整式及其运算同步练习及答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式及其运算

◆课前热身文档设计者: 设计时间 : 文档类型:

文库精品文档,欢迎下载使用。Word 精品文档,可以编辑修改,放心下载

1.受甲型H1N1流感影响,猪肉价格下降了30%,设原来的猪肉价格为a 元/千克,则现在的猪肉价格为____________元/千克.

2.已知22x =,则2

3x +的值是 . 3.计算25

(3)a a ·= .

4. a ,b 两数的平方差用代数式表示为( )

A.22a b -

B.2()a b -

C.2a b +

D.2

a b + 【参考答案】1.0.7a (或70%a 或7

10

a ) 2.5 3.97a 4.A ◆考点聚焦 知识点

代数式、代数式的值、整式、同类项、合并同类项、去括号与去括号法则、幂的运算法则、整式的加减乘除乘方运算法则、乘法公式. 大纲要求 1.代数式

①在现实情境中进一步理解用字母表示数的意义. ②能分析简单问题的数量关系,并用代数式表示. ③能解释一些简单代数式的实际背景或几何意义.

④会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算. 2.整式

①了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示). ②了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘). ③会推导乘法公式:

()()22b a b a b a -=-+;()2222b ab a b a ++=+,

了解公式的几何背景,并能进行简单计算. 考查重点与常见题型

1、 考查列代数式的能力。题型多为选择题,如: 下列各题中,所列代数错误的是( )

(A ) 表示“比a 与b 的积的2倍小5的数”的代数式是2ab -5 (B ) 表示“a 与b 的平方差的倒数”的代数式是1

a -b

2

(C ) 表示“被5除商是a ,余数是2的数”的代数式是5a+2 (D ) 表示“数的一半与数的3倍的差”的代数式是a

2

-3b

2、 考查整数指数幂的运算、零指数。题型多为选择题,在实数运算中也有出现,如: 下列各式中,正确的是( )

(A )a 3+a 3=a 6 (B)(3a 3)2=6a 6 (C)a 3•a 3=a 6 (D)(a 3)2=a 6

整式的运算,题型多样,常见的填空、选择、化简等都有. ◆备考兵法

理解用字母表示数的意义,掌握用代数式表示简单问题的数量关系,灵活运用求代数式的值,掌握整式的加减乘法运算,灵活运用乘法公式.

【注意】1.求代数式的值一般有三种途径:(1)直接代入;(2)整体代入,运用整体代入需将欲求值的代数式适当变形为可用已知条件整体代入的式子,然后整体代入;(3)化简求值 2.几个单项式的和仍为单项式,其隐含条件是这几个单项式为同类项,同类项不仅所含字母相同,而且相同字母的指数也相同;

3.幂的运算一要注意运算符号,二要注意指数的运算,同底数幂相乘除指数相加减,幂的乘方指数相乘,反之亦然;

4. 整式的加、减、乘、除和乘方的混合运算,这方面应注意的是化简过程中的符号问题. ◆考点链接 1.代数式的分类:

2.整式:

代数式

整式

分式

单项式 有理式

无理式

叫做整式. 3.整式的运算:

⑴整式的加减:实质上就是合并同类项. ⑵整式的乘除: ①幂的运算法则:

=•n m a a ;=÷n m a a ;

()

=n

m a ;()=n

ab .

②乘法公式:

平方差公式: ()()=-+b a b a ; ◆典例精析 【例1】填空:

(1)-23

43

ab c 的系数是_________,是__________次单项式.

(2)已知与2x 3y 2

与-x 3m y n

的和是单项式,则代数式4m -2n 的值是__________. (3)计算:(a 3

b) 2

÷a 4

=_________,a (-2a 2) 3

___________.

(4)(黑龙江齐齐哈尔)已知102103m n ==,,则3210

m n

+=____________.

【解】(1)-

43

,6 (2)0 (3) a 2b 2,-8a 7

(4)72 【解析】 (1)单项式的次数应是所有字母指数的和,特别是字母a 的指数是1而不是0; (2)几个单项式的和仍为单项式,其隐含条件是这几个单项式为同类项,同类项不仅所含字母相同,而且相同字母的指数也相同;

(3)幂的运算一要注意运算符号,二要注意指数的运算,同底数幂相乘除指数相加减,幂的乘方指数相乘,反之亦然.

【例2】(陕西太原)下列计算中,结果正确的是( )

A .2

3

6

a a a =· B .()()26a a a =·3 C .()

3

26a

a = D .623a a a ÷=

【答案】C

【解析】本题考查整式的有关运算,2

3

5

a a a =,选项A 是错的,()

()2

26a a a =·3,选项B 是错的,624

a a a ÷=,选项D 是错的,()

3

26a

a =,选项C 是正确的,故选C .

相关文档
最新文档