电力大数据总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力大数据的发展

随着数字信息化时代的迅猛发展,信息量也呈爆炸性增长态势。在人类充分享受信息化带来的资讯、方便和快捷时,也使得全球的数字信息资源正进入到一个前所未有的快速增长期。据IDC统计,2011年全球数据量已达到1.8ZB,相当于全世界人均产生200GB以上的数据,并且还将以每年50%的速度继续增长。在这汹涌来袭的数据浪潮下,社会各个领域也将开始其数据化进程。无论学术界、商界还是政府,都将不可避免的进入“大数据时代”。作为全球第二大经济体的基础能源支撑体系,中国电力工业概莫能外。近几年,电力行业信息化也得到了长足的发展,我国电力企业信息化起源于20世纪60年代,从初始电力生产自动化到80年代以财务电算化为代表的管理信息化建设,再到近年大规模的企业信息化建设,特别伴随着下一代智能化电网的全面建设,以物联网和云计算为代表的新一代IT技术在电力行业中的广泛应用,电力数据资源开始急剧增长并形成了一定的规模。从长远来看,作为中国经济社会发展的“晴雨表”,电力数据以其与经济发展紧密而广泛的联系,将会呈现出无以伦比的正外部性,对我国经济社会发展以至人类社会进步也将形成更为强大的推动力。据统计,截至2013年底,国家电网建成世界最大电能计量自动化系统,累计安装智能电能表1.82亿只,实现采集1.91亿户,采集覆盖率56%,自动抄表核算率超过97%。智能电网可以产生巨大的数据量。比如国网信通在北京五个小区,353个采集点,采集1.2万个参数,包括频率、电压、电流等,15分钟采集一次,一天就能产生34GB。

电力大数据的概念

电力是大数据理念、技术和方法在电力行业的实践。电力大数据涉及到发电、输电、变电、配电、用电、调度各环节,是跨单位、跨专业、跨业务数据分析与挖掘,以及数据可视化。

电力大数据由结构化数据和非结构化构成,随着智能电网建设和物联网的应用,非结构化数据呈现出快速增长的势头,其数量将大大超过结构化数据。电力大数据的特性满足大数据的五个特性,一是数据量大(Volume)、二是处理速度快(Velocity)、三是数据类型多(Variety)、四是价值大(Value)、五是精确性高(Veracity)。。

电力大数据的前景

在电力行业,坚强智能电网的迅速发展使信息通信技术正以前所未有的广度、深度与电网生产、企业管理快速融合,信息通信系统已经成为智能电网的“中枢神经”,支撑新一代电网生产和管理发展。当前,电网业务数据大致分为三类:一是电力企业生产数据,如发电量、电压稳定性等方面的数据;二是电力企业运营数据,如交易电价、售电量、用电客户等方面的数据;三是电力企业管理数据,如ERP、一体化平台、协同办公等方面的数据。如能充分利用这些基于电网实际的数据,对其进行深入分析,便可以提供大量的高附加值服务。这些增值服务将有利于电网安全检测与控制(包括大灾难预警与处理、供电与电力调度决策支持和更准确的用电量预测),客户用电行为分析与客户细分,电力企业精细化运营管理等等,实现更科学的需求侧管理。

电力大数据技术

电力大数据技术满足电力数据飞速增长,满足各专业工作需要,满足提高电力工业发展需要,服务经济发展需要。电力大数据技术包括:高性能计算、数据挖掘、统计分析、数据可视化等。

实践过程面对的挑战

智能电网中数据量最大的应属于电力设备状态监测数据。状态监测数据不仅包括在线的状态监测数据(时序数据和视频),还包括设备基本信息、实验数据、缺陷记录等,数据量极大,可靠性要求高,实时性要求比企业管理数据要高。

智能电网的基础设施规模庞大,数量众多且分布在不同地点。

数据质量较低,数据管控能力不强。大数据时代中,数据质量的高低、数据管控能力的强弱直接影响了数据分析的准确性和实时性。目前,电力行业数据在可获取的颗粒程度,数据获取的及时性、完整性、一致性等方面的表现均不尽人意,数据源的唯一性、及时性和准确性急需提升,部分数据尚需手动输入,采集效率和准确度还有所欠缺,行业中企业缺乏完整的数据管控策略、组织以及管控流程。

数据共享不畅,数据集成程度不够。大数据技术的本质是从关联复杂的数据中挖掘知识,提升数据价值,单一业务、类型的数据即使体量再大,缺乏共享集成,其价值就会大打折扣。目前电力行业缺乏行业层面的数据模型定义与主数据管理,各单位数据口径不一致。行业中存在较为严重的数据壁垒,业务链条间也尚未实现充分的数据共享,数据重复存储且不一致的现象较为突出。

挑战3:防御能力不足,信息安全面临挑战。电力大数据由于涉及到众多电力用户的隐

私,对信息安全也提出了更高的要求。电力企业地域覆盖范围极广,各单位防护体系建设不平衡,信息安全水平不一致,特别偏远地区单位防护体系尚未全面建立,安全性有待提高。行业中企业的安全防护手段和关键防护措施也需要进一步加强,从目前的被动防御向多层次、主动防御转变。

挑战4:承载能力不足,基础设施亟待完善。电力数据储存时间要求以及海量电力数据的爆发式增长对IT基础设施提出了更高的要求。目前电力企业虽大多已建成一体化企业级信息集成平台,能够满足日常业务的处理要求,但其信息网络传输能力、数据存储能力、数据处理能力、数据交换能力、数据展现能力以及数据互动能力都无法满足电力大数据的要求,尚需进一步加强。

挑战5:相关人才欠缺,专业人员供应不足。大数据是一个崭新的事业,电力大数据的发展需要新型的专业技术人员,例如大数据处理系统管理员、大数据处理平台开发人员、数据分析员和数据科学家等。而当前行业内外此类技术人员的缺乏将会成为影响电力大数据发展的一个重要因素。

实施电力大数据给电网带来的利益

为电网规划和新能源探路

可以抽象地认为,智能电网就是“大数据”这个概念在电力行业中的应用,就是通过

网络将用户的用电习惯等信息传回给电网企业的信息中心,进行分析处理,并对电网规划、建设、服务等提供更可靠的依据。同时,对于风能、太阳能等具有间歇性的新能源,通过“大数据”分析进行有效地调节,也可以使新能源更好地与传统的水火电进行互补,更为灵活地出力。

更加智能的电网运行

我们还须将采集到的数据信息,建立电力信息大数据库,整合系统内各项电力数据,分析大数据的内在联系,通过云计算技术,构建一体化监控系统,优化电网的运行方式,达到经济运行目的;快速查找、隔离故障,缩短用户的停电时间;合理控制无功负荷和电压水平,改善供电质量;深化信息综合分析、智能告警、一键式控制等高级应用功能,解决目前存在的系统功能分散、集成度低、维护工作量大等问题,提升电网监控系统的集成化和智能化水平。更加高效的需求侧管理

电力大数据可通过根据用户的用电量、分时电价、天气预报以及建筑物里的供暖特性等进行综合分析,确定最优运行和负荷控制计划,对集中负荷及部分工厂用电负荷进行监视、管理和控制,并通过合理的电价结构引导用户转移负荷,平坦负荷曲线。并且通过对电力系统生产运行方式的优化、对间歇式可再生能源的消纳以及对全社会节能减排观念的引导,这样可以在完成同样用电功能的情况下减少电量消耗和电力需求,从而缓解缺电压力,降低供电成本和用电成本,使供电和用电双方得到实惠,达到节约能源和保护环境的长远目的,

相关文档
最新文档