上海华育中学数学有理数单元检测(基础+提高,Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学有理数解答题压轴题精选(难)

1.如图,在数轴上每相邻两点间的距离为一个单位长度,点、、、对应的数分别是,且 .

(1)那么 ________, ________:

(2)点以个单位/秒的速度沿着数轴的正方向运动,秒后点以个单位/秒的速度也沿着数轴的正方向运动,当点到达点处立刻返回,与点在数轴的某点处相遇,求这个点对应的数;

(3)如果、两点以(2)中的速度同时向数轴的负方向运动,点从图上的位置出发

也向数轴的负方向运动,且始终保持,当点运动到时,点对应的数是多少?

【答案】(1)-6;-8

(2)解:由(1)可知:,,,,

点运动到点所花的时间为,

设运动的时间为秒,

则对应的数为,

对应的数为: .

当、两点相遇时,,,

∴ .

答:这个点对应的数为;

(3)解:设运动的时间为

对应的数为:

对应的数为:

∵对应的数为

①当,;

②当,,不符合实际情况,

答:点对应的数为

【解析】【解答】解:(1)由图可知:,

∵,

∴,

解得,

则;

【分析】(1)由a、d在数轴上的位置可得d=a+8,代入已知的等式可求得a的值,再根据数轴可确定原点的位置;

(2)根据相遇问题可求得相遇时间,然后结合题意可求解;

(3)根据AB=AC列方程,解含绝对值的方程可求解.

2.如图,已知数轴上点表示的数为,是数轴上位于点左侧一点,且AB=20,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间t(t>0)秒.

(1)写出数轴上点表示的数________;点表示的数________(用含的代数式表示)(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,若点、同时出发,问多少秒时、之间的距离恰好等于?

(3)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问多少秒时、之间的距离恰好又等于?

(4)若为的中点,为的中点,在点运动的过程中,线段的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段的长.

【答案】(1);

(2)解:若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:

①点P、Q相遇之前,

由题意得3t+2+5t=20,解得t=2.25;

②点P、Q相遇之后,

由题意得3t-2+5t=20,解得t=2.75.

答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2

(3)解:设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:

①点P、Q相遇之前,

则5x-3x=20-2,

解得:x=9;

②点P、Q相遇之后,

则5x-3x=20+2

解得:x=11.

答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2

(4)解:线段MN的长度不发生变化,都等于10;理由如下:

①当点P在点A、B两点之间运动时:

MN=MP+NP= AP+ BP= (AP+BP)= AB= ×20=10,

②当点P运动到点B的左侧时:

MN=MP-NP= AP- BP= (AP-BP) AB=10,

则线段MN的长度不发生变化,其值为10

【解析】【解答】(1)∵点A表示的数为8,B在A点左边,AB=20,

∴点B表示的数是8-20=-12,

∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,

∴点P表示的数是8-5t.

故答案为-12,8-5t;

【分析】(1)根据已知可得B点表示的数为8-20;点P表示的数为8-5t;(2)设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(3)设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(4)分①当点P 在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.

3.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d(d≥0)个单位长度.

(1)当t=1时,d=________;

(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;

(3)当点P运动到线段AB的3等分点时,直接写出d的值;

(4)当d=5时,直接写出t的值.

【答案】(1)3

(2)解:线段AB的中点表示的数是:=1.

①如果P点恰好运动到线段AB的中点,那么AP=AB=3,t==3,

BQ=2×3=6,即Q运动到A点,

此时d=PQ=PA=3;

②如果Q点恰好运动到线段AB的中点,那么BQ=AB=3,t=,

AP=1× =,

则d=PQ=AB﹣AP﹣BQ=6﹣﹣3=.

故d的值为3或

(3)解:当点P运动到线段AB的3等分点时,分两种情况:

①如果AP=AB=2,那么t==2,

此时BQ=2×2=4,P、Q重合于原点,

则d=PQ=0;

②如果AP=AB=4,那么t==4,

∵动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动,

∴此时BQ=6,即Q运动到A点,

∴d=PQ=AP=4.

故所求d的值为0或4

(4)解:当d=5时,分两种情况:

①P与Q相遇之前,

∵PQ=AB﹣AP﹣BQ,

∴6﹣t﹣2t=5,

解得t=;

相关文档
最新文档