步进行定性和定量
分析: 经典:分离过程和其含量测定过程是离线的,即 不能连续进行 现代:分离过程和其含量测定过程是在线的,即 能连续进行
p tR tM t 'R k q tM tM
任一组分的 k 值可由实验测得,即为调整保留时间 tR’与 不被固定相吸附或溶解的组分的保留时间tM 的比值。可将k 看
作色谱柱对组分保留能力的参数,k 值越大,保留时间越长。

色谱分析法概论

色谱分析法概论
色谱分析法引论
§1.1 概述
色谱法也叫层析法,它是一种
高效能的物理分离技术,将它用于
分析化学并配合适当的检测手段,
就成为色谱分析法。
色谱法的最早应用是用于分 离植物色素,其方法是这样的: 在一玻璃管中放入碳酸钙,将含 有植物色素(植物叶的提取液) 的石油醚倒入管中。
此时,玻璃管的上端立即出现几 种颜色的混合谱带。然后用纯石油醚 冲洗,随着石油醚的加入,谱带不断 地向下移动,并逐渐分开成几个不同 颜色的谱带,继续冲洗就可分别接得 各种颜色的色素,并可分别进行鉴定。 色谱法也由此而得名。
色谱流出曲线的意义: 色谱峰数(样品中单组份的最少个数)
色谱保留值(定性依据)
色谱峰高或面积(定量依据)
色谱保留值或区域宽度(色谱柱分离效
能评价指标)
色谱峰间距(固定相或流动相选择是否
合适的依据)
§1.3 色谱法基本原理
色谱分析的目的是将样品中各组分彼此分离, 组分要达到完全分离,两峰间的距离必须足够远, 两峰间的距离是由组分在两相间的分配系数决定
h. 区域宽度:色谱峰的区域宽
度是色谱流出曲线的重要参数之一
,可用于衡量色谱柱的柱效及反映 色谱操作条件下的动力学因素。宽
度越窄,其效率越高,分离的效果
也越好。
区域宽度通常有三种表示法: 标准偏差:峰高0.607 倍处峰 宽处的一半。 半峰宽W1/2:峰高一半处的峰宽。 W1/2=2.354 峰底宽W:色谱峰两侧拐点上切 线与基线的交点间的距离。W= 4
有关,与两相体积、
柱管特性和所用仪
器无关。
分配系数 K的讨论

试样一定时,K主要取决于固定相性质一定温
度下,组分的分配系数K越大,出峰越慢;每个组 分在各种固定相上的分配系数K不同;选择适宜的 固定相可改善分离效果;试样中的各组分具有不 同的K值是分离的基础;某组分的K=0时,即不被 固定相保留,最先流出。

色谱分析法概论

色谱分析法概论

⾊谱分析法概论第⼀章⾊谱分析法概论第⼀节概述⾊谱分析法简称⾊谱法或层析法(chromatography),是⼀种物理或物理化学分离分析⽅法。

从本世纪初起,特别是在近50年中,由于⽓相⾊谱法、⾼效液相⾊谱法及薄层扫描法的飞速发展,⽽形成⼀门专门的科学——⾊谱学。

⾊谱法已⼴泛应⽤于各个领域,成为多组分混合物的最重要的分析⽅法,在各学科中起着重要作⽤。

历史上曾有两次诺贝尔化学奖是授予⾊谱研究⼯作者的:1948年瑞典科学家Tiselins因电泳和吸附分析的研究⽽获奖,1952年英国的Martin和Synge因发展了分配⾊谱⽽获奖;此外在1937~l972年期间有12次诺贝尔奖的研究中,⾊谱法都起了关键的作⽤。

⾊谱法创始于20世纪初,1906年俄国植物学家Tsweet将碳酸钙放在竖⽴的玻璃管中,从顶端倒⼊植物⾊素的⽯油醚浸取液,并⽤⽯油醚冲洗。

在管的不同部位形成⾊带,因⽽命名为⾊谱。

管内填充物称为固定相(stationary phase),冲洗剂称为流动相(mobile phase)。

随着其不断发展,⾊谱法不仅⽤于有⾊物质的分离,⽽且⼤量⽤于⽆⾊物质的分离。

虽然“⾊”已失去原有意义,但⾊谱法名称仍沿⽤⾄今。

30与40年代相继出现了薄层⾊谱法与纸⾊谱法。

50年代⽓相⾊谱法兴起,把⾊谱法提⾼到分离与“在线”分析的新⽔平,奠定了现代⾊谱法的基础,l957年诞⽣了⽑细管⾊谱分析法。

60年代推出了⽓相⾊谱—质谱联⽤技术(GC-MS),有效地弥补了⾊谱法定性特征差的弱点。

70年代⾼效液相⾊谱法(HPLC)的崛起,为难挥发、热不稳定及⾼分⼦样品的分析提供了有⼒⼿段。

扩⼤了⾊谱法的应⽤范围,把⾊谱法⼜推进到⼀个新的⾥程碑。

80年代初出现了超临界流体⾊谱法(SFC),兼有GC与HPLC的某些优点。

80年代末飞速发展起来的⾼效⽑细管电泳法(high performance capillary electrophoresis,HPCE)更令⼈瞩⽬,其柱效⾼,理论塔板数可达l07m-1。

色谱分析法概论

色谱分析法概论

流动相选择
02
03
分离条件优化
选择合适的流动相,控制待测组 分的吸附和解吸行为,提高分离 效果。
通过调整温度、压力、流速等参 数,优化分离过程,提高分离效 率和准确性。
检测过程
检测器选择
根据待测组分的性质和检测需求, 选择合适的检测器,如紫外可见 光检测器、荧光检测器、电化学 检测器等。
检测条件优化
原理
基于不同物质在两相之间的吸附 或溶解能力差异,实现各组分的 分离。固定相和流动相的选择性 差异是色谱分离的基础。
发展历程与现状
发展历程
自1906年俄国植物学家茨维特发明了色谱法以来,该技术不 断发展并广泛应用于各个领域。随着技术的进步,出现了许 多新型色谱技术,如高效液相色谱、气相色谱、毛细管电泳 等。
现状
色谱分析法已成为实验室常规分析手段,尤其在生命科学、 药物研发、环境监测等领域具有不可替代的作用。随着仪器 自动化和智能化的发展,色谱分析法的应用前景更加广阔。
色谱分析法的分类
根据流动相的不同
液相色谱、气相色谱、超临界流体色谱等。
根据分离原理的不同
体积排阻色谱、亲和色谱、环糊精色谱等。
根据固定相的不同
优化检测器的参数,如波长、电 压、响应时间等,提高检测灵敏 度和准确性。
数据处理与分析
对检测数据进行处理、分析和解 释,得出待测组分的含量、分布 和变化规律等信息。
05
色谱分析法的实验
技术
薄层色谱法
原理
薄层色谱法是一种基于吸附原理的色 谱技术,利用固定相吸附剂对不同组 分的吸附能力差异实现分离。
操作流程
样品制备
样品收集
根据分析目的,选择合适 的样品收集方法,确保样 品的代表性和可靠性。

《色谱分析法概述》课件

《色谱分析法概述》课件
高效分离
开发新型固定相和色谱柱,提高分离效率和分辨率。
灵敏度提升
采用新型检测器和技术,提高检测灵敏度和响应速度 。
联用技术
与质谱等检测技术联用,实现复杂样品的高效分离和 定性分析。
毛细管电泳法的发展趋势
01
02
03
微型化
采用微型化进样技术和毛 细管电泳芯片,实现快速 、便携的样品分析。
多维分离
结合多种分离模式和检测 技术,实现复杂样品的多 维分离和定性分析。
在色谱过程中,固定相和流动相的选择性是关键因素,它们决定了各组分在两 相之间的分配行为,进而影响分离效果。
色谱分析法的分类
分类
色谱分析法有多种分类方式,根据固定相的形态可分为柱色谱、纸色谱和薄层色 谱;根据操作方式可分为吸附色谱、分配色谱、离子交换色谱和凝胶渗透色谱等 。
描述
不同类型的色谱分析法适用于不同的分离需求,如柱色谱适用于大量样品的分离 ,而薄层色谱则适用于快速分离和定性分析。
《色谱分析法概述》ppt 课件
CATALOGUE
目 录
• 色谱分析法简介 • 色谱分析法的应用 • 色谱分析法的优缺点 • 色谱分析法的发展趋势 • 色谱分析法的前景展望
01
CATALOGUE
色谱分析法简介
色谱分析法的定义
定义
色谱分析法是一种分离和分析复杂混 合物中各组分的方法,通过利用不同 物质在固定相和流动相之间的吸附、 溶解等分配行为的差异实现分离。
在环境领域的应用
污染物检测与控制
色谱分析法用于检测环境中的污 染物,如重金属、有机污染物等 ,为环境污染控制和治理提供依 据。
生态毒理学研究
在生态毒理学研究中,色谱分析 法用于检测环境中的有毒物质对 生物体的影响,评估环境安全性 和生态风险。

第十七章色谱分析法概论课件

第十七章色谱分析法概论课件
色谱分析法是一种物理化学分离方法,具有高分离效能、高 灵敏度、高选择性等优点,广泛应用于化学、生物、医药、 环保等领域。
色谱分析法的原理
01
固定相和流动相
色谱分析法中,混合物样品在固定相和流动相之间进行分配,由于不同
组分在两相之间的分配系数不同,从而实现各组分的分离。
02 03
吸附与解吸
在吸附色谱中,组分在固定相上的吸附和解吸能力不同,从而实现了组 分的分离。在分配色谱中,组分在固定相和流动相之间的分配系数不同 ,也实现了组分的分离。
将固定相涂布在玻璃板或 塑料板上进行分离,具有 快速、简便的特点。
按分离原理分类
吸附色谱法
离子交换色谱法
利用吸附剂对不同物质的吸附能力差 异进行分离。
利用离子交换剂对不同离子的交换能 力差异进行分离。
分配色谱法
利用不同物质在固定相和流动相之间 的分配系数差异进行分离。
03
色谱分析法的历史与发 展
色谱分析法的起源
1903年,俄国植物 学家茨维特(Tswett )首次提出分离植物 色素的色谱法。
1930年代,随着化 学工业的发展,色谱 法开始应用于工业生 产。
1906年,茨维特使 用吸附剂分离植物色 素,并命名为“色谱 法”。
色谱分析法的技术发展
1940年代,气相色谱法(GC)的发明,使得气体混合物的分离和分析成为可能。
化学反应监测
色谱分析法可用于监测化学反应进 程,确定反应条件和产物,提高化 学反应的效率和选择性。
在医学领域的应用
药物分析
色谱分析法用于药物的分离、纯 化和结构鉴定,确保药物质量和
安全有效性。
生物样品分析
通过色谱分析法可以对生物体内 的药物代谢物、毒素、营养素等 进行定性和定量分析,为医学诊

17色谱分析法概论

17色谱分析法概论

K 2 k2 t 'R 2 V 'R 2 K1 k1 t 'R1 V 'R1
1 是分离的先决条件

不同的组分应有不同的K和k 不同的组分应有不同的 和 在柱内有不同的迁移速度 k与组分 固定相和流动相及温度 压力有关 k与组分、固定相和流动相及温度、压力有关
分析化学课件
' R(z+n)
lg t
' R(z)
]
• Ix :待测组分的保留指数,z与z+n为一对正构烷烃的 含C数,一般 数 般n为1。t'R(X) 应介于t'R(Z)和 t'R(Z+n)之间。 之间
分析化学课件
概述
色谱过...
色谱分...
色谱法...
小结
3 分配系数和容量因子
(1) 分配系数(partition coefficient,K )指在一定温度 和压力下,组分在色谱柱中达分配平衡后,在固定相 与流动相中的浓度比(色谱过程的相平衡参数)
色谱法...
小结
(5) ( ) 死体积 死体积(dead volume, V0 ) 由进样器至检测器的流路中未被固定相占有的空间体积。
V0 t0 Fc
注意:V0为定值,与Fc无关 死体积大 色谱峰扩张 峰形差 柱效降低 死体积大,色谱峰扩张,峰形差,柱效降低。
分析化学课件
概述
色谱过...
色谱分...
小结
例 某色谱柱的Vs=1.3 mL、V0=2.1 mL,分离 例:某色谱柱的 分离A、B 两物质 KA=10.0、KB=40.0。试计算A、B的保留体积。 解 设V0=Vm,则 解:设 则VR=V0(1+K·Vs/Vm) 可得:VR(A)=15.1 mL VR(B) =54.1 mL

色谱分析法概述分析化学课件

色谱分析法概述分析化学课件
自动化与智能化
未来高效液相色谱法将更加自动化和智能化,减 少人工操作,提高分析效率,降低误差。
3
联用技术
与其他分析技术的联用,如质谱、核磁共振等, 将进一步提高高效液相色谱法的检测灵敏度和定 性能力。
气相色谱法的发展趋势
微型化与便携化
01
随着微电子技术和制造工艺的发展,气相色谱法的仪器体积将
进一步缩小,便于携带和移动。
食品成分分析
色谱分析法用于分析食品中的营养成分,如脂肪、 蛋白质、糖类等。
食品添加剂检测
通过色谱分析法检测食品中添加剂的种类和含量, 确保食品的安全性。
食品农药残留检测
色谱分析法用于检测食品中农药残留,保障消费 者的健康权益。
在医药工业中的应用
药物分离纯化
色谱分析法在药物研发和பைடு நூலகம்产过程中用于分离和纯化活性成分。
快速分析
02
提高气相色谱法的分离速度和分析时间,减少样品处理时间,
提高分析效率。
多维分析与多模式联用
03
通过与其他色谱技术(如液相色谱、质谱等)的联用,实现多
维分析与多模式联用,提高复杂样品的分析能力。
毛细管电泳等其他色谱技术
广泛应用
毛细管电泳等其他色谱技术将在生命科学、环境监测、食品安全等 领域得到更广泛的应用。
固定相和流动相
固定相
固定相是色谱柱中的填料,是实现物 质分离的关键部分。根据不同分离原 理,固定相可分为吸附剂、涂层固定 相、化学键合固定相等。
流动相
流动相是携带待测组分通过色谱柱的 流体,一般为液体或气体。流动相的 选择对分离效果和分离时间有很大影 响。
色谱图和色谱峰
色谱图
色谱图是记录色谱柱出口流出物浓度的信号随时间变化的曲线图。通过色谱图 可以观察各组分的流出时间和浓度。

色谱分析法概述范文

色谱分析法概述范文

色谱分析法概述范文色谱分析法是一种广泛应用于科学研究和工业生产中的化学分析方法。

它通过利用物质在固定相和流动相之间的分配行为来分离和测定化合物。

色谱分析方法可以用于分离和确定固、液、气相中的各种有机和无机物质,具有高灵敏度、选择性、重现性和快速分析速度等优点。

气相色谱(GC)是利用气体载气和物质在固定相上的分配行为进行分离和测定的方法。

GC常用于分析挥发性有机物,如石油化工中的燃料、溶剂和有机污染物等。

GC具有高分离效率和分辨率,可以快速分析多种组分。

液相色谱(LC)是利用液体移动相和固定相之间的分配行为进行分离和测定的方法。

LC可分为正相色谱和反相色谱两种类型。

正相色谱是指流动相为非极性溶剂,固定相为极性的固体材料,用于分离非极性有机物和极性无机物。

反相色谱是指流动相为极性溶剂,固定相为非极性的固体材料,用于分离极性有机物。

LC广泛应用于食品、环境、药物等领域的分析。

超高效液相色谱(UHPLC)是一种液相色谱的高效率改进方法,其主要特点是使用高压强制液相通过色谱柱,提高分离速度和分辨率。

UHPLC主要用于分析复杂样品和需要高分辨率的分析。

离子色谱(IC)是利用离子交换柱对离子物质进行分离和测定的方法。

IC主要用于分析离子荧光染料、水中无机离子、药物中的阳离子和阴离子等。

在样品前处理方面,色谱分析法通常需要对样品进行前处理,如提取、分离、浓缩、蒸馏等。

这些步骤有助于减少样品的复杂性和提高分析的灵敏度。

在仪器方面,色谱分析法需要使用高性能液相色谱仪(HPLC)、气相色谱仪(GC)和离子色谱仪(IC)等分析仪器。

这些仪器通过控制流动相和固定相的流动速度和温度等参数来实现样品的分离和测定。

总之,色谱分析法是一种高效、可靠和灵敏的化学分析方法。

它在科学研究、环境保护、食品安全和药物分析等领域起着重要作用,为人们提供了丰富的化学信息。

第十七章 色谱分析法概论-分析化学

第十七章 色谱分析法概论-分析化学

I X 100 [Z n
' ' lg t R lg t ( x) R( z )
lg t
' R( z n)
lg t
' R( z )
]
Ix为待测组分的保留指数,z 与 z+n 为
正构烷烃对的碳原子数。
P
16
乙酸正丁酯的保留指数测定
xie 仪 器 分 析
第 十 七 章 色 谱 分 析 法 概 论
xie 仪 器 分 析
第 十 七 章 色 谱 分 析 法 概 论
第十七章 色谱分析法概论
P
1
第一节 色谱法的分类和发展
xie 仪 器 分 析
第 十 七 章 色 谱 分 析 法 概 论
色谱分析法是一种物理或物理化学分离分 析方法。 始于20世纪初; 30与40年代相继出现了薄层色谱与纸色谱; 50年代气相色谱兴起、色谱理论、毛细管色 谱; 60年代气相色谱-质谱联用; 70年代高效液相色谱; 80年代末超临界流体色谱、高效毛细管电泳 色谱。
• R=1 4σ分离 • R=1.5 6σ分离 95.4% 99.7%
w1
w1
tR2-tR1
P
21
三、分配系数与色谱分离
xie 仪 器 分 析
第 十 七 章 色 谱 分 析 法 概 论
1、分配系数 在一定温度和压力下,达到分配平衡 时,组分在固定相和流动相中的浓度之比 CS K Cm 2、容量因子

m
X+
H+
SO3-R
S
X+ SO -R 3 H+
P
30
阳离子交换树脂
xie 仪 器 分 析

色谱分析法概论(5版)

色谱分析法概论(5版)
4
3. 色谱法的分类:
• 按流动相和固定相的物态分类: 气相色谱法 gas chromatography, GC 液相色谱法 liquid chromatography, LC 超临界流体色谱法 supercritical fluid , SFC
• 按固定相的物态分类: 气-固色谱法(GSC),气-液色谱法(GLC) 液-液色谱法(LLC),液-固色谱法(LSC)
37
二、 速率理论-影响柱效的因素
1. 速率方程(也称范.弟姆特方程式) H = A + B/u + C·u
H:理论塔板高度, u:载气的线速度(cm/s)
减小A、B、C三项可提高柱效; 存在着最佳流速; A、B、C三项各与哪些因素有关?
38
A─涡流扩散项 eddy diffusion
A = 2λdp
40
B ·u —传质阻力项
(动画)
传质阻力包括气相传质阻力Cg和液相传质阻力CL即: C =(Cg + CL)
k为容量因子; Dg 、DL为扩散系数。Df为固定液的液膜厚度 降低液膜厚度,可降低传质阻力。
41
2.载气流速与柱效——最佳流速
载气流速高时: 传质阻力项是影响柱效的
主要因素,流速,柱效。 载气流速低时:
32
第四节 色谱法基本理论
一.塔板理论(plate theory)
半经验理论; 将色谱分离过程比拟作蒸馏过程,将连续
的色谱分离过程分割成多次的平衡过程的重复 (类似于蒸馏塔塔板上的平衡过程);
塔板理论的假设: (1) 在每一个平衡过程间隔内,平衡可以迅 速达到; (2) 将载气看作成脉动(间歇)过程; (3) 试样沿色谱柱方向的扩散可忽略; (4) 每次分配的分配系数相同。

色谱分析法概论

色谱分析法概论

第17章色谱分析法概论思考题9.试推导有效塔板数与分离度的关系式: 22116⎪⎭⎫⎝⎛-⨯⨯ααR n =有效证明:∵ 2'2216R t n W ⎛⎫⨯ ⎪⎝⎭有效=(1) 22W W +R2R112(t -t )R =设W 1=W 2 22''2010212222[()()]2()22R R R R t t t t t t W W W W ----==+R2R112(t -t )R = ''1R t R-R22t W = (2)将(2)代入(1)式,得:'22''2222221'''221'11616()16()11R R R R R R R t t t n R R R t t t t αα⎛⎫⨯==⨯⨯ ⎪--⎝⎭-有效=10. 试推导最小板高的计算式:BC A H 2+=最小 证明:∵BH A Cu u=++ (1) 微分,得2dH B C du u =-+ 令 0dHdu=,则20BC u -+=opt u =(2) 将(2)代入(1),得:H A =+最小习题1.在一根2.00m 的硅油柱上分析一个混合物得下列数据:苯、甲苯及乙苯的保留时间分别为80s 、122s 、181s ;半峰宽为0.211cm 、0.291cm 及0.409cm(用读数显微镜测得),已知记录纸速为1200mm/h ,求此色谱柱对每种组分的理论塔板数及塔板高度。

解:∵22/1)(54.5W t n R = 注意:分子分母单位应保持一致 mm n L H W t n R 3.28852000,8853600/120011.28054.554.5222/1===)(=)(=苯苯苯苯苯=mm n L H W t n R 8.110822000,10823600/120091.212254.554.5222/1===)(=)(=甲苯甲苯甲苯甲苯甲苯=mm n L H W t n R 7.112062000,12063600/120009.418154.554.5222/1===)(=)(=乙苯乙苯乙苯乙苯乙苯=2.在一根3.0m 长的色谱柱上分离样品的结果如图17-14所示。

中国药科大学-分析化学课件-第17色谱分析

中国药科大学-分析化学课件-第17色谱分析

峰宽和之半
tR2 W1
tR1 W2
2
R 2(tR2 tR1) 1.177(tR2 tR1)
W1 W2
W1 2(1) W1 2(2)
讨论
• 设色谱峰为正常峰,W1≈W2= 4σ
R 1.0 tR 4 基本分离 R 1.5 tR 6 完全分离(定量分析前提)
R 1.0 完全未分开
调整保留体积VR’:保留体积与死体积之差,即组分 停留在固定相时所消耗流动相的体积
VR'
VR
V0
t
' R
FC
注:VR' 与Fc无关;t
' R
1 Fc
V0 和 Vm、t0 和 tm 的区别
• V0 :由进样器至检测器的流路中未被固定相占有的空 间体积 ; 流定相充满死体积所需的时间为t0 。
• Vm :平衡时流动相在色谱柱中占有的体积,流动相经 过色谱柱所需时间用tm 表示。
线性:对称峰 凸形:拖尾峰
• 对称因子(symmetry factor)
——衡量色谱峰对称性
色谱峰
正常峰(对称)——fs在0.95~1.05之间
非正常峰 前沿峰 ——fs小于0.95 拖尾峰 ——fs大于1.05
对称因子:(拖尾因子)
fs
W0.05h 2A
A B 2A
8.分离因子和分离度:—分离参数
➢吸附色谱:利用物理吸附性能的差异(固定相固体)
( absorption chromatography)
➢离子交换色谱:利用离子交换原理(固定相离子交换树脂)
(ion exchange chromatography )
➢空间排阻色谱:利用排阻作用力的不同(固定相凝胶)

色谱分析法概论

色谱分析法概论

色谱分析法概论色谱分析法概论1色谱分析法是根据混合物中各组分在两相分配系数的不同进行分离,而后逐个分析。

2色谱过程:组分的分子在流动相和固定相间多次分配的过程。

若两个组分的分配系数存在微小的差异,经过反复多次的分配平衡,使微小的差异积累起来,其结果就使分配系数小的组分被先洗脱,从而使两组分得到分离。

色谱分离的前提是分配系数或保留因子不等。

3色谱流出曲线是由检测器输出的电信号对时间作图所绘制的曲线,又称为色谱图。

4按色谱过程的分离机制分类:分配色谱法、吸附色谱法、离子交换色谱法、分子排阻色谱法。

①分配色谱法机制:利用被分离组分在固定相或流动相中的溶解度差别,即分配系数的差别而实现分离。

②吸附色谱法机制:利用被分离组分对固定相表面吸附中心吸附能力的差别,即吸附系数的差别而实现分离。

常见化合物的吸附能力顺序:烷烃<烯烃<卤代烃<醚<硝基化合物<叔胺<酯<酮<醛<酰胺<醇<酚<伯胺<羧酸③离子交换色谱法机制:利用分离组分离子交换能力的差别即选择性系数的差别而实现分离。

④分子排阻色谱法:根据被分离组分分子的线团尺寸,即渗透系数的差别而进行分离。

5流动相线速对塔板高度的影响:在较低线速度时,纵向扩散起主要作用,线速度升高,塔板高度降低,柱效升高;在较高线速度时,传质阻抗起主要作用,线速度升高,塔板高度增高,柱效降低。

6说明保留因子的物理含意及与分配系数的关系。

为什么保留因子(或分配系数)不等是分离的前提?答:保留因子k是在一定温度和压力下,达到分配平衡时,组分在固定相和流动相中的质量之比,故又称为质量分配系数。

而分配系数K是组分在固定相和流动相中的浓度之比。

二者的关系是k=KV s//V m,可见保留因子除与固定相、流动相、组分三者的性质有关外,还与固定相和流动相的体积之比有关。

保留因子越大的组分在色谱柱中的保留越强,t R =t0 (1+k)或t'R =kt0 ,由于在一定色谱条件下t0为定值,如果两组分的k相等,则他们的t'R一定相等,t R相等,即不能分离。

仪器分析 第17章 色谱分析法概论 习题讲解

仪器分析 第17章 色谱分析法概论 习题讲解

第17章 色谱分析法概论思考题9.试推导有效塔板数与分离度的关系式: 22116⎪⎭⎫⎝⎛-⨯⨯ααR n =有效证明:∵ 2'2216R t n W ⎛⎫⨯ ⎪⎝⎭有效=(1) 22W W +R2R112(t -t )R =设W 1=W 2 22''2010212222[()()]2()22R R R R t t t t t t W W W W ----==+R2R112(t -t )R = ''1R t R-R22t W = (2)将(2)代入(1)式,得:'22''2222221'''221'11616()16()11R R R R R R R t t t n R R R t t t t αα⎛⎫⨯==⨯⨯ ⎪--⎝⎭-有效=10. 试推导最小板高的计算式:BC A H 2+=最小 证明:∵BH A Cu u=++ (1) 微分,得2dH B C du u=-+ 令 0dHdu =,则20BC u -+=opt u =(2) 将(2)代入(1),得:H A =+最小习题1.在一根2.00m 的硅油柱上分析一个混合物得下列数据:苯、甲苯及乙苯的保留时间分别为80s 、122s 、181s ;半峰宽为0.211cm 、0.291cm 及0.409cm(用读数显微镜测得),已知记录纸速为1200mm/h ,求此色谱柱对每种组分的理论塔板数及塔板高度。

解:∵22/1)(54.5W t n R =注意:分子分母单位应保持一致 mm n L H W t n R 3.28852000,8853600/120011.28054.554.5222/1===)(=)(=苯苯苯苯苯=mm n L H W t n R 8.110822000,10823600/120091.212254.554.5222/1===)(=)(=甲苯甲苯甲苯甲苯甲苯=mm n L H W t n R 7.112062000,12063600/120009.418154.554.5222/1===)(=)(=乙苯乙苯乙苯乙苯乙苯=2.在一根3.0m 长的色谱柱上分离样品的结果如图17-14所示。

大专本科分析化学第十七章色谱分析法概论

大专本科分析化学第十七章色谱分析法概论
A
s

m
Vs ) = t ( 1+ K B tRB 0 Vm
Vs tR= t0 (KA-KB) Vm
tR≠0
KA≠KB kA≠kB
二、基本类型色谱法的分离机制
• 分配色谱法
• 吸附色谱法
• 离子交换色谱法 • 分子排阻色谱法
(一)分配色谱法
分离原理

利用被分离组分在固定相或流动相中的溶解度差别而实 现分离。
也称为空间排阻色谱法、凝胶色谱法。 • 分为凝胶渗透色谱法(gel permeation chromatography;
GPC)和凝胶过滤色谱法(gel filtration chrom源自tography;GFC)
分子排阻色谱法
• 根据空间排阻(理论,孔内外同等大小的溶质分子处于
扩散平衡状态。
渗透系数
• 高效液相色谱发:球型或无定型全多孔硅胶 和堆积硅珠。 • 气相色谱法:高分子多孔微球等
吸附色谱法 • 流动相 气-固吸附色谱法:气体,常为氢气或氮气。 液-固吸附色谱法:有机溶剂。
• 洗脱能力主要由流动相极性决定。强极性流动相占据吸附
中心的能力强,洗脱能力强。 • Snyder溶剂强度0:吸附自由能,表示洗脱能力。0值越
• 色谱法与光谱法的主要不同点:
色谱法具有分离和分析两种功能 光谱法不具备分离功能
• 色谱法创始于20世纪初,俄国植物学家M.S.Tswett 在研 究植物叶子中的色素组成时做了一个著名的实验: 将碳酸钙粉末放在竖立的玻璃管中,从顶端注入植物
色素的提取液,然后不断加入石油醚冲洗。
植物色素慢慢地向下移动并逐渐分散成数条不同颜色 的色带。
(0<Kp<1 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七章 色谱分析法概论
思 考 题 和 习 题
1.色谱法作为分析方法的最大特点是什么?
2.一个组分的色谱峰可用哪些参数描述? 这些参数各有何意义?
3.说明容量因子的物理含义及与分配系数的关系。

为什么容量因子 (或分配系数) 不等是分离的前提?
4.各类基本类型色谱的分离原理有何异同?
5.说明式(17∙18)中K 与V s 在各类色谱法中的含义有何不同?
6.衡量色谱柱效的指标是什么?衡量色谱系统选择性的指标是什么?
7.用塔板理论讨论流出曲线,为什么不论在 t >t R 或t <t R 时,总是C <C max ? 塔板理论有哪些优缺点?
8.简述谱带展宽的原因。

9.下列那些参数可使塔板高度减小?
(1) 流动相速度,(2) 固定相颗粒, (3) 组分在固定相中的扩散系数D s ,(4) 柱长, (5) 柱温。

10.什么是分离度?要提高分离度应从哪两方面考虑?
11.组分在固定相和流动相中的质量为m A 、m B (g),浓度为C A 、 C B (g/ml),摩尔数为n A 、n B (mol),固定相和流动相的体积为V A 、V B (ml),此组分的容量因子是 ( ) 。

A. m A /m B ;
B. (C A V A )/(C B V B ) ;
C. n A /n B ;
D. C A /C B 。

(A 、B 、C )
12.在柱色谱法中,可以用分配系数为零的物质来测定色谱柱中 ( ) 。

A. 流动相的体积;
B. 填料的体积;
C. 填料孔隙的体积;
D. 总体积。

(A 、C )
13.在以硅胶为固定相的吸附色谱中下列叙述中正确的是 ( ) 。

A. 组分的极性越强,吸附作用越强;
B. 组分的分子量越大,越有利于吸附;
C. 流动相的极性越强,溶质越容易被固定相所吸附;
D. 二元混合溶剂中正己烷的含量越大,其洗脱能力越强。

(A )
14.在离子交换色谱法中,下列措施中能改变保留体积的是( )。

A. 选择交联度大的交换剂;
B. 以二价金属盐溶液代替一价金属盐溶液作流动相;
C. 降低流动相中盐的浓度;
D. 改变流速。

(A 、B 、C )
15.在空间排阻色谱法中,下列叙述中完全正确的是( )。

A. V R 与K p 成正比;
B. 调整流动相的组成能改变V R ;
C. 某一凝胶只适于分离一定分子量范围的高分子物质;
D. 凝胶孔径越大,其分子量排斥极限越大。

(C 、D )
16.在一液液色谱柱上,组分A 和B 的K 分别为10和15,柱的固定相体积为0.5ml ,流动相体积为1.5ml ,流速为0.5ml/min 。

求A 、B 的保留时间和保留体积。

(A R t =13min A R V =6.5ml, B R t =18min B R V =9ml )
17.在一根3m 长的色谱柱上分离一个试样的结果如下:死时间为1min ,组分1的保留时间为14min ,组分2的保留时间为17min ,峰宽为1min 。

(1) 用组分2计算色谱柱的理论塔板数n 及塔板高度H ;(2) 求调整保留时间
'R 1t 及'R 2t ;(3) 用组分2 求有效塔板数n ef 及有效塔板高度H ef ;(4) 求容量因子k 1及k 2;(5) 求相对保留值
1,2r 和分离度R 。

(n 2=4.6⨯103 , H 2=0.65mm,
'R 1t =13min ,'R 2t =16min ,n ef(2)=4.1⨯103 , H ef(2)=0.73mm, k 1=13, k 2=16, =1,2r 1.2,R =3.0)
18.一根分配色谱柱,校正到柱温、柱压下的载气流速为43.75ml/min ;由固定液的涂量及固定液在柱温下的密度计算得V s =14.1ml 。

分离一个含四组分的试样,测得这些组分的保留时间:苯1.41min 、甲苯2.67min 、乙苯4.18min ,异丙苯5.34min ,死时间为0.24min 。

求:(1) 死体积;(2) 这些组分的调整保留时间;
(3) 它们在此柱温下的分配系数(假定检测器及柱头等体积可以忽略);(4) 相邻两组分的分配系数比α。

((1)V 0=10.5cm 3
, (2)'R t (苯) =1.17min , 'R t (甲苯) =2.43min , 'R t (乙苯) =3.94min , 'R t (异丙苯) =5.10min , (3) K (苯) =3.6,K (甲苯) =7.5 , K (乙苯) =12 , K
(异丙苯) =16,(4)α (甲苯/苯) =2.1,α(乙苯 /甲苯) =1.6, α(异丙苯/乙苯) =1.3) 。

19.已知K A =2、 K B =0.5, 用式 (17∙29) 计算进流动相5次 (N =5) 分配平衡后,A 、B 在各塔板中的百分含量及在流动相与固定液中的百分含量。

并说明组分的迁移速度与分配系数的关系。

答案:
塔板号r
0 1 2 3 4 5 组分
A B A B A B A B A B A B 5X r 0.132
0.004
0.330 0.041 0.329 0.165 0.165 0.329 0.041 0.330 0.004 0.132 流动相 0.044
0.003
0.110 0.027 0.110 0.110 0.055 0.219 0.014 0.220 0.001 0.088 固定液
0.088
0.001 0.220 0.014 0.219 0.055 0.110 0.110 0.027 0.110 0.003 0.044 20.在一根2m 的气相色谱柱上,用He 为载气,用甲烷测定死时间,在三种流速下测得结果如下,求算:(1)三种流速下的线速度u 1,u 2及u 3; (2) 三种不同线速度下的n 及H ; (3) 计算Van Deemter 方程中A 、B 、C 三个参数。

甲 烷 正十八烷
t R (s) t R (s) W (s)
18.2 2020.0 223.0
8.0 888.0 99.0
5.0 558.0 68.0
(u 1=11.0cm /s ;u 2=25.0cm /s ;u 3=40.0cm /s 。

n 1=1.31⨯103;n 2=1.29⨯103;n 3=1.08⨯103 ;H 1=0.152cm ;H 2=0.155cm ;H 3=0.186cm 。

A=0.0576cm ;B=0.703cm 2⋅s -1;C=0.00277s 。

)
21.在一根甲基硅橡胶 (OV-1) 色谱柱上,柱温120℃。

测得一些纯物质的
保留时间:甲烷4.9s 、正己烷84.9s 、正庚烷145.0s 、正辛烷250.3s 、正壬烷436.9s 、苯128.8s 、3-正己酮230.5s 、正丁酸乙酯248.9s 、正己醇413.2s 及某正构饱和烷烃50.6s 。

(1) 求出后5个化合物的保留指数。

未知正构饱和烷烃是何物质? (2) 解释上述五个六碳化合物的保留指数为何不同。

(3) 说明应如何正确选择正构烷烃物质对,以减小计算误差。

(苯678、3-正己酮785、正丁酸乙酯799,正己醇890,未知物是正戊烷)
22.某色谱柱长100cm ,流动相流速为0.1cm/s ,已知组分A 的洗脱时间为40 min ,求组分A 在流动相中的时间和保留比R =t 0/t R 为多少。

(16.7min ,0.42)
23.某YWG-C 18H 37 4.6mm×25cm 柱,以甲醇-水(80:20)为流动相,记录纸速为5mm/min ,测得苯和萘的t R 和W 1/2分别为4.65和7.39(min), 0.79和1.14 (mm)。

求柱效和分离度。

(苯n =1.92×104m –1;萘n =2.33×104m –1;R =8.36)
24.在某一液相色谱柱上组分A 流出需15.0min ,组分B 流出需25.0min ,而不溶于固定相的物质C 流出需2.0min 。

问:(1)B 组分相对于A 的相对保留值是多少?(2)A 组分相对于B 的相对保留值是多少?(3)组分A 在柱中的容量因子是多少?(4)组分B 在固定相的时间是多少?
(r B,A =1.77,r A,B =0.565,k A =6.50,t B =23.0min )。

相关文档
最新文档