一位20年机械设计专家的心得体会,精髓!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一位20年机械设计专家的心得体会,精髓!
往期精彩推荐【脑洞大开】四年机械白读了,这TM竟然是注射器做的!德国自动化机械展,各种高科技都在这里!机械的美,只有你懂!最新一批机械动态原理图!这才是机械牛人,感觉自己上了假大学!【专业积累】有了这些,出图、读图都是爽爽的!机械设计的范围很广,天上飞的,地上跑的各种各样的东西,当你拆了电缆、卸掉管路以后,基本上就算是机械结构。而且机械这种东西比较直观,所有的东西都摆在面上,好不好使一目了然,当造成破坏和事故的时候,也更容易遭人诟病,使你无处遁形,也不好狡辩。所以,为避免尴尬,许多的东西你要学习。
在机械专业混了不少年,虽然机械行业看似庞杂,好像没有什么头绪,似乎不知从哪里下手,但我习惯上总体将机械分成两大类:
一类是“运动结构”;另一类是“静态结构”;运动结构可以从飞行装置算起,从航天器,到飞行器,再到各种运动的设备,本质都是一样的东西。静态结构包含各种桥梁、建筑结构、各种工业的仓体、支撑结构和各种梁体、底座、绗架、网架等等。相对而言,机械设计的‘人才’也可以分成两类,一类是擅长设计‘运动结构’的家伙,另一类人才是善于设计‘静态结构’的。
静态钢结构许多搞机械的、自认为是有天赋的家伙自己就瞧不起稿‘静态结构’的其他人,他们觉得设计各种支撑梁、连杆、绗架、底座,以至于是设计斜拉结构和悬索结构的人都是没有什么水平的人,干这种活体现不了人生的价值,事实并不是这样的。当一个重载箱型梁破坏的时候,能说得清楚是什么原因导致破坏的人实际上并不是很多,这正说明懂得设计这种东西的人其实不多。
除此以外,什么时候用绗架,什么时候用箱型梁,其各自的载荷特点和承载方式也是许多‘聪明人’说不清楚的。我国因为没有工程学的教育,大家又都学的很窄,纯理论的课堂教育。于是,很多的问题都说不清。计算一个承载结构,不外乎是计算强度、刚度和结构的稳定性。计算强度是比较简单的事情,你只要上过中专,你就应该很明确地计算出一个断面的强度,无论断面的结构有多复杂,就是花费的时间长短的问题。假如你说不会算,谁都帮不上你,只有再回学校念书。而刚度的计算就比较复杂一些,要考虑各种工况,考虑最复杂的一种组合状态,这就不是学校里能学到的东西了,想学明白了,第一要有好的师父,师父就不明白,你学不明白。第二,就是你要肯学,要下功夫。
比较复杂的问题是计算一个结构的稳定性,它不仅要考虑工况,许多外在的条件你必须要考虑进去。比如:当你设计一个大型的料仓和附属结构的时候,要考虑的因素就特别多,
例如,风雪引起的荷载,地震的不同振型引起的破坏效应等等东西。就仓体的支撑形式而言,条件许可的时候,要尽可能采用较为‘柔和’的多柱支撑结构,在地震过程中,它的“弹性”和“柔软性”都比较好,在承受以‘扭转’振型为主的地震破坏中,边上的柱子的联结节点可以‘拧断’,以吸收地震的冲击波。当地震过后,虽然有些支撑体破坏了,但整体结构是完整的,达到这种水平,你就基本是‘人才’了。有人会说:你说了一大堆没有用的东西,到底用什么来衡量一个家伙是不是行呢?其实,衡量一个家伙只用一个标准就够了,他自己设计的结构,随便取一个截面,他都能讲得清楚何处的应力是多大?哪个断面在何种条件下可能破坏,这个截面破坏以后引起的后果是什么?什么条件下,整体结构会崩溃?在众人面前可以讲清这件事,他就合格了。假如是抄图,抄一辈子也还是抄。静态铝结构
假如我们把钢结构叫‘重型结构’的话,铝结构就是‘轻结构’,它的设计与钢结构是完全不同的,或者说根本就是两码事。有些时候,因为某些需求,你必须设计铝结构。
铝是一种柔软而耐氧化的物质,正是因为这些特点,它不太适合做结构件使用,首先是不宜焊接,另外是比钢材的耐温性能差许多,但对于某些领域又必须使用它,于是人们开发了许多与钢结构完全不同的设计方式来利用铝及其合金结构。由于铝的机械性能差,美国率先开发所谓的‘硬铝’用作航
空材料,除少量必须用钢材的结构以外,当年的大型轰炸机的机身和机翼都是这东西,由于铝的延展性能好,做结构件时,要充分利用这种性能,使应力大的地方实行一体化的结构设计,避免使用铆接,连接的位置可以在‘中性线’上,大大地提高了铝结构的整体承载能力。这一点和钢结构的设计完全不同。
这种设计思想一直延续到今天,当代的高速列车就采用了大量的铝结构件,这些结构件是大型的铝型材,从车厢的断面上看,是由几块大型型材拼接而成的,受力区域都是连续结构,不会有焊接或铆接的设计结构。假如你原来是搞钢结构的人,后来转到设计铝结构,你就要特别注意这一点,你必须要能独立拆解一个铝断面,用什么方式提高强度和刚度?用什么方式进行联结?同时要知道热挤机是否可以挤出你要的断面,有没有这么大的力能参数。把铝结构联结到一起的方式也不如钢结构多,早年一般是铆接,今天还在用,世界上铆制铝的铆接设备和铆钉并不很多,说白了吧!就美国佬和欧洲有。日本准备要造100吨级以上的大飞机了,为什么没有早动手,日本没有合适的航空铆钉。今天,铝结构可以焊接,当然,方法比较特殊,还有一种被称为‘摩擦搅拌焊’的工艺,做厚结构时也用得比较好。
假如你做铝结构设计,能设计断面,会计算,再能拆了这个结构,分块做型材,再将其联结起来,你就会有饭吃,做这
个的家伙比作钢结构挣钱多。纤维热压增强材料、合金材料随着人们对航空器‘更高、更大、更快、更远、寿命更长、事故条件下的生存能力更强’的多‘更’要求,铝材已经远远不能
满足这些要求了。无论是强度、刚度和温度适应性及稳定性能都不够了。这时,纤维热压增强材料就开始逐步登上历史舞台了。
这些纤维热压增强材料主要是做结构用的碳纤维结构材料
和做蒙皮及结构翼板的凯夫拉夹层材料。碳纤维的模量很大,用它制作的结构,在有很高的强度的同时可以有很大的刚性,这是其它材料所不具备的。碳蜂窝结构是历史上最强的蜂窝结构。凯夫拉夹层结构是由凯夫拉纤维和薄铝板的多层复合体,欧洲称'凯夫拉三明治',由于它的模量略小,具有一定的弹力和变形能力,是作轻结构蒙皮的上等材料,有时是唯一的选择。
作碳纤维结构设计时,你主要是考虑用什么结构形式,它和加工方法有密切的关系。在断面很薄的时候,蜂窝结构是你的唯一选择。会蜂窝结构的设计,你可以有一碗不错的饭,就可以作真正的白领了。
纤维热压增强材料的联结就比较特殊了,它与钢铁结构和铝结构的联结方式是截然不同的。这种材料一般是采用粘--铆
联结方式。承载的联结体是环氧或类环氧胶,而铆钉只是辅助固定的方式,无论是哪国的铆钉都不会有这样大的联结强