液压缸工作时出现爬行现象的原因和排除方法

液压缸工作时出现爬行现象的原因和排除方法
液压缸工作时出现爬行现象的原因和排除方法

液压缸工作时出现爬行现象的原因

和排除方法

来源:液压扳手 https://www.360docs.net/doc/967700521.html,/

液压缸工作时出现爬行现象的原因和排除方法如下:

1)缸内有空气侵入。应增设排气装置,或者使液压缸以最大行程快速运动,强迫排除空气。

2)液压缸的端盖处密封圈压得太紧或太松。应调整密封圈使之有适当的松紧度,保证活塞杆能用手来回平稳地拉动而无泄漏。

3)活塞与活塞杆同轴度不好。应校正、调整。

4)液压缸安装后与导轨不平行。应进行调整或重新安装。

5)活塞杆弯曲。应校直活塞杆。

6)活塞杆刚性差。加大活塞杆直径。

7)液压缸运动零件之间间隙过大。应减小配合间隙。

8)液压缸的安装位置偏移。应检查液压缸与导轨的平行度,并校正。

9)液压缸内径线性差(鼓形、锥形等)。应修复,重配活塞。

10)缸内腐蚀、拉毛。应去掉锈蚀和毛刺,严格时应镗磨。

11)双出杆活塞缸的活塞杆两端螺帽拧得太紧,使其同心不良。应略松螺帽,使活塞处于自然状态。

机床爬行的产生原因及消除

中国石油大学(华东)现代远程教育 毕业设计(论文) 题目:机床爬行的产生原因及消除 学习中心:威海学习中心 年级专业:网络07春机械设计及其自动化学生姓名:焉德强学号:0790784002 指导教师:林秀娟职称:讲师 导师单位:威海职业学院 中国石油大学(华东)远程与继续教育学院论文完成时间:2008 年11 月01 日

摘要:机床工作过程中产生爬行的原因有液压系统和机械系统两方面的,液压系统方面的原因是油液中侵入了空气或产生空穴,以及控制阀件磨损而出现太大的间隙;机械系统方面产生爬行的原因是摩擦力的变化。文章探讨了液压系统侵入空气产生爬行的机理及其消除方法和机械系统因摩擦力变化产生爬行的解决方法。 关键词:液压油, 摩擦, 润滑,爬行 爬行是机床上常见而不正常的运行状态,它主要出现在机床各传动系统的执行零部件上,比如刀架、与油缸连在一起的工作台等,且一般在低速运行时出现较多,因速度低时,润滑油被压缩、润滑油膜变薄、油楔作用降低、部分油膜破坏,使摩擦面的摩擦阻力发生变化。通常情况下,轻微程度的爬行是不易察觉的振动,显著的爬行则是大距离的跳动。当机床运动执行件出现爬行时,不仅会破坏液压系统工作的稳定性,产生冲击,同时也会影响机床的精度和被加工工件的精度。比如磨床出现爬行时,会使磨工件的表面粗糙度增大;坐标镗床出现爬行,会使精确定位难以实现。严重的爬行还能引起机床振动,损害机床及其工模具。因此,为了避免爬行的产生,必须分析清楚产生爬行的原因,一旦出现爬行现象,就要采取措施加以排除。 爬行是一种故障,它是在传动系统的刚性不足,驱动力与负载摩擦阻力波动变化的情况下形成的,体现在机床液压系统侵入空气、液压元件的间隙与机械装置本身都可能引起这种故障。 1液压系统侵入空气引起的爬行及消除方法 1.1空气侵入液压系统的方式及危害 空气侵入液压系统的方式是多种多样的,比如液压系统是由各液压元件组成,各种元件的零件之间,为达到连续的、断续和往复运动,需要有一定的配合间隙,而空气就从间隙中侵入,各元件之间的连接密封不严,且受到振动影响,接头螺帽松动,故而空气由此而入,元件中的零件由于同轴或直线度不好、线垫厚薄不均、螺钉没有均匀抓紧而造成泄漏,油泵吸油管和系统回油管在油池中没有隔开或靠在一起,回油飞溅,搅成泡沫,使油泵吸油管吸入空气,油泵吸油管处的滤油器被污物堵塞或滤油器孔太密、油液不足或吸油管侵入油池太少,导致吸油不畅,在吸油区形成局部真空而产生空穴,回油管的出油口在油面上,当机床停用时,空气就乘机而入,设计不合理,回油路中没有背压或背压很小,密封件损坏等,导致油缸左右油腔同时互通且通回油。此外,液压元

液压系统常见故障分析及处理

液压系统常见故障分析及处理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。文中概括介绍了液压系统在日常使用中常见故障分析以及处理方法。 一.工作原理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。 二.液压系统的组成 液压传动系统通常由以下五部分组成。 1.动力装置部分。其作用是将电动机(或其它原动机)提供的机械能转换为液体的压力能。简单地说,就是向系统提供压力油的装置。如各类液压泵。 2.控制调节装置部分。包括压力、流量、方向控制阀,是用以控制和调节液压系统中液流的压力、流量和流动方向,以满足工作部件所需力(或力矩)、速度(或转速)和运动方向(或运动循环)的要求。 3.执行机构部分。其作用是将液体的压力能转化为机械能以带动工作部件运动。包括液压缸和液压马达。 4.自动控制部分。主要是指电气控制装置。 5.辅助装置部分。除上述四大部分以外的油箱、油管、集成块、滤油器、蓄能器、压力表、加热器、冷却器等等。它们对于保证液压系统工作的可靠性和稳定性是不可缺少的,具有重要的作用。 三.液压缸 液压缸是把液压能转换为机械能的执行元件。液压缸常见故障有:液压缸爬行、液压外泄漏、液压缸机械别劲、液压缸进气、液压缸冲击等。 1.液压缸爬行故障分析及处理 (1)缸或管道内存有空气,处理方法:设置排气装置;若无排气装置,可开动液压系统以最大行程往复数次,强迫排除空气;对系统及管道进行密封。 (2)缸某处形成负压,处理方法:找出液压缸形成负压处加以密封;并排气。 (3)密封圈压得太紧,处理方法:调整密封圈,使其不松不紧,保证活塞杆能来回用手拉动。 (4)活塞与活塞杆不同轴,处理方法:两者装在一起,放在V形块上校正,使同度误差在0.04mm以内;换新活塞。 (5)活塞杆不直(有弯曲),处理方法:单个或连同活塞放在V形块上,用压力机控直和用千分表校正调直。

液压缸全套图纸说明书范本

液压缸全套图纸说 明书

绪论——————————————第3页 第1章液压传动的基础知识————————第4页 1.1 液压传动系统的组成————————第4页 1.2 液压传动的优缺点—————————第4页 1.3 液压传动技术的发展及应用——————第6页 第2 章液压传动系统的执行元件 ——液压缸——————————第8页 2.1 液压缸的类型特点及结构形式——————第8页 2.2 液压缸的组成——————————第11页 第3章 D G型车辆用液压缸的设计——————第19页 3.1 简介—————————————第19页 3.2 DG型液压缸的设计----------- —————第20页 第4章液压缸常见故障分析与排除方法—————第27页总结——————————————第29 页

绪论 第一章液压传动的基础知识 1.1液压传动系统的组成 液压传动系统由以下四个部分组成: 〈1〉动力元件——液压泵其功能是将原动机输出的机械能转换成液体的压力能,为系统提供动力。 〈2〉执行元件——液压缸、液压马达。它们的功能是将液体的压力能转换成机械能,以带动负载进行直线运动或者旋转运动。 〈3〉控制元件——压力、流量和方向控制阀。它们的作用是控制和调节系统中液体的动力、流量和流动方向,以保证执行元件达到所要求的输出力(或力矩)、运动速度和运动方向。 〈4〉辅助元件——保证系统正常工作所需要的辅助装置。包括管道、管接头、油箱过滤器和指示仪表等。 〈5〉工作介质---工作介质即传动液体,一般称液压油。液压系统就是经过工作介质实现运动和动力传递的。 1.2液压传动的优缺点

液压缸设计说明书范本

液压缸设计说明书

1 设计课题 1.1设计要求 设计一台铣削专用机床液压系统用液压缸,要求液压系统完成的工作循环是:工件夹紧→工作台快进→工作台工进→工作台快退→工件松开。 1.2原始数据 运动部件的重力为25000N,快进、快退速度为5m/min,工进速度为100~1200mm/min,最大行程为400mm,其中工进行程为180mm,最大切削力为0N,采用平面导轨,夹紧缸的行程为20mm,夹紧力为30000N,夹紧时间为1s。

2 液压系统的发展概况 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。 由于液压技术广泛应用了高技术成果,如自动控制技术、计算机技术、微电子技术、磨擦磨损技术、可靠性技术及新工艺和新材料,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。 液压系统在将机械能转换成压力能及反转换方面,已取得很大进展,但一直存在能量损耗,主要反映在系统的容积损失和机械损失上。如果全部压力能都能得到充分利用,则将使能量转换过程的效率得到显著提高。为减少压力能的损失,必须解决下面几个问题:减少元件和系统的内部压力损失,以减少功率损失。主要表现在改进元件内部流道的压力损失,采用集成化回路和铸造流道,可减少管道损失,同时还可减少漏油损失。

减少或消除系统的节流损失,尽量减少非安全需要的溢流量,避免采用节流系统来调节流量和压力。采用静压技术,新型密封材料,减少磨擦损失。发展小型化、轻量化、复合化、广泛发展通径电磁阀以及低功率电磁阀。改进液压系统性能,采用负荷传感系统,二次调节系统和采用蓄能器回路。为及时维护液压系统,防止污染对系统寿命和可靠性造成影响,必须发展新的污染检测方法,对污染进行在线测量,要及时调整,不允许滞后,以免由于处理不及时而造成损失。 液压系统维护已从过去简单的故障拆修,发展到故障预测,即发现故障苗头时,预先进行维修,清除故障隐患,避免设备恶性事故的发展。 要实现主动维护技术必须要加强液压系统故障诊断方法的研究,当前,凭有经验的维修技术人员的感宫和经验,经过看、听、触、测等判断找故障已不适于现代工业向大型化、连续化和现代化方向发展,必须使液压系统故障诊断现代化,加强专家系统的研究,要总结专家的知识,建立完整的、具有学习功能的专家知识库,并利用计算机根据输入的现象和知识库中知识,用推理机中存在的推理方法,推算出引出故障的原因,提高维修方案和预防措施。要进一步引发液压系统故障诊断专家系统通用工具软件,对于不同的液压系统只需修改和增减少量的规则。 另外,还应开发液压系统自补偿系统,包括自调整、自润滑、自校正,在故障发生之前,进市补偿,这是液压行业努力的方向。 电子技术和液压传动技术相结合,使传统的液压传协与控制技术增加了活力,扩大了应用领域。实现机电一体化能够提高工作可靠性,实

液压缸的维护与常见故障的排除方法.

职业技术学院 毕业论文题目:液压缸的维护与常见故障的排除方法 作者:学号: 系: 专业: 班级: 指导者:讲师 评阅者: 年月

毕业设计(论文)中文摘要 液压缸的维护与常见故障的排除方法 摘要随着工程技术的发展,液压技术已经渗透到国民经济的各个方面,在机床、工程机械、冶金机械、塑料机械农林机械、汽车、船舶、国防、军工、航空航天等行业得到了普遍应用和大幅度的发展。液压传动相对于机械传动来说,是一门新兴的技术。它是利用液体来传递力和运动。液压缸是液压系统的重要执行元件之一,它将从泵站输入的液压能转换为机械能。本论文主要针对挖掘机液压缸各种故障产生的原因、现象、故障处理方法进行了较为详细的说明,并对液压缸的基本使用要求、包装、储存与运输、及液压缸的拆装、工作坏镜的要求、及液压缸常见故障与排除方法等事项也进行了较为细致的论述。文章简洁易懂.使每一位机械设备操作人员、维修人员都能读懂,并尽可能在实际操作中加深理解直至融会贯通。 关键词液压缸养护故障排除使用要求拆装

目次 1 引言 (1) 1.1 液压缸的工作原理 (1) 1.2 液压缸的分类 (1) 2液压缸的使用与防护 (4) 2.1 液压缸的使用 (4) 2.2 液压缸的包装、贮存与运输 (4) 2.3 不同工作环境下的防护 (5) 3 液压缸常见故障和排除方法 (6) 3.1 液压缸的常见故障 (6) 3.2 液压缸常见故障的原因分析与排除方法 (6) 3.2.1 爬行原因分析及排除方法 (6) 3.2.2 冲击原因分析及排除方法 (6) 3.2.3 推力不足原因分析及排除方法 (7) 3.2.4 液压缸漏油原因分析及排除方法 (7) 3.2.5 声响与噪声原因分析及排除方法 (9) 3.3维修液压缸故障时的注意事项 (10) 4 液压缸故障诊断 (12) 4.1液压缸故障诊断方法 (12) 4.2故障诊断技术发展趋势 (12) 结论 (13) 致谢 (14) 参考文献 (15)

机床导轨爬行的起因和解决措施

机床导轨爬行现象的起因和解决措施 机制09-**号 ***机床在低速或微量进给运动时,往往保持不了均匀的速度,进入时快时慢、时动时停的不稳定状态,这就是所谓爬行现象。爬行是一个复杂的摩擦自激振动现象,对其机理的认识,到目前为止依然争论颇多,尚未有统一的微分方程式对其精确描述。目前主要使用光栅爬行测量系统和激光干涉测量系统分析、测量导轨的爬行问题。 机床在运行过程中经常会遇到爬行问题。进给运动中的爬行现象破坏了系统运动的均匀性,不仅使被加工件精度和表面质量下降,也会严重影响机床的加工精度、表面粗糙度和定位精度,破坏液压系统工作的稳定性,使机床导轨加速磨损,甚至产生废品和事故。因此,爬行现象是精密机床及重型机床必须解决的问题,加工工件时应尽量避免它的产生。 我们知道爬行是指机床运动部件慢速动行时的不平稳性,表现为有规律的一停一跃。这种现象的出现,以磨床居多数,会严重影响工作的表面质量和尺寸精度。引起爬行的主要原因,是摩擦因数随运动速度的变化和传动系统刚性不足。机床在实际使用中,爬行现象主要是在传动系统刚性不足,驱动力与负载摩擦阻力波动变化的情况下形成。机床液压系统侵入空气,液压元件间隙增大及机械装置自身原因都可能引起爬行故障。 出现爬行现象可能由很多原因造成,概括起来包括机械和电气两方面因素。在解决此故障时要考虑诸多因素,逐一进行排除。例如,

数显机床在出现爬行问题时,要观察电机低速运转有无电流断续现象,电枢回路串接一块电流表,低速运行时观察指针有无摆动,若有摆动则故障多数发生在电气部分。对于直流调速系统控制的进给轴,又尤以测速机发生故障居多。在检查测速机时,可以先用万用表测量测速机反馈电压,监测电压是否平稳。如果反馈电压有波动,首先检查测速机线路有无故障,看看反馈线是否虚连。另外我们经常忽略的一个问题是检查测速机的屏蔽线是否联接良好,屏蔽线有损坏或者联接不好都有可能使外部信号干扰混入,从而发生爬行现象。在静态检查测速机时,可以测量测速机的电阻阻值及测速发电机有无匝间断路和短路现象。有时还要借助于示波器等检测手段观看电机运转时反馈的波形状态好坏。 分析完爬行现象产生的机理后,我们便要设法避免它的产生。目前较为常用的有改善导轨摩擦特性和降低驱动阻力这两种方法。改善导轨摩擦特性就是降低摩擦阻力和减小静、动摩擦系数之差。而驱动阻力的主要组成部分是导轨副的摩擦阻力,和正压力成正比,所以设计时应尽量减轻运动部件的重量。在维修上,主要应排除因零件质量或装配不善而引起的附加阻力。 在实际工作中,只要能够针对产生原因合理地采用有效地方法和措施,便可将机床运动中的爬行现象降低到最小的极限,从而保证机床的正常工作,我们也可更好的利用机床。

液压缸常见故障及修复方法

液压缸常见故障及修复方法液压缸在液压设备中占有重要的地位,其故障将直接影响设备的正常工作和寿命。大量实践表明,液压缸的故障主要表现为泄漏(内泄和外泄),而导致泄漏的原因主要是下列几个部位的损坏,即密封件损坏、端盖连接螺钉失效、导向套磨损和活塞支承坏部位磨损等。其中,后三种损坏又会导致密封件的损坏。下面,根据多年来修复液压缸的经验,对密封件损坏的原因进行分析并提出改进及修复方法。 1.由于安装型式不当引起的O形圈失效 有时,设计者从装配、安装、工艺及零件强度等因素,考虑将O形圈设计成角密封或端面密封型式。我们认为这种密封型式不宜用于中高压液压缸,因为此类型式的密封作用主要是靠拉杆或螺钉的压紧力来保证的。随着液压缸的工作时间或工作压力的增加,将出现螺钉松动或拉杆的拉伸变形现象,导致压紧力减小,从而失去密封作用,产生泄漏。另外,如果几个螺钉的拧紧程度不同也有可能引起泄漏。这种情况虽可通过均匀拧紧螺钉或在螺母上加防松装置予以解决,但最好还是将端面密封或角密封改为圆周密封。 2.端盖上螺钉失效 经定期检查或更换密封圈后的液压缸重新运行时,经常仅运转两三天便因压盖上的螺钉损坏而出现泄漏。这种故障一般是由于液压缸拆装后立即投入运转造成的。虽然组装时已将螺钉均匀拧紧,但因摩擦阻力随螺钉接合面的粗糙度不同而异,各螺钉的实际紧固力不尽相同,有的螺钉处于一种假紧固状态。因此液压缸工作后各螺钉的受力是不均匀的。若压盖与缸筒法兰之间留有压紧余量,螺钉又未完全拧紧时,上述现象会更加明显,以致于造成螺钉逐个损坏。这类故障的解决办法是:在液压缸组装后不要立即投入正式运行,而是先加压,

然后再度将螺钉拧紧,拧紧时应注意使压紧量保持均等。若必须留有一定间隙时,应插入适当的垫片,再将螺钉完全固紧。 3.因导向套和活塞支承环的过度磨损而引起密封件快速损坏 若液压缸因有泄漏而达不到预定的输出力时,其原因多数是由于活塞杆上的密封件损坏所致。而密封件的频繁损坏又归因于导向套和活塞支承环的过度磨损。当导向套与活塞杆、活塞支承环与缸筒的动配合间隙超过一定限度时,不但会加速密封件的磨损,而且还可能引起液压缸失稳,造成活塞杆弯曲,因此必须对磨损的导向套及活塞支承环进行修理或更换。 一般情况,出现导向套及活塞的严重磨损时应予更换,但对于比较大的液压缸,导向套和活塞多为铸铁件或堆铜件,若将整个零件全部更换,不仅成本高、浪费大,而且加工也有一定的难度。为此,我们采取增加耐磨环的办法进行修复,具体措施如下: 1)将导向套的内孔(与活塞杆配合的孔)直径d扩孔至(d+F1);将活塞支承部位(与 缸筒配合的部分)的外径D减小为(d-F2)。F1与F2的值如表1、2所示。 表1 F1值 表2 F2值

液压缸常见的失效模式

目前,大部分企业液压缸的维修模式仍停留在简单更换X畴,即仅仅更换密封件以及进行简单的打磨和清洗,甚至对于破损严重的部位也是如此。但经过简单维修过后的液压缸使用周期短,故障率高,维修费用高。可见,更换并不能作为维修管理的核心措施,企业应首先从本质上分析液压系统的失效原因,最大限度地确保设备地有效运行。 据统计,液压系统有70%~80%的故障是由液压油污染引起的,延长液压油洁净度劣化周期的前提就是要分析并控制油污染源。污染物的主要来源有以下几种途径:装配污染物——液压缸等元件在维修过程中产生的污染物,维修的次数越多,污染物产生越多;生成污染物——高摩擦系数零件在运行中产生大量磨损碎屑,同时频繁的维修使得液压缸常处在磨合期,生成大量污染物;吸入污染物——因为密封效果不佳,使外界粉尘等污染物进入系统。 明确污染物的来源是实施具体维修的前提,企业应根据故障原因不断升级维修方式,从而降低企业成本,提高运行效率,实现企业利益最大化。艾志工业生产质量总监IanMoffatt强调说。 液压油缸密封失效的主要因素 作者:hgmifeng2011-04-20 08:54 星期三晴 液压油缸密封失效的主要因素 液压设备的制造厂商为了降低成本往往采用不考虑液压缸密封件的重要性,他们通常会选用价格低廉的产品。由于价格低廉的液压密封件质量参差不齐,质量的稳定性也比较差,往往容易出现液压密封失效的故障,一旦液压缸如果失效,就会立即致使设备出现故障,这不仅生产停止甚至会严重的经济损失。如果液压设备的液压缸密封件出现问题,以下四点可以帮助你找到失效原因所在。 安装不当是液压密封失效的一个主要原因。安装时最需要注意的方面是:(1)清洁度;(2)防止损坏,避免液压密封件被刻痕;(3)适当的润滑。其他方面的问题在于,液压密封件上的密封套随动键的可调节部位密封过紧,或者是安装过程中液压密封唇被折叠。液压密封件的安装倒置也是一种常见的情况。解决这些问题主要是要注重常识并在安装过程中多加谨慎。 系统异物是液压密封失效的另一主要因素。它通常是由一些外部因素,诸如污垢,沙砾,泥土,灰尘,甚至冰,以及一些内部因素诸如金属碎片,乳化液、软管或其他可降解的系统组件的分解物等所引起。在降柱过程中很多外部异物都有可能会进入机器系统中,对此,最好的解决办法便是正确安装防尘圈或刮板。而最好的内部污染的避免办法则在于适当的液体过滤系统。有时很小的金属片会嵌入到密封件中,对于致污物问题需注意刮伤的柱体和缸体的内表面、过度磨损、密封泄漏等方面。 液压密封件材料出现化学性损坏是非常常见的。引起液压油缸密封件化学性损坏的第一要因在于选用了不正确的材料,或液压系统介质的变质。误用或使用不兼容的材料会出现由液体添加物、水解和氧化还原反应等引起的化学腐蚀现象。化学侵蚀可能导致的液压密封接口脱落,削弱密封件强度,过度膨胀或过度收缩致使密封件损坏。密封件发生变色也是化学侵蚀的指标之一。 热降解问题。当失效的液压密封件出现了表面硬,脆的现象,或者是部分液压密封件、密封唇或密封体出现脱离现象,那么就应考虑是否问题出在热降解上。热降解会引起密封唇失效,压缩过度并会腐蚀液压密封材料。这种情况的产生可能是以下原因造成的:使用了不正确的液压密封材料,高动态摩擦,装载过多的液压密封唇,没有远离而是太靠近外部热源等。修正热降解问题可能需要减少液压密封唇的阻碍,增加润滑,或更换另一种材料的液压密封件。在模棱两可的情况下认为,所有液压密封件密封接口处的最高温度

液压缸常见故障及处理

液压缸常见故障及处理 故障现象原因分析消除方法 ?(一)活塞杆不能动作 1。压力不足 (1)油液未进入液压缸?1) 换向阀未换向 2) 系统未供油 (2)虽有油,但没有压力 1) 系统有故障,主要就是泵或溢流阀有故障?2) 内部泄漏严重,活塞与活塞杆松脱,密封件损坏严重 (3)压力达不到规定值?1) 密封件老化、失效,密封圈唇口装反或有破损2) 活塞环损坏?3) 系统调定压力过低 4) 压力调节阀有故障?5) 通过调整阀得流量过小,液压缸内泄漏量增大时,流量不足,造成压力不足 1)检查换向阀未换向得原因并排除?2)检查液压泵与主要液压阀得故障原因并排除 1) 检查泵或溢流阀得故障原因并排除 2) 紧固活塞与活塞杆并更换密封件 1) 更换密封件,并正确安装 2) 更换活塞杆?3) 重新调整压力,直至达到要求值?4) 检查原因并排除5) 调整阀得通过流量必须大于液压缸内泄漏量?2。压力已达到要求但仍不动作

(1)液压缸结构上得问题 1) 活塞端面与缸筒端面紧贴在一起,工作面积不足,故不能启动?2) 具有缓冲装置得缸筒上单向阀回路被活塞堵住?(2)活塞杆移动“别劲”?1) 缸筒与活塞,导向套与活塞杆配合间隙过小 2) 活塞杆与夹布胶木导向套之间得配合间隙过小?3) 液压缸装配不良(如活塞杆、活塞与缸盖之间同轴度差,液压缸与工作台平行度差)?(3)液压回路引起得原因,主要就是液压缸背压腔油液未与油箱相通,回油路上得调速阀节流口调节过小或连通回油得换向阀未动作1) 端面上要加一条通油槽,使工作液体迅速流进活塞得工作端面?2) 缸筒得进出油口位置应与活塞端面错开 1) 检查配合间隙,并配研到规定值 2) 检查配合间隙,修刮导向套孔,达到要求得配合间隙 3) 重新装配与安装,不合格零件应更换?检查原因并消除?(二)速度达不到规定值 1、内泄漏严重 (1)密封件破损严重 (2)油得粘度太低 (3)油温过高 (1)更换密封件?(2)更换适宜粘度得液压油?(3)检查原因并排除?2。外载荷过大 (1)设计错误,选用压力过低?(2)工艺与使用错误,造成外载比预定值大 (1)核算后更换元件,调大工作压力

液压缸选型流程参考样本

液压缸选型程序 程序1: 初选缸径/杆径( 以单活塞杆双作用液压缸为例) ※ 条件一 已知设备或装置液压系统控制回路供给液压缸的油压P、流量Q及其工况需要液压缸对负载输出力的作用方式( 推、拉、既推又拉) 和相应力( 推力F1、拉力F2、推力F1和拉力F2) 的大小( 应考虑负载可能存在的额外阻力) 。针对负载输出力的三种不同作用方式, 其缸径/杆径的初选方法如下: ( 1) 输出力的作用方式为推力F1的工况: 初定缸径D: 由条件给定的系统油压P( 注意系统的流道压力损失) , 满足推力F1的要求对缸径D进行理论计算, 参选标准缸径系列圆整后初定缸径D; 初定杆径d: 由条件给定的输出力的作用方式为推力F1的工况, 选择原则要求杆径在速比1.46~2( 速比: 液压缸活塞腔有效作用面积与活塞杆腔有效作用面积之比) 之间, 具体需结合液压缸回油背压、活塞杆的受压稳定性等因素, 参照相应的液压缸系列速比标准进行杆径d的选择。( 2) 输出力的作用方式为拉力F2的工况:

假定缸径D, 由条件给定的系统油压P( 注意系统的沿程压力损失) , 满足拉力F2的要求对杆径d进行理论计算, 参选标准杆径系列后初定杆径d, 再对初定杆径d进行相关强度校验后确定。 ( 3) 输出力的作用方式为推力F1和拉力F2的工况: 参照以上( 1) 、 ( 2) 两种方式对缸径D和杆径d进行比较计算, 并参照液压缸缸径、杆径标准系列进行选择。 ※ 条件二 已知设备或装置需要液压缸对负载输出力的作用方式( 推、拉、既推 又拉) 和相应力( 推力F1、拉力F2、推力F1和拉力F2) 大小( 应考虑负载可能存在的额外阻力) 。但其设备或装置液压系统控制回路供给 液压缸的油压P、流量Q等参数未知, 针对负载输出力的三种不同作用方式, 其缸径/杆径的初选方法如下: ( 1) 根据本设备或装置的行业规范或特点, 确定液压系统的额定压力P; 专用设备或装置液压系统的额定压力由具体工况定, 一般建议在中低压 或中高压中进行选择。 ( 2) 根据本设备或装置的作业特点, 明确液压缸的工作速度要求。 ( 3) 参照”条件一”缸径/杆径的初选方法进行选择。 注: 缸径D、杆径d可根据已知的推( 拉) 力、压力等级等条件由下表进行初步查取。

爬行现象

数控机床进给系统爬行与振动故障的检测与维修 作者:轴承供应商网发布时间:2009-6-6 9:39:29 文字选择:大中小浏览次数:27 轴承及轴承相关技术文章(轴承供应商网提供)关键字:轴承,数控机床 摘要:数控机床是机械、液压、电气和计算机技术高度集成的一体化产品,其故障的发生也多数是机械、液压、电气等方面的综合反映。分析数控机床进给系统的爬行与振动现象产生原因,阐述故障的诊断与维修,并通过实例说明诊断与维修技术方法。关键词:数控机床;爬行;振动;维修 1数控机床进给系统爬行与振动现象及其产生原因 在驱动移动部件低速运行过程中,数控机床进给系统会出现移动部件开始时不能启动,启动后又突然作加速运动,而后又停顿,继而又作加速运动,移动部件如此周而复始忽停忽跳、忽慢忽快的运动现象称为爬行。而当其以高速运行时,移动部件又会出现明显的振动。 对于数控机床进给系统产生爬行的原因,一般认为是由于机床运动部件之间润滑不好,导致机床工作台移动时静摩擦阻力增大;当电机驱动时,工作台不能向前运动,使滚珠丝杠产生弹性变形,把电机的能量贮存在变形上;电动机继续驱动,贮存的能量所产的弹性力大于静摩擦力时,机床工作台向前蠕动,周而复始地这样运动,产生了爬行的现象。 事实上这只是其中的一个原因,产生这类故障的原因还可能是机械进给传动链出现了故障,也可能是进给系统电气部分出现了问题,或者是系统参数设置不当的缘故,还可能是机械部分与电气部分的综合故障所造成。 2爬行与振动故障的诊断与排除 对于数控机床出现的爬行与振动故障,不能急于下结论,而应根据产生故障的可能性,罗列出可能造成数控机床爬行与振动的有关因素,然后逐项排队,逐个因素检查,分析、定位和排除故障。查到哪一处有问题,就将该处的问题加以分析,看看是否是造成故障的主要矛盾,直至将每一个可能产生故障的因素都查到。最后再统筹考虑,提出一个综合性的解决问题方案,将故障排除。 排除数控机床进给系统爬行与振动故障的具体方法如下: 2.1对故障发生的部位进行分析 爬行与振动故障通常需要在机械部件和进给伺服系统查找问题。因为数控机床进给系统低速时的爬行现象往往取决于机械传动部件的特性,高速时的振动现象又通常与进给传动链中运动副的预紧力有关。另外,爬行和振动问题是与进给速度密切相关的,因此也要分析进给伺服系统的速度环和系统参数。 2.2机械部件故障的检查和排除 造成爬行与振动的原因如果在机械部件,首先要检查导轨副。因为移动部件所受的摩擦阻力主要是来自导轨副,如果导轨副的动、静摩擦系数大,且其差值也大,将容易造成爬行。尽管数控机床的导轨副广泛采用了滚动导轨、静压导轨

液压缸选型流程参考

液压缸选型程序 程序1:初选缸径/杆径(以单活塞杆双作用液压缸为例) ※ 条件一 已知设备或装置液压系统控制回路供给液压缸的油压P 、流量Q 及其工况需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)的大小(应考虑负载可能存在的额外阻力)。针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下: (1)输出力的作用方式为推力F1的工况: 初定缸径D :由条件给定的系统油压P (注意系统的流道压力损失),满足推力F1的要求对缸径D 进行理论计算,参选标准缸径系列圆整后初定缸径D ; 初定杆径d :由条件给定的输出力的作用方式为推力F1的工况,选择原则要求杆径在速比1.46~2(速比:液压缸活塞腔有效作用面积与活塞杆腔有效作用面积之比)之间,具体需结合液压缸回油背压、活塞杆的受压稳定性等因素,参照相应的液压缸系列速比标准进行杆径d 的选择。 (2)输出力的作用方式为拉力F2的工况: 程序一 初选缸径/杆径 程序二 选定行程/安装方式 程序三 选定缓冲方式 程序四 油口类型和通径选择 程序五 特定工况的条件选择 程序六 密封件品质的选择

假定缸径D,由条件给定的系统油压P(注意系统的沿程压力损失),满足拉力F2的要求对杆径d进行理论计算,参选标准杆径系列后初定杆径d,再对初定杆径d进行相关强度校验后确定。 (3)输出力的作用方式为推力F1和拉力F2的工况: 参照以上(1)、(2)两种方式对缸径D和杆径d进行比较计算,并参照液压缸缸径、杆径标准系列进行选择。 ※ 条件二 已知设备或装置需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)大小(应考虑负载可能存在的额外阻力)。但其设备或装置液压系统控制回路供给液压缸的油压P、流量Q等参数未知,针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下: (1)根据本设备或装置的行业规范或特点,确定液压系统的额定压力P;专用设备或装置液压系统的额定压力由具体工况定,一般建议在中低压或中高压中进行选择。 (2)根据本设备或装置的作业特点,明确液压缸的工作速度要求。 (3)参照“条件一”缸径/杆径的初选方法进行选择。 注:缸径D、杆径d可根据已知的推(拉)力、压力等级等条件由下表进行初步查取。

(完整版)液压缸选型参考

【液压缸选定程序】 程序1:初选缸径/杆径(以单活塞杆双作用液压缸为例) ※ 条件一 已知设备或装置液压系统控制回路供给液压缸的油压P、流量Q及其工况需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)的大小(应考虑负载可能存在的额外阻力)。针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下: (1)输出力的作用方式为推力F1的工况: 初定缸径D:由条件给定的系统油压P(注意系统的流道压力损失),满足推力F1的要求对缸径D进行理论计算,参选标准缸径系列圆整后初定缸径D; 初定杆径d:由条件给定的输出力的作用方式为推力F1的工况,选择原则要求杆径在速比1.46~2(速比:液压缸活塞腔有效作用面积与活塞杆腔有效作用面积之比)之间,具体需结合液压缸回油背压、活塞杆的受压稳定性等因素,参照相应的液压缸系列速比标准进行杆径d的选择。 (2)输出力的作用方式为拉力F2的工况: 假定缸径D,由条件给定的系统油压P(注意系统的沿程压力损失),满足拉力F2的要求对杆径d进行理论计算,参选标准杆径系列后初定杆径d,再对初定杆径d进行相关强度校验后确定。 (3)输出力的作用方式为推力F1和拉力F2的工况: 参照以上(1)、(2)两种方式对缸径D和杆径d进行比较计算,并参照液压缸缸径、杆径标准系列进行选择。 ※ 条件二 已知设备或装置需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)大小(应考虑负载可能存在的额外阻力)。但其设备或装置液压系统控制回路供给液压缸的油压P、流量Q等参数未知,针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下:(1)根据本设备或装置的行业规范或特点,确定液压系统的额定压力P;专用设备或装置液压系统的额定压力由具体工况定,一般建议在中低压或中高压中进行选择。 (2)根据本设备或装置的作业特点,明确液压缸的工作速度要求。 (3)参照“条件一”缸径/杆径的初选方法进行选择。 注:缸径D、杆径d可根据已知的推(拉)力、压力等级等条件由下表进行初步查取。 不同压力等级下各种缸径/杆径对应理论推(拉)力表

机床爬行现象的分析及消除方法

机床爬行现象的分析及消除方法 摘要: 机床进给系统的运动件,当其运行速度低到一定值时,往往不是作续匀速运动,而是时走时停、忽快忽慢,这种现象称之为爬行。爬行是机床运动中常见的现象,以磨床居多,严重影响着工作的表面质量和尺寸精度,由于引起其原因复杂,往往不易排除,所以一直被认为是机床运动中最棘手的故障之一。本文简述了机床导轨爬行产生的机理以及消除方法。 关键词:爬行导轨摩擦因数刚性 爬行是机床常见而不正常的运动状态,主要出现在机床各传动系统的执行部件上(如刀架系统、工作台等),且一般在低速行时出现较多。运动速度低时,润滑油被压缩,油膜变薄,油楔作用降低,部分油膜破坏,摩擦面阻力发生变化。通常情况下,轻微程度的爬行有不易察觉的振动,显著的爬行则是大距离地跳动。进给运动中的爬行现象破坏了系统运动的均匀性,不仅使被加工件精度和表面质量下降,也会破坏液压系统工作的稳定性,使机床导轨加速磨损,甚至产生废品和事故。比如磨床出现爬行时,会使磨工件的表面粗糙度增大;坐标镗床出现爬行,会使精确定位难以实现。因此,为了避免爬行的产生,必须分析清楚产生爬行的原因,一旦出现爬行现象,就要采取措施加以排除。 一、机床产生爬行的原因 产生爬行的原因可归结为如下几点: (1)摩擦副存在着静动摩擦系数之差。当处于边界摩擦时,动摩擦系数又随滑动速度的增加而降低。这就可能使系统具有负阻尼或零阻尼; (2)运动件的质量较大,因而具有较大的惯性; (3)传动机构的刚度不足。 机床在实际使用中,爬行现象主要是在传动系统刚性不足,驱动力与负载摩擦阻力波动变化的情况下形成。机床液压系统侵入空气,液压元件间隙增大及机械装置自身原因都可能引起爬行故障。爬行只在低速运行时才会出现,高速时,从动件的速度来不及超过原动件,弹簧始终处于压缩状态,没有放能的阶段,另外,高速时润滑油的油楔作用增大,更接近于液体摩擦,于是静、动摩擦系数之差减小,所以,高速时不会产生爬行现象。事实上,存在明显的临界爬行速度低于此速度时,爬行立即出现;高于此速度时,爬行即消失。产生原因可用实例来说明:假设有一原动件通过弹簧推动另一从动件,当原动件以等速向前运动,通过弹簧推动从件在平面上滑行时,当原动件启动后,首先需压缩弹簧一段距离,直到足以克服从动件的静摩擦力时,从动件才会起动,此时弹簧蓄能。当从动件起动后,由于动摩擦系数小于静摩擦系数,于是使从动件获得一个加速度,此时弹簧放能。如果移动速度很慢,弹簧的压缩量又较大,那么从动件的速度很快就会超过原动件,产生一个跳跃,直到弹簧压力和动摩擦力平衡后,从动件开始减速,但因为惯性,但因为惯性,还会再向前冲一段距离。至此,从动件因为失去了原动力就会停下来,直到原动件重新压缩弹簧到能克服从动件的静摩擦力

力士乐液压缸样本解读

1/44 Hydraulic cylinder Mill type Series CDH2 / CGH2 Component series 1X Nominal pressure 250 bar (25 MPa RE 17334/09.05Replaces: 02.05 Overview of contents Contents Page T echnical data 2Diameter, weights 2Areas, forces, flows 3T olerances 3 IHC-Designer: Engineering software 4Mounting style overview 4Ordering details 4Plain clevis at base MP3 6Self-aligning clevis at base MP5 8 Round flange at head MF3 10Round flange at base MF4 12Trunnions MT4 14Foot mounting MS2

16 H4652_d Features – Standards: DIN 24333, ISO 6022 and VW 39 D 921– 6 mounting styles – Piston ?: 40 to 320 mm – Piston rod ?: 25 to 220 mm – Stroke length up to 6 m Contents Page Flange connections 18Position measuring system 20Proximity switch 24Screwed coupling 26Self-aligning clevis 27Fork clevis 28Mounting block 29Buckling 31 End position cushioning 34Spare parts 37Tightening torques 39Seal kits 40 Engineering software: IHC-Designer from Rexroth Online https://www.360docs.net/doc/967700521.html,/Rexroth-IHD Download https://www.360docs.net/doc/967700521.html,/ business_units/bri/de/downloads/ihc Technical data (for applications outside these parameters, please consult us! Standards :

液压缸低速爬行的主要原因及解决方法

液压缸低速爬行的主要原因及解决方法 一、液压缸低速爬行的现象 液压缸的活塞杆在油压的作用下伸出或缩回时,经常出现速度不均匀现象,并有时伴有振动和异响,从而引起整个液压系统的振动,并带动主机其它部件振动,在主机调试过程中经常出现,有时速度快了,这种现象会减轻。除因液压系统管路引起这种现象以外,液压缸自身产生的振动也经常引发此类现象。 二、原因分析 液压缸低速爬行的主要原因可从以下方面分析: 1、液压缸有杆腔和无杆腔存有气体而产生的低速爬行,由于气体混在液压油中,在压力的作用下,体积变化,在高压作用下甚至发生气体瞬间爆炸,从而引起液压缸的速度不稳定。 2、液压缸设计间隙不当产生的低速爬行,液压缸内部活塞和缸体、活塞杆和导向套之间的滑动配合间隙太大,引起滑动面的受压不均匀,造成摩擦力不均匀,引起液压缸低速爬行;滑动配合间隙若太小,加上零部件制造存在公差,也会引起滑动面的受压不均匀,造成摩擦力不均匀,引起液压缸低速爬行。 3、液压缸内导向元件摩擦力不均匀产生的低速爬行,液压缸常用的导向材料有QT500.7、ZQAL9—4、非金属支撑环等,特别是非金属支撑环尺寸不均匀,一些非金属支撑环随油温变化尺寸增大或减小,即在油液中尺寸稳定性差直接造成配合间隙的变化,很容易造成液压缸的速度不稳定。 4、密封件材质问题引起的液压缸低速爬行,液压缸常用的密封材料有丁晴橡胶、聚胺酯橡胶、聚四氟乙烯等,由于材质硬度、强度、跟随性问题,直接影响其和滑动表面的摩擦力,另外对于唇口密封,油压的波动造成密封区与接触面的接触压力产生变化,从而引起液压缸速度的变化。 5、零部件加工精度的影响,液压缸缸体内壁和活塞杆表面加工精度的高低,对液压缸的低速稳定性影响很大。特别是几何精度影响更大,其中直线度是关键,在加工过程中直线度的保证最难做到,对行程较长的液压缸来说,液压缸缸体内壁和活塞杆表面的直线度是影响液压缸低速稳定性的主要因素。 三、解决办法 1、液压缸有杆腔和无杆腔存有气体而产生的低速爬行,可通过反复运行液压缸达到排气的目的,必要时在管路或液压缸的两腔设置排气装置,在液压系统工作时进行排气。 2、液压缸设计间隙不当产生的低速爬行,可正确设计液压缸内部活塞和缸体、活塞杆和导向套之间的滑动配合间隙,理论上的配合间隙为H9/N或H9/f8,也有H8/f8的;根据本作者的经验,液压缸的缸径和杆径由小到大,如都按此来设计配合间隙,对于

液压缸设计说明书样本

目录 一、设计要求——————————————————————-1 1、目的—————————————————————————1 2、题目—————————————————————————1 二、总述————————————————————————-2 1、作者的话——————————————————————--2 2、设计提要———————————————————————3 三、各零部件的设计及验算————————————————-5 1、缸筒设计———————————————————————5 2、法兰设计———————————————————————14 3、活塞设计———————————————————————19 4、活塞杆设计——————————————————————

21 5、缓冲装置和排气阀设计—————————————————26 四、外接线路和程序———————————————————-27 1、液压设配外接线路———————————————————27 2、操作板————————————————————————28 3、程序地址分配—————————————————————29 4、芯片接线图——————————————————————31 5、 PLC程序指令—————————————————————-33 五、参考文献———————————————————————38 一、设计要求 1、目的 ①、培养学生综合运用所学的基础理论和专业知识, 独立进行机电控制系统的初步设计工作, 并结合设计或实验研究课题进一步

巩固和扩大知识领域。 ②、培养学生搜集、阅读和综合分析参考资料, 运用各种标准和工具书籍以及编写技术文件的能力, 提高计算、绘图等基本技能。 ③、培养学生掌握机电产品的一般程序和方法, 进行工程师基本素质的训练。 ④、树立正确的设计思想及严肃认真的工作作风。 2、题目 液压油缸的压力和速度控制 ①、执行元件: 液压油缸; ②、传动方式: 电液比例控制; ③、控制方式: 单片微机控制、 PLC控制; ④、控制要求: 速度控制、推力控制; ⑤、主要设计参数: 油缸工作行程————600、 400mm; 额定工作油压————4MP; 移动负载质量————1000、 kg; 负载移动阻力————5000、 10000N; 移动速度控制————3、 6m/min。 二、总述 1、作者的话 液压油缸在现代工程中的使用十分频繁, 其工作性能和可靠性直接影响工程的质量和进度;

液压缸全套图纸说明书样本

绪论——————————————第3页 第1章液压传动的基础知识————————第4页 1.1 液压传动系统的组成————————第4页 1.2 液压传动的优缺点—————————第4页 1.3 液压传动技术的发展及应用——————第6页 第2 章液压传动系统的执行元件 ——液压缸——————————第8页 2.1 液压缸的类型特点及结构形式——————第8页 2.2 液压缸的组成——————————第11页 第3章 D G型车辆用液压缸的设计——————第19页

3.1 简介—————————————第19页 3.2 DG型液压缸的设计----------- —————第20页 第4章液压缸常见故障分析与排除方法—————第27页 总结——————————————第29 页 绪论 第一章液压传动的基础知识 1.1液压传动系统的组成 液压传动系统由以下四个部分组成: 〈1〉动力元件——液压泵其功能是将原动机输出的机械能转换成液体的压力能,为系统提供动力。

〈2〉执行元件——液压缸、液压马达。它们的功能是将液体的压力能转换成机械能,以带动负载进行直线运动或者旋转运动。 〈3〉控制元件——压力、流量和方向控制阀。它们的作用是控制和调节系统中液体的动力、流量和流动方向,以保证执行元件达到所要求的输出力(或力矩)、运动速度和运动方向。 〈4〉辅助元件——保证系统正常工作所需要的辅助装置。包括管道、管接头、油箱过滤器和指示仪表等。 〈5〉工作介质---工作介质即传动液体,一般称液压油。液压系统就是经过工作介质实现运动和动力传递的。 1.2液压传动的优缺点 优点: 〈1〉体积小、重量轻,单位重量输出的功率大(一般可达32M P a,个别场合 更高)。 〈2〉可在大范围内实现无级调速。 〈3〉操纵简单,便于实现自动化。特别是和电气控制联合使用时,易于实现

相关文档
最新文档