公务员考试逻辑判断技巧之:排列组合题型解题技巧

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公务员考试逻辑判断技巧之:排列组合题型解题技巧

排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。排列组合问题是历年国家公务员考试行测的必考题型,“16字方针”是解决排列组合问题的基本规律,即:分类相加,分步相乘,有序排列,无序组合。

一、试验:题中附加条件增多,直接解决困难时,用试验逐步寻找规律。

例、将数字1,2,3,4填入标号为1,2,3,4,的方格中,每方格填1个,方格标号与所填数字均不相同的填法种数有( ) A6 B.9 C.11 D.23

解析:第一方格内可填2或3或4,如第一填2,则第二方格可填1或3或4,若第二方格内填1,则后两方格只有一种方法;若第二方格填3或4,后两方格也只有一种填法。一共有9种填法,故选B

二、不相邻问题用“插空法”:对某几个元素不相邻的排列问题,可将其他元素排列好,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。

三、合理分类与准确分步:含有约束条件的排列组合问题,按元素的性质进行分类,按事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。

四、消序

例、4个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法。

解析:先在7个位置中任取4个给男生,有种排法,余下的3个位置给女生,只有一种排法,故有种排法。

五、顺序固定用“除法”:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。

经验分享:虽然自己在这帖子里给大家发了很多感慨,但我更想跟大家说的是自己在整个公务员考试的过程中的经验的以及自己能够成功的考上的捷径。首先就是自己的阅读速度比别人的快考试过程中的优势自然不必说,平时的学习效率才是关键,其实很多人不是真的不会做,90%的人都是时间不够用,要是给足够的时间,估计很多人能够做出大部分的题。公务员考试这种选人的方式第一就是考解决问题的能力,第二就是考思维,第三考决策力(包括轻重缓急的决策)。非常多的人输就输在时间上,我是特别注重效率的。第一,复习过程中绝对的高效率,各种资料习题都要涉及多遍;第二,答题高效率,包括读题速度和答题速度都高效。我复习过程中,阅读和背诵的能力非常强,读一份一万字的资料,一般人可能要二十分钟,我只需要两分钟左右,读的次数多,记住自然快很多。包括做题也一样,读题和读材料的速度也很快,一般一份试卷,读题的时间一般人可能要花掉

二十几分钟,我统计过,我最多不超过3分钟,这样就比别人多出20几分钟,这在考试中是非常不得了的。论坛有个帖子专门介绍速读的,叫做“得速读者得行测”,我就是看了这个才接触了速读,也因为速读,才获得了笔试的好成绩。其实,不只是行测,速读对申论的帮助更大,特别是那些密密麻麻的资料,看见都让人晕倒。学了速读之后,感觉有再多的书都不怕了。而且,速读对思维和材料组织的能力都大有提高,个人总结,拥有这个技能,基本上成功一半,剩下的就是靠自己学多少的问题了。平时要多训练自己一眼看多个字的习惯,慢慢的加快速度,尽可能的培养自己这样的习惯。当然,有经济条件的同学,千万不要吝啬,花点小钱在自己的未来上是最值得的,多少年来耗了大量时间和精力,现在既然势在必得,就不要在乎这一刻。建议有条件的同学到这里用这个软件训练速读,大概30个小时就能练出比较厉害的快速阅读的能力,这是给我帮助非常大的学习技巧,极力的推荐给大家.(给做了超链接,按住键盘左下角Ctrl键,然后鼠标左键点击本行文字)

六、对应

例、在100名选手之间进行单循环淘汰赛(即一场失败要退出比赛)最后产生一名冠军,要比几场?

解析:要产生一名冠军,要淘汰冠军以外的所有选手,即要淘汰99名选手,要淘汰一名就要进行一场,故赛99场。

七、分排问题用直接法:把几个元素排成若干排的问题,可采用

统一排成一排的排方法来处理。

八、住店法:解决“允许重复排列问题”要区分两类元素,一类元素可以重复,另一类不能重复,把不能重复的元素看作店,再利用分步计数原理直接求解称“住店法”

例.7名学生争五项冠军,获得冠军的可能种数有( )

A. 种

B. 种

C. 种

D. 种

解析:七名学生看作七家“店”,五项冠军看作5名“客”,每个客有7种住法,由分步计数原理可得种,故选A

九、特殊元素的“优先排列法”:对于特殊元素的排列组合问题,一般先考虑特殊元素,再考其他的元素。

十、相邻问题用捆绑法:对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。

十一、探索:对于情况复杂,不易发现其规律的问题需要认真分析,探索出其规律

例、从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则不同的取法种数有多少种。

解析:两个数相加中以较小的数为被加数,1+100>100,1为被加数时有1种,2为被加数有2种,…,49为被加数的有49种,50为被加数的有50种,但51为被加数有49种,52为被加数有48种,…,99

为被捕加数的只有1种,故不同的取法有(1+2+3+…+50)+(49+48+…+1)=2500种

十二、总体淘汰法:对于含否定的问题,还可以从总体中把不合要求的除去。

相关文档
最新文档