简述变频器最常用的控制方式
变频器的工作原理与控制方式
![变频器的工作原理与控制方式](https://img.taocdn.com/s3/m/5f9b558209a1284ac850ad02de80d4d8d15a01c0.png)
变频器的工作原理与控制方式变频器(Variable Frequency Drive,缩写为VFD),又称为交流调速器(AC Drive),是一种用于调节交流电机转速的电子装置。
它通过改变输入电压的频率和幅值来控制电机的转速。
变频器工作原理主要涉及开关技术、PWM调制技术、电机驱动理论等方面内容,下面将详细介绍。
一、变频器的工作原理1.开关技术变频器利用开关电子器件(如晶体管、IGBT等)来实现对输入电源的开关控制。
通过不断开关电路,形成等效于几十千赫兹至几千千赫兹的高频方波,从而形成理想的正弦波输出。
2.PWM调制技术PWM(Pulse Width Modulation)调制技术是指通过改变开关装置的导通时间和关断时间,以一定占空比形式控制开关管工作的方式。
在变频器中,PWM技术可以实现加减压、变频和控制电机的转速。
3.电机驱动理论变频器通过改变输入电压的频率和幅值来调节电机的转速。
在工作过程中,通过改变开关器件导通时间和关断时间,将输入电压的频率调节到所需的频率范围,实现对电机转速的精准控制。
二、变频器的控制方式1.V/f控制方式V/f控制方式(Voltage/frequency ratio control)是一种常用的变频器控制方式。
它通过传感器检测电机当前的转速,并根据转速信号和预设的转速曲线进行比较,计算所需输出频率,并根据预设的V/f比值进行控制,实现对电机速度的调节。
2.向量控制方式向量控制方式(Vector Control)又称矢量控制方式,是一种高性能的变频器控制方式。
它通过传感器检测电机当前的转速、转矩和位置等信息,并根据这些信息进行精确计算和控制,实现对电机速度、转矩和位置等的准确控制。
3.矢量控制方式矢量控制方式(Direct Torque Control,缩写为DTC)是一种高性能的变频器控制方式。
它通过传感器检测电机当前的转速、转矩等信息,并根据转速、转矩的变化率进行预测和计算,在每个采样周期内调节电机的转速和转矩,实现对电机的精确控制。
变频器的控制方式
![变频器的控制方式](https://img.taocdn.com/s3/m/60cfb5779b89680203d825e2.png)
变频器的控制方式1 引言我们通常意义上讲的低压变频器,其输出电压一般为220~650v、输出功率为0.2~400kw、工作频率为0~800hz左右,变频器的主电路采用交-直-交电路。
根据不同的变频控制理论,其模式主要有以下三种:(1)v/f=c的正弦脉宽调制模式(2)矢量控制(vc)模式(3)直接转矩控制(dtc)模式针对以上三种控制模式理论,可以发展为几种不同的变频器控制方式,即v/f控制方式(包括开环v/f控制和闭环v/f控制)、无速度传感器矢量控制方式(矢量控制vc的一种)、闭环矢量控制方式(即有速度传感器矢量控制vc 的一种)、转矩控制方式(矢量控制vc或直接转矩控制dtc)等。
这些控制方式在变频器通电运行前必须首先设置。
2 v/f控制方式2.1 基本概念我们知道,变频器v/f控制的基本思想是u/f=c,因此定义在频率为fx时,ux的表达式为ux/fx=c,其中c为常数,就是“压频比系数”。
图1中所示就是变频器的基本运行v/f曲线。
由图1可以看出,当电动机的运行频率高于一定值时,变频器的输出电压不再能随频率的上升而上升,我们就将该特定值称之为基本运行频率,用fb 表示。
也就是说,基本运行频率是指变频器输出最高电压时对应的最小频率。
在通常情况下,基本运行频率是电动机的额定频率,如电动机铭牌上标识的50hz或 60hz。
同时与基本运行频率对应的变频器输出电压称之为最大输出电压,用vmax表示。
当电动机的运行频率超过基本运行频率fb后,u/f不再是一个常数,而是随着输出频率的上升而减少,电动机磁通也因此减少,变成“弱磁调速”状态。
基本运行频率是决定变频器的逆变波形占空比的一个设置参数,当设定该值后,变频器cpu将基本运行频率值和运行频率进行运算后,调整变频器输出波形的占空比来达到调整输出电压的目的。
因此,在一般情况下,不要随意改变基本运行频率的参数设置,如确有必要,一定要根据电动机的参数特性来适当设值,否则,容易造成变频器过热、过流等现象。
变频器常用的几种控制方式
![变频器常用的几种控制方式](https://img.taocdn.com/s3/m/5f828c515a8102d277a22f43.png)
变频器常用的几种控制方式Prepared on 22 November 2020变频器常用的几种控制方式变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。
本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。
1、变频器简介变频器的基本结构变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。
对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU 以及一些相应的电路。
变频器的分类变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。
2、变频器中常用的控制方式非智能控制方式在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。
(1) V/f控制V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。
V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。
(2) 转差频率控制转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。
常用的简单控制变频器方法
![常用的简单控制变频器方法](https://img.taocdn.com/s3/m/0b270f2790c69ec3d5bb75b8.png)
很多变频器使用方式都是大同小异的!介绍几种常用简单的控制变频器的方法。
一、变频器主电路的接线方法:R S T这三个接线端子是变频器电源进线端,三根火线接入。
U V W是出线端接需要控制的电机。
首先,变频器有单相220V、三相220V、三相380/480V、三相690V等几种电源规格的变频器,我们需要根据变频器规格选择合适的电源和断路器。
将输入电源接到变频器的L1、L2(单相220V)或者R、S、T端子。
在断路器和变频器之间一般不加接触器,如果必须要加入接触器的场合,也要注意不能使接触器动作或于频繁。
另外为了改善功率因素和消除干扰,可在输入侧加入交流输入电抗器和噪音滤波器,这个可以根据需要和使用场合选择加不加。
输入侧连接完成,将三相电动机接到变频器的输出端子U、V、W上。
注意:变频器输出侧不能加电容器或者浪涌抑制器,否则会导致变频器损坏。
最后要保证接地端子可靠接地,以保证设备和人员的安全。
二、控制方式种类:1、面板控制方式。
这种控制方式是通过变频器面板启停变频器修改频率等。
2、通过外部控制器或仪表控制方式。
这种控制方式主要通过控制器如PLC 给变频器启停信号和频率信号,这种控制方式依据信号类型的不同又可以分为两种。
一种类型是开关量信号和模拟信号另外一种是通讯数字信号。
控制回路部分不同品牌的变频器端子号和功能会有所不同,我们可以根据变频器说明书进行判断。
首先,我们要选择控制方式,在参数设置里找到相应参数进行设置,控制方式分为操作面板命令通道、端子命令通道和通讯命令通道。
选择操作面板命令通道的时候,面板上的RUN和STOP键就可以实现变频器的运行和停止,通过递增和递减键对电机进行调速。
注意:有的变频器操作面板上装有电位器,在设置里选择模拟输入为板载电位器,调整电位器就可以实现电动机调速。
另外变频器面板可以拆下,可以通过延长线将面板装到操作柜面板进行操作。
使用端子命令通道,可通过设置参数选择二线式或者三线式控制。
简述VVVF IGBT VF控制方式
![简述VVVF IGBT VF控制方式](https://img.taocdn.com/s3/m/2bec88ef19e8b8f67c1cb96b.png)
简述VVVF IGBT V/F控制方式
VVVF 是Vairable Voltage Variable Frequency 的字母缩写。
IGBT 是变频器逆变部分的目前最常用功率器件,IGBT 是Insulated Gate Bipolar Transistor 缩写,意为:绝缘栅双极性晶体管。
V/F 是指变频器运转时,变频器输出电压和输出频率之比,它是变频器最常用最简单的控制方式。
下面我们来看两个有关电机学的简单公式:
若不改变电压值U1,只改变频率f1 来调速,行不行呢?不行,因为从公式2 中可以看出,随着f1 的升高,电机气隙磁通φ 将减少,φ 的减小势必会导致电机的输出转矩M下降,使电机的利用率恶化,严重时会使电机堵转。
若在维持电压值U1 不变条件下,而减小f1。
则根据公式2 知,φ 将增加,这会使磁路饱和,励磁礠电流上升,导致铁损急剧增加,这也是不允许的。
若在调频的同时改变电机定子电压U1,则可以维持磁通φ 接近不变,即U1/f1=C1φ。
这就是所谓的V/f 控制方式。
变频器的四种控制方式详解
![变频器的四种控制方式详解](https://img.taocdn.com/s3/m/d29400a36429647d27284b73f242336c1eb93098.png)
变频器的四种控制方式详解一、V/f恒定控制:V/f控制是在改变电动机电源频率的同时改变电动机电源的电压,使电动机磁通保持一定,在较宽的调速范围内,电动机的效率,功率因数不下降。
因为是控制电压(Voltage)与频率(Frequency)之比,称为V/f控制。
恒定V/f控制存在的主要问题是低速性能较差,转速极低时,电磁转矩无法克服较大的静摩擦力,不能恰当的调整电动机的转矩补偿和适应负载转矩的变化; 其次是无法准确的控制电动机的实际转速。
由于恒V/f变频器是转速开环控制,由异步电动机的机械特性图可知,设定值为定子频率也就是理想空载转速,而电动机的实际转速由转差率所决定,所以V/f恒定控制方式存在的稳定误差不能控制,故无法准确控制电动机的实际转速。
二、转差频率控制:转差频率是施加于电动机的交流电源频率与电动机速度的差频率。
根据异步电动机稳定数学模型可知,当频率一定时,异步电动机的电磁转矩正比于转差率,机械特性为直线。
转差频率控制就是通过控制转差频率来控制转矩和电流。
转差频率控制需要检出电动机的转速,构成速度闭环,速度调节器的输出为转差频率,然后以电动机速度与转差频率之和作为变频器的给定频率。
与V/f控制相比,其加减速特性和限制过电流的能力得到提高。
另外,它有速度调节器,利用速度反馈构成闭环控制,速度的静态误差小。
然而要达到自动控制系统稳态控制,还达不到良好的动态性能。
三、矢量控制矢量控制,也称磁场定向控制它是70年代初由西德F.Blasschke等人首先提出,以直流电机和交流电机比较的方法阐述了这一原理。
由此开创了交流电动机和等效直流电动机的先河。
矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子交流电流Ia、Ib、Ic。
通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1、Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流; It1相当于直流电动机的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换实现对异步电动机的控制。
变频器的控制方法
![变频器的控制方法](https://img.taocdn.com/s3/m/54435d45eef9aef8941ea76e58fafab069dc44e6.png)
变频器的控制方法变频器是一种能够控制交流电动机转速的设备,通常用于工业生产中的电机调速和节能控制。
它通过改变电机输入的电压和频率,使电机达到所需的转速。
变频器的控制方法有多种,下面将详细介绍几种常见的控制方法。
1. 简单开关控制方法简单开关控制方法是变频器最基本的控制方式,通过控制电机的开/关状态来实现转速控制。
这种方法的控制精度较低,转速调节范围也较有限,适用于一些对转速要求不高的应用。
2. 转矩控制方法转矩控制方法是通过调节变频器输出的电压和频率来实现对电机输出转矩的控制。
通过改变电压和频率的比例关系,可以实现电机的恒转矩调速。
这种控制方法适用于一些需要保持恒定转矩的场合,如起重机械、卷取机等。
3. PI控制方法PI控制方法是一种闭环控制方法,它通过测量电机的输出转速与期望转速之间的差异,并根据差异调整变频器的输出电压和频率来控制转速。
这种控制方法具有较高的控制精度和适应性,可以根据实际情况进行参数调整,实现稳定的转速控制。
4. 矢量控制方法矢量控制方法是一种高级的闭环控制方法,它可以实现更精确的转速控制和较高的转矩响应。
矢量控制方法通过对电机的电流、电压和转速进行测量和计算,并根据计算结果调整变频器的输出,使电机能够精确地跟随给定的转速和转矩变化。
5. 力矩控制方法力矩控制方法是一种特殊的转矩控制方法,它可以根据负载的力矩需求来调整电机输出的转矩。
通过测量负载的力矩大小,并根据力矩与转速的关系进行计算和控制,可以实现对电机输出的力矩进行精确的控制。
综上所述,变频器的控制方法有简单开关控制、转矩控制、PI控制、矢量控制和力矩控制等多种方式。
不同的控制方法适用于不同的应用场合,可以根据实际需求选择最合适的控制方式。
随着技术的不断进步和应用领域的扩大,变频器的控制方法也在不断发展和创新,为工业生产提供更加高效和可靠的电机控制解决方案。
变频器控制电机转速方法是
![变频器控制电机转速方法是](https://img.taocdn.com/s3/m/854b7bf3db38376baf1ffc4ffe4733687e21fc3a.png)
变频器控制电机转速方法是在工业应用领域,电机是最为常见的设备之一,而电机的转速是电机性能的一个关键指标。
为了满足不同的工业生产需求,实现电机转速的控制和调节,通常采用变频器控制电机转速。
本文就介绍变频器控制电机转速的方法。
变频器的基本原理变频器是一种实现电机转速控制的设备,它通过改变电机的供电频率和电压,实现电机转速的调节。
变频器的工作原理是将电网中的高频交流电先变成直流电,再加工成不同频率、不同电压的交流电来供给电机,从而实现对电机的转速控制。
变频器的控制方法下面介绍几种常见的变频器控制方法。
1. 固定模式控制固定模式控制是一种比较简单的控制方法,它通过调整变频器的固定参数来实现对电机转速的控制。
这种方法可以比较方便地实现对电机的开启、关闭、正反转、变频等基本控制功能。
2. 调速控制调速控制是变频器最常用的控制方法之一。
它通过调整变频器输出频率和电压,实现对电机转速的调节。
调速控制有许多不同的方式,其中比较常见的是向电机提供一个恒定的电压,通过调整输出频率来实现电机转速的变化。
3. 矢量控制矢量控制是一种比较高级的变频器控制方法,它通过对电机的电流和电压进行精准控制,实现对电机转速的控制。
矢量控制的优点是能够实现非常精准的转速控制,缺点是控制算法需要较高的计算能力。
变频器控制电机转速的优点使用变频器控制电机转速具有以下优点:1. 提高电机效率在电机正常工作范围内,变频器控制可以使电机的效率达到最大值,实现能源的节约。
2. 实现精确控制变频器控制下,电机转速可以实现精确控制,避免传统控制方式存在的由于电网频率波动造成的转速高低波动。
3. 增加电机寿命变频器控制下,电机启动电流减小,对电机寿命的延长有一定的作用。
变频器控制电机转速的应用领域由于变频器控制电机转速有以下优点,它在许多领域得到了广泛应用:1. 工业生产在各个工业领域,如冶金、化工、纺织、造纸、机械制造等,都广泛使用变频器控制电机转速。
变频器的控制方式有哪些
![变频器的控制方式有哪些](https://img.taocdn.com/s3/m/391dd480d1f34693dbef3e18.png)
变频器的控制方式有哪些变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。
变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。
随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。
那么,常见的变频器有哪些种类,它们的控制方法又是什么?变频器的种类从控制方式来讲,现在市场上常见的有V/F控制变频器、矢量控制变频器两种。
从电压角度来讲,有低压变频器、高压变频器两种。
从电源角度来讲,有单相变频器、三相变频器的区分。
从适用场合来分,有通用变频器、风机水泵专用型变频器、注塑机专用型变频器、拉丝机专用变频器、电梯专用变频器、球磨机专用变频器等等。
变频器常用的控制方式1、非智能控制方式在交流变频器中使用的非智能控制方式有V/f 协调控制、转差频率控制、矢量控制、直接转矩控制等。
(1)V/f正弦脉宽调制(SPWM)控制方式V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。
V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。
(2)转差频率控制转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。
这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳。
变频器工作的常用模式
![变频器工作的常用模式](https://img.taocdn.com/s3/m/51246ac0d5d8d15abe23482fb4daa58da0111c36.png)
变频器工作的常用模式变频器是一种常见的电器控制装置,用于调节电动机的速度和频率。
在工作过程中,变频器可以通过选择不同的工作模式来满足各种应用需求。
本文将介绍变频器工作的常用模式。
1. 恒定转速模式恒定转速是变频器最基本的工作模式之一,适用于需要保持电机恒定转速的场景。
变频器通过控制输出频率,使电机稳定地运行在设定的转速上。
该模式广泛应用于传送带、风机等需要稳定运转的设备。
2. 变频调速模式变频调速模式是变频器最常用的工作模式之一,适用于需要实现精细调速的场景。
通过改变输出频率,变频器可以调节电机的转速,实现从低速到高速的连续调节。
这种模式在机械加工、液压系统等领域得到广泛应用。
3. 节能运行模式节能运行模式是一种针对节约能源的工作模式。
在这个模式下,变频器根据实际需求调整电机的转速和负载,以达到最佳能效。
例如,当负载较轻时,变频器会适当降低电机的运行频率,降低能耗。
这种模式在节能的要求日益提高的环境中得到广泛应用。
4. 同步控制模式同步控制模式是一种多电机协同运行的工作模式。
通过变频器的同步控制功能,可以实现多台电动机的协同运行,保持各个电机的同步性和一致性。
这种模式在车间生产线、物流系统等需要多电机配合的场景中得到应用。
5. 故障检测与保护模式故障检测与保护模式是变频器工作中非常关键的一个模式。
变频器通过内置的故障检测与保护机制,对电机运行过程中的异常情况进行监测,并及时采取相应的措施,以避免设备损坏或人身安全事故的发生。
这种模式在电机运行安全保障方面起着重要作用。
总结:变频器作为一种重要的电气控制设备,可以通过不同的工作模式来满足各种应用需求。
无论是恒定转速、变频调速还是节能运行,每种模式都有其独特的应用场景。
而同步控制模式和故障检测与保护模式则分别在多电机协同和安全保障方面发挥着重要的作用。
通过灵活应用变频器的不同工作模式,可以更好地实现电机的控制和优化运行。
变频器的控制方式及合理选用
![变频器的控制方式及合理选用](https://img.taocdn.com/s3/m/8a2744d60408763231126edb6f1aff00bed570f9.png)
变频器的控制方式及合理选用1.变频器的控制方式低压通用变频器输出电压在380~650V,输出功率在0.75~400KW,工作频率在0~400HZ,它的主电路都采用交-直-交电路。
其控制方式经历以下四代。
(1)第一代以U/f=C,正弦脉宽调制(SPWM)控制方式。
其特点是:控制电路结构简单、成本较低,但系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。
(2)第二代以电压空间矢量(磁通轨迹法),又称SPWM控制方式。
他是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形。
以内切多边形逼近圆的方式而进行控制的。
经实践使用后又有所改进:引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流成闭环,以提高动态的精度和稳定度。
但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。
(3)第三代以矢量控制(磁场定向法)又称VC控制。
其实质是将交流电动机等效直流电动机,分别对速度、磁场两个分量进行独立控制。
通过控制转子磁链,以转子磁通定向,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。
然而转子磁链难以准确观测,以及矢量变换的复杂性,实际效果不如理想的好。
(4)第四代以直接转矩控制,又称DTC控制。
其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。
具体方法是:a.控制定子磁链——引入定子磁链观测器,实现无速度传感器方式;b.自动识别(ID)——依靠精确的电机数学模型,对电机参数自动识别;c.算出实际值——对定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;d.实现Band-Band 控制——按磁链和转矩的Band-Band 控制产生PWM信号,对逆变器开关状态进行控制;e.具有快速的转矩响应(〈2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(〈±3%);f.具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150% ~200%转矩。
变频器控制方式
![变频器控制方式](https://img.taocdn.com/s3/m/14e0e841a7c30c22590102020740be1e640ecc6c.png)
变频器控制方式变频器作为一种调节电机转速的电气设备,具有广泛的应用领域和多种不同的控制方式。
本文将介绍几种常见的变频器控制方式,包括开环控制、闭环控制和矢量控制。
开环控制是变频器最基本的控制方式之一。
在开环控制方式下,变频器根据用户设定的频率输出电压,调节电机的转速。
开环控制的优点是结构简单、成本低廉,但缺点是无法对电机的负载变化进行实时调节,导致转速精度较低,稳定性较差。
闭环控制是一种更为高级的控制方式。
它在开环控制的基础上引入了反馈回路,通过实时监测电机的转速和负载情况来动态调整输出频率和电压。
闭环控制相比于开环控制具有更高的转速控制精度和稳定性,能够适应不同负载条件下的变化,但同时也增加了系统的复杂性和成本。
矢量控制是一种最为先进的变频器控制方式。
它在闭环控制的基础上引入了矢量控制算法,通过实时计算电机的电流、电压和转速之间的关系,实现更准确的转速控制和更高的响应速度。
矢量控制具有较高的控制精度、稳定性和动态性能,能够使电机在低速和高负载情况下得到更好的性能表现。
除了以上介绍的几种常见的变频器控制方式外,还有一些其他的控制方式,例如磁场定向控制、直接转矩控制等。
这些控制方式在特定的应用场景下具有独特的优势,可以实现更精确、更高效的电机控制。
总结起来,变频器控制方式包括开环控制、闭环控制和矢量控制等。
开环控制简单、成本低,但控制精度和稳定性较差;闭环控制在开环控制的基础上引入反馈回路,提高了控制精度和稳定性,但复杂性和成本增加;矢量控制通过引入矢量控制算法,实现了更高的控制精度和响应速度。
根据不同的应用需求和预算限制,选择适合的变频器控制方式可以达到最佳的控制效果。
变频器的运行控制方式
![变频器的运行控制方式](https://img.taocdn.com/s3/m/62377462647d27284a73510d.png)
变频器的运转指令方式变频器的运转指令方式是指如何控制变频器的基本运行功能,这些功能包括启动、停止、正转与反转、正向电动与反向点动、复位等。
与变频器的频率给定方式一样,变频器的运转指令方式也有操作器键盘控制、端子控制和通讯控制三种。
这些运转指令方式必须按照实际的需要进行选择设置,同时也可以根据功能进行相互之间的方式切换。
1 操作器键盘控制操作器键盘控制是变频器最简单的运转指令方式,用户可以通过变频器的操作器键盘上的运行键、停止键、点动键和复位键来直接控制变频器的运转。
操作器键盘控制的最大特点就是方便实用,同时又能起到报警故障功能,即能够将变频器是否运行或故障或报警都能告知给用户,因此用户无须配线就能真正了解到变频器是否确实在运行中、是否在报警(过载、超温、堵转等)以及通过led 数码和lcd 液晶显示故障类型。
按照前面一节的内容,变频器的操作器键盘通常可以通过延长线放置在用户容易操作的5m 以内的空间里。
同理,距离较远时则必须使用远程操作器键盘。
在操作器键盘控制下,变频器的正转和反转可以通过正反转键切换和选择。
如果键盘定义的正转方向与实际电动机的正转方向(或设备的前行方向)相反时,可以通过修改相关的参数来更正,如有些变频器参数定义是“正转有效”或“反转有效”,有些变频器参数定义则是“与命令方向相同”或“与命令方向相反”。
对于某些生产设备是不允许反转的,如泵类负载,变频器则专门设置了禁止电动机反转的功能参数。
该功能对端子控制、通讯控制都有效。
2 端子控制2.1 基本概念端子控制是变频器的运转指令通过其外接输入端子从外部输入开关信号(或电平信号)来进行控制的方式。
这时这些由按钮、选择开关、继电器、plc 或dcs 的继电器模块就替代了操作器键盘上的运行键、停止键、点动键和复位键,可以在远距离来控制变频器的运转。
图1 端子控制原理在图1 中,正转fwd、反转rev、点动jog、复位reset、使能enable 在实际变频器的端子中有三种具体表现形式:(1)上述几个功能都是由专用的端子组成,即每个端子固定为一种功能。
变频器控制方法
![变频器控制方法](https://img.taocdn.com/s3/m/57cc7329001ca300a6c30c22590102020640f26e.png)
变频器控制方法变频器是一种广泛应用于工业控制系统中的电子设备,用于调节电机的转速和负载。
通过变频器控制方法,可以实现精准的转速调节,提高生产效率,降低能源消耗。
本文将介绍几种常见的变频器控制方法及其优缺点。
一、开环控制方法开环控制是最基础的变频器控制方法。
在这种方法中,变频器根据预设的频率输出电压给电机驱动,但无法准确知道电机实际的转速和负载情况。
因此,开环控制无法做到精确的转速调节,适用于一些对精度要求不高的场合。
二、闭环控制方法闭环控制是通过传感器实时反馈电机的转速和负载信息,并将该信息与预设的转速进行比较,实现闭环控制。
这种方法可以实现更精确的转速调节,提高系统的稳定性和响应速度。
然而,闭环控制的硬件成本相对较高,系统复杂度较大。
三、矢量控制方法矢量控制是一种基于电机数学模型的高级控制方法。
它控制电机的电流和电压,而不仅仅是频率,从而实现更精确的转速和扭矩控制。
矢量控制方法具有很高的控制精度和响应速度,适用于对控制精度要求较高的应用,如精密加工、自动化生产线等领域。
四、模糊控制方法模糊控制是一种基于模糊逻辑的智能控制方法。
它通过建立模糊推理系统,根据输入的状态和规则,对输出进行模糊化处理。
模糊控制可以处理非线性系统和模糊输入,适用于一些复杂的控制问题。
然而,模糊控制需要大量的专家知识和经验,系统的调试和优化较为困难。
五、PID控制方法PID控制是一种常用的比例-积分-微分控制方法。
它通过不断调整输出信号,使系统的误差趋于零,实现精确的控制。
PID控制方法具有调试简单、稳定性好等优点,广泛应用于工业控制系统中。
然而,PID参数的选择和调整往往需要一定的经验和专业知识。
综上所述,变频器控制方法有开环控制、闭环控制、矢量控制、模糊控制和PID控制等多种方式。
不同的控制方法适用于不同的控制需求和系统特点。
在实际应用中,需要根据具体情况选择合适的控制方法,以提高系统的性能和效率。
变频器常用的10种控制方式
![变频器常用的10种控制方式](https://img.taocdn.com/s3/m/acd871662e3f5727a4e9621d.png)
变频器常用的10种控制方式
变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素。
除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。
本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。
一、变频器的分类
变频器的分类方法有多种。
按照主电路工作滤波方式分类,可以分为电压型变频器和电流型变频器。
按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器。
按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等。
按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。
二、变频器中常用的控制方式
1、非智能控制方式
在交流变频器中使用的非智能控制方式有V/f控制、转差频率控制、矢量控制、直接转矩控制等。
(1) V/f控制
V/f就是加在电机定子上的电压和电源频率的比值。
如下图,V/F符合直线AB,则是直线型;符合折线段ABC,则是多点型;符合曲线AB,则是平方型。
变频器的控制方式
![变频器的控制方式](https://img.taocdn.com/s3/m/b86469af85868762caaedd3383c4bb4cf7ecb714.png)
变化不是很大,所以稳定
工作区的机械特性基本是
平行的,且机械特性较硬,
图8-1 变频调速机械特性
《变频器原理与应用 第2版 》第8章
8.1.3 对额定频率fN以下变频调速特性的修正
1. TKx减小的原因分析
k f (k u k f) U U x xU E x x M T K x
机磁通保持一定,在较宽的调速范围内,电动机的 转矩、效率、功率因数不下降,
《变频器原理与应用 第2版 》第8章
8.1.2 恒U/f控制方式的机械特性
1. 调频比和调压比
调频时,通常都是相对于其额定频率
频频率fx就可以用下式表示:
fN来进行调节的,那么调
8-1
fx=kffN
式中 kf——频率调节比 也叫调频比 ,
然而,这种控制要依赖于精确的电动机数学模型和对 电动机参数的自动识别 ID ,
《变频器原理与应用 第2版 》第8章
8.5 单片机控制
8.5.1 概述 随着微电子工艺水平的提高,微型计算机的性能价格
比显著提高,全数字化变频调速系统大都是以高性能单 片机和数字信号处理器 DSP 等为控制核心来构成整个系 统,专用于电机控制的单片机的出现,使得系统的体积 减小,可靠性大大提高,它们大部分是在16位单片机或 DSP的基础上增加部分特殊的控制功能构成专用的集成 电路,如87C196MC,
各种参数,如I1、r2等经过计算得到的一个转速的实在值,
由这个计算出的转速实在值和给定值之间的差异来调整
iM*和iT*,改变变频器的输出频率和电压,
《变频器原理与应用 第2版 》第8章
8.3.5 使用矢量控制的要求
选择矢量控制模式,对变频器和电动机有如下要求: 1 一台变频器只能带一台电动机, 2 电动机的极数要按说明书的要求,一般以4极电动机为最
变频器的控制常用模式介绍
![变频器的控制常用模式介绍](https://img.taocdn.com/s3/m/076d511c3a3567ec102de2bd960590c69ec3d839.png)
变频器的控制常用模式介绍随着现代工业的快速发展,电机在工业生产中的应用越来越广泛。
而作为电机控制的重要组成部分,变频器的出现使得电机的控制更加灵活和高效。
在变频器中,控制模式是影响电机运行的关键因素之一。
本文将介绍变频器的控制常用模式。
1. 开环控制模式开环控制模式是最简单和最基础的控制模式之一。
在开环控制模式下,变频器根据给定的频率和电压信号直接控制电机的转速和负载。
然而,这种控制模式并不能对电机的运行状态进行反馈和监控,因此无法实现对电机的精确控制。
2. 闭环控制模式闭环控制模式是一种通过对电机输出信号与实际运行情况进行反馈,从而实现对电机转速和负载的精确控制的模式。
在闭环控制模式下,变频器通过反馈装置(如编码器)获取电机的实际运行状态,并根据差异调整输出信号,实现对电机的反馈控制。
3. 矢量控制模式矢量控制模式是一种较为先进和高级的控制模式,其基本原理是通过分析电机的转子磁通和转速,实现对电机的精确控制。
在矢量控制模式下,变频器能够对电机的电流、转速和转矩进行精确控制,从而实现更高的控制精度和响应速度。
4. 脉宽调制(PWM)控制模式脉宽调制控制模式是一种通过改变脉冲宽度的方式来控制电机转速的模式。
在脉宽调制控制模式下,变频器通过改变电压的脉冲宽度来控制电机的转速。
脉宽调制模式具有控制精度高、响应速度快等优点,在工业生产中得到了广泛的应用。
5. 多点抑制(MPC)控制模式多点抑制控制模式是一种通过对电机的多个参量进行调整和抑制来实现对电机的控制的模式。
多点抑制控制模式具有较高的控制精度和稳定性,能够有效抑制电机在运行过程中的不稳定因素,提高电机的运行效率。
总结:变频器的控制模式包括开环控制、闭环控制、矢量控制、脉宽调制控制和多点抑制控制等多种模式。
不同的控制模式适用于不同的电机应用场景,可以根据具体需求选择合适的控制模式来实现对电机的精确控制和高效运行。
随着科技的不断进步,相信变频器的控制模式将会不断发展和创新,为工业生产带来更多的便利和高效。
通用变频器控制方式的分析
![通用变频器控制方式的分析](https://img.taocdn.com/s3/m/3153371f905f804d2b160b4e767f5acfa1c78398.png)
通用变频器控制方式的分析1. 变频器控制方式简介变频器是一种电力电子设备,可以将交流电源转换成直流电,然后再将直流电转换成带有可控频率和电压的交流电,实现对电机的调速和控制。
变频器控制方式主要有以下几种:1.V/F控制方式:V/F控制方式是最常见的变频器控制方式之一,通过控制输出的电压和频率大小来实现对电机的调速控制。
在V/F控制方式下,变频器会将输入的直流电转换成输出的交流电,输出的电压和频率与输入的电压和频率成正比例关系。
2.电流矢量控制方式:电流矢量控制方式是一种更先进的变频器控制方式,通过控制输出的电压、频率和相位来实现对电机的精确调速控制。
在电流矢量控制方式下,变频器会对电机进行精细的电流控制,从而实现更加准确的调速效果。
3.磁场定向控制方式:磁场定向控制方式是电流矢量控制方式的一种改进,主要用于控制异步电机、同步电机和永磁同步电机。
在磁场定向控制方式下,变频器通过控制输出的电流和电压来实现对电机的精确调速控制,同时还可以控制电机的转矩和位置。
2. V/F控制方式的原理与特点V/F控制方式是最常用的变频器控制方式之一,其原理是通过控制输出的电压和频率大小来实现对电机的调速控制。
通常情况下,变频器会将输入的直流电转换成输出的交流电,输出的电压和频率与输入的电压和频率成正比例关系。
V/F控制方式具有以下特点:1.结构简单: V/F控制方式的结构相对较简单,控制器的配置较为简单,易于维护和操作。
2.成本低廉: V/F控制方式的成本相对较低,适用于很多普通电机的调速控制。
3.精度较低: V/F控制方式的调速精度较低,难以实现对电机的精确控制。
4.低速性能不佳: V/F控制方式在低速下的性能不佳,容易出现转速抖动等问题。
3. 电流矢量控制方式的原理与特点电流矢量控制方式是一种更为精确的变频器控制方式,通过控制输出的电压、频率和相位来实现对电机的精确调速控制。
在电流矢量控制方式下,变频器会对电机进行精细的电流控制,从而实现更加准确的调速效果。
变频器的控制方法
![变频器的控制方法](https://img.taocdn.com/s3/m/cc1deb487ed5360cba1aa8114431b90d6c8589a7.png)
变频器的控制方法变频器是一种用于控制电动机转速的设备,它通过改变电源的频率来实现对电动机的精确控制。
变频器的控制方法有多种,下面将逐一介绍。
1. 开关控制:开关控制是变频器最基本的控制方式之一。
通过手动或自动操作,将变频器的开关打开或关闭,从而控制电动机的启停。
这种控制方法简单直接,适用于一些简单的应用场景,但无法实现精确的转速调节。
2. 脉宽调制(PWM)控制:脉宽调制是一种常见的变频器控制方法。
它通过改变电源信号的脉冲宽度来控制电动机的转速。
脉宽调制技术可以实现高效的能量转换,使得电动机在不同负载下都能保持稳定的转速。
同时,脉宽调制还可以实现电动机的正反转和制动功能。
3. 矢量控制:矢量控制是一种较为高级的变频器控制方法。
它通过对电动机的转子位置和速度进行准确测量,并根据测量结果计算出合适的电流矢量,从而实现对电动机的精确控制。
矢量控制可以实现电动机的高速响应和精确的转速调节,适用于一些对转速要求较高的场合。
4. 感应电动机矢量控制:感应电动机矢量控制是一种应用广泛的变频器控制方法。
它通过对感应电动机的转子位置和转速进行测量,并根据测量结果调整电动机的电流矢量,从而实现对电动机的精确控制。
感应电动机矢量控制具有响应速度快、转速范围广等优点,适用于各种工业领域。
5. 闭环控制:闭环控制是一种基于反馈的变频器控制方法。
它通过测量电动机的转速,并将转速信号与设定值进行比较,然后根据比较结果调整电动机的控制参数,从而实现对电动机转速的闭环控制。
闭环控制可以有效消除外界干扰和负载变化对电动机转速的影响,实现更加精确的转速控制。
以上是几种常见的变频器控制方法,每种方法都有自己的特点和适用场景。
在实际应用中,可以根据具体需求选择合适的控制方法,并结合其他控制策略进行综合控制,以实现更好的控制效果。
变频器的控制方法不断创新和发展,为电动机控制提供了更多的选择和可能性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简述变频器最常用的控制方式
来源: 发布时间: 2011-05-21 17:29 152 次浏览大
小: 16px14px12px
简述变频器最常用的控制方式
变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。
本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。
1 变频器简介
1.1 变频器的基本结构
变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变远程抄表换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。
对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。
1.2 变频器的分类
变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。
2 变频器中常用的控制方式
2.1 非智能控制方式
在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。
(1) V/f控制
V/f控制是为了得到理想的转矩-速度特性,远程监控系统基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变
频器基本上都采用这种控制方式。
V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。
(2) 转差频率控制
转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。
这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳定性,并对急速的加减速和负载变动有良好的响应特性。
(3) 矢量控制
矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,以达到对电动机在d、q、0坐标轴系中的励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。
通过控制各矢量的作用顺序和时间以及零矢量的作用时间,又可以形成各种PWM波,达到各种不同的控制目的。
例如形成开关次数最少的PWM波以减少开关损耗。
目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。
基于转差频率的矢量控制方式与转差频率控制方式两者的定常特性一致,但是基于转差频率的矢量控制还要经过坐标变换对电动机定子电流的相位进行控制,使之满足一定的条件,以消除转矩电流过渡过程中的波动。
因此,基于转差频率的矢量控制方式比转差频率控制方式在输出特性方面能得到很大的改善。
但是,这种控制方式属于闭环控制方式,需要在电动机上安装速度传感器,因此,应用范围受到限制。
无速度传感器矢量控制是通过坐标变换处理分别对励磁电流和转矩电流进行控制,然后通过控制电动机定子绕组上的电压、电流辨识转速以达到控制励磁电流和转矩电流的目的。
这种控制方式调速范围宽,启动转矩大,工作可靠,操作方便,但计算比较复杂,一般需要专门的处理器来进行计算,因此,实时性不是太理想,控制精度受到计算精度的影响。
(4) 直接转矩控制
直接转矩控制是利用空间矢量坐标的概念,在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩,通过检测定子电阻来达到观测定子磁链的目的,因此省去了矢量控制等复杂的变换计算,系统直观、简洁,计算速度和精度都比矢量控制方式有所提高。
即使在开环的状态下,也能输出100%的额定转矩,对于多拖动具有负荷平衡功能。
(5) 最优控制
最优控制在实际中的应用根据要求的不同而有所不同,可以根据最优控制的理论对某一个控制要求进行个别参数的最优化。
例如在高压变频器的控制应用中,就成功的采用了时间分段控制和相位平移控制两种策略,以实现一定条件下的电压最优波形。
(6)其他非智能控制方式
在实际应用中,还有一些非智能控制方式在变频器的控制中得以实现,例如自适应控制、滑模变结构控制、差频控制、环流控制、频率控制等。
2.2 智能控制方式
智能控制方式主要有神经网络控制、模糊控制、专家系统、学习控制等。
在变频器的控制中采用智能控制方式在具体应用中有一些成功的范例。
(1) 神经网络控制
神经网络控制方式应用在变频器的控制中,一般是进行比较复杂的系统控制,这时对于系统的模型了解甚少,因此神经网络既要完成系统辨识的功能,又要进行控制。
而且神经网络控制方式可以同时控制多个变频器,因此在多个变频器级联时进行控制比较适合。
但是神经网络的层数太多或者算法过于复杂都会在具体应用中带来不少实际困难。
(2) 模糊控制
模糊控制算法用于控制变频器的电压和频率,使电动机的升速时间得到控制,以避免升速过快对电机使用寿命的影响以及升速过慢影响工作效率。
模糊控制的关键在于论域、隶属度以及模糊级别的划分,这种控制方式尤其适用于多输入单输出的控制系统。
(3) 专家系统
专家系统是利用所谓“专家”的经验进行控制的一种控制方式,因此,专
家系统中一般要建立一个专家库,存放一定的专家信息,另外还要有推理机制,以便于根据已知信息寻求理想的控制结果。
专家库与推理机制的设计是尤为重要的,关系着专家系统控制的优劣。
应用专家系统既可以控制变频器的电压,又可以控制其电流。
(4) 学习控制
学习控制主要是用于重复性的输入,而规则的PWM信号(例如中心调制PWM)恰好满足这个条件,因此学习控制也可用于变频器的控制中。
学习控制不需要了解太多的系统信息,但是需要1~2个学习周期,因此快速性相对较差,而且,学习控制的算法中有时需要实现超前环节,这用模拟器件是无法实现的,同时,学习控制还涉及到一个稳定性的问题,在应用时要特别注意。
3 变频器控制的展望
随着电力电子技术、微电子技术、计算机网络等高新技术的发展,变频器的控制方式今后将向以下几个方面发展。
(1) 数字控制变频器的实现
现在,变频器的控制方式用数字处理器可以实现比较复杂的运算,变频器数字化将是一个重要的发展方向,目前进行变频器数字化主要采用单片机MCS51或80C196MC等,辅助以SLE4520或EPLD液晶显示器等来实现更加完善的控制性能。
(2) 多种控制方式的结合
单一的控制方式有着各自的优缺点,并没有“万能”的控制方式,在有些控制场合,需要将一些控制方式结合起来,例如将学习控制与神经网络控制相结合,自适应控制与模糊控制相结合,直接转矩控制与神经网络控制相结合,或者称之为“混合控制”,这样取长补短,控制效果将会更好。
(3) 远程控制的实现
计算机网络的发展,使“天涯若咫尺”,依靠计算机网络对变频器进行远程控制也是一个发展方向。
通过RS485接口及一些网络协议对变频器进行远程控制,这样在有些不适合于人类进行现场操作的场合,也可以很容易的实现控制目标。
(4) 绿色变频器
随着可持续发展战略的提出,对于环境的保护越来越受到人们的重视。
变频器产生的高次谐波对电网会带来污染,降低变频器工作时的噪声以及增强其工作的可靠性、安全性等等这些问题,都试图通过采取合适的控制方式来解决,设计出绿色变频器机房监控系统。
4 结束语
变频器的控制方式是一个值得研究的问题,依靠致力于这项工作的有识之士的共同努力,使国产变频器早日走向世界市场并且成为一流的产
本文由济南轩昊电子科技有限公司发表,欢迎转载!转载请注明文章出处。
谢谢!。