智能小车实验报告
智能小车的实训报告

智能小车的实训报告1. 实训本次实训是一项基于智能小车的项目,旨在让学生学习并掌握智能控制和物联网技术的应用。
在实训中,我们使用了Raspberry Pi作为核心控制器,通过各类传感器和执行器实现智能小车的控制。
实训期间,我们学习了基本的Python编程语言,同时掌握了一些树莓派操作和调试技巧。
通过完成一系列的课程设计,我们不仅加深了对智能控制和物联网技术的理解,也训练了自己的实践能力和创新思维。
2. 实训内容2.1 实验一:智能小车的搭建在实验一中,我们首先学习了如何搭建智能小车的硬件平台。
通过对各种模块和传感器的接线和配置,我们最终完成了一辆基本的智能小车,并成功地将它连接到了树莓派上。
2.2 实验二:避障控制实验二是围绕智能小车的避障控制展开的,我们使用超声波传感器测量周围物体的距离,并通过程序控制小车的行进方向和速度,以实现避障功能。
在实验过程中,我们需要不断调试代码和参数,逐步完善小车避障的精准度和鲁棒性。
2.3 实验三:智能追踪实验三是针对小车能够追踪指定物体的控制,我们使用了摄像头来捕捉物体的图像,并通过OpenCV进行图像处理,最终根据识别出的物体位置控制小车的运动。
在实验中,我们不仅学习了图像处理的基础知识,还掌握了如何使用Python调用OpenCV和摄像头。
2.4 实验四:手势识别实验四是一个拓展性比较强的实验,我们使用了一款手势识别模块,实现了对小车的手势控制。
通过手势识别模块的数据处理和解析,我们能够将自己的手势指令转化为小车的运动指令,并实现多种手势的控制操作。
3. 实训收获通过本次实训,我们不仅学到了很多智能控制和物联网技术的应用知识,还锻炼了自己的实践能力和团队协作能力。
在实验过程中,我们需要不断调试和优化代码,同时也需要和同学合作,互相帮助和交流。
除此之外,我们还学到了如何独立思考和创新,不仅是在完成课程设计时,也体现在我们对未来的探索和思考上。
这是一次非常有意义的实训,让我们受益匪浅。
智能小车实验报告

智能⼩车实验报告简易智能电动⼩车摘要:本系统基于运动控制原理,以MSP430为控制核⼼,⽤红外传感器、超声探头、光敏电阻、霍尔传感器之间相互配合,实现了⼩车的智能化,⼩车完成了⾃动寻迹、避障、寻光⼊库、铁⽚检测、⾏程测量的功能,整个系统控制灵活,反应灵敏。
关键词:MSP430 传感器运动控制系统Abstract:This system based on motion control principle, as control core, with MSP430 infrared sensors, ultrasonic probe, photoconductive resistance, hall sensors, realize the interaction between the intelligent of the car, the car completed the automatic tracing, obstacle avoidance, found the light inventory, iron detection, the function of the trip, the whole system measurement control flexible, sensitive reaction.Keywords: MSP430 sensor motion control system⽬录摘要: (2)⼀、⽅案的设计和论证 (4)1、控制器的选择 (4)2、执⾏部件电动机 (5)3、电机驱动 (5)4、传感器 (6)4.1、引导线的检测 (6)4.2、⾦属的探测 (6)4.3、路程的测量 (7)4.4、障碍物的探测 (7)4.5、寻光⼊库 (8)5、电源 (8)6、系统总体设计⽅案 (8)⼆、硬件设计 (9)1、前向通道 (9)1.1、循迹 (9)1.2、⾦属探测 (11)1.3、路程测量 (11)1.4、避障 (12)1.5、寻光⼊库 (14)2、后向通道 (14)2.1、步进电机驱动 (14)2.2、直流电机驱动电路 (15)2.3、声光信号 (15)3、电源 (16)三、软件设计 (16)四、综合调试 (18)五、测试结果与分析 (18)六、总结分析 (18)七、参考⽂献 (19)⼀、⽅案的设计和论证根据题意可知,本系统是由电动机、功率放⼤与变换装置、控制器及其相应的传感器所构成的典型运动控制系统,其整体结构如图1所⽰:将题中所给的各个指标转化为数字信号,并将其当作给定信号送给控制器,经过必要的算法处理,最后通过执⾏部件电动机反映⾄⼩车的运动状态上,传感器的作⽤在于实时检测⼩车的这种状态,并将运动的⾮电量转换为电压信号反馈给控制器,从⽽构成整个运动控制系统。
智能寻迹小车实验报告

智能寻迹小车实验报告
实验目的:
设计一个智能寻迹小车,能够依据环境中的黑线自主行驶,并避开障碍物。
实验材料:
1. Arduino开发板
2. 电机驱动模块
3. 智能车底盘
4. 红外传感器
5. 电源线
6. 杜邦线
7. 电池
实验步骤:
1. 按照智能车底盘的说明书将车底盘组装起来。
2. 将Arduino开发板安装在车底盘上,并与电机驱动模块连接。
3. 连接红外传感器到Arduino开发板上,以便检测黑线。
4. 配置代码,使小车能够依据红外传感器检测到的黑线自主行驶。
可以使用PID控制算法来控制小车的速度和方向。
5. 测试小车的寻迹功能,可以在地面上绘制黑线,观察小车是否能够准确地跟随黑线行驶。
6. 根据需要,可以添加避障功能。
可以使用超声波传感器或红外避障传感器来检测障碍物,并调整小车的行驶路线。
实验结果:
经过实验,可以发现小车能够依据红外传感器检测到的黑线自主行驶,并能够避开障碍物。
小车的寻迹功能和避障功能能够实现预期的效果。
实验总结:
本次实验成功设计并实现了智能寻迹小车。
通过使用Arduino 开发板、电机驱动模块和红外传感器等材料,配合合适的代码配置,小车能够准确地跟随黑线行驶,并能够避开障碍物。
该实验展示了智能小车的基本原理和应用,为进一步研究和开发智能车提供了基础。
智能小车控制实验报告

一、实验目的本次实验旨在通过设计和搭建一个智能小车系统,学习并掌握智能小车的基本控制原理、硬件选型、编程方法以及调试技巧。
通过实验,加深对单片机、传感器、电机驱动等模块的理解,并提升实践操作能力。
二、实验原理智能小车控制系统主要由以下几个部分组成:1. 单片机控制单元:作为系统的核心,负责接收传感器信息、处理数据、控制电机运动等。
2. 传感器模块:用于感知周围环境,如红外传感器、超声波传感器、光电传感器等。
3. 电机驱动模块:将单片机的控制信号转换为电机驱动信号,控制电机运动。
4. 电源模块:为系统提供稳定的电源。
实验中,我们选用STM32微控制器作为控制单元,使用红外传感器作为障碍物检测传感器,电机驱动模块采用L298N芯片,电机选用直流电机。
三、实验器材1. STM32F103C8T6最小系统板2. 红外传感器3. L298N电机驱动模块4. 直流电机5. 电源模块6. 连接线、电阻、电容等7. 编程器、调试器四、实验步骤1. 硬件搭建:- 将红外传感器连接到STM32的GPIO引脚上。
- 将L298N电机驱动模块连接到STM32的PWM引脚上。
- 将直流电机连接到L298N的电机输出端。
- 连接电源模块,为系统供电。
2. 编程:- 使用Keil MDK软件编写STM32控制程序。
- 编写红外传感器读取程序,检测障碍物。
- 编写电机驱动程序,控制电机运动。
- 编写主程序,实现小车避障、巡线等功能。
3. 调试:- 使用调试器下载程序到STM32。
- 观察程序运行情况,检查传感器数据、电机运动等。
- 调整参数,优化程序性能。
五、实验结果与分析1. 避障功能:实验中,红外传感器能够准确检测到障碍物,系统根据检测到的障碍物距离和方向,控制小车进行避障。
2. 巡线功能:实验中,小车能够沿着设定的轨迹进行巡线,红外传感器检测到黑线时,小车保持匀速前进;检测到白线时,小车进行减速或停止。
3. 控制性能:实验中,小车在避障和巡线过程中,表现出良好的控制性能,能够稳定地行驶。
智能运输小车实验报告

一、实验目的1. 熟悉智能运输小车的组成及工作原理;2. 掌握智能运输小车的编程与调试方法;3. 熟悉传感器的工作原理及在智能运输小车中的应用;4. 提高实际操作能力,培养创新意识。
二、实验原理智能运输小车是一种集传感器、微控制器、电机驱动等模块于一体的智能设备,具有自动避障、循迹、遥控等功能。
本实验以智能运输小车为研究对象,通过传感器采集环境信息,利用微控制器进行运算处理,驱动电机实现运动,实现小车的智能运输。
1. 传感器:本实验采用红外传感器、编码器等传感器,用于检测小车周围环境、速度、方向等信息。
2. 微控制器:本实验采用STC89C51单片机作为核心控制单元,负责处理传感器信息、控制电机驱动模块等。
3. 电机驱动模块:本实验采用L298N电机驱动模块,用于驱动小车电机,实现小车的运动。
4. 电机:本实验采用直流减速电机,用于驱动小车行驶。
三、实验步骤1. 硬件连接:将红外传感器、编码器、电机驱动模块、电机等硬件连接到单片机。
2. 编程:编写智能运输小车程序,实现以下功能:(1)传感器数据采集:采集红外传感器和编码器的数据;(2)数据运算:根据传感器数据,计算小车行驶速度、方向等参数;(3)电机驱动:根据运算结果,控制电机驱动模块,实现小车行驶;(4)避障:当检测到前方有障碍物时,小车自动减速或停止;(5)循迹:小车在行驶过程中,根据红外传感器采集的信号,保持行驶在指定轨迹上;(6)遥控:通过红外遥控器控制小车的前进、后退、转向等动作。
3. 调试:将编写好的程序下载到单片机中,进行实验测试,根据测试结果调整程序参数,确保小车运行稳定。
四、实验结果与分析1. 实验结果:经过调试,小车可以实现以下功能:(1)自动避障:当检测到前方有障碍物时,小车自动减速或停止;(2)循迹:小车在行驶过程中,根据红外传感器采集的信号,保持行驶在指定轨迹上;(3)遥控:通过红外遥控器控制小车的前进、后退、转向等动作。
智能小车实训报告总结

智能小车实训报告总结
智能小车实训是一项非常有趣和有挑战性的活动,它可以帮助学生们更好地理解机器人技术和编程知识。
在这个实训中,我们使用了Arduino控制板和各种传感器来构建一个智能小车,它可以自动避开障碍物并按照预设的路线行驶。
在实训的过程中,我们首先学习了Arduino控制板的基本知识,包括如何连接电路、如何编写代码等。
然后,我们开始构建小车的底盘和安装各种传感器,如超声波传感器、红外线传感器等。
接下来,我们编写了代码来控制小车的运动,包括前进、后退、左转、右转等。
最后,我们添加了一些智能功能,如自动避障和按照预设路线行驶。
通过这个实训,我们学到了很多关于机器人技术和编程的知识。
我们了解了Arduino控制板的基本原理和使用方法,学会了如何连接电路和编写代码。
我们还学会了如何使用传感器来感知周围环境,并根据传感器的反馈来控制小车的运动。
最重要的是,我们学会了如何将这些知识应用到实际项目中,构建一个真正的智能小车。
总的来说,智能小车实训是一项非常有价值的活动,它可以帮助学生们更好地理解机器人技术和编程知识。
通过这个实训,我们不仅学到了很多知识,还培养了我们的动手能力和创新精神。
我相信这个实训对我们未来的学习和职业发展都会有很大的帮助。
智能小车实训报告总结

智能小车实训报告总结
智能小车,也称为机器人驾驶小车,是一种可以自主运动,进行路径规划和导航的车辆。
智能小车是由电路板、传感器、计算机、电机驱动、显示器等部件组成的机器人平台。
它可以利用光学、电磁、磁铁、触摸、超声等不同的传感器进行采集,从而实现自主导航、自动行车等智能操作。
它具有精准定位、自动行车、智能导航、嵌入式教学、实验模拟等功能,为各种机器人系统提供技术支撑。
二、实训内容
实训过程中,通过智能小车的实际操作,让学员充分了解智能小车的原理与操作,对基础的电子控制理论有一定的了解,并且学会使用电路板、传感器、电机驱动、显示器等部件等进行智能小车的组装及应用。
实训内容包括了:
(1)智能小车的原理:了解和掌握智能小车的原理,包括整体结构,传感器的使用,控制电路等。
(2)智能小车的组装:学会正确操作智能小车的拆装以及整体组装。
(3)智能小车的操作:学会正确操作智能小车,掌握软件的使用,掌握对智能小车的调试。
三、实训结果
实训成功完成,在实训中,通过实际操作,学会了智能小车的组
装和操作,掌握了智能小车的原理,掌握了智能小车的控制电路,掌握了智能小车的传感器使用,掌握了智能小车的导航和路径规划,掌握了智能小车的调试,收获颇丰。
四、总结
智能小车实训,使我们对智能小车的原理有了更深入的了解,对智能小车的传感器、电路、编程和调试等有了更充分的认识,也为以后开展更多的应用研究有了基础支撑。
智能小车实训报告总结

智能小车实训报告总结
在智能科技飞速发展的今天,智能小车成为了人们研究和探讨的热门话题之一。
通过对智能小车进行实训,我们不仅能够深入了解其工作原理和技术应用,还能够提升自己在工程领域的实践能力和解决问题的能力。
在本次实训中,我们团队对智能小车进行了系统的设计和调试,取得了一定的成果。
我们对智能小车的硬件部分进行了设计和组装。
通过选购各种传感器、执行器和控制器,并将它们精密地连接在一起,我们成功地搭建了一个完整的智能小车系统。
在这个过程中,我们不仅学会了如何选择合适的元件,还学会了如何正确地搭建和连接它们,确保整个系统能够正常工作。
我们对智能小车的软件部分进行了编程和调试。
通过学习和掌握相关的编程语言和算法,我们成功地为智能小车设计了各种功能和任务。
我们实现了小车的自动导航、避障、遵循线路等功能,并通过不断地调试和优化,使得小车能够更加智能地行驶和执行任务。
在实训的过程中,我们遇到了许多问题和挑战,但通过团队的合作和努力,我们成功地克服了这些困难。
我们不仅学会了如何分析和解决问题,还学会了如何与团队成员合作,互相协作,共同完成任务。
这不仅提升了我们的实践能力,还培养了我们的团队合作精神和沟通能力。
总的来说,通过这次智能小车实训,我们不仅深入了解了智能科技的应用和发展,还提升了自己在工程领域的实践能力和解决问题的能力。
我们相信,在未来的工作和学习中,这些经验和技能将会对我们产生积极的影响,使我们能够更加自信地面对各种挑战和困难。
希望我们能够继续努力,不断学习和进步,为智能科技的发展做出更大的贡献。
wifi智能小车实训报告

wifi智能小车实训报告一、实训内容概述为了更好地培养我们计算机科学与技术专业的学生的实际操作能力,我们学校开展了一次为期一个月的Wifi智能小车实训。
该实训旨在通过设计并组装Wifi智能小车来锻炼同学们的动手能力和技术能力,同时也为同学们提供了一个了解物联网相关技术的机会。
二、实训过程详述1、选购器材在实训之前,我们需要先选购实验所需的器材。
其中包括Wifi模块、HC-SR04距离传感器、小车底盘、直流电机、轮子等材料。
我们采购时不仅需要关注价格,同时也需要注意品质和适配程度,以保证实训顺利进行。
2、组装小车底盘我们首先要组装小车底组,这就需要将小车底盘、直流电机和轮子等器材放在一起进行组装。
这一步需要大家仔细阅读说明书,并在老师的指导下逐步进行。
3、添加HC-SR04距离传感器为了使小车具备自主避障能力,我们需要为小车添加 HC-SR04距离传感器。
至于如何添加,就需要我们具备一定的编程开发知识,老师为我们介绍了 Arduino IDE 和 MicroPython 两种编程工具。
4、编写程序代码在添加完传感器之后,接下来就要编写程序了。
代码的编写包含了两个部分,一个是确定小车的移动方向和速度,并通过串口监视器将数据实时传输到电脑端;另外一个部分是实现HC-SR04距离传感器的功能,保证小车能够自主避障。
5、本地测试和远程调试经过以上步骤,我们可以在本地使用电脑的串口通信端口来测试小车的各项功能。
当测试通过后,我们就可以将代码迁移到ESP8266 Wifi 模块中进行远程调试。
这意味着我们可以通过手机等电子设备操作小车,并进行观察调试。
三、实训成效总结通过本次实训,我们不仅学会了组装小车、添加传感器和编写程序代码等技能,还了解了IoT物联网相关知识。
在实验过程中,我们遇到了一些组装困难、调试难度大等问题,经过不断尝试,最终成功解决了问题。
整个过程让我们切实感受到了科技带给我们的便利和乐趣,进一步增强了我们对于计算机技术的热爱。
智能测距小车实训报告

一、实训背景随着科技的不断发展,智能测距技术在许多领域都得到了广泛应用。
为了提高学生的实践能力和创新能力,我们开展了智能测距小车实训项目。
本实训旨在让学生了解智能测距技术的基本原理,掌握超声波传感器的工作原理,并能够将其应用于实际项目中。
二、实训目的1. 理解超声波测距的基本原理。
2. 掌握超声波传感器在智能小车中的应用方法。
3. 培养学生的动手能力和团队协作能力。
4. 提高学生的创新思维和问题解决能力。
三、实训内容1. 硬件准备(1)AT89C51单片机开发板(2)超声波传感器(3)直流电机驱动模块(4)直流减速电机(5)轮子(6)电源模块(7)连接线(8)小车底盘2. 软件设计(1)编写超声波传感器测距程序(2)编写电机驱动程序(3)编写主控制程序,实现测距与电机驱动的协调3. 系统调试(1)测试超声波传感器测距准确性(2)调试电机驱动程序,实现小车行走(3)调试主控制程序,实现小车自动测距和行走四、实训过程1. 硬件组装按照设计图纸,将超声波传感器、直流电机驱动模块、直流减速电机、轮子等部件组装到小车底盘上。
2. 软件编程(1)编写超声波传感器测距程序:通过AT89C51单片机控制超声波传感器发射超声波,并记录超声波从发射到接收的时间,根据声速计算出距离。
(2)编写电机驱动程序:通过控制直流电机驱动模块,实现小车行走。
(3)编写主控制程序:根据超声波传感器测距结果,控制小车行走速度和方向。
3. 系统调试(1)测试超声波传感器测距准确性:通过实际测量,验证超声波传感器测距的准确性。
(2)调试电机驱动程序:调整电机驱动程序参数,实现小车行走。
(3)调试主控制程序:根据超声波传感器测距结果,控制小车行走速度和方向,实现自动测距和行走。
五、实训成果1. 成功组装了一台智能测距小车。
2. 实现了超声波传感器测距功能。
3. 实现了小车自动测距和行走功能。
六、实训心得1. 通过本次实训,我们深入了解了超声波测距技术的基本原理和应用方法。
智能小车焊接实验报告

智能小车焊接实验报告1. 实验简介本实验旨在设计一个智能小车,并通过焊接技术完成小车的组装和连接。
通过实验,可以加深对焊接技术的理解和掌握,同时也对物理电路的搭建和控制有了更深入的认识。
2. 实验材料和设备- 小车底盘- 电机- 电池盒- 电源线- 迷你焊接台- 焊锡- 焊剂- 铅笔- 铅锤- 镊子- 剥线钳- 各种连接线和插头3. 实验过程步骤1:准备工作首先,将小车底盘放在焊接台上,使用铅笔在底盘上标记电池盒和电机的位置。
确保标记准确无误,以便焊接时能够准确安装。
步骤2:焊接电池盒将电池盒的正负极分别用铅笔标记出来,并根据底盘的标记位置使用剥线钳将电源线剥开约1cm。
然后,将电源线分别与电池盒的正负极焊接,注意焊接时要保持稳定,避免焊料接触到其他部件。
步骤3:焊接电机根据底盘的标记位置,将电机依次放在底盘的两侧,然后使用铅笔在底盘上标记电机的焊接位置。
之后,使用剥线钳将电机线剥开约1cm,并根据电机的正负极进行标记。
将电机的正极与电池盒的正极相连接,并用铅锤将它们焊接在底盘上。
同样地,将电机的负极与电池盒的负极相连接并焊接在底盘上。
保持焊接牢固,确保电机和电池盒与底盘的接触良好。
步骤4:连接线路使用剥线钳将各种连接线剥开约1cm,并根据需要进行标记,以便将来进行更容易的连接。
根据小车控制系统的设计连接各个模块,例如连接传感器、电机驱动器和控制板等。
步骤5:测试和调试完成连接后,使用电源线将电池盒和电控板相连,在控制板上设置相应的程序或指令。
然后,通过执行程序或指令测试小车的各项功能,例如前进、后退、转弯等。
如果发现功能存在问题或不完善,可以通过调整焊接处的连线或重新焊接来解决问题。
4. 实验结果与分析经过一段时间的努力,我们成功地完成了智能小车的焊接组装工作并调试成功。
小车能够根据控制板的信号进行自动行驶、转弯等动作,并能实时感知周围环境。
通过本实验,我们进一步了解了焊接技术的重要性和应用场景。
智能车项目实验报告(3篇)

第1篇一、项目背景随着科技的飞速发展,智能车技术已成为现代交通运输领域的重要研究方向。
本项目旨在设计和实现一款具备自主导航、避障和路径规划功能的智能车,以提高交通运输的效率和安全性。
通过本项目的研究与实验,旨在探索智能车技术在实际应用中的可行性和有效性。
二、项目目标1. 设计并实现一款具备自主导航、避障和路径规划功能的智能车;2. 评估智能车在不同复杂环境下的性能和稳定性;3. 探索智能车在现实场景中的应用前景。
三、实验内容1. 硬件平台搭建本项目选用STM32单片机作为核心控制器,搭载激光雷达、毫米波雷达、摄像头等传感器,以及电机驱动模块和无线通信模块。
具体硬件配置如下:- 单片机:STM32F103C8T6- 传感器:激光雷达、毫米波雷达、摄像头- 电机驱动:L298N- 无线通信模块:蓝牙模块2. 软件平台开发本项目采用C语言进行软件开发,主要包括以下模块:- 控制模块:负责处理传感器数据,实现避障、路径规划和导航等功能;- 传感器数据处理模块:对激光雷达、毫米波雷达和摄像头等传感器数据进行处理和分析;- 电机驱动模块:控制电机驱动模块,实现智能车的运动控制;- 无线通信模块:实现与上位机或其他设备的通信。
3. 实验步骤(1)环境搭建:搭建实验场地,布置激光雷达、毫米波雷达、摄像头等传感器,并连接单片机。
(2)传感器标定:对激光雷达、毫米波雷达和摄像头等传感器进行标定,确保数据准确。
(3)编程实现:编写控制模块、传感器数据处理模块、电机驱动模块和无线通信模块等程序。
(4)调试与优化:对智能车进行调试,优化各项功能,提高性能和稳定性。
(5)测试与评估:在不同复杂环境下对智能车进行测试,评估其性能和稳定性。
四、实验结果与分析1. 避障功能在实验过程中,智能车能够有效识别和避开障碍物,包括静态和动态障碍物。
避障效果如下:- 静态障碍物:智能车能够准确识别并避开障碍物,如树木、电线杆等;- 动态障碍物:智能车能够识别并避开行人、自行车等动态障碍物。
智能循迹小车实验报告

摘要本设计主要有单片机模块、传感器模块、电机驱动模块以及电源模块组成,小车具有自主寻迹的功能。
本次设计采用STC公司的89C52单片机作为控制芯片,传感器模块采用红外光电对管和比较器实现,能够轻松识别黑白两色路面,同时具有抗环境干扰能力,电机模块由L298N芯片和两个直流电机构成,组成了智能车的动力系统,电源采用的直流电池,经过系统组装,从而实现了小车的自动循迹的功能。
关键词智能小车 STC89C52单片机 L298N 红外光对管1绪论随着科学技术的发展,机器人的设计越来越精细,功能越来越复杂,智能小车作为其的一个分支,也在不断发展。
在近几年的电子设计大赛中,关于小车的智能化功能的实现也多种多样,因此本次我们也打算设计一智能小车,使其能自动识别预制道路,按照设计的道路自行寻迹。
2设计任务与要求采用MCS-51单片机为控制芯片(也可采用其他的芯片),红外对管为识别器件、步进电机为行进部件,设计出一个能够识别以白底为道路色,宽度10mm左右的黑色胶带制作的不规则的封闭曲线为引导轨迹并能沿该轨迹行进的智能寻迹机器小车。
3方案设计与方案选择3.1硬件部分可分为四个模块:单片机模块、传感器模块、电机驱动模块以及电源模块。
3.1.1单片机模块为小车运行的核心部件,起控制小车的所有运行状态的作用。
由于以前自己开发板使用的是ATMEL公司的STC89C52,所以让然选择这个芯片作为控制核心部件。
STC89C52是一种低损耗、高性能、CMOS八位微处理器,片内有4k字节的在线可重复编程、快速擦除快速写入程序的存储器,能重复写入/擦除1000次,数据保存时间为十年。
其程序和数据存储是分开的。
3.1.2传感器模块方案一:使用光敏电阻组成光敏探测器采集路面信息。
阻值经过比较器输出高低电平进行分析,但是光照影响很大,不能稳定工作。
方案二:使用光电传感器来采集路面信息。
使用红外光电对管,其结构简明,实现方便,成本低廉,没有复杂的图像处理工作,因此反应灵敏,响应时间少。
智能汽车观察实验报告(3篇)

第1篇一、实验背景随着科技的飞速发展,智能汽车已成为全球汽车产业的重要发展方向。
我国在智能汽车领域也取得了显著的成果,成为全球智能汽车产业的重要参与者。
为了深入了解智能汽车的技术特点和应用前景,我们开展了本次智能汽车观察实验。
二、实验目的1. 了解智能汽车的基本概念、技术特点和发展趋势。
2. 探究智能汽车在实际道路中的应用情况。
3. 分析智能汽车对交通安全、环保、出行方式等方面的影响。
三、实验内容1. 智能汽车基本概念智能汽车是指具备智能感知、智能决策、智能控制等功能的汽车。
它能够通过搭载的各种传感器、摄像头、雷达等设备,实现与环境的信息交互,实现自动驾驶、车联网等功能。
2. 智能汽车技术特点(1)感知技术:通过激光雷达、毫米波雷达、摄像头等设备,实现对周围环境的感知,获取车辆、行人、道路等信息。
(2)决策技术:基于感知信息,结合地图数据、交通规则等,实现对车辆行驶轨迹、速度、方向等决策。
(3)控制技术:根据决策结果,实现对车辆的动力、转向、制动等控制,确保车辆安全行驶。
3. 智能汽车应用情况(1)自动驾驶:智能汽车能够实现自动驾驶功能,包括自动泊车、自动跟车、自动变道等。
(2)车联网:智能汽车通过车联网技术,实现与车辆、道路、交通设施的互联互通,提高交通效率。
(3)智能座舱:智能汽车配备智能座舱系统,提供个性化、舒适、便捷的乘坐体验。
4. 智能汽车对交通安全、环保、出行方式等方面的影响(1)交通安全:智能汽车能够有效降低交通事故发生率,提高道路通行效率。
(2)环保:智能汽车采用清洁能源,减少尾气排放,有利于环境保护。
(3)出行方式:智能汽车为人们提供更加便捷、舒适的出行方式,改变人们的出行习惯。
四、实验方法1. 文献调研:查阅相关文献,了解智能汽车的基本概念、技术特点、应用情况等。
2. 实地考察:参观智能汽车生产企业、实验基地,了解智能汽车的生产、研发、测试等情况。
3. 数据分析:收集智能汽车相关数据,分析其发展趋势、市场前景等。
智能小车实验报告

智能⼩车实验报告智能⼩车实验报告摘要为了使智能⼩车在赛道上按题⽬要求⾏驶,我们对整个系统进⾏了研究,通过论证分析确⽴了较优的设计⽅案。
本系统选⽤履带⼩车为车体。
以c8051f020单⽚机为控制核⼼。
⽤12v锂电池供电,并利⽤7805将电压稳⾄5v以满⾜单⽚机及驱动等其它模块对电压的需求。
⽤L298N驱动双直流电机,通过传感器检测、控制电动机的⽅向、快慢、启停。
循迹模块运⽤保证了⼩车安全在赛道上⾏驶。
⼩车上还装有⽆线接收模块,在两车之间实现信息传输。
通过各模块的配合,在程序的控制下,最后检测证明⼩车能够快速稳定的实现在赛道上⾏驶、超车等任务,不仅能够完成基本部分,也能完成发挥部分。
关键词:c8051f020,驱动,⽆线模块,寻迹1 系统⽅案设计本实验要求甲、⼄两辆⼩车同时起动,先后通过起点标志线,在⾏车道同向⽽⾏,实现两车交替超车领跑功能。
在对题⽬和赛道深⼊了解的基础上,我们确⽴了⼩车需要的以下基本模块:控制模块、电机驱动模块、寻迹模块、通讯模块、电源模块。
作为智能⼩车,必须拥有能够满⾜条件的⼤脑。
因此要选取合适的单⽚机作为控制模块的核⼼。
题⽬还要求⼩车完成题⽬的时间要尽可能短,所以要选取合适的电机驱动,使⼩车能够有⾜够的速度。
另外⼩车还要能够稳定安全的在赛道上⾏驶,尽量避免偏离赛道,更要防⽌⼩车冲出赛道,因此需在⼩车上安装循迹模块。
本题还需要两车配合⾏驶,两车之间进⾏通讯是很有必要的。
⽽作为电⼒系统,电源模块是必不可少的。
确定了⼩车系统需要的模块,接下来就对各模块的分析选取做详细的介绍。
1.1 控制模块⽅案⼀:使⽤传统51系列单⽚机,传统51单⽚机价格便宜,控制简单,但是它的运算速度慢,⽚内资源少,存储器容量⼩,难以实现复杂的算法。
⽅案⼆:使⽤C8051F系列单⽚机,C8051F单⽚机使⽤CIP-51微控制器内核,是标准的混合信号⽚上系统(SOC),除了具有标准8051的数字外设部件之外,⽚内还集成了数据采集和控制系统中常⽤的模拟部件和其它数字外设及功能部件.如电压⽐较器PAC,ADC,DAC,SPI, SMBus(I2C),UART等,特别⽅便进⾏数据的实时采集与控制。
智能循迹小车实训报告

智能循迹小车实训报告系别班级:城信系16车辆一班姓名:叶舒凡学号:314随着素质教育的越来越被重视,我们学校将制作电子智能作品作为我们电子技术基础科目的期末考试内容。
学生通过手动实践能提高解决实际问题的能力,我觉得智能小车是一个不错的硬件平台,它生动有趣而且涉及机械结构、电子基础、传感器原理、自动控制等等,于是我选择了智能循迹小车。
下面对智能循迹小车做实训报告。
1、元件清单2、电路原理图工作原理简介:LM393随时比较着两路光敏电阻的大小,当出现不平衡时(例如一侧压黑色跑道)立即控制一侧电机停转,另一侧电机加速旋转,从而使小车修正方向,恢复到正确的方向上,整个过程是一个闭环控制,因此能快速灵敏地控制。
3、安装说明:本着从简到繁的原则,我们首先来制作一款由数字电路来控制的智能循迹小车,在组装过程中我们不但能熟悉机械原理还能逐步学习到:光电传感器、电压比较器、电机驱动电路等相关电子知识。
光敏电阻器件这就是光敏电阻,它能够检测外界光线的强弱,外界光线越强光敏电阻的阻值越小,外界光线越弱阻值越大,当红色LED 光投射到白色区域和黑色跑道时因为反光率的不同,光敏电阻的阻值会发生明显区别,便于后续电路进行控制。
LM393比较器集成电路LM393是双路电压比较器集成电路,由两个独立的精密电压比较器构成。
它的作用是比较两个输入电压,根据两路输入电压的高低改变输出电压的高低。
输出有两种状态:接近开路或者下拉接近低电平,LM393采用集电极开路输出,所以必须加上拉电阻才能输出高电平。
带减速齿轮的直流电机直流电机驱动小车的话必须要减速,否则转速过高的话小车跑得太快根本也来不及控制,而且未经减速的话转矩太小甚至跑不起来,我们专门定做的这种电机已经集成了减速齿轮大大降低了制作难度非常适合我们使用。
LM393随时比较着两路光敏电阻的大小,当出现不平衡时(例如一侧压黑色跑道)立即控制一侧电机停转,另一侧电机加速旋转,从而使小车修正方向,恢复到正确的方向上,整个过程是一个闭环控制,因此能快速灵敏地控制。
智能小车移动实验报告

一、实验目的1. 了解智能小车的组成原理和基本结构;2. 掌握智能小车移动的基本方法;3. 掌握编程语言在智能小车中的应用;4. 通过实验提高动手能力和创新意识。
二、实验器材1. 智能小车套件;2. 编程器;3. 编程软件;4. 电源;5. 电脑。
三、实验原理智能小车是一种集成了传感器、控制器、执行器等模块的自动化设备。
它通过传感器收集环境信息,由控制器进行运算,通过执行器实现移动。
本实验以循迹小车为例,通过红外传感器检测地面反射光线,实现小车沿指定轨迹移动。
四、实验步骤1. 组装智能小车:根据说明书,将各个模块按照要求连接起来,包括电机、红外传感器、电池等。
2. 编程:使用编程软件编写控制程序,实现小车循迹移动。
具体步骤如下:(1)设置初始参数:设置小车的速度、转向角度等参数。
(2)编写循迹程序:通过红外传感器检测地面反射光线,当光线发生变化时,控制小车转向,使其始终保持在指定轨迹上。
(3)测试与调试:将程序下载到智能小车中,观察小车是否按照预期进行循迹移动。
如存在偏差,对程序进行调试,直至达到预期效果。
3. 运行实验:将小车放置在指定轨迹上,启动电源,观察小车是否能够按照预期进行循迹移动。
五、实验结果与分析1. 实验结果:小车在测试过程中能够按照预期进行循迹移动,表现出良好的循迹性能。
2. 分析:(1)红外传感器在循迹过程中起到了关键作用,通过检测地面反射光线,实现小车转向。
(2)编程过程中,对小车速度、转向角度等参数的设置对循迹性能有较大影响。
合理设置参数,可以提高小车的循迹精度。
(3)实验过程中,发现小车在遇到较大干扰时,循迹性能会有所下降。
这说明在循迹过程中,需要提高小车的抗干扰能力。
六、实验总结1. 通过本次实验,了解了智能小车的组成原理和基本结构,掌握了智能小车移动的基本方法。
2. 熟悉了编程语言在智能小车中的应用,提高了编程能力。
3. 通过实验,提高了动手能力和创新意识,为今后从事相关领域的研究奠定了基础。
智能小车实训报告

智能小车实训报告班级:学号:姓名:1系统设计要求 (3)1.1智能小车底盘选择 (3)1.2智能小车电机选择 (4)1.3 智能小车电源选择 (4)1.4 智能小车单片机选择 (5)1.5 智能小车电机驱动选择 (5)1.6 智能小车传感器选择 (7)1.7 考核内容(一) (8)2系统硬件电路设计 (1)2.1 智能小车结构框架图 (1)2.2 STC89C51控制模块 (12)2.3 智能小车驱动模块 (13)2.3.1 L298N介绍 (13)2.3.2 L298N引脚封装 (20)2.3.3 L298N内部结构 (24)2.3.4 L298N电路连接 (25)3系统软件设计 (30)3.1驱动及程序下载方法 (33)3.2考核内容(三) (35)3.3智能小车方向调整及程序 (37)1系统设计要求●智能小车以控制芯片STC89C51为核心,以L298N为驱动模块,编写PWM程序使得智能小车完成直线行驶,转弯。
1.1智能小车底盘选择●●1.1智能小车电机选择智能小车套件中的动力驱动部分一般都用电机作为动力,目前常见的智能小车使用的电机是普通电机,带减速的电机,步进电机。
平常我们接触的也以直流电的居多。
电机,是指依据电磁感应定律实现电能转换或传递的一种电磁装置。
它的主要作用是产生驱动转矩,作为用电器或各种机械的动力源。
俗称“马达”。
●普通直流电机普通直流电机是我们平时见得最多的电机,电动玩具,刮胡刀等里面都有。
一般只有两个引脚,用电池的正负极接上两个引脚就会转起来,这种电机有转速过快,扭力过小的特点,一般不直接用在智能小车上,在用得配置减速器才行。
●带减速的电机带减速的电机就是普通电机加上了减速箱,这样便降低了转速,增加了扭力,使得普通电机有的更广泛的使用空间。
带减速的电机由于降低了转速,增加了扭力,被大多数智能小车套件中列为智能小车动力标配,这种电机的控制一般都用H桥方案,用L298芯片组成的电路进行控制,能实现PWM的调速,控制上采用单片机进行PWM调速控制,PWM控制可以方便的控制小车整体速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 智能小车实验报告 摘要 为了实现智能小车按照题目要求运动,从指定位置进入规定区域,并寻找到障碍物,驶向障碍物,将障碍物推出规定区域,并实时显示障碍物的位置。本实验系统分为两个小系统,控制端与运动端。控制端以单片机C8051F020作为控制核心,运动端采用DSP2812作为控制核心。并以无线模块实现控制端与运动端之间的交流,以实现智能小车按照题目要求运动,并将信息实时反馈给控制端,显示出来;对于关键的小车运动执行元件,经过充分比较、论证,最终选用了步进电机,能够准确定位并且具有瞬间启动和急速停止的优越特性。电机的驱动是以L298N为芯片的驱动模块;小车的电源模块采用16V的锂电池供电;通过红外对管TCRT5000判断黑线为循迹,实现了小车在规定区域上行驶并将信息实时反馈给控制端等功能;并且小车的控制端显示部分选用LCD12864液晶屏来显示所需的参数。最后的实验表明,系统完全达到了设计要求,不但完成了所有基本和发挥部分的要求,并增加了路程显示、全程时间显示等创新功能。
关键词:C8051F020单片机、DSP2812、L298N、红外对管TCRT5000、循迹、LCD12864
液晶屏 2
一、系统方案 1.1 总体方案设计 本实验需要智能小车在规定的120cm*120cm区域内。从起点位置出发,检测障碍物所在位置并实施清除动作。在重力感应传感器控制下实现智能小车的前进,后退,左转,右转等操作,控制智能小车行驶到障碍物位置,并且停留至少3秒钟,给出声或光的信号。然后将障碍物推出规定区域。为了完成实验要求,控制端在单片机控制下,显示模块,重力传感器模块、无线通信模块的协同配合,共同完成控制端的工作。运动端以DSP2812为核心,超声波模块、红外避障模块、驱动控制模块、循迹模块和电源模块的统一调配下,让小车符合条件的行驶、通信、并清除障碍物,完成整个实验。 根据实验要求,我们设计的总体方案为控制端以Silicon Laboratories公司生产的单片机C8051F020为控制核心,运动端以TI公司新推出的功能强大的32位定点的DSP2812为核心,采用步进电机和LM298芯片控制小车运动,用锂电池提供16V电压,用TCRT5000保证小车能在规定的区域内正常行驶,并以超声和红外共同确定障碍物位置,并在远程控制端通过重力传感器控制小车的前进、后退、左转、右转等功能,将障碍物推出指定区域。并用无线通信实现远程控制端和运动端之间的交流。
1.2 总体方案比较 方案一:以C8051F020单片机作为控制端核心,DSP2812作为运动端的核心,并通过超声波测定障碍物的位置,用TCRT5000防止智能小车冲出区域,用步进电机精确定位小车行驶的距离,并以无线来使控制端和运动端通信。以此来实现将障碍物推出规定区域。 方案二:以C8051F020单片机为控制端和运动端的核心,用TCRT5000来保证小车在规定区域正常行驶。使用无线来实现控制端和运动端的交流,使用超声模块来检测障碍物,并将障碍物推出区域。 由于DSP2812具有强大数据处理能力和高运行速度,十分符合实验中的对于步进电机以及坐标控制。所以我们采用第二个方案。 1.3 各个部分模块方案比较与论证 (1)控制端核心控制器模块 控制端的控制器是实验中的控制核心部分,它用来控制智能小车的前进后退等动作,又要显示相关信息。所以,一个合理的控制中心必不可少的。 方案一:采用Silicon Laboratories公司的C8051F020单片机对电动小车进行控制。C8051F020单片机的功能比较强大。片内含CIP-51的CPU内核,它的指令系统与MCS-51完全兼容。其中的C8051F020单片机含有64kB片内Flash程序存储器,4352B的RAM、8个I/O端口共64根I/O口线、一个12位A/D转换器和一个8位A/D转换器以及一个双12位D/A转换器、2个比较器、5个16位通用定时器、5个捕捉/比较模块的可编程计数/定时器阵列、看门狗定时器、VDD监视器和温度传感器等部分。C8051F020单片机支持双时钟,其工作电压范围为2.7~3.6V(端口I/O,RST和JTAG引脚的耐压为5V)。与以前的51系列单片机相比,C8051F020增添了许多功能,同时其可靠性和速度也有了很大提高。而且价格适中,各种功能也易于实现控制。 方案二:采用STC 公司的STC89C52RC。其价格便宜,应用广泛,但是功能单一, 3
需要添加多个附加的模块,实现较为复杂;运行速度一般,抗干扰能力不是很强。 通过对以上两种方案的比较,我们选择了方案一,方案一采用的C8051F020单片机功能强大,价格适中,应用方便,是个合理的选择 (2)运动端核心控制器的选择 方案一:采用C8051F020单片机,该微处理器具体情况同上。 方案二:采用DSP2812微处理器。DSP2812是TI公司新推出的功能强大的TMS320F2812的32位定点DSP,是TMS320LF2407A的升级版本,最大的特点是速度比TMS320LF2407A有了质的飞跃,从最高40M跃升到TMS320F2812的150M,处理数据位数也从16位定点跃升到32位定点。最大的亮点是其拥有EVA、EVB事件管理器和配套的12位16通道的AD数据采集,使其对电机控制得心应手。DSP2812微处理器具有强大的分析、计算和可视化功能,利用DSP2812提供的数十个专业工具箱,可以方便、灵活地实现对自动控制、信号处理、通信系统等的算法分析和仿真。 通过比较,我们需要强大的计算能力与速度,故而选择第二种方案,采用DSP2812微处理器作为运动端的核心。 (3)车体的选择 车体是实验最基础的部分,涉及到小车能否稳定快速的按照预定轨迹行驶并实现超车。选择好车体尤为重要。 方案一:采用三轮小车 用两独立电机分别带动两车轮,再加一个万向轮,机械加工简单,成本低,但该小车不适合爬坡、倒退行驶。 方案二:采用履带式小车 履带式玩具电动小车的车体、车架和电机都是现成的,在上面架一块板子就可以放下电路板,各种传感器的安装也较方便;其次,所购买的电动小车是由两直流电机控制的。电机一个控制左轮,另一个控制右轮,这小车的前样可以很好地实现进、后退、原地转弯等各种运动。 根据实验要求,我们选择方案二,履带式小车稳定快速且装卸方便。 (2)电源模块 方案一:铅酸电池供电,优点电流大,缺点重量太沉,携带不方便,也不便于在车上安装。 方案二:16V锂电池组供电,虽然它的持续供电时间不是很长时,但优点是体积小重量轻,电压也稳定得多。便于安装于车上且携带方便。 经过比较,我们选择方案二,16V电源经7812模块转化可以输出12V电压供给直流电机,其他模块可用7805转换成5V后再供电。 (3)驱动模块 电机模块选择是整个方案设计的关键,根据题目的要求,这需要对小车的精确控制,所以要产生不同的方波来驱动直流电机使小车精确行驶。 方案一:采用内部集成H桥式芯片L298驱动电路。 方案二:采用分立元件的H桥驱动电路。 由于采用内部集成H桥式芯片每一组PWM波用来控制一个电机的速度,而另外两个I/O口可以控制电机的正反转,控制比较简单,电路也很简单,一个芯片内包含有8个功率管,这样简化了电路的复杂性,所以采用方案一。 (4)运动控制模块 4
在运动过程中,控制好小车在规定的区域内运功是小车完成任何题目要求的基础。为此,系统将对小车行驶线路控制、信息传递进行有效的控制。 线路控制:在规定区域上,智能小车利用步进电机,准确控制行走的距离。利用超声寻到障碍物冰将其推出规定区域,并将信息反馈给控制端。在不同的阶段,小车执行不同的程序。系统最终采取步进电机的精确计数以及DSP2812精确快速的计算能力以保证小车正常行驶。 信息传递:使用无线模块来进行控制端和运动端之间的交流,确定小车和障碍物的坐标位置,并在控制端显示器显示出来。 (5)显示模块 方案一:采用使用起来比较方便的LCD1602液晶显示屏。屏幕较小、便于放置,采用的而是并行接口,但是显示简单。 方案二:采用LCD12864显示屏,12864显示屏的尺寸大,亮度高,可以支持汉字的显示,显示效果好、显示的信息多。 通过对以上方案的比较,我们采用方案二。因为LCD12864能同时多行显示,而且亮度好,符合实验要求。 (6)寻物模块 智能小车需要在规定区域确定障碍物的位置,故而需要寻物模块寻找障碍物。 方案一:使用超声模块,超声波可以探射到很广的范围,虽然反应比较慢,但总体效果不错,调试也很简单。 方案二:使用红外模块,红外的探测更加精准,反应速度也较快,但它容易受到白色地面的干扰。 通过比较,我们采用了方案一。因为超声模块探测范围广,干扰容易控制。
1.4 结构框图 根据上面的分析论证,我们设计的系统的总体结构框图如图所示。 二、理论分析与计算
2.1 信号检测与控制 小车从规定区域启动后,在入口探测障碍物的位置,并将坐标传给控制端,自动行驶至障碍物前,将障碍物推出区域,并以是否遇到黑线来判断障碍物是否出了规定区域。本实验小车使用DSP2812作为运动端控制核心,控制步进电机的运动,超声采集的信号,由无线通信端将信息反馈给控制端,再由单片机将需要显示的数据传输给显示屏进行显示。
2.2 控制端和运动端之间的通信方法 本实验需要控制端和运动端相互配合工作才能实现,所以必须要有通信设备使两车可以实现交流,我们两车之间通信使用nRF24L01单片无线收发器,它可以发射和接收无线信息,从而实现两者之间的交流,显示障碍物坐标。
2.3节能 本实验选取16V环保锂电池作为供电电源,各模块都使用5V电压供电,电流消耗较小,12864LED显示屏处于低耗能的背光模式,符合当今社会绿色节能环保的理念。
三、电路与程序设计