LED显示屏控制系统技术现状及发展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LED显示屏控制系统技术现状及发展
丁铁夫严飞
长春希达电子技术有限公司
一、引言
20世纪90年代以来,LED显示屏的制造技术和应用水平日益提高,在LED器件材料和控制技术方面也不断涌现新的成果,高亮度蓝色LED和纯绿色LED芯片的问世和商品化,使得全彩色LED显示屏成为现实并大量进入市场。LED显示屏经历了单色,双色图文显示屏,到图像显示屏,直到全彩色LED视频显示屏。在此发展过程中,LED显示屏控制系统也经历了从低灰度4bit到高达16bi t灰度的发展过程,显示屏的动态显示效果不断提高;从最初简单的模拟通信方式到现在的实时数字信号远距离传输,使显示屏能够快速显示高清晰的画面;从最初几十赫兹的刷新频率到现在高达上千赫兹的刷新频率,使显示屏适用于各种影像拍摄器材而画面无闪烁。
LED显示屏控制系统分为异步控制系统和同步控制系统。
异步控制系统又称脱机控制系统,早期脱机控制系统主要用来显示各种文字、符号和图形或动画为主。画面显示信息由计算机编辑,经RS232/485串行口预先置入LED显示屏具有存储功能的显示控制系统中,然后脱离计算机播放,循环往复,显示方式丰富多彩,效果变化多样。其主要特点是:操作简单、价格低廉、使用范围较广。近年来,由于RISC芯片技术的迅速发展及嵌入式操作系统的广泛应用,脱机控制系统在显示、控制及处理能力方面得到突破,可以支持高分辨率全彩LED屏幕的显示控制和标清、高清视频的播放。
同步控制系统,主要用来实时显示视频、图文、信息发布等,用于室内或户外全彩大屏幕显示屏。同步控制系统控制的LED显示屏的工作方式基本等同于电脑的监视器,它以至少60帧/秒更新速率点点对应地实时映射电脑监视器或其他视频播放设备上的图像:通常具有多灰度的颜色显示能力,可达到多媒体的宣传广告效果。其主要特点是:实时性、表现力丰富、操作较为复杂、价格高。同步控制系统通过DVI或HDMI等数字接口与PC机的显卡及他具有数字视频接口的播放设备连接获取需要显示的图像信息。DVI接口,最高输出分辨率可达1920×1080@60Hz,色彩深度为8bit。HDMI接口与DVI接口采用相同的传输技术,因此HDMI接口可以兼容DVI接口。除了DVI接口现有的性能外,HDMI接口还支持音频传输和更高14bit的色彩深度。
目前控制系统主要有以下几种方式。
(1)以单片机为控制器的LED显示屏,因为受到单片机运算速度及通信速率的限制,动态显示的刷新率不可能太高,对显示效果和移动算法的处理也比较吃力,实际显示效果有明显的闪烁感,以单片机为控制器的条屏目前仍是单色屏市场的主流。
(2)以ARM为控制器的LED显示屏,因为ARM有着很高的指令效率和时钟频率,因此其运算能力很强大,内部资源也十分丰富,在条屏运用中,能用ARM来实现花样繁多的显示方式。ARM与FPGA的组合功能强大,除了海量存储技术、无线更新技术,还能实时显示视频信号。因此,常用ARM作为异步全彩屏的控制器。
(3)以FPGA为控制器的LED显示屏,因为FPGA是高速,并行的可编程逻辑器件,用它作为控制器能够高速地处理PWM信号、完成动态扫描逻辑及完成字符移动算法。因此被广泛用于全彩色LED显示屏系统,成为同步全彩色LED控制系统的主流。以下主要介绍同步全彩色LED显示屏控制系统。
二、全彩LED显示屏控制系统技术
(一)系统构架
通常LED显示屏因驱动级联的方式不同,可分为串行式架构和总分式架构。
(1)串行式构架。
串行式架构主要包括发送卡和接收扫描卡两大板块。其中,发送卡在LED显示控制系统中,通常处于靠近上位PC机的位置,其主要功能是将显卡输出的视频信号进行分割和组合,然后分批发送给接收扫描卡;接收扫描卡的输入和发送卡的输出直接连接,主要完成的功能是截取发送卡发送的视频数据流中对应自己的那部分数据,同时将其余的数据转发给下一块接收扫描卡,依次级联。接收扫描卡将截取到的数据驱动到LED控制灯板上,就可以表现出需要显示的效果。
串行式架构中各板卡之间通常采用千兆以太网技术进行连接,网络拓扑结构为总线型结构,此结构的优点是布线简单,操作灵活,不过由于板卡间均采用千兆网连接,成本偏高,同时总线型的结构如果拓扑太长,则会导致图像同步出现问题,会有很严重的闪烁感。
(2)总分式构架。
总分式构架是在串行式构架的基础上发展起来的,这种构架将原本的接收扫描卡拆分为接收卡和扫描卡两大板块,与串行式构架相比,分离开的接收卡是信息汇集的枢纽,它可以拓扑多条视频总线,将单一的总线型拓扑结构改造成树形拓扑结构。
总分式构架中各板卡之间的有多种传输方式。例如LVDS,百兆网,或千兆网。其中LVDS 成本最低,不过稳定性和灵活性都比百兆网和千兆网要差一些,百兆网成本和稳定性都位于中等,而千兆网的灵活性虽然最高,不过也会付出成本上的代价。虽然总分式构架在灵活性上不如串行式构架,不过总分式可以很好的解决高分辨率图像的视频同步,在显示屏分辨率越来越高的今天,总分式结构越来越受到大家的青睐。
(二)视频数据传输
发送卡的传输面积总要受到传输介质带宽的限制。例如对于1Gbps的千兆网,理论上能传输1280×512@60Hz的视频数据,不过实际上由于传输不可避免的同步控制,通常控制面积会小于等于这个数值。目前市面上主要的数据传输方式有以下三种:光纤传输、网络传输和LVDS差分传输。
(1)光纤。
最理想的传输介质,带宽最高,可以做到单口2Gbps的带宽,同时因为采用光纤作为传输介质,可以有效地避免屏体后方各种电磁辐射带来的干扰。光纤的传输距离可达公里级,而一般的千兆网只能传输100多米。
(2)千兆网、百兆网。
千兆网的带宽为1Gbps,百兆网有多种速率,125Mbps或250Mbps等等,千兆网和百兆网的原理基本相同,均采用8B/10B编码的串行传输方式,传输介质为双绞线。由于采用金属电缆作为传输介质,相比光纤,容易受到屏体的电磁辐射影响,传输没有光纤可靠,不过在成本上,千兆网和百兆网要比光纤要低。
(3)LVDS 低压差分信号。
LVDS采用FPGA内部固化的IOB,实现FPGA和FPGA之间的直接连接,相比千兆网,省去了网络变压器和网络物理层芯片,因此LVDS的成本比光纤或千兆网低。不过,在追求成本方案的同时,LVDS也有很多问题。例如稳定性,传输距离和传输速度,都要比千兆网低得多,协议需要定制,协议复杂且实现难度较高。