中考数学压轴题 易错题提优专项训练
中考数学中考数学压轴题 复习提优专项训练试题(1)
一、中考数学压轴题1.如图,在平面直角坐标系xoy 中,直线122y x =-+与x 轴交于点B ,与y 轴交于点,C 抛物线2y ax bx c =++的对称轴是直线3,2x =与x 轴的交点为点,A 且经过点B C 、两点.(1)求抛物线的解析式;(2)点M 为抛物线对称轴上一动点,当BM CM -的值最小时,请你求出点M 的坐标;(3)抛物线上是否存在点N ,过点N 作NH x ⊥轴于点,H 使得以点、、B N H 为顶点的三角形与ABC 相似?若存在,请直接写出点N 的坐标;若不存在,请说明理由.2.如图1,在平面直角坐标系中,抛物线239334y x x =--x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C .(1)过点C 的直线5334y x =-x 轴于点H ,若点P 是第四象限内抛物线上的一个动点,且在对称轴的右侧,过点P 作//PQ y 轴交直线CH 于点Q ,作//PN x 轴交对称轴于点N ,以PQ PN 、为邻边作矩形PQMN ,当矩形PQMN 的周长最大时,在y 轴上有一动点K ,x 轴上有一动点T ,一动点G 从线段CP 的中点R 出发以每秒1个单位的速度沿R K T →→的路径运动到点T ,再沿线段TB 以每秒2个单位的速度运动到B 点处停止运动,求动点G 运动时间的最小值:(2)如图2, 将ABC ∆绕点B 顺时针旋转至A BC ''∆的位置, 点A C 、的对应点分别为A C ''、,且点C '恰好落在抛物线的对称轴上,连接AC '.点E 是y 轴上的一个动点,连接AE C E '、, 将AC E ∆'沿直线C E '翻折为A C E ∆'', 是否存在点E , 使得BAA ∆'为等腰三角形?若存在,请求出点E 的坐标;若不存在,请说明理由.3.已知:如图,AB 为O 的直径,弦CD AB ⊥垂足为E ,点H 为弧AC 上一点.连接DH 交AB 于点F ,连接HA 、BD ,点G 为DH 上一点,连接AG ,HAG BDC ∠=∠. (1)如图1,求证:AG HD ⊥;(2)如图2,连接HC ,若HC HF =,求证:HC HA =;(3)如图3,连接HO 交AG 于点K ,若点F 为DG 的中点,HC 2HG =,求KG AK的值.4.已知抛物线217222y x mx m 的顶点为点C . (1)求证:不论m 为何实数,该抛物线与x 轴总有两个不同的交点;(2)若抛物线的对称轴为直线3x =,求m 的值和C 点坐标;(3)如图,直线1y x =-与(2)中的抛物线并于A B 、两点,并与它的对称轴交于点D ,直线x k =交直线AB 于点M ,交抛物线于点N .求当k 为何值时,以C D M N 、、、为顶点的四边形为平行四边形.5.已知.在Rt △OAB 中,∠OAB=90°,∠BOA=30°,3O 为坐标原点,OA 所在直线为x 轴,建立如图所示的平面直角坐标系,点B 在第一象限内,将Rt △OAB 沿OB折叠后,点A 落在第一象限内的点C 处.(1)求经过点O ,C ,A 三点的抛物线的解析式.(2)若点M 是抛物线上一点,且位于线段OC 的上方,连接MO 、MC ,问:点M 位于何处时三角形MOC 的面积最大?并求出三角形MOC 的最大面积.(3)抛物线上是否存在一点P ,使∠OAP=∠BOC ?若存在,请求出此时点P 的坐标;若不存在,请说明理由.6.在梯形ABCD 中,//AD BC ,90B ∠=︒,45C ∠=︒,8AB =,14BC =,点E 、F 分别在边AB 、CD 上,//EF AD ,点P 与AD 在直线EF 的两侧,90EPF ∠=︒,PE PF =,射线EP 、FP 与边BC 分别相交于点M 、N ,设AE x =,MN y =.(1)求边AD 的长;(2)如图,当点P 在梯形ABCD 内部时,求关于x 的函数解析式,并写出定义域; (3)如果MN 的长为2,求梯形AEFD 的面积.7.如图,矩形ABCD 中,AB =8,BC =12,E 是BC 边的中点,点P 在线段AD 上,过P 作PF ⊥AE 于F ,设PA =x .(1)求证:△PFA ∽△ABE ;(2)当点P 在线段AD 上运动时,是否存在实数x ,使得以点P ,F ,E 为顶点的三角形也与△ABE 相似?若存在,请求出x 的值;若不存在,请说明理由;(3)探究:当以D 为圆心,DP 为半径的⊙D 与线段AE 只有一个公共点时,请直接写出DP 满足的条件: .8.如图,在平面直角坐标中,点O 为坐标原点,ABC ∆的三个顶点坐标分别为()A O m ,,(),B m O -,(),C n O ,5AC =且OBA OAB ∠=∠,其中m ,n 满足725m n m n +=⎧⎨-=⎩.(1)求点A ,C 的坐标;(2)点P 从点A 出发,以每秒1个单位长度的速度沿y 轴负方向运动,设点P 的运动时间为t 秒.连接BP 、CP ,用含有t 的式子表示BPC ∆的面积为S (直接写出t 的取值范围);(3)在(2)的条件下,是否存在t 的值,使得ΔΔ32PAB POC S S =,若存在,请求出t 的值,并直接写出BP 中点Q 的坐标;若不存,请说明理由.9.已知:如图,二次函数213222y x x =-++的图象交x 轴于A 点和B 点(A 点在B 点左则),交y 轴于E 点,作直线,EB D 是直线EB 上方抛物线上的一个动点.过D 点作 直线l 平行于直线.EB M 是直线 EB 上的任意点,N 是直线l 上的任意点,连接,MO NO ,始终保持MON ∠为90︒,以MO 和ON 边,作矩形MONC .(1)在D 点移动过程中,求出当DEB ∆的面积最大时点D 的坐标;在DEB ∆的面积最大 时,求矩形MONC 的面积的最小值.(2)在DEB ∆的面积最大时,线段ON 交直线EB 于点G ,当点,,,D N G B 四个点组成平行 四边形时,求此时线段ON 与抛物线的交点坐标.10.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH .(1)求证:EDO EAO ∆≅∆;(2)设BF x =,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域;(3)连接AG ,当AEG ∆是等腰三角形时,求BF 的长.11.问题提出(1)如图①,在ABC 中,2,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.12.已知:如图①,在等腰直角ABC ∆中,斜边2AC =.(1)请你在图①的AC 边上求作一点P ,使得90APB ∠=︒;(2)如图②,在(1)问的条件下,将AC 边沿BC 方向平移,使得点A 、P 、C 对应点分别为E 、Q 、D ,连接AQ ,BQ .若平移的距离为1,求AQB ∠的大小及此时四边形ABDE 的面积;(3)将AC 边沿BC 方向平移m 个单位至ED ,是否存在这样的m ,使得在直线DE 上有一点M ,满足30AMB ∠=︒,且此时四边形ABDE 的面积最大?若存在,求出四边形ABDE 面积的最大值及平移距离m 的值;若不存在,请说明理由.13.如图,平面上存在点P 、点M 与线段AB .若线段AB 上存在一点Q ,使得点M 在以PQ 为直径的圆上,则称点M 为点P 与线段AB 的共圆点.已知点P (0,1),点A (﹣2,﹣1),点B (2,﹣1).(1)在点O (0,0),C (﹣2,1),D (3,0)中,可以成为点P 与线段AB 的共圆点的是 ;(2)点K 为x 轴上一点,若点K 为点P 与线段AB 的共圆点,请求出点K 横坐标x K 的取值范围;(3)已知点M (m ,﹣1),若直线y =12x +3上存在点P 与线段AM 的共圆点,请直接写出m 的取值范围.14.在ABC ∆中,若存在一个内角角度,是另外一个内角角度的n 倍(n 为大于1的正整数),则称ABC ∆为n 倍角三角形.例如,在ABC ∆中,80A ∠=︒,75B ∠=︒,25C ∠=︒,可知3∠=∠B C ,所以ABC ∆为3倍角三角形.(1)在ABC ∆中,55A ∠=︒,25B ∠=︒,则ABC ∆为________倍角三角形;(2)若DEF ∆是3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的13,求DEF ∆的最小内角. (3)若MNP ∆是2倍角三角形,且90M N P ∠<∠<∠<︒,请直接写出MNP ∆的最小内角的取值范围.15.如图,在正方形ABCD 中,DC=8,现将四边形BEGC 沿折痕EG(G ,E 分别在DC ,AB 边上)折叠,其顶点B ,C 分别落在边AD 上和边DC 的上部,其对应点设为F ,N 点,且FN 交DC 于M .特例体验:(1)当FD=AF 时,△FDM 的周长是多少?类比探究:(2)当FD≠AF≠0时,△FDM 的周长会发生变化吗?请证明你的猜想.拓展延伸:(3)同样在FD≠AF≠0的条件下,设AF 为x ,被折起部分(即:四边形FEGN)的面积为S ,试用含x 的代数式表示S ,并问:当x 为何值时,S=26?16.综合与探究:如图1,在平面直角坐标系xOy 中,四边形OABC 是边长为4的菱形,60C ︒∠=(1)把菱形OABC 先向右平移4个单位后,再向下平移()03m m <<个单位,得到菱形''''O A B C ,在向下平移的过程中,易知菱形''''O A B C 与菱形OABC 重叠部分的四边形'AEC F 为平行四边形,如图2.试探究:当m 为何值时,平行四边形'AEC F 为菱形:(2)如图,在()1的条件下,连接''',AC B O G 、为CE 的中点J 为EB 的中点,H 为AC 上一动点,I 为''B O 上一动点,连接,,,GH HI IJ 求GH HI IJ ++的最小值,并直接写出此时,H I 点的坐标.17.如图,在ABC 中,90ABC ∠=︒,AB BC <,O 为AC 中点,点D 在BO 延长线上,CD BC =,AE BC ∥,CE CA =,AE 交BD 于点G .(1)若28DCE ∠=︒,求AOB ∠的度数;(2)求证:AG GE =;(3)设DC 交GE 于点M .①若3AB =,4BC =,求::AG GM ME 的值;②连结DE ,分别记ABG ,DGM ,DME 的面积为1S ,2S ,3S ,当AC DE 时,123::S S S = .(直接写出答案)18.如图,一张半径为3cm 的圆形纸片,点O 为圆心,将该圆形纸片沿直线l 折叠,直线l 交O 于AB 、两点.(1)若折叠后的圆弧恰好经过点O ,利用直尺和圆规在图中作出满足条件的一条直线l (不写作法,保留作图痕迹),并求此时线段AB 的长度.(2)已知M 是O 一点,1cm OM =.①若折叠后的圆弧经过点M ,则线段AB 长度的取值范围是________.②若折叠后的圆弧与直线OM 相切于点M ,则线段AB 的长度为_________cm .19.在平面直角坐标系中,点O 为坐标原点,抛物线(2)()y a x x m =++与x 轴交于点A C 、(点A 在点C 的左侧),与y 轴正半轴交于点B ,24OC OB ==.(1)如图1,求a m 、的值;(2)如图2,抛物线的顶点坐标是M ,点D 是第一象限抛物线上的一点,连接AD 交抛物线的对称轴于点N ,设点D 的横坐标是t ,线段MN 的长为d ,求d 与t 的函数关系式;(3)如图3,在(2)的条件下,当154d =时,过点D 作DE x 轴交抛物线于点E ,点P 是x 轴下方抛物线上的一个动点,连接PE 交x 轴于点F ,直线211y x b =+经过点D 交EF 于点G ,连接CG ,过点E 作EH CG 交DG 于点H ,若3CFG EGH S S =△△,求点P 的坐标.20.如图,抛物线214y x bx c =++与x 轴交于点A (-2,0),交y 轴于点B (0,52-).直线32y kx =+过点A 与y 轴交于点C ,与抛物线的另一个交点是D .(1) 求抛物线214y x bx c =++与直线32y kx =+的解析式; (2)点P 是抛物线上A 、D 间的一个动点,过P 点作PM ∥CE 交线段AD 于M 点.①过D 点作DE ⊥y 轴于点E ,问是否存在P 点使得四边形PMEC 为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;②作PN ⊥AD 于点N ,设△PMN 的周长为m ,点P 的横坐标为x ,求m 关于x 的函数关系式,并求出m 的最大值.21.已知抛物线2y ax bx c =++过点(6,0)A -,(2,0)B ,(0,3)C -.(1)求此抛物线的解析式;(2)若点H 是该抛物线第三象限的任意一点,求四边形OCHA 的最大面积;(3)若点Q 在y 轴上,点G 为该抛物线的顶点,且45GQA ∠=︒,求点Q 的坐标.22.如图,二次函数23y x x m =-++的图象与x 轴的一个交点为(4,0)B ,另一个交点为A ,且与y 轴相交于C 点(1)则m =_________;C 点坐标为___________;(2)在直线BC 上方的抛物线上是否存在一点M ,使得它与B ,C 两点构成的三角形面积最大,若存在,求出此时M 点坐标;若不存在,请简要说明理由.(3)P 为抛物线上一点,它关于直线BC 的对称点为Q①当四边形PBQC 为菱形时,求点P 的坐标;②点P 的横坐标为(04)t t <<,当t =________时,四边形PBQC 的面积最大.23.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交BC 于点F .(1)如图①,当AE ⊥BC 时,写出图中所有与∠B 相等的角: ;所有与∠C 相等的角: .(2)若∠C -∠B =50°,∠BAD =x °(0<x ≤45) .① 求∠B 的度数;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由.24.已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ; (2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.25.如图,直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣32x+c 经过A ,B 两点,与x 轴的另一交点为C .(1)求抛物线的解析式;(2)M 为抛物线上一点,直线AM 与x 轴交于点N ,当32MN AN =时,求点M 的坐标; (3)P 为抛物线上的动点,连接AP ,当∠PAB 与△AOB 的一个内角相等时,直接写出点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.B解析:(1)213222y x x =-++;(2)3(,0)2;(3)存在;(0,2)N 或(3,2)N 或(2,3)--N 或(5,18)--N【解析】【分析】(1)由直线122y x =-+可得B 、C 两点的坐标,根据二次函数的对称轴求得A 点坐标,可设抛物线的解析式为(1)(4)y a x x =+-,将C 点坐标代入可求得a ,即可得抛物线的解析式;(2)根据绝对值的性质得出BM CM -的值最小时,点M 为BC 的垂直平分线与直线32x =的交点,求得BC 垂直平分线的解析式,联立直线32x =即可求得点M ; (3)分四种情况进行讨论,设出N 的坐标,根据相似三角形的对应边成比例的性质,求得N 的横坐标与纵坐标的关系,然后联立抛物线解析式即可求解.【详解】 解:∵直线122y x =-+与x 轴交于点B ,与y 轴交于点C , ∴当y =0时,即1022x =-+,解得:x =4,则点B 的坐标为(4,0), 当x =0时,10222=-⨯+=y ,则点C 的坐标为(0,2),由二次函数的对称性可知:点A 与点B 关于直线32x =对称, ∴点A 的坐标为(1,0)-,∵抛物线与x 轴的交点为点(1,0),(4,0)A B -,∴可设抛物线的解析式为(1)(4)y a x x =+-,又∵抛物线过点(0,2)C ,∴2(01)(04)a =+-,解得:12a =-, ∴2113(1)(4)2222y x x x x =-+-=-++ ∴抛物线的解析式为213222y x x =-++; (2)如图1,连结CM 、BM ,作线段BC 的垂直平分线l 分别交BC 、直线32x =于点'、N M ,则N 为BC 中点;由绝对值的性质可得:0≥-BM CM ,∴当BM CM -的值最小时,即0=-BM CM ,则此时CM BM =,∴点M 为l 与直线32x =的交点,此时M 与'M 重合, 设l 的解析式为:y kx b =+,∵直线BC 的解析式为:122y x =-+,BC l ⊥ ∴112-⋅=-k ,解得:2k =,则l 的解析式可化为:2y x b =+, 由(4,0),(0,2)B C 得点N 的坐标为(2,1),将(2,1)N 代入2y x b =+得:14b =+,解得:3b =-,∴23y x =-,将32x =代入23y x =-,得323=02=⨯-y ,即3'(,0)2M , ∴当BM CM -的值最小时,点M 的坐标为3(,0)2,(3)抛物线上存在点N ,使得以点、、B N H 为顶点的三角形与ABC 相似; ∵(1,0),(4,0),(0,2)-A B C∴1,4==OA OB ,2OC =,5AB =, ∴2222125=+=+=AC OA OC ,22224225BC OB OC =+=+=, ∵22252025+=+==AC BC AB ,∴ABC 为直角三角形,90ACB ∠=︒,∵NH x ⊥轴,∴90∠=︒NHB ,则90∠=∠=︒NHB ACB ,如图2所示,分四种情况,点N 的坐标分别为1234、、、N N N N ,设点N 的坐标为(,)m n ,①当点1N 在x 轴的上方,要使11N BH ABC ,则11∠=∠N BH ABC ,则此时点1N 与点C 重合,则此时点1H 与点O 重合,则11≅N BH ABC ,满足题意,∴此时点1N 的坐标为(0,2);②当点2N 在x 轴的上方,要使22BN H ABC ,则2222==N H BC BH AC , ∴24=-n m,即28n m =-+,代入抛物线的解析式得: 21328222mm m ,化简得:27120m m , 解得:13m =,24m =(不符合题意,故舍去),将3m =代入抛物线解析式得:2n =,∴此时点2N 的坐标为(3,2);③当点3N 在x 轴的下方,要使33N BH ABC ,则3332==BH BC N H AC , ∴42-=-m n ,即42-=m n ,代入抛物线的解析式得: 24132222m m m ,化简得:2280m m --=, 解得:12m =-,24m =(不符合题意,故舍去),将2m =-代入抛物线解析式得:3n =-,∴此时点3N 的坐标为(2,3)--;④当点4N 在x 轴的下方,要使44BN H ABC ,则4442==N H BC BH AC , ∴24-=-n m,即28=-n m ,代入抛物线的解析式得: 21328222m m m ,化简得:2200m m , 解得:15m =-,24m =(不符合题意,故舍去),将5m =-代入抛物线解析式得:18n =-,∴此时点4N 的坐标为(5,18)--;综上所述,抛物线存在点N 的坐标为(0,2)或(3,2)或(2,3)--或(5,18)--使得以点、、B N H 为顶点的三角形与ABC 相似.【点睛】本题主要考查了一次函数与二次函数的性质、相似三角形的性质,运用数形结合与分类讨论的方法是解题的关键. 2.A解析:(1)min 92t R H '==;(2)(0,0,6)或(0,(0,12). 【解析】【分析】(1)根据题意设29(4P m m --,5(,4Q m m -,以及作R 关于y 轴对称(R '-,并过R '点作直线:4l y =的垂线交于H 点R H '即为所求,从而进行分析求解即可; (2)根据题意分四种情形即①当AA''=A''B 时;②当AA''=AB 时;③当AA''=A''B 时;④当A''B=AB 时分别画出图形并进行分析求解.【详解】解:(1)设239(,33)4P m m m m --,5(,33)4Q m m -, 23932()2(3)422PQMN C QP NP m m ∴=+=-+-矩形, 302-<,开口向下, ∴当33m =时,(33,33)P -,最少时间12t RK RK TB =++, 3(3,33)2R -,作R 关于y 轴对称3(3,33)2R '--,过R '点作直线3:43x l y =-的垂线交于H 点R H '即为所求, 令y=0,解得5312x =, 12()530H ∴,, t R K K T TH =+''+'',∴过R ''作R H l ''⊥,22min 3119(33)(330)3242125t R H ∴==++'--=+. (2)①当AA''=A''B 时,如图2中,此时,A''在对称轴上对称性可知∠AC′E=∠A''C′E又∠HEC′=∠A''C′E∴∠AC′E=∠HEC′∴HE=HC'=5 3−2 3=3 3,∴OE=HE-HO=3 3−3,∴E(0,3−3 3),②当AA''=AB时,如图3中,设A″C′交y轴于J.此时AA''=AB=BC'=A''C',∴四边形A''ABC'为菱形,由对称性可知,∠AC'E=∠A''C'E=30°,∴JE= 3JC′=3,2∴OE=OJ-JE=6∴E(0,6)③当AA''=A''B时,如图4中,设AC′交y轴于M.此时,A''在对称轴上∠MC'E=75°又∠AMO=∠EMC'=30°∴∠MEC'=75°∴ME=MC'∴3∴3,∴E(0,3.④当A''B=AB时,如图5中,此时AC'=A''C'=A''B=AB∴四边形AC'A''B 为菱形由对称性可知,C'',E ,B 共线 由抛物线239334y x x =--x 轴交于A B 、两点(点A 在点B 的左侧)可知, 令x=0,解得y=−3x=0,解得:x 1=3,x 23 ∴A (−30),30),3 ∴3=12,∴E (0,12).综上满足条件的点E 坐标为(0,3)或(0,6)或(0,3)或(0,12).【点睛】本题考查二次函数综合题,解题的关键是学会构建二次函数解决最值问题,学会利用垂线段最短解决最短问题,学会用分类讨论的思想思考问题,属于中考压轴题.3.A解析:(1)详见解析;(2)详见解析;(3)15KG AK = 【解析】【分析】(1)根据同弧所对的圆周角相等,进行角度计算,得90AHG HAG ∠+∠=︒,进而得到90AGH ∠=︒,即可证明AG HD ⊥;(2)连接AC 、AD 、CF ,根据同弧所对的圆周角相等,进行角度计算,得HFA HAF ∠=∠,进而得到HF HA =,再根据已知HC HF =,得到HC HA =; (3)在DH 上截取DT HC =,过点C 作CM HD ⊥于点M ,通过证明AHC ≌ATD 得到AH AT =,进而得到HG CH GD +=,再根据F 为DG 中点,得到GF DF =,通过勾股定理逆用,证明90HCF ∠=︒,再通过解ACE △得1tan 3CAB ∠=,解△CDH 得1tan 2CDF ∠=,求得OF 、OH ,逆用勾股定理证明90HOF ∠=︒,易求1tan 2KHG ∠=,1tan 3HAG ∠=,最后求得KG AK 的值. 【详解】(1)证明:如图,设HAG ∠为α,∵HAG BDC ∠=∠,∴HAG BDC α∠=∠=,∵CD AB ⊥,∴90BDC DBE ∠+∠=︒∴90DBE α∠=︒-,∵AHG ∠与ABD ∠为同对弧AD 所对的圆周角, ∴90AHG ABD α∠=∠=︒-,∴90AHG HAG ∠+∠=︒,∴18090AGH AHG HAG ∠=︒-∠-∠=︒∴AG HD ⊥(2)如图,连接AC 、AD 、CF ,∵AB 为直径,AB CD ⊥,∴CE DE =,∴AB 垂直平分CD ,∴AC AD =,FC FD =,∴ACD ADC ∠=∠,FCD FDC ∠=∠,∴ACD FCD ADC FDC ∠-∠=∠-∠,即ACF ADF ∠=∠, 设FCD FDC α∠=∠=,ACF ADF β∠=∠=, ∵ADH ∠与ACH ∠为同对弧AH 所对的圆周角, ∴ADH ACH β∠=∠=,∴2HCF HCA ACF β∠=∠+∠=,∵HFC FCD FDC ∠=∠+∠,∴2HFC α∠=,∵HC HF =,∴HCF HFC ∠=∠,∴22αβ=,∴αβ=,∵AB 为直径,∴90ADB ∠=︒,∴90HDB β∠=︒-,∵HAB ∠与为HDB ∠同对弧BH 所对的圆周角, ∴90HAB HDB β∠=∠=︒-,∵AB CD ⊥,∴9090BFD αβ∠=︒-=︒-,∵9090HFA BFD αβ∠=∠=︒-=︒-, ∴HFA HAF ∠=∠,∴HF HA =,∴HC HA =;(3)如图,在DH 上截取DT HC =,∵ADH ∠与ACH ∠同对弧AH 所对的圆周角, ∴ADH ACH ∠=∠,∵AB 为直径,且AB CD ⊥∴AC =AD ,∴AC AD =,∴AHC ≌ATD ,∴AH AT =,∵AG HT ⊥,∴HG TG =,∴HG CH GT DT GD +=+=,设2HG k =,则4CH k =,GD 6k =, ∵F 为DG 中点,∴3GF DF k ==,∴5HF HG GF k =+=,FD =CF =3k ,在HCF 中,由勾股定理逆定理得90HCF ∠=︒, 过点C 作CM HD ⊥于点M , 由△HCF 面积,可求CM =125k ,∴95MF k =, ∴1tan 2CM CM CDF MD MF FD ∠===+, 解ACE △得1tan 3CAB ∠=, 易求OF ,OH ,由勾股定理逆定理得90HOF ∠=︒, 易求1tan 2KHG ∠=,1tan 3HAG ∠=, ∴15KG AK =. 【点睛】本题考查圆与三角形综合,主要考查知识点有同弧所对的圆周角相等,垂径定理,三角形全等的判定与性质,勾股定理的逆用,解直角三角形,锐角三角函数等,知识点跨度大,计算量多;熟练掌握圆的性质和三角形相关知识是解决本题的关键. 4.(1)详见解析;(2)3m =,点C 坐标为(3,2)-;(3)5k =或417k 或417k时,可使得C D M N 、、、为顶点的四边形是平行四边形.【解析】 【分析】 (1)从2172022x mxm的判别式出发,判别式总大于等于3,而证得;(2)根据抛物线的对称轴32b xa来求m 的值;然后利用配方法把抛物线解析式转化为顶点式,由此可以写出点C 的坐标;(3)根据平行四边形的性质得到:215|1(3)|422MN k k kCD . 需要分类讨论:①当四边形CDMN 是平行四边形,2151(3)422MN k k k,通过解该方程可以求得k 的值;②当四边形CDNM 是平行四边形,2153(1)422NM k kk ,通过解该方程可以求得k 的值. 【详解】 解:(1)2217()4(2)(2)322m m m,∵不论m 为何实数,总有2(2)0m -≥,2(2)30m ,∴无论m 为何实数,关于x 的一元二次方程2172022xmxm总有两个不相等的实数根,∴无论m 为何实数,抛物线217222y x mxm与x 轴总有两个不同的交点. (2)抛物线的对称轴为直线3x =,3122m ,即3m =,此时,抛物线的解析式为221513(3)2222y x xx ,∴顶点C 坐标为(3,2)-;(3)//,CD MN C D M N 、、、为顶点的四边形是平行四边形,∴四边形CDMN 是平行四边形(直线在抛物线的上方)或四边形CDMN (直线在抛物线的下方),如图所示,由已知215(3,2),(,1),(3)22D M k k N k k k,, (3,2)C ,4CD ∴=,2151(3)422MNk k kCD,①当四边形CDMN 是平行四边形,2151(3)422MNk k k,整理得,28150k k -+=,解得13k =(不合题意,舍去),25k =; ②当四边形CDNM 是平行四边形,2153(1)422NMk kk ,整理得2810k k , 解得,12417417k k ,,综上,5k =或417k 或417k时,可使得C D M N 、、、为顶点的四边形是平行四边形. 【点睛】本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式,抛物线的顶点公式和平行四边形的判定与性质.在求有关动点问题时要注意分析题意分情况讨论结果.5.C解析:(1)y=﹣x 2+23x ;(2)333,⎛⎫ ⎪⎪⎝⎭,338;(3)存在,P(33,53)或(﹣3,﹣73)【解析】 【分析】(1)根据折叠的性质可得OC=OA ,∠BOC=∠BAO=30°,过点C 作CD ⊥OA 于D ,求出OD 、CD ,然后写出点C 的坐标,再利用待定系数法求二次函数解析式解答;(2)求出直线OC 的解析式,根据点M 到OC 的最大距离时,面积最大;平行于OC 的直线与抛物线只有一个交点,利用根的判别式求出m 的值,利用锐角三角函数的定义求解即可;(3)分两种情况求出直线AP 与y 轴的交点坐标,然后求出直线AP 的解析式,与抛物线解析式联立求解即可得到点P 的坐标. 【详解】解:(1)∵Rt △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处, ∴OC=OA=23,∠BOC=∠BAO=30°, ∴∠AOC=30°+30°=60°, 过点C 作CD ⊥OA 于D ,则OD=1233 332=3,所以,顶点C3),设过点O ,C ,A 抛物线的解析式为为y=ax 2+bx ,则2230a a ⎧=⎪⎨+=⎪⎩,解得:1a b =-⎧⎪⎨=⎪⎩∴抛物线的解析式为y=﹣x 2; (2)∵C3),∴直线OC的解析式为:y =,设点M 到OC 的最大距离时,平行于OC的直线解析式为y m =+,联立2y my x ⎧=+⎪⎨=-+⎪⎩, 消掉未知数y并整理得,20x m +=, △=(2-4m=0,解得:m=34.∴2304x +=,∴x =; ∴点M 到OC 的最大距离=34×sin30°=313428⨯=;∵OC ==∴1328MOC S ∆=⨯⨯=此时,M 28⎛⎝⎭,最大面积为8; (3)∵∠OAP=∠BOC=∠BOA =30°,∴2=, ∴直线AP 与y 轴的交点坐标为(0,2)或(0,﹣2), 当直线AP经过点(0)、(0,2)时,解析式为23y x =-+,联立22y x y x ⎧=-+⎪⎨=+⎪⎩,解得110x y ⎧=⎪⎨=⎪⎩2253x y ⎧=⎪⎪⎨⎪=⎪⎩.所以点P的坐标为(3,53), 当直线AP经过点(0)、(0,﹣2)时,解析式为2y x =-,联立22y x y x ⎧=-+⎪⎨=-⎪⎩解得110x y ⎧=⎪⎨=⎪⎩2273x y ⎧=⎪⎪⎨⎪=-⎪⎩;所以点P的坐标为(73-).综上所述,存在一点P,5373),使∠OAP=∠BOA . 【点睛】本题是二次函数综合题型,主要利用了折叠的性质,待定系数法求二次函数解析式,联立两函数解析式求交点的方法,(2)判断出点M 到OC 的距离最大是,平行于OC 的直线与抛物线只有一个交点是解题的关键,(3)确定出直线AP 的解析式是解题的关键.6.D解析:(1)6;(2)y=-3x+10(1≤x <103);(2)1769或32 【解析】 【分析】(1)如下图,利用等腰直角三角形DHC 可得到HC 的长度,从而得出HB 的长,进而得出AD 的长;(2)如下图,利用等腰直角三角形的性质,可得PQ 、PR 的长,然后利用EB=PQ+PR 得去x 、y 的函数关系,最后根据图形特点得出取值范围;(3)存在2种情况,一种是点P 在梯形内,一种是在梯形外,分别根y 的值求出x 的值,然后根据梯形面积求解即可. 【详解】(1)如下图,过点D 作BC 的垂线,交BC 于点H∵∠C=45°,DH ⊥BC ∴△DHC 是等腰直角三角形 ∵四边形ABCD 是梯形,∠B=90° ∴四边形ABHD 是矩形,∴DH=AB=8 ∴HC=8 ∴BH=BC -HC=6 ∴AD=6(2)如下图,过点P 作EF 的垂线,交EF 于点Q ,反向延长交BC 于点R ,DH 与EF 交于点G∵EF ∥AD,∴EF ∥BC ∴∠EFP=∠C=45° ∵EP ⊥PF∴△EPF 是等腰直角三角形同理,还可得△NPM 和△DGF 也是等腰直角三角形 ∵AE=x∴DG=x=GF,∴EF=AD+GF=6+x ∵PQ ⊥EF,∴PQ=QE=QF ∴PQ=()162x + 同理,PR=12y ∵AB=8,∴EB=8-x∴8-x=()11622x y ++ 化简得:y=-3x+10 ∵y >0,∴x <103当点N 与点B 重合时,x 可取得最小值则BC=NM+MC=NM+EF=-3x+10+614x +=,解得x=1 ∴1≤x <103(3)情况一:点P 在梯形ABCD 内,即(2)中的图形 ∵MN=2,即y=2,代入(2)中的关系式可得:x=83=AE ∴188176662339ABCD S ⎛⎫=⨯++⨯= ⎪⎝⎭梯形 情况二:点P 在梯形ABCD 外,图形如下:与(2)相同,可得y=3x -10 则当y=2时,x=4,即AE=4 ∴()16644322ABCD S =⨯++⨯=梯形 【点睛】本题考查了等腰直角三角形、矩形的性质,难点在于第(2)问中确定x 的取值范围,需要一定的空间想象能力.7.D解析:(1)见解析;(2)存在,满足条件的x 的值为6或253;(3)DP =485或10<【解析】【分析】(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:①当∠PEF=∠EAB 时,则得到四边形ABEP为矩形,从而求得x的值;②当∠PEF=∠AEB时,再结合(1)中的结论,得到等腰△APE.再根据等腰三角形的三线合一得到F是AE的中点,运用勾股定理和相似三角形的性质进行求解.(3)首先计算圆D与线段相切时,x的值,在画出圆D过E时,半径r的值,确定x的值,半径比这时大时符合题意,根据图形确定x的取值范围,从而得出DP的范围.【详解】(1)证明:∵矩形ABCD,∴∠ABE=90°,AD∥BC,∴∠PAF=∠AEB,又∵PF⊥AE,∴∠PFA=90°=∠ABE,∴△PFA∽△ABE.(2)解:分二种情况:①若△EFP∽△ABE,如图1,则∠PEF=∠EAB,∴PE∥AB,∴四边形ABEP为矩形,∴PA=EB=6,即x=6.②如图2,若△PFE∽△ABE,则∠PEF=∠AEB,∵AD∥BC∴∠PAF =∠AEB , ∴∠PEF =∠PAF . ∴PE =PA . ∵PF ⊥AE , ∴点F 为AE 的中点, Rt △ABE 中,AB =8,BE =6, ∴AE =22AB BE +=2286+=10, ∴EF =152AE =, ∵△PFE ∽△ABE , ∴PE EFAE BE=, ∴5106x =, ∴PE =253, ∴满足条件的x 的值为6或253. (3)如图3,当⊙D 与AE 相切时,设切点为G ,连接DG ,∵AP =x , ∴PD ═DG =12﹣x ,∵∠DAG =∠AEB ,∠AGD =∠B =90°, ∴△AGD ∽△EBA , ∴AD DGAE AB=, ∴1212108x -=, ∴x =125,∴12481255DP =-=, 当⊙D 过点E 时,如图4,⊙D 与线段有两个公共点,连接DE ,此时PD =DE =10, 故答案为:DP =485或10<DP ≤12. 【点睛】本题考查动点问题,动点在不同地方时,得到的图形是不同的,解题关键是确定动点运动过程中,有几种对应的图形,然后再根据图形性质分析求解.8.A解析:(1)A (0,4),C (3,0);(2)S=()()51004251042t t t t ⎧-+<<⎪⎪⎨⎪->⎪⎩;(3)存在,满足条件的t 的值为3617或36,点Q 的坐标为162,17⎛⎫- ⎪⎝⎭或()2,16--.【解析】 【分析】(1)解方程组求出m ,n 即可解决问题.(2)分两种情形:如图1中,当0<t <4时,如图2中,当t >4时,根据S=12•BC•OP 求解即可.(3)分两种情形分别构建方程求解即可. 【详解】 解:(1)由725m n m n +=⎧⎨-=⎩,解得:43m n =⎧⎨=⎩,∴A (0,4),C (3,0);(2)如图1中,当0<t<4时,S=1 2•BC•OP=12×5×(4-t)=-52t+10.如图2中,当t>4时,S=12•BC•OP=12×5×(t-4)=52t-10.综上所述,S=()()51004251042t tt t⎧-+<<⎪⎪⎨⎪->⎪⎩,(3)当04t<<时,由题意,1314(4)3222t t⨯⨯=⨯⨯-⨯,解得3617t=,此时,363241717OP=-=,32(0,)17P∴,(4,0)B-,BQ∴的中点Q的坐标为162,17⎛⎫- ⎪⎝⎭,当4t>时,由题意,1314(4)3222t t⨯⨯=⨯⨯-⨯,解得36t=,此时36432OP=-=,(0,32)P ∴-,(4,0)B -,BP ∴的中点Q 的坐标为(2,16)--.综上所述,满足条件的t 的值为3617或36.点Q 的坐标为16(2,)17-或(2,16)--. 【点睛】本题属于三角形综合题,考查了解方程组,三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型. 9.D解析:(1)D 点坐标为()2,3,矩形MONC 的最小值为645;(2)交点坐标为(3+13,﹣9313+),(3﹣13,﹣9313-),(1﹣5,15-),(1+5,152+). 【解析】【分析】(1)当△DEB 的面积最大时,直线DN 与抛物线相切,可求出直线DN 的解析式和点D 的坐标,当矩形面积最小时,MG 最小,求出MG 的最小值即可.(2)分两种情况讨论,以DB 为边和以DB 为对角线,分别求出此时ON 的解析式,联立求出交点坐标即可.【详解】解:(1)如图1所示,过点D 作y 轴的平行线交MB 于点H ,过点O 作OQ 垂直MB 于点Q ,令y =0,解得x 1=﹣1,x 2=4,∴A (﹣1,0),B (4,0),令x =0,y =2,∴E (0,2),设直线BE的解析式为y=kx+b,则2, 40,bk b=⎧⎨+=⎩解得122kb⎧=-⎪⎨⎪=⎩,∴直线BE的解析式为y=﹣12x+2,∵DN∥BE,∴设直线DN的解析式为y=﹣12x+b1,S△DEB=DH12⨯•(x B﹣x E),∴当△DEB面积最大时,即是DH最大的时候,∴﹣12x+b1=﹣12x2+32x+2,△=b2﹣4ac=0,即16﹣4(2b1﹣4)=0,解得b1=4,点D(2,3),S矩=2S△MOG+S平形四边形,∴矩形面积最小时就是MG最小,设QG=m,MQ=n,∴MG=m+n,∵m+n≥∵△QOG∽△MQO,∴OQ2=m•n,∵△OEQ∽△EOB,∴OQ∴m•n=165,∴m+n.∴MG,∴S矩=2S△MOG+S平形四边形=645.(2)分两种情况讨论,情况一:当GN∥DB时,直线DB的解析式为:y=﹣32x+6,则直线NG 的解析式为y =﹣32x , ∴﹣32x =﹣12x 2+32x +2,解得x 1=x 2=3∴交点坐标为(),(3), 情况二:DB 为对角线时,此时NG 必过DB 的中点(3,32), 设直线ON 的解析式为y =k 1x ,则k 1=12, ∴直线OD 的解析式为y =12x , 12=﹣12x 2+32x +2,解得x 1=1x 2=∴交点坐标为(1),(),综上所述:交点坐标为(92+),(392-),(1﹣),(). 【点睛】此题考查了二次函数的性质以及二次函数与几何相结合的问题,转化矩形面积最小和三角形面积最大为某条线段的最值为解题关键.10.A解析:(1)详见解析;(2)y =(04x <<);(3)当AEG ∆是等腰三角形时,2BF =或43【解析】【分析】 (1)根据正方形的性质得到∠AOD=90°,AO=OD ,∠EOH=90°,OE=OH ,由全等三角形的性质即可得到结论;(2)如图1,过O 作ON ⊥AB 于N ,根据等腰直角三角形的性质得到122AN BN ON AB ====,根据勾股定理得到()222222248OF FN ON x x x =+=-+=-+,根据平行线分线段成比例定理即可得到结论;(3)①当AE=EG 时,△AEG 是等腰三角形,②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP ⊥EG 于P ③当GE=AG 时,△AEG 是等腰三角形,如图3,过G 作GQ ⊥AE 于Q ,根据相似三角形的性质或全等三角形的性质健即可得到结论.【详解】(1)∵四边形ABCD 是正方形,,OA OD AC BD ∴=⊥,90AOD ∴∠=︒,∵四边形OEGH 是正方形,,90OE OH EOH ∴=∠=︒,AOD EOH ∴∠=∠,AOD AOH EOH AOH ∴∠-∠=∠-∠,即HOD EOA ∠=∠,HDO EAO ∴∆≅∆.(2)如图1,过O 作ON⊥AB 于N ,则122AN BN ON AB ====, ∵BF=x,∴AF=4-x ,∴FN=2-x ,∴()222222248OF FN ON x x x =+=-+=-+∴248EF y x x =-+∵AM⊥AC,∴AE∥OB,∴BF OF AF EF=, ∴2248448x x x x y x x -+=---+, ∴)244804x x y x -+≤<;。
中考数学中考数学压轴题 复习测试提优卷(1)
一、中考数学压轴题1.已知:如图,在平面直角坐标系中,点 A 的坐标为(6,0),AB=62,点 P 从点 O 出发沿线段 OA 向终点 A 运动,点 P 的运动速度是每秒 2 个单位长度,点 D 是线段 OA 的中点.(1)求点 B 的坐标;(2)设点 P 的运动时间为点 t 秒,△BDP 的面积为 S ,求 S 与 t 的函数关系式;(3)当点 P 与点 D 重合时,连接 BP ,点 E 在线段 AB 上,连接 PE ,当∠BPE =2∠OBP 时, 求点 E 的坐标.2.已知:如图①,在等腰直角ABC ∆中,斜边2AC =.(1)请你在图①的AC 边上求作一点P ,使得90APB ∠=︒;(2)如图②,在(1)问的条件下,将AC 边沿BC 方向平移,使得点A 、P 、C 对应点分别为E 、Q 、D ,连接AQ ,BQ .若平移的距离为1,求AQB ∠的大小及此时四边形ABDE 的面积;(3)将AC 边沿BC 方向平移m 个单位至ED ,是否存在这样的m ,使得在直线DE 上有一点M ,满足30AMB ∠=︒,且此时四边形ABDE 的面积最大?若存在,求出四边形ABDE 面积的最大值及平移距离m 的值;若不存在,请说明理由.3.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与y 轴交于点C 0,3().(1)求抛物线的解析式及顶点M 坐标;(2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点D 作DE //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时,PDE ABMC 1S S 9=四边形. 4.在平面直角坐标系中,抛物线24y mx mx n =-+(m >0)与x 轴交于A ,B 两点,点B在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且:3:4∆∆=ABC BCE S S .(1)求点A ,点B 的坐标;(2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上, ①求直线CE 的解析式;②求抛物线的解析式.5.已知抛物线217222y x mx m 的顶点为点C . (1)求证:不论m 为何实数,该抛物线与x 轴总有两个不同的交点;(2)若抛物线的对称轴为直线3x =,求m 的值和C 点坐标;(3)如图,直线1y x =-与(2)中的抛物线并于A B 、两点,并与它的对称轴交于点D ,直线x k =交直线AB 于点M ,交抛物线于点N .求当k 为何值时,以C D M N 、、、为顶点的四边形为平行四边形.6.如图,在平面直角坐标系中,直线6y x =+与x 轴交于点A ,与y 轴交于点B ,点C 在x 轴正半轴上,2ABC ACB ∠=∠.(1)求直线BC 的解析式;(2)点D 是射线BC 上一点,连接AD ,设点D 的横坐标为t ,ACD ∆的面积为S ()0S ≠,求S 与t 的函数解析式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,AD 与y 轴交于点E ,连接CE ,过点B 作AD 的垂线,垂足为点H ,直线BH 交x 轴于点F ,交线段CE 于点M ,直线DM 交x 轴于点N ,当:7:12NF FC =时,求直线DM 的解析式.7.如果关于x 的一元二次方程20ax bx c ++=有两个不相等的实数根,且其中一个根为另一个根的一半,则称这样的方程为“半等分根方程”.(1)①方程2280x x --= 半等分根方程(填“是”或“不是”);②若(1)()0x mx n -+=是半等分根方程,则代数式2252m mn n ++= ; (2)若点(,)p q 在反比例函数8x y =的图象上,则关于x 的方程260px x q -+=是半等分根方程吗?并说明理由; (3)如果方程20ax bx c ++=是半等分根方程,且相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上,试说明方程20ax bx c ++=的一个根为53. 8.如图,90EOF ∠=︒,矩形ABCD 的边BA 、BC 分别在OF 、OE 上,4AB =,3BC =,矩形ABCD 沿射线OD 方向,以每秒1个单位长度的速度运动.同时点P 从点A 出发沿折线AD DC -以每秒1个单位长度的速度向终点C 运动,当点P 到达点C 时,矩形ABCD 也停止运动,设点P 的运动时间为()t s ,PDO △的面积为S . (1)分别写出点B 到OF 、OE 的距离(用含t 的代数式表示);(2)当点P 不与矩形ABCD 的顶点重合时,求S 与t 之间的函数关系式;(3)设点P 到BD 的距离为h ,当15h OD =时,求t 的值; (4)若在点P 出发的同时,点Q 从点B 以每秒43个单位长度的速度向终点A 运动,当点Q 停止运动时,点P 与矩形ABCD 也停止运动,设点A 关于PQ 的对称点为E ,当PQE 的一边与CDB △的一边平行时,直接写出线段OD 的长.9.(1)阅读理解:如图①,在ABC 中,若8AB =,5AC =,求BC 边上的中线AD 的取值范围. 可以用如下方法:将ACD 绕着点D 逆时针旋转180︒得到EBD △,在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是______;(2)问题解决:如图②,在ABC 中,D 是BC 边上的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE CF EF +>;(3)问题拓展:如图③,在四边形ABCD 中,180B D ∠+∠=︒,CB CD =,100BCD ∠=︒,以C 为顶点作一个50︒的角,角的两边分别交AB 、AD 于E 、F 两点,连接EF ,探索线段BE ,DF ,EF 之间的数量关系,并说明理由.10.已知:如图,二次函数213222y x x =-++的图象交x 轴于A 点和B 点(A 点在B 点左则),交y 轴于E 点,作直线,EB D 是直线EB 上方抛物线上的一个动点.过D 点作 直线l 平行于直线.EB M 是直线 EB 上的任意点,N 是直线l 上的任意点,连接,MO NO ,始终保持MON ∠为90︒,以MO 和ON 边,作矩形MONC .(1)在D 点移动过程中,求出当DEB ∆的面积最大时点D 的坐标;在DEB ∆的面积最大 时,求矩形MONC 的面积的最小值.(2)在DEB ∆的面积最大时,线段ON 交直线EB 于点G ,当点,,,D N G B 四个点组成平行 四边形时,求此时线段ON 与抛物线的交点坐标.11.∠MON=90°,点A ,B 分别在OM 、ON 上运动(不与点O 重合).(1)如图①,AE 、BE 分别是∠BAO 和∠ABO 的平分线,随着点A 、点B 的运动,∠AEB= °(2)如图②,若BC 是∠ABN 的平分线,BC 的反向延长线与∠OAB 的平分线交于点D ①若∠BAO=60°,则∠D= °.②随着点A ,B 的运动,∠D 的大小会变吗?如果不会,求∠D 的度数;如果会,请说明理由.(3)如图③,延长MO 至Q ,延长BA 至G ,已知∠BAO ,∠OAG 的平分线与∠BOQ 的平分线及其延长线相交于点E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,求∠ABO 的度数.12.如图1,在O 中,弦AB ⊥弦CD ,垂足为点E ,连接AD 、BC 、AO ,AD AB =.(1)求证:2CAO CDB ∠=∠(2)如图2,过点O 作OH AD ⊥,垂足为点H ,求证:2OH CE DE +=(3)如图3,在(2)的条件下,延长DB 、AC 交于点F ,过点D 作DM AC ⊥,垂足为M ,交AB 于N ,若12BC =,3AF BF =,求MN 的长.13.如图,一张半径为3cm 的圆形纸片,点O 为圆心,将该圆形纸片沿直线l 折叠,直线l 交O 于AB 、两点.(1)若折叠后的圆弧恰好经过点O ,利用直尺和圆规在图中作出满足条件的一条直线l (不写作法,保留作图痕迹),并求此时线段AB 的长度.(2)已知M 是O 一点,1cm OM =.①若折叠后的圆弧经过点M ,则线段AB 长度的取值范围是________.②若折叠后的圆弧与直线OM 相切于点M ,则线段AB 的长度为_________cm .14.在ABC ∆中,若存在一个内角角度,是另外一个内角角度的n 倍(n 为大于1的正整数),则称ABC ∆为n 倍角三角形.例如,在ABC ∆中,80A ∠=︒,75B ∠=︒,25C ∠=︒,可知3∠=∠B C ,所以ABC ∆为3倍角三角形.(1)在ABC ∆中,55A ∠=︒,25B ∠=︒,则ABC ∆为________倍角三角形;(2)若DEF ∆是3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的13,求DEF ∆的最小内角. (3)若MNP ∆是2倍角三角形,且90M N P ∠<∠<∠<︒,请直接写出MNP ∆的最小内角的取值范围. 15.已知:在平面直角坐标系中,抛物线223y ax ax a =--与x 轴交于点A ,B (点B在点A 的右侧),点C 为抛物线的顶点,点C 的纵坐标为-2.(1)如图1,求此抛物线的解析式;(2)如图2,点P 是第一象限抛物线上一点,连接AP ,过点C 作//CD y 轴交AP 于点D ,设点P 的横坐标为t ,CD 的长为m ,求m 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,点E 在DP 上,且ED AD =,点F 的横坐标大于3,连接EF ,BF ,PF ,且EP EF BF ==,过点C 作//CG PF 交DP 于点G ,若728CG AG =,求点P 的坐标.16.如图,等腰△ABC ,AB =CB ,边AC 落在x 轴上,点B 落在y 轴上,将△ABC 沿y 轴翻折,得到△ADC(1)直接写出四边形ABCD 的形状:______;(2)在x 轴上取一点E ,使OE =OB ,连结BE ,作AF ⊥BC 交BE 于点F .①直接写出AF 与AD 的关系:____(如果后面的问题需要,可以直接使用,不需要再证明);②取BF 的中点G ,连接OG ,判断OG 与AD 的数量关系,并说明理由;(3)若四边形ABCD 的周长为8,直接写出GE 2+GF 2=____.17.AB 是O 直径,,C D 分别是上下半圆上一点,且弧BC =弧BD ,连接,AC BC ,连接CD 交AB 于E ,(1)如图(1)求证:90AEC ∠=︒;(2)如图(2)F 是弧AD 一点,点,M N 分别是弧AC 和弧FD 的中点,连接FD ,连接MN 分别交AC ,FD 于,P Q 两点,求证:MPC NQD ∠=∠(3)如图(3)在(2)问条件下,MN 交AB 于G ,交BF 于L ,过点G 作GH MN ⊥交AF 于H ,连接BH ,若,6,BG HF AG ABH ==∆的面积等于8,求线段MN 的长度18.已知抛物线y=﹣x 2﹣2x+3交x 轴于点A 、C (点A 在点C 左侧),交y 轴于点B .(1)求A ,B ,C 三点坐标;(2)如图1,点D 为AC 中点,点E 在线段BD 上,且BE=2DE ,连接CE 并延长交抛物线于点M ,求点M 坐标;(3)如图2,将直线AB 绕点A 按逆时针方向旋转15°后交y 轴于点G ,连接CG ,点P 为△ACG 内一点,连接PA 、PC 、PG ,分别以AP 、AG 为边,在它们的左侧作等边△APR 和等边△AGQ ,求PA+PC+PG 的最小值,并求当PA+PC+PG 取得最小值时点P 的坐标(直接写出结果即可).19.2.如图1,90A ∠=︒,AB AC =,则2BC AB=知识应用:(1)如图2,ADE ∆和ABC ∆均为等腰直角三角形,90DAE BAC ∠=∠=︒,D ,E ,C 三点共线,若2AD =,2BD =,求CD 的长. 知识外延:(2)如图3,正方形ABCD 中,BE 和BC 关于BG 对称,C 点的对应点为E 点,AE 交BG 的延长线于F 点,连接CF .①求证:GF EC =;②若2AE =,2CE =,求BF 的长.20.如图1,以AB 为直径作⊙O ,点C 是直径AB 上方半圆上的一点,连结AC ,BC ,过点C 作∠ACB 的平分线交⊙O 于点D ,过点D 作AB 的平行线交CB 的延长线于点E .(1)如图1,连结AD ,求证:∠ADC =∠DEC .(2)若⊙O 的半径为5,求CA •CE 的最大值.(3)如图2,连结AE ,设tan ∠ABC =x ,tan ∠AEC =y ,①求y 关于x 的函数解析式;②若CB BE =45,求y 的值. 21.如图1,在平面直角坐标系中,O 是坐标原点,矩形OACB 的顶点A 、B 分别在x 轴和y 轴上,已知OA=5,OB=3,点D 的坐标是(0,1),点P 从点B 出发以每秒1个单位的速度沿折线BCA 的方向运动,当点P 与点A 重合时,运动停止,设运动的时间为t 秒.(1)点P 运动到与点C 重合时,求直线DP 的函数解析式;(2)求△OPD 的面积S 关于t 的函数解析式,并写出对应t 的取值范围;(3)点P 在运动过程中,是否存在某些位置使△ADP 是不以DP 为底边的等腰三角形,若存在,请求出点P 的坐标;若不存在,请说明理由.22.问题探究(1)如图1.在ABC 中,8BC =,D 为BC 上一点,6AD =.则ABC 面积的最大值是_______.(2)如图2,在ABC 中,60BAC ∠=︒,AG 为BC 边上的高,O 为ABC 的外接圆,若3AG =,试判断BC 是否存在最小值?若存在,请求出最小值:若不存在,请说明理由.问题解决:如图3,王老先生有一块矩形地ABCD ,6212AB =,626BC =+,现在他想利用这块地建一个四边形鱼塘AMFN ,且满足点E 在CD 上,AD DE =,点F 在BC 上,且6CF =,点M 在AE 上,点N 在AB 上,90MFN ∠=︒,这个四边形AMFN 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.23.已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.24.在平面直角坐标系xOy 中,点A 为x 轴上的动点,点B 为x 轴上方的动点,连接OA ,OB ,AB .(1)如图1,当点B 在y 轴上,且满足OAB ∠的角平分线与OBA ∠的角平分线交于点P ,请直接写出P ∠的度数;(2)如图2,当点B 在y 轴上,OAB ∠的角平分线与OBA ∠的角平分线交于点P ,点C 在BP 的延长线上,且满足45AOC ∠=︒,求OAB OCB∠∠;(3)如图3,当点B 在第一象限内,点P 是AOB ∆内一点,点M ,N 分别是线段OA ,OB 上一点,满足:1902APB AOB ∠=︒+∠,PM PN =,180ONP OMP ∠+∠=︒.以下结论:①OM ON =;②AP 平分OAB ∠;③BP 平分OBA ∠;④AM BN AB +=.正确的是:________.(请填写正确结论序号,并选择一个正确的结论证明,简写证明过程).25.如图,矩形ABCD 中,AD >AB ,连接AC ,将线段AC 绕点A 顺时针旋转90∘得到线段AE ,平移线段AE 得到线段DF (点A 与点D 对应,点E 与点F 对应),连接BF ,分别交直线AD ,AC 于点G ,M ,连接EF .(1) 依题意补全图形;(2) 求证:EG ⊥AD ;(3) 连接EC ,交BF 于点N ,若AB =2,BC =4,设MB =a ,NF =b ,试比较()()11a b ++与9+62【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.B解析:(1)B(0,6);(2)S=3 960236932t tt t⎧-<≤⎪⎪⎨⎪-<≤⎪⎩,,;(3)E(4,2)【解析】【分析】(1)在Rt△AOB中,利用勾股定理可求得OB的长,从而得到点B的坐标;(2)存在2种情况,一种是点P在点D的左侧,一种是在右侧,求△PBD的面积,高始终是OB不变,仅需表示出PD的长即可;(3)如下图,作∠BPE的角平分线PF,根据角之间的关系,可得到PF∥OB,从而推导出△PEG∽△PBO,最后利用相似比的关系求得线段的长度,从而得到E的坐标.【详解】(1)∵A(6,0),AB=62,△AOB是直角三角形∴在Rt△AOB中,OB=()226266-=∴B(0,6)(2)情况一:如下图,点P在点D的左侧,即32t<≤时在△BPD中,以PD为底,则BO是△BOD的高∴高=BO=6,底=3-2t∴S=()1632962t t-=-情况二:如下图,点P在点D的右侧,即332t<≤时在△BPD中,以PD为底,则BO是△BOD的高∴高=BO=6,底=2t-3∴S=()1623692t t -=-综上得:S=3960236932t t t t ⎧-<≤⎪⎪⎨⎪-<≤⎪⎩,, (3)如下图,PF 是∠PBE 的角平分线,交AB 于点F ,过点E 作x 轴的垂线,交x 轴于点G∵OA=6,OB=6,2∴△OBA 是等腰直角三角形,∠A=45°∴△GEA 是等腰直角三角形设PG=x ,则AG=3-x ∴EG=AG=3-x∵PF 是∠BPE 的角平分线,∴∠BPF=∠FPE∵∠BPE =2∠OBP∴∠OBP=∠BPF=∠FPE∴PF ∥OB ,∴PF ⊥OA∴∠FPE+∠EPG=90°∵∠OBP+∠BPO=90°,∴∠EPG=∠BPO∵∠EGP=∠BOP∴△PEG ∽△PBO∴EG OB PG OP =,即363x x -=,解得:x=1 ∴PG=1,GE=2∴E(4,2)【点睛】本题考查了勾股定理,平面直角坐标系和相似,解题关键是作二倍角的角平分线,构造出相似图形.2.A解析:(1)详见解析;(2)45AQB ∠=︒,21ABDE S =四边形;(3)存在,当6422m +-=时,四边形ABDE 面积最大值为322+ 【解析】【分析】(1)利用等腰三角形“三线合一”的性质,取AC 中点为点P 即可.(2)延长AP 、CD 相交于点M ,取AB 的中点F ,连接PF .证明△APE ≌△MPD ,得到AP=MP ,从而可得PF 是△ABM 的中位线.进而得到PF 是AB 的垂直平分线,这样可以得出∠APB=2∠M=2∠EAP .由AE=PE 可得∠M=∠MPD=∠EPA=∠EAP ,所以可得∠PDB=2∠M ,由AC ∥ED 可得∠PDB=∠ACB=45°,所以∠APB=45°.(3)如图,以AB 为边长,在直线AB 的右侧作等边三角形ABO ,在以O 为圆心、OA 长为半径作⊙O .过点O 作OM ⊥AC ,交⊙O 于点M ,点M 在AC 的右上方.过点M 作AC 的平行线DE ,AE ∥BC ,BC 的延长线交DE 于点D .则此时满足∠AMB=30°,此时四边形ABDE 的面积最大.【详解】解:(1)利用等腰三角形的“三线合一”性质,取AC 的中点P ,连接BP 即可,如下图所示:(2)如下图所示:延长AQ 、CD 相交于点M ,取AB 的中点F ,连接PF .由平移的性质可得,DE=AC=2,AE=CD=1,AC ∥DE ,AE ∥CD设∠EAQ=x∵点Q 是DE 的中点∴QE=QD=12DE=1 ∴QE=AE ∴∠AQE=∠EAQ=x ,∴∠MQD=∠AQE=x∵AE ∥CD ∴∠M=∠EAQ=x在△AQE 和△MQD 中∠=∠⎧⎪∠=∠⎨⎪=⎩EAQ M AQE MQD QE QD ,∴△AQE ≌△MQD(AAS)∴AQ=MQ∵点F 是AB 的中点∴QF 是△ABM 的中位线∵由题知,∠ABC=90°∴∠AFQ=90°∴PF ⊥AB ,点F 是AB 的中点∴BQ=AQ=MQ∴∠QBM=∠M=x∴∠AQB=∠QBM+∠M=2x由题知∠ACB=45°且AC ∥DE∴∠QDB=∠ACB=45°∵∠QDB=∠MQD+∠M=2x∴2x=45°即∠AQB=45°在等腰直角△ABC 中,斜边AC=2,则∴∴四边形ABDE的面积为:11()(11) 1.22+⨯==AE BD AB 故答案为:45AQB ∠=︒,1ABDE S =四边形. (3) 存在.如下图,以AB 为边长,在直线AB 的右侧作等边三角形ABO ,在以O 为圆心、OA 长为半径作⊙O .过点O 作OM ⊥MD ,交⊙O 于点M ,点M 在AC 的右上方.过点M 作AC 的平行线DE ,AE ∥BC ,BC 的延长线交DE 于点D ,AE 交⊙O 于点H .则此时满足∠AMB=30°,此时四边形ABDE 的面积最大.作OF ⊥AE 于F ,OM 与AE 相交于点N .∵AE ∥CD ,DE ∥AC∴四边形ACDE 是平行四边形∴AE=CD ,DE=AC=2∴∠EDC=∠ACB=45°∴∠AEM=∠EDC=45°∵OM ⊥AC∴OM ⊥DE∴∠NME=90°∴2MN ,∠MNH=45°由(2)知,2∴⊙O 2.连接BH ,∵AE ∥BC ,∠ABC=90°∴∠BAH=180°-∠ABC=90°∵∠AMB=30°,=AB AB∴∠AHB=∠AMB=30° ∴3=6=AH ∵OF ⊥AH ,点O 是圆心 ∴16=2AF AH根据勾股定理得2OF ∵∠FNO=∠MNH=45°∴=1==2,ON FN OF∴1=-=MN OM ON∴2=NE∴CD=AE=AF+FN+NE=+2+22∴11=()(2222四边形最大面积+⨯=++ABDE S AE BD AB=故答案为:当42m =时,四边形ABDE 【点睛】本题主要考查了等腰直角三角形的性质、平移的性质、平行四边形的判定及其性质以及圆的性质.本题综合性强,难度大,在第三问中,根据定弦定圆周角找到辅助圆解决问题,这是近年来中考的一个热点3.C解析:(1)21y x 43=-+(,顶点M 4;(2)P 2);(3)1m =2,2m =1【解析】【分析】(1)由点C 的坐标,可求出c 的值,再把()A 、()B 代入解析式,即可求出a 、b 的值,即可求出抛物线的解析式,将解析式化为顶点式,即可求出顶点M 的坐标;(2)因为A 、B 关于抛物线的对称轴对称,连接BC 与抛物线对称轴交于一点,即为所求点P ,设对称轴与x 轴交于点H ,证明PHB COB ∽,即可求出PH 的长,从而求出点P 的 坐标;(3)根据点A 、B 、M 、C 的坐标,可求出ABMC S 四边形,从而求出PDE S =OC =3,OB =OCB ∠=60,因为DE //PC ,推出 ODE ∠=60,从而得到OD =3m -,)OE 3m =-,根据PDE DOE PDOE SS S =-四边形,列出关于m 的方程,解方程即可.【详解】(1)∵抛物线y =2ax bx c a 0++≠()过()A 3,0-、()B 33,0,()C 0,3三点, ∴c =3, ∴3a 3b 3027a 33b 30⎧-+=⎪⎨++=⎪⎩, 解得1a 323b ⎧=-⎪⎪⎨⎪=⎪⎩. 故抛物线的解析式为()221231y x x 3x 3433=-++=--+, 故顶点M 为()3,4. (2)如图1,∵点A 、B 关于抛物线的对称轴对称,∴连接BC 与抛物线对称轴交于一点,即为所求点P .设对称轴与x 轴交于点H ,∵PH //y 轴,∴PHB COB ∽.∴PH BH CO BO=. 由题意得BH =23CO =3,BO =33 ∴PH 23333=, ∴PH =2.∴)P 3,2. (3)如图2,∵()A 3,0-、()B 33,0,()C 0,3,()M 3,4,∴ABMC S 四边形=()AOC MHB COHM 111S S S 3334342393222++=⨯⨯++⨯⨯=梯形. ∵ABMC S 四边形=PDE 9S, ∴PDE S 3=∵OC =3,OB =33∴OCB ∠=60.∵DE //PC ,∴ODE ∠=60. ∴OD =3m -,)OE 33m =-.∵PDOE S 四边形=))COE 133S333m 3m 22=⨯-=-, ∴PDE S =))2DOE PDOE 333S S 3m 3m -=--=四边形 23330m 33+<<(). ∴23333+= 解得1m =2,2m =1.【点睛】 此题主要考查了待定系数法求二次函数解析式以及相似三角形的判定与性质和四边形面积求法等知识,熟练运用方程思想方法和转化思想是解题关键.4.A 解析:(1) A (12,0) B (72,0);(2) ①23333y x =-+,②24316373999y x x =-+ 【解析】【分析】(1)根据抛物线的解析式可得对称轴为x =2,利用:3:4∆∆=ABC BCE S S 得出CA :CE =3:4,由△AOE ∽△AGC 可得13=AO AG ,进而求得OA 、OB 的长,即可求得点A 、点B 的坐标; (2)根据旋转的性质求出C 点坐标,利用C 点坐标和△AOE ∽△AGC 可求得E 点坐标,,分别利用待定系数法即可求得直线CE 和抛物线的解析式. 【详解】解:(1)∵抛物线的解析式为24(0)=-+>y mx mx n m ,∴对称轴为直线422-=-=mx m, 如图,设对称轴与x 轴交于G ,则//CG y 轴,2OG =,∴△AOE ∽△AGC , ∴=AO AEAG AC, ∵:3:4ABCBCES S=, ∴CA :CE =3:4 ,则31AE AC =, ∴13==AO AE AG AC , ∴1142==OA OG ,3342==AG OG , 则23==AB AG ,72=+=OB OA AB , ∴A (12,0), B (72,0); (2)如图,设O 旋转后落在点Q 处,过点C 作CP y ⊥轴于点P ,由旋转的性质得:△BCO ≌△ACQ , ∴BO =AQ =72,CO =CQ , ∴OQ =222271()()2322=-=-=AQ AO∵CP y ⊥轴, ∴132==OP OQ ∴点C 的坐标为(2,3)-,则3CG =由(1)得△AOE ∽△AGC ,13==OE AE CG AC , ∴33OE =,即点E 的坐标为3(0,3, ①设CE 的解析式为y kx b =+,分别代入C (2,3)-,E 3得: 2333k b b ⎧+=⎪⎨=⎪⎩,解得:233k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴CE 的解析式为233y =; ②将A (12,0),C (2,3)分别代入24y mx mx n =-+得:120448m m n m m n ⎧-+=⎪⎨⎪-+=⎩,解得:99m n ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线解析式为2y x x =+. 【点睛】本题考查了二次函数的综合、旋转的性质、相似三角形的性质和求一次函数的解析式,正确的理解题意,熟练运算“数形结合思想”是解题的关键.5.(1)详见解析;(2)3m =,点C 坐标为(3,2)-;(3)5k =或417k 或417k时,可使得C D M N 、、、为顶点的四边形是平行四边形.【解析】 【分析】 (1)从2172022x mxm的判别式出发,判别式总大于等于3,而证得;(2)根据抛物线的对称轴32b xa来求m 的值;然后利用配方法把抛物线解析式转化为顶点式,由此可以写出点C 的坐标;(3)根据平行四边形的性质得到:215|1(3)|422MN k k kCD . 需要分类讨论:①当四边形CDMN 是平行四边形,2151(3)422MN k k k,通过解该方程可以求得k 的值;②当四边形CDNM 是平行四边形,2153(1)422NM k kk ,通过解该方程可以求得k 的值. 【详解】 解:(1)2217()4(2)(2)322m m m, ∵不论m 为何实数,总有2(2)0m -≥,2(2)30m ,∴无论m 为何实数,关于x 的一元二次方程2172022x mxm总有两个不相等的实数根,∴无论m 为何实数,抛物线217222y x mxm与x 轴总有两个不同的交点. (2)抛物线的对称轴为直线3x =,3122m ,即3m =,此时,抛物线的解析式为221513(3)2222y x xx ,∴顶点C 坐标为(3,2)-;(3)//,CD MN C D M N 、、、为顶点的四边形是平行四边形,∴四边形CDMN 是平行四边形(直线在抛物线的上方)或四边形CDMN (直线在抛物线的下方),如图所示,由已知215(3,2),(,1),(3)22D M k k N k k k,, (3,2)C ,4CD ∴=,2151(3)422MNk k kCD,①当四边形CDMN 是平行四边形,2151(3)422MNk k k,整理得,28150k k -+=,解得13k =(不合题意,舍去),25k =; ②当四边形CDNM 是平行四边形,2153(1)422NMk kk ,整理得2810k k , 解得,12417417k k ,,综上,5k =或417k或417k时,可使得C D M N 、、、为顶点的四边形是平行四边形. 【点睛】本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式,抛物线的顶点公式和平行四边形的判定与性质.在求有关动点问题时要注意分析题意分情况讨论结果.6.A解析:(1)6y x =-+;(2)636S t =-,()6t >;(3)5599y x =+ 【解析】【分析】(1)求出点A 、B 的坐标,从而得出△ABO 是等腰直角三角形,再根据2ABC ACB ∠=∠可得△OCB 也是等腰直角三角形,从而可求得点C 的坐标,将点B 、C 代入可求得解析式;(2)存在2种情况,一种是点D 在线段BC 上,另一种是点D 在线段BC 的延长线上,分别利用三角形的面积公式可求得;(3)如下图,先证ACR CAD ∆≅∆,从而推导出//RD AC ,进而得到CF RG =,同理还可得NF DG =,RD CN =,然后利用:7:12NF FC =可得到N 、D 的坐标,代入即可求得. 【详解】 解:(1)直线6y x =+与x 轴交于点A ,与y 轴交于点B ,(6,0)A ∴-,(0,6)B .6OA OB ∴==.45BAO ∴∠=︒,180BAO ABC BCO ∠+∠+∠=︒, 2ABC ACB ∠=∠,45BCO ∴∠=︒6OC OB ∴==,()6,0C ∴.设直线BC 的解析式为y kx b =+, 将B 、C 两点坐标代得606k b b +=⎧⎨=⎩解得16k b =-⎧⎨=⎩∴直线BC 的解析式为6y x =-+.(2)点D 是射线BC 上一点,点D 的横坐标为t ,(,6)D t t ∴-+,6(6)12AC =--=.如下图,过点D 作DK AC ⊥于点K ,当点D 在线段BC 上时,6DK t =-+, 16362S AC DK t ∴=⋅=-+()06t ≤<;如下图,当点D 在线段BC 的延长线上时,6DK t =-,636S t ∴=-()6t >.(3)如图,延长CE 交AB 于点R ,连接DR 交BF 于点G ,交y 轴于点P .45BAO BCO ∠=∠=︒,BA BC ∴=.AO CO =,BO AC ⊥EA EC ∴=,EAC ECA ∴∠=∠. ACR CAD ∴∆≅∆.BAD BCR ∴∠=∠.AR CD ∴=.BR BD ∴=.//RD AC ∴.BH AD ⊥,HBD BAD BCR ∴∠=∠=∠.MB MC ∴=,∠MRB MRB MBR ∠=∠ MR MB ∴=.CM MR ∴=.//RD AC , ::1:1CF RG CM RM ∴==.CF RG ∴=. 同理NF DG =.RD CN =.∵:7:12NF FC =.:7:12DG RG ∴=.RP PD BP ==,5tan 19PG OFOBF BP OB ∴==∠= 6OB ∴=,3019OF ∴=,6OC =,8419CF ∴=.7RD GN ∴==.1ON ∴=,72PD =.52OP OB BP ∴=-=.(1,0)N ∴-,75,22D ⎛⎫⎪⎝⎭.设直线 DN 的解析式为y ax c =+,将N 、D 两点代入,07522a c a c -+=⎧⎪⎨+=⎪⎩解得5959a c ⎧=⎪⎪⎨⎪=⎪⎩∴直线DM 的解析式为5599y x =+. 【点睛】本题考查了一次函数与图形的综合,需要用到全等、三角函数和平面直角坐标系的知识,解题关键是想办法确定函数图像上点的坐标.7.(1)①不是;②0;(2)若点(,)p q 在反比例函数8y x=的图象上,则关于x 的方程260px x q -+=是半等分根方程,理由详见解析;(3)详见解析【解析】 【分析】(1)①解方程2280x x --=,根据“半等分根方程”定义作出判断即可;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2nm-=,即:n =-2m 或m =-2n ,分别代入代数式2252m mn n ++=结果均为0 (2)根据点(,)p q 在反比例函数8y x=的图象上,得到8q p =,代入260px x q -+=,得到关于x 的方程2860px x p-+=,解方程,用含p 的式子表示x ,根据“半等分根方程”定义判断即可;(3)根据两点(1,)M t s +,(4,)N t s -都在抛物线上,且纵坐标相等,可以求出对称轴为52x =,根据方程20ax bx c ++=是半等分根方程,得到两根关系,根据抛物线对称轴为 12522x x +=,即可求出两个根,问题得证. 【详解】解:(1)①解方程2280x x --=得124,2x x ==-,不符合“半等分根方程”定义, 故答案为:不是;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2nm-=,即:n =-2m 或m =-2n , 当n =-2m 时,()()22225522022m mn n m m n m ++=+-+-=; 当m =-2n 时,()()22225522022m mn n n n n n ++=-+-+=;故答案为:0;(2)若点(,)p q 在反比例函数8y x=的图象上,则关于x 的方程260px x q -+=是半等分根方程理由:∵点(,)p q 在反比例函数8y x=的图象上 ∴8q p=代入方程260px x q -+=得: 2860px x p-+= 解得:12x p=,24x p =∵1212x x =∴方程260px x q -+=是半等分根方程(3)∵相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上,∴抛物线的对称轴为:(1)(4)522t t x ++-==又∵方程20ax bx c ++=是半等分根方程 ∴设20ax bx c ++=的两个根分别为1x 和2x 令1212x x =则有:12522x x += 所以153x =,2103x =所以方程20ax bx c ++=的一个根为53得证. 【点睛】本题为“新定义问题”,考查了学生自主学习的能力,解决此题关键是理解新定义概念,并结合所学数学知识进行解答.8.B解析:(1)35t ,45t ;(2)当0<t <3时,224655S t t =--+;当3<t <7时,23391052S t t =+-;(3)75;(4)132,7713,477【解析】 【分析】(1)过点B 作x 轴垂线,利用相似三角形可求得;(2)分2种情况,一种是点P 在AD 上,另一种是点P 在CD 上,然后利用三角形面积公式可求得; (3)直接令15h OD =即可求出; (4)存在3种情况,第一种是:QP ∥BD ,第二种是EP ∥CD 或EQ ∥CB ,第三种是QE ∥BD ,分别按照几何性质分析求解. 【详解】(1)如下图,过点B 作x 轴垂线,垂足为点M根据平移的特点,可得∠BOM=∠DBA ∵∠BMO=∠DAB=90°,∴△BMO ∽△DAB ∵AB=4,AD=BC=3 ∴BD=5 ∵BM OM BODA BA BD==,OB=t ∴BM=35t ,OM=45t (2)情况一:当0<t <3时,图形如下,过点P 作OD 的垂线,交OD 于点N∵∠NDP=∠BDA ,∠PND=∠BAD ,∴△PND ∽△BAD ∵AP=t ,∴PD=3-t ∵PN BAPD BD =,∴PN=()435t - 图中,OD=5+t ∴()()243124562555OBDt St t t -=+=--+情况二:当3<t <7时,图形如下,过点P 作OD 的垂线,交OD 于点N图中,PD=t -3,OD=5+t 同理,△PND ∽△BCD ,可得PN=()335t -∴()()23313395251052OBDt St t t -=+=-+- (3)情况一:当0<t <3时 则h=PN=()435t -∵15h OD = ∴()43555t t-+= 解得:t=75情况二:当3<t <7时 则h=PN=()335t -∵15h OD = ∴()33555t t-+=解得:t=7(舍)(4)情况一:QP ∥BD ,图形如下由题意可得:BQ=43t ,AP=t ,则QA=4-43t ,DP=3-t ∵BD ∥QP ∴QA PA QB PD= 代入得:4()2243t t =-解得:t=32∴OD=5+t=132 情况二:如下图,EP ∥CD(或EQ ∥CB)∵点E 是点A 关于QP 对称的点∴EP=PA ,EQ=QA ,QP=QP∴△APQ ≌△EPQ∵EP ∥CD ,CD ⊥AD∴EP ⊥AD∴∠APQ=∠EPQ=45°∴△AQP 是等腰直角三角形,AQ=PA∴4-43t t = 解得:t=127∴OD=5+t=477 情况三:如下图,QE ∥BD ,延长QE 交DA 于点N∵△APQ ≌△EPQ ,∴∠QEP=∠QAP=90°∴△ENP 是等腰直角三角形∵QN ∥BD ,∴∠NQA=∠DBA ,∠A=∠A∴△QNA ∽△BDA∵BQ=43t ,AP=t ,QA=4-43t ,DP=3-t ∴QN QA AN BD BA AD== ∴QN=5-43t ,NA=3-t ∴EN=QN -QE=QN -QA=1-3t ,NP=NA -AP=3-2t ,EP=PA=t ∴在Rt △ENP 中,()2223213t t t ⎛⎫-+-= ⎪⎝⎭ 解得:t=1213或t=3(舍) ∴OD=5+t=7713 【点睛】本题考查动点问题,解题关键是利用相似将图形中各边用t 表示出来.9.F解析:(1)28AD <<;(2)见详解;(3)EF BE DF =+,理由见详解【解析】【分析】(1)根据旋转的性质可证明ADC EDB ≅,6,AC BE AD ED ===,在ABE △中根据三角形三边关系即可得出答案;(2)延长FD 至M ,使DF=DM ,连接BM ,EM ,可得出CF BM =,根据垂直平分线的性质可得出EF EM =,利用三角形三边关系即可得出结论;(3)延长AB 至N ,使BN=DF ,连接CN ,可得NBC D ∠=∠,证明NBC FDC ≅,得出,CN CF NCB FCD =∠=∠,利用角的和差关系可推出50ECN ECF ∠=︒=,再证明NCE FCE ≅,得出EN EF =,即可得出结论.【详解】解:(1)∵,,AD ED CD BD ADC BDE ==∠=∠∴ADC EDB ≅∴6,AC BE AD ED ===在ABE △中根据三角形三边关系可得出:AB BE AE AB BE -<<+,即4216AD <<∴28AD <<故答案为:28AD <<;(2)延长FD 至M ,使DF=DM ,连接BM ,EM ,同(1)可得出CF BM =,∵,FD MD FD DE =⊥∴EF EM =在BEM △中,BE BM EM +>∴BE CF EF +>;(3)EF BE DF =+,理由如下:延长AB 至N ,使BN=DF ,连接CN ,∵180,180ABC D ABC NBC ∠+∠=︒∠+∠=︒∴NBC D ∠=∠∴NBC FDC ≅∴,CF CN NCB FCD =∠=∠∵100,50BCD FCE ∠=︒∠=︒∴50ECN ECF ∠=︒=∴NCE FCE ≅(SAS )∴EN EF =∴EF EN BE BN BE DF ==+=+∴EF BE DF =+.【点睛】本题考查的知识点有旋转的性质、全等三角形的判定及性质、线段垂直平分线的性质、三角形三边关系、角的和差等,解答此题的关键是作出辅助线,构造出与图①中结构相关的图形.此题结构精巧,考查范围广,综合性强.10.D解析:(1)D 点坐标为()2,3,矩形MONC 的最小值为645;(2)交点坐标为(3+13,﹣9313+),(3﹣13,﹣9313-),(1﹣5,15-),(1+5,152+). 【解析】【分析】 (1)当△DEB 的面积最大时,直线DN 与抛物线相切,可求出直线DN 的解析式和点D 的坐标,当矩形面积最小时,MG 最小,求出MG 的最小值即可.(2)分两种情况讨论,以DB 为边和以DB 为对角线,分别求出此时ON 的解析式,联立求出交点坐标即可.【详解】解:(1)如图1所示,过点D 作y 轴的平行线交MB 于点H ,过点O 作OQ 垂直MB 于点Q ,令y =0,解得x 1=﹣1,x 2=4,∴A (﹣1,0),B (4,0),令x =0,y =2,∴E (0,2),设直线BE 的解析式为y =kx +b ,则2,40,b k b =⎧⎨+=⎩解得122k b ⎧=-⎪⎨⎪=⎩,∴直线BE 的解析式为y =﹣12x +2, ∵DN ∥BE ,∴设直线DN的解析式为y=﹣12x+b1,S△DEB=DH12⨯•(x B﹣x E),∴当△DEB面积最大时,即是DH最大的时候,∴﹣12x+b1=﹣12x2+32x+2,△=b2﹣4ac=0,即16﹣4(2b1﹣4)=0,解得b1=4,点D(2,3),S矩=2S△MOG+S平形四边形,∴矩形面积最小时就是MG最小,设QG=m,MQ=n,∴MG=m+n,∵m+n≥∵△QOG∽△MQO,∴OQ2=m•n,∵△OEQ∽△EOB,∴OQ=5,∴m•n=165,∴m+n的最小值为5.∴MG,∴S矩=2S△MOG+S平形四边形=645.(2)分两种情况讨论,情况一:当GN∥DB时,直线DB的解析式为:y=﹣32x+6,则直线NG的解析式为y=﹣32 x,∴﹣32x=﹣12x2+32x+2,解得x1=x2=3∴交点坐标为(),(3),情况二:DB为对角线时,此时NG必过DB的中点(3,32),设直线ON的解析式为y=k1x,则k1=12,∴直线OD的解析式为y=12 x,1 2=﹣12x2+32x+2,解得x1=1x2=∴交点坐标为(1),(),综上所述:交点坐标为(92+),(392-),(1﹣),().【点睛】此题考查了二次函数的性质以及二次函数与几何相结合的问题,转化矩形面积最小和三角形面积最大为某条线段的最值为解题关键.11.A解析:(1)135°;(2)①45°,②不发生变化,45°;(3)60°或45°【解析】【分析】(1)利用三角形内角和定理、两角互余、角平分线性质即可求解;(2)①利用对顶角相等、两角互余、两角互补、角平分线性质即可求解;②证明和推理过程同①的求解过程;(3)由(2)的证明求解思路,不难得出EAF∠=90°,如果有一个角是另一个角的3倍,所以不确定是哪个角是哪个角的三倍,所以需要分情况讨论;值得注意的是,∠MON=90°,所以求解出的∠ABO一定要小于90°,注意解得取舍.【详解】(1)()11801802118090180451352AEB EBA BAE OBA BAO∠=︒-∠-∠=︒-∠+∠=︒-⨯︒=︒-︒=︒(2)①如图所示。
中考数学压轴题 易错题提优专项训练试题
一、中考数学压轴题1.如图,平面直角坐标系中,抛物线228y ax ax a =--与x 轴交于B 、C 两点(点B 在点C 右侧),与y 轴交于点A ,连接AB ,25AB =.(1)求抛物线的解析式;(2)点P 在第二象限的抛物线上,连接PB 交y 轴于D ,取PB 的中点E ,过点E 作EH x ⊥轴于点H ,连接DH ,设点P 的横坐标为t .ODH 的面积为S ,求S 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,作PF y ⊥轴于F ,连接CP 、CD ,CP CD =,点S 为PF 上一点,连接BS 交y 轴于点T ,连接BF 并延长交抛物线于点R .SBC FBO 45∠+∠=︒,在射线CS 上取点Q.连接QF ,QF RF =,求直线TQ 的解析式.2.在学习了轴对称知识之后,数学兴趣小组的同学们对课本习题进行了深入研究,请你跟随兴趣小组的同学,一起完成下列问题.(1)(课本习题)如图①,△ABC 是等边三角形,BD 是中线,延长BC 至E ,使CE=CD . 求证:DB=DE(2)(尝试变式)如图②,△ABC 是等边三角形,D 是AC 边上任意一点,延长BC 至E ,使CE=AD .求证:DB=DE .(3)(拓展延伸)如图③,△ABC 是等边三角形,D 是AC 延长线上任意一点,延长BC 至E ,使CE=AD 请问DB 与DE 是否相等? 并证明你的结论.3.如图,在四边形ABCD 中,∠B=90°,AD//BC ,AD=16,BC=21,CD=13.(1)求直线AD 和BC 之间的距离;(2)动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 从点A 出发,在线段AD 上以每秒1个单位长度的速度运动,点P 、Q 同时出发,当点Q 运动到点D时,两点同时停止运动,设运动时间为t 秒.试求当t 为何值时,以P 、Q 、D 、C 为顶点的四边形为平行四边形?(3)在(2)的条件下,是否存在点P ,使△PQD 为等腰三角形?若存在,请直接写出相应的t 值,若不存在,请说明理由.4.在梯形ABCD 中,//AD BC ,90B ∠=︒,45C ∠=︒,8AB =,14BC =,点E 、F 分别在边AB 、CD 上,//EF AD ,点P 与AD 在直线EF 的两侧,90EPF ∠=︒,PE PF =,射线EP 、FP 与边BC 分别相交于点M 、N ,设AE x =,MN y =.(1)求边AD 的长;(2)如图,当点P 在梯形ABCD 内部时,求关于x 的函数解析式,并写出定义域; (3)如果MN 的长为2,求梯形AEFD 的面积.5.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,第一颗弹珠弹出后其速度1y (米/分钟)与时间x (分钟)前2分钟满足二次函数21y ax =,后3分钟满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分钟.(1)求第一颗弹珠的速度1y (米/分钟)与时间x (分钟)之间的函数关系式;(2)第一颗弹珠弹出1分钟后,弹出第二颗弹珠,第二颗弹珠的运行情况与第一颗相同,直接写出第二颗弹珠的速度2y (米/分钟)与弹出第一颗弹珠后的时间x (分钟)之间的函数关系式;(3)当两颗弹珠同时在轨道上时,第____分钟末两颗弹珠的速度相差最大,最大相差______;(4)判断当两颗弹珠同时在轨道上时,是否存在某时刻速度相同?请说明理由,并指出可以通过解哪个方程求出这一时刻.6.如图,在等边ABC ∆中,延长AB 至点D ,延长AC 交BD 的中垂线于点E ,连接BE ,DE .(1)如图1,若310DE =,23BC =,求CE 的长;(2)如图2,连接CD 交BE 于点M ,在CE 上取一点F ,连接DF 交BE 于点N ,且DF CD =,求证:12AB EF =;(3)在(2)的条件下,若45AED ∠=︒直接写出线段BD ,EF ,ED 的等量关系7.如图,90EOF ∠=︒,矩形ABCD 的边BA 、BC 分别在OF 、OE 上,4AB =,3BC =,矩形ABCD 沿射线OD 方向,以每秒1个单位长度的速度运动.同时点P 从点A 出发沿折线AD DC -以每秒1个单位长度的速度向终点C 运动,当点P 到达点C 时,矩形ABCD 也停止运动,设点P 的运动时间为()t s ,PDO △的面积为S . (1)分别写出点B 到OF 、OE 的距离(用含t 的代数式表示);(2)当点P 不与矩形ABCD 的顶点重合时,求S 与t 之间的函数关系式;(3)设点P 到BD 的距离为h ,当15h OD =时,求t 的值; (4)若在点P 出发的同时,点Q 从点B 以每秒43个单位长度的速度向终点A 运动,当点Q 停止运动时,点P 与矩形ABCD 也停止运动,设点A 关于PQ 的对称点为E ,当PQE 的一边与CDB △的一边平行时,直接写出线段OD 的长.8.如图,直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣32x+c 经过A ,B 两点,与x 轴的另一交点为C .(1)求抛物线的解析式;(2)M 为抛物线上一点,直线AM 与x 轴交于点N ,当32MN AN =时,求点M 的坐标; (3)P 为抛物线上的动点,连接AP ,当∠PAB 与△AOB 的一个内角相等时,直接写出点P 的坐标.9.如图,直角三角形ABC ∆中,90460ACB AC A ∠︒=∠︒=,,=,O 为BC 中点,将ABC ∆绕O 点旋转180︒得到DCB ∆.一动点P 从A 出发,以每秒1的速度沿A B D →→的路线匀速运动,过点P 作直线PM ,使PM AC ⊥.(1)当点P 运动2秒时,另一动点Q 也从A 出发沿A B D →→的路线运动,且在AB 上以每秒1的速度匀速运动,在BD 上以每秒2的速度匀速运动,过Q 作直线QN 使//QN PM ,设点Q 的运动时间为t 秒,(0<t<10)直线PM 与QN 截四边形ABDC 所得图形的面积为S ,求S 关于t 的函数关系式,并求出S 的最大值.(2)当点P 开始运动的同时,另一动点R 从B 处出发沿B C D →→的路线运动,且在BC 3CD 上以每秒2的速度匀度运动,是否存在这样的P R 、,使BPR ∆为等腰三角形?若存在,直接写出点P 运动的时间m 的值,若不存在请说明理由.10.(1)如图①,在Rt ABC 中,90C ∠=︒,13AB =,5BC =,则tan A 的值是_______.(2)如图②,在正方形ABCD 中,5AB =,点E 是平面上一动点,且2BE =,连接CE ,在CE 上方作正方形EFGC ,求线段CF 的最大值.问题解决:(3)如图③,O 半径为6,在Rt ABC 中,90B ∠=︒,点, A B 在O 上,点C 在O 内,且3tan 4A =.当点A 在圆上运动时,求线段OC 的最小值.11.已知:菱形 ABCD ,点 E 在线段 BC 上,连接 DE ,点 F 在线段 AB 上,连接 CF 、DF , CF 与 DE 交于点 G ,将菱形 ABCD 沿 DF 翻折,点 A 恰好落在点 G 上.(1)求证:CD=CF ;(2)设∠CED = x ,∠DCF = y ,求 y 与 x 的函数关系式;(不要求写出自变量的取值范围) (3)在(2)的条件下,当 x =45°时,以 CD 为底边作等腰△CDK ,顶角顶点 K 在菱形 ABCD 的内部,连接 GK ,若 GK ∥CD ,CD =4 时,求线段 KG 的长.12.如图1,抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点E 是BD 上方抛物线上的一点,连接AE 交DB 于点F ,若AF=2EF ,求出点E 的坐标.(3)如图3,点M 的坐标为(32,0),点P 是对称轴左侧抛物线上的一点,连接MP ,将MP 沿MD 折叠,若点P 恰好落在抛物线的对称轴CE 上,请求出点P 的横坐标.13. 在平面直角坐标系中,点O 为坐标原点,直线y =﹣x+4与x 轴交于点A ,过点A 的抛物线y =ax 2+bx 与直线y =﹣x+4交于另一点B ,且点B 的横坐标为1.(1)该抛物线的解析式为;(2)如图1,Q 为抛物线上位于直线AB 上方的一动点(不与B 、A 重合),过Q 作QP ⊥x 轴,交x 轴于P ,连接AQ ,M 为AQ 中点,连接PM ,过M 作MN ⊥PM 交直线AB 于N ,若点P 的横坐标为t ,点N 的横坐标为n ,求n 与t 的函数关系式;在此条件下,如图2,连接QN 并延长,交y 轴于E ,连接AE ,求t 为何值时,MN ∥AE .(3)如图3,将直线AB 绕点A 顺时针旋转15度交抛物线对称轴于点C ,点T 为线段OA 上的一动点(不与O 、A 重合),以点O 为圆心、以OT 为半径的圆弧与线段OC 交于点D ,以点A 为圆心、以AT 为半径的圆弧与线段AC 交于点F ,连接DF .在点T 运动的过程中,四边形ODFA 的面积有最大值还是有最小值?请求出该值.14.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 15.定义:将函数l 的图象绕点P (m ,0)旋转180°,得到新的函数l '的图象,我们称函数l '是函数关于点P 的相关函数.例如:当m =1时,函数y =(x +1)2+5关于点P (1,0)的相关函数为y =﹣(x ﹣3)2﹣5.(1)当m =0时①一次函数y =x ﹣1关于点P 的相关函数为 ;②点(12,﹣98)在二次函数y =﹣ax 2﹣ax +1(a ≠0)关于点P 的相关函数的图象上,求a 的值.(2)函数y =(x ﹣1)2+2关于点P 的相关函数y =﹣(x +3)2﹣2,则m = ; (3)当m ﹣1≤x ≤m +2时,函数y =x 2﹣mx ﹣12m 2关于点P (m ,0)的相关函数的最大值为6,求m 的值.16.如图,在⊙O中,直径AB=10,tanA=33.(1)求弦AC的长;(2)D是AB延长线上一点,且AB=kBD,连接CD,若CD与⊙O相切,求k的值;(3)若动点P以3cm/s的速度从A点出发,沿AB方向运动,同时动点Q以32cm/s的速度从B点出发沿BC方向运动,设运动时间为t (0<t<103),连结PQ.当t为何值时,△BPQ为Rt△?17.已知四边形ABCD为矩形,对角线AC、BD相交于点O,AD=AO.点E、F为矩形边上的两个动点,且∠EOF=60°.(1)如图1,当点E、F分别位于AB、AD边上时,若∠OEB=75°,求证:DF=AE;(2)如图2,当点E、F同时位于AB边上时,若∠OFB=75°,试说明AF与BE的数量关系;(3)如图3,当点E、F同时在AB边上运动时,将△OEF沿OE所在直线翻折至△OEP,取线段CB的中点Q.连接PQ,若AD=2a(a>0),则当PQ最短时,求PF之长.18.如图,在矩形ABCD中,点E为BC的中点,连接AE,过点D作DF AE⊥于点F,过点C作CN DF⊥于点N,延长CN交AD于点M.(1)求证:AM MD=(2)连接CF,并延长CF交AB于G①若2AB=,求CF的长度;②探究当ABAD为何值时,点G恰好为AB的中点.19.如图,在平面直角坐标系xOy 中,已知Rt ABC 的直角顶点()0,12C ,斜边AB 在x 轴上,且点A 的坐标为()9,0-,点D 是AC 的中点,点E 是BC 边上的一个动点,抛物线212y ax bx =++过D ,C ,E 三点.(1)当//DE AB 时,①求抛物线的解析式;②平行于对称轴的直线x m =与x 轴,DE ,BC 分别交于点F ,H ,G ,若以点D ,H ,F 为顶点的三角形与GHE △相似,求点m 的值.(2)以E 为等腰三角形顶角顶点,ED 为腰构造等腰EDG △,且G 点落在x 轴上.若在x 轴上满足条件的G 点有且只有一个时,请直接写出....点E 的坐标. 20.问题提出(1)如图1,已知三角形ABC ,请在BC 边上确定一点D ,使得AD 的值最小. 问题探究(2)如图2,在等腰ABC 中,AB AC =,点P 是AC 边上一动点,分别过点A ,点C 作线段BP 所在直线的垂线,垂足为点,D E ,若5,6AB BC ==,求线段BP 的取值范围,并求AD CE +的最大值.问题解决(3)如图3,正方形ABCD 是一块蔬菜种植基地,边长为3千米,四个顶点处都建有一个蔬菜采购点,根据运输需要,经过顶点A 处和BC 边的两个三等分点E F 、之间的某点P 建设一条向外运输的快速通道,其余三个采购点都修建垂直于快速通道的蔬菜输送轨道,分别为BB '、CC '、DD '.若你是此次项目设计的负责人,要使三条运输轨道的距离之和()BB CC DD '''++最小,你能不能按照要求进行规划,请通过计算说明.21.在平面直角坐标系xOy 中,点A 、B 为反比例函数()4x 0x y =>的图像上两点,A 点的横坐标与B 点的纵坐标均为1,将()4x 0xy =>的图像绕原点O 顺时针旋转90°,A 点的对应点为A’,B 点的对应点为B’.(1)点A’的坐标是 ,点B’的坐标是 ;(2)在x 轴上取一点P ,使得PA+PB 的值最小,直接写出点P 的坐标. 此时在反比例函数()4x 0xy =>的图像上是否存在一点Q ,使△A’B’Q 的面积与△PAB 的面积相等,若存在,求出点Q 的横坐标;若不存在,请说明理由;(3)连接AB’,动点M 从A 点出发沿线段AB’以每秒1个单位长度的速度向终点B’运动;动点N 同时从B’点出发沿线段B’A’以每秒1个单位长度的速度向终点A’运动.当其中一个点停止运动时,另一个点也随之停止运动.设运动的时间为t 秒,试探究:是否存在使△MNB’为等腰直角三角形的t 值.若存在,求出t 的值;若不存在,说明理由.22.发现来源于探究.小亮进行数学探究活动,作边长为a 的正方形ABCD 和边长为b 的正方形AEFG (a>b ),开始时,点E 在AB 上,如图1.将正方形AEFG 绕点A 逆时针方向旋转.(1)如图2,小亮将正方形AEFG 绕点A 逆时针方向旋转,连接BE 、DG ,当点G 恰好落在线段BE 上时,小亮发现DG ⊥BE ,请你帮他说明理由.当a=3,b=2时,请你帮他求此时DG 的长. (2)如图3,小亮旋转正方形AEFG ,点E 在DA 的延长线上,连接BF 、DF .当FG 平分∠BFD 时,请你帮他求a :b 及∠FBG 的度数.(3)如图4,BE 的延长线与直线DG 相交于点P ,a=2b .当正方形AEFG 绕点A 从图1开始,逆时针方向旋转一周时,请你帮小亮求点P 运动的路线长(用含b 的代数式表示).23.(1)(发现)如图1,在ABC 中,//DE BC 分别交AB 于D ,交AC 于E .已知CD BE ⊥,3CD =,5BE =,求BC DE +的值.思考发现,过点E 作//EF DC ,交BC 延长线于点F ,构造BEF ,经过推理和计算能够使问题得到解决(如图2).请回答:BC DE +的值为______.(2)(应用)如图3,在四边形ABCD 中,//AB CD ,AD 与BC 不平行且AD BC =,对角线AC BD ⊥,垂足为O .若3CD =,5AB =,DAB CBA ∠=∠,求AC 的长.(3)(拓展)如图4,已知平行四边形ABCD 和矩形ABEF ,AC 与DF 交于点G ,FD FB =,且30BFD ∠=︒,60EBF ∠=︒,判断AC 与DF 的数量关系并证明.24.在平面直角坐标系xOy 中,点A 为x 轴上的动点,点B 为x 轴上方的动点,连接OA ,OB ,AB .(1)如图1,当点B 在y 轴上,且满足OAB ∠的角平分线与OBA ∠的角平分线交于点P ,请直接写出P ∠的度数;(2)如图2,当点B 在y 轴上,OAB ∠的角平分线与OBA ∠的角平分线交于点P ,点C 在BP 的延长线上,且满足45AOC ∠=︒,求OAB OCB∠∠;(3)如图3,当点B 在第一象限内,点P 是AOB ∆内一点,点M ,N 分别是线段OA ,OB 上一点,满足:1902APB AOB ∠=︒+∠,PM PN =,180ONP OMP ∠+∠=︒.以下结论:①OM ON =;②AP 平分OAB ∠;③BP 平分OBA ∠;④AM BN AB +=.正确的是:________.(请填写正确结论序号,并选择一个正确的结论证明,简写证明过程).25.在平面直角坐标系中,直线4(0)3y x b b =-+>交x 轴于点A ,交y 轴于点B ,10AB =.(1)如图1,求b 的值;(2)如图2,经过点B 的直线(4)(40)y n x b n =++-<<与直线y nx =交于点C ,与x 轴交于点R ,//CD OA ,交AB 于点D ,设线段CD 长为d ,求d 与n 的函数关系式; (3)如图3,在(2)的条件下,点F 在第四象限,CF 交OA 于点E ,45AEF ∠=︒,点P 在第一象限,PH OA ⊥,点N 在x 轴上,点M 在PH 上,MN 交PE 于点G ,PH EN =,过点E 作EQ CF ⊥,交PH 于点Q , 32==EQ EF PM ,∠=∠OBR HNM ,BC CR =,点G 的坐标为1927,55⎛⎫ ⎪⎝⎭,连接FN ,求EFN 的面积.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.H解析:(1)211242y x x =--;(2)213S 242t t =---;(3)7433y x =-+ 【解析】【分析】(1)先把B 、C 两点坐标求解出来,再根据待定系数法即可把函数解析式求解出来;(2) 过点P 作PK x ⊥轴于点K ,PF y ⊥轴于点F ,把OH 、OD 的长度用t 表示出来,再根据ODH ∆的面积为S ,即可表示出S 与t 的函数关系式;(3)先证明PKC COD ∆≅∆,再过点R 作RN x ⊥轴,设211m,242R m m ⎛⎫-- ⎪⎝⎭,连接RC 、RO ,作CL RO ⊥于L ,求出Q 点的坐标,再利用待定系数法即可把直线TQ 的解析式求解出来;【详解】(1)∵228y ax ax a =--与x 轴交于B 、C 两点∴令0y =,即2280ax ax a --=解得14x =,22x =-由题意得,∴B(4,0),C(2,0)-在Rt OAB 中,4OB =,25AB =.∴22OA 2AB OB =-=∴()0,2A -∴82a -=-∴14a = ∴抛物线的解析式为211242y x x =-- (2)过点P 作PK x ⊥轴于点K ,PF y ⊥轴于点F∴PKO PFO 90∠=∠=︒,FOK 90∠=︒∴四边形FPKO 为矩形∴FO PK =∵E 为PB 的中点∴PE BE =∵EH BK ⊥∴PKB EHB 90∠=∠=︒∴PK //EH ∴BH BM HK PM= ∴BH HK = ∵211,242P t t t ⎛⎫-- ⎪⎝⎭ ∴211PK OF 242t t ==--,OK PF t ==- ∴BK 4t =- ∴1t BH BK 222==- ∴t t OH 42222⎛⎫=--=+ ⎪⎝⎭ ∵OD PK tan DBO OB BK ∠==, 即21441422t t OD t--=- ∴OD t 2=-- ∴211t 13S OD OH (t 2)2222242t t ⎛⎫=⋅=--+=--- ⎪⎝⎭, (3)∵OK t =-,OC 2=,∴CK OD t 2==--,∵CP CD =,PKC COD 90∠=∠=︒,∴PKC COD ∆≅∆,∴PK OC 2==,∴2OF = ∴OF 1tan FBO OB 2∠== 过点R 作RN x ⊥轴,如图设211m,242R m m ⎛⎫-- ⎪⎝⎭∴RN 1tan FBO BN 2∠==, ∴211214242m m m --=- 解得4m =-或4m =(舍去),∴R(4,4)- ∴CN 1tan CRN RN 2∠== ∴CRN FBO ∠=∠连接RC 、RO ,作CL RO ⊥于L ,如上图∵RN ON =∴45NRO RON NRC CRO ∠=∠=∠+∠=︒,∴LC LO =,RO 42=, ∴CL OL 2==, ∴CL 1tan CRO RL 3∠=, ∵SBC FBO 45∠+∠=︒, ∴OT 1tan TBO OB 3∠==, ∴4OT 3=,2TF 3=, ∴4T 0,3⎛⎫ ⎪⎝⎭∵//PF OB ,∴2FT 13tan FST FS 3FS ∠=== ∴2FS =,∴FS CO OF 2===,∴QC BC ⊥∵QF FB =,QSF BOF 90∠=∠=︒,∴QFS BFO ∆≅∆∴QS OB 4==∴(2,6)Q -设直线TQ 的解析式为y kx b =+ ∴2643k b b -+=⎧⎪⎨=⎪⎩ 解得7343k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线TQ 的解析式为7433y x =-+. 【点睛】本题主要考查了二次函数的综合应用,涉及到用待定系数法求解函数解析式、一次函数、全等三角形、图形的面积计算、矩形的性质、解直角三角形等相关知识,灵活运用所学知识是解题的关键. 2.D解析:(1)见详解;(2)见详解;(3)DB=DE 成立,证明见详解【解析】【分析】(1)由等边三角形的性质,得到∠CBD=30°,∠ACB=60°,由CD=CE ,则∠E=∠CDE=30°,得到∠E=∠CBD=30°,即可得到DB=DE ;(2)过点D 作DG ∥AB ,交BC 于点G ,证明△BDC ≌△EDG ,根据全等三角形的性质证明结论;(3)过点D 作DF ∥AB 交BE 于F ,由“SAS ”可证△BCD ≌△EFD ,可得DB=DE .【详解】证明:(1)∵△ABC 是等边三角形∴∠ABC=∠BCA=60°,∵点D 为线段AC 的中点,∴BD 平分∠ABC ,AD=CD ,∴∠CBD=30°,∵CD=CE ,∴∠CDE=∠CED ,又∵∠CDE+∠CED=∠BCD ,∴2∠CED=60°,∴∠CED=30°=∠CBD ,∴DB=DE ;(2)过点D 作DG ∥AB ,交BC 于点G ,如图,∴∠DGC=∠ABC=60°,又∠DCG=60°,∴△DGC 为等边三角形,∴DG=GC=CD ,∴BC-GC=AC-CD ,即AD=BG ,∵AD=CE ,∴BG=CE ,∴BC=GE ,在△BDC 和△EDG 中,60DC DG BCD EGD BC EG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△BDC ≌△EDG (SAS )∴BD=DE ;(3)DB=DE 成立,理由如下:过点D 作DF ∥AB 交BE 于F ,∴∠CDF=∠A ,∠CFD=∠ABC ,∵△ABC 是等边三角形∴∠ABC=∠BCA=∠A=60°,BC=AC=AB ,∴∠CDF=∠CFD=60°=∠ACB=∠DCF ,∴△CDF 为等边三角形∴CD=DF=CF ,又AD=CE ,∴AD-CD=CE-CF,∴BC=AC=EF,∵∠BCD=∠CFD+∠CDF=120°,∠DFE=∠FCD+∠FDC=120°,∴∠BCD=∠DFE,且BC=EF,CD=DF,∴△BCD≌△EFD(SAS)∴DB=DE.【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,以及平行线的性质,正确添加恰当辅助线构造全等三角形是本题的关键.3.A解析:(1)12;(2)5s或373s;(3)163s或685s或72s【解析】【分析】(1)AD与BC之间的距离即AB的长,如下图,过点D作BC的垂线,交BC于点E,在RtDEC中可求得DE的长,即AB的长,即AD与BC间的距离;(2)四边形QDCP为平行四边形,只需QD=CP即可;(3)存在3大类情况,情况一:QP=PD,情况二:PD=QD,情况三:QP=QD,而每大类中,点P存在2种情况,一种为点P还未到达点C,另一种为点P从点C处返回.【详解】(1)如下图,过点D作BC的垂线,交BC于点E∵∠B=90°,AD∥BC∴AB⊥BC,AB⊥AD∴AB的长即为AD与BC之间的距离∵AD=16,BC=21,∴EC=5∵DC=13∴在Rt DEC中,DE=12同理,DE的长也是AD与BC之间的距离∴AD与BC之间的距离为12(2)∵AD∥BC∴只需QD=PC,则四边形QDCP是平行四边形QD=16-t,PC=21-2t或PC=2t-21∴16-t=21-2t 或16-t=2t -21解得:t=5s 或t=373s (3)情况一:QP=PD图形如下,过点P 作AD 的垂线,交AD 于点F∵PQ=PD ,PF ⊥QD ,∴QF=FD∵AF ∥BP ,AB ∥FP ,∠B=90° ∴四边形ABPF 是矩形,∴AF=BP由题意得:AQ=t ,则QD=16-t ,QF=8-2t ,AF=8+2t BP=2t 或BP=21-(2t -21)=42-2t∵AF=BP∴8+2t =2t 或8+2t =42-2t 解得:t=163或t=685情况二:PD=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F同理QD=16-t ,PF=AB=12BP=2t 或21-(2t -21)=42-2t则FD=AD -AF=AD -BP=16-2t 或FD=16-(42-2t)=2t -26 ∴在Rt PFD 中,()22212162PD t =+-或()22212226PD t =+- ∵PD=QD ,∴22PD QD =∴()()22216t 12162t =+--或()()22216t 12226t =+--解得:2个方程都无解情况三:QP=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F同理:QD=16-t ,FP=12BP=2t 或BP=42-2tQF=AF -AQ=BP -AQ=2t -t=t 或QF=42-2t -t=42-3t在Rt QFP 中,22212PQ t =+或()22212423PQ t =+- ∵PQ=QD ,∴22PQ QD =∴()22216t 12t =+-或()()22216t 12423t =+--第一个方程解得:t=72,第二个方程解得:无解 综上得:t=163或685或72 【点睛】本题考查四边形中的动点问题,用到了勾股定理、平行四边形的性质、矩形的性质,解题关键是根据点Q 运动的轨迹,得出BP 的长度. 4.D解析:(1)6;(2)y=-3x+10(1≤x <103);(2)1769或32 【解析】【分析】(1)如下图,利用等腰直角三角形DHC 可得到HC 的长度,从而得出HB 的长,进而得出AD 的长;(2)如下图,利用等腰直角三角形的性质,可得PQ 、PR 的长,然后利用EB=PQ+PR 得去x 、y 的函数关系,最后根据图形特点得出取值范围;(3)存在2种情况,一种是点P 在梯形内,一种是在梯形外,分别根y 的值求出x 的值,然后根据梯形面积求解即可.【详解】(1)如下图,过点D 作BC 的垂线,交BC 于点H∵∠C=45°,DH ⊥BC∴△DHC 是等腰直角三角形∵四边形ABCD 是梯形,∠B=90°∴四边形ABHD 是矩形,∴DH=AB=8∴HC=8∴BH=BC -HC=6∴AD=6(2)如下图,过点P 作EF 的垂线,交EF 于点Q ,反向延长交BC 于点R ,DH 与EF 交于点G∵EF ∥AD,∴EF ∥BC∴∠EFP=∠C=45°∵EP ⊥PF∴△EPF 是等腰直角三角形同理,还可得△NPM 和△DGF 也是等腰直角三角形∵AE=x∴DG=x=GF,∴EF=AD+GF=6+x∵PQ ⊥EF,∴PQ=QE=QF∴PQ=()162x + 同理,PR=12y ∵AB=8,∴EB=8-x∵EB=QR∴8-x=()11622x y ++ 化简得:y=-3x+10 ∵y >0,∴x <103 当点N 与点B 重合时,x 可取得最小值则BC=NM+MC=NM+EF=-3x+10+614x +=,解得x=1∴1≤x <103(3)情况一:点P 在梯形ABCD 内,即(2)中的图形 ∵MN=2,即y=2,代入(2)中的关系式可得:x=83=AE ∴188176662339ABCD S ⎛⎫=⨯++⨯= ⎪⎝⎭梯形 情况二:点P 在梯形ABCD 外,图形如下:与(2)相同,可得y=3x -10则当y=2时,x=4,即AE=4∴()16644322ABCD S =⨯++⨯=梯形 【点睛】本题考查了等腰直角三角形、矩形的性质,难点在于第(2)问中确定x 的取值范围,需要一定的空间想象能力.5.(1)212(02)16(25)x x y x x ⎧≤≤⎪=⎨≤≤⎪⎩;(2)220(01)2(1)(13)16(36)1x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪<≤-⎩;(3)第2分钟末两颗弹珠速度相差最大,最大相差6米/分钟;(4)存在,理由详见解析【解析】【分析】(1)将(1,2)代入21y ax =,得2a =,从而得到212y x =,再代入2x =求出18y =,即可得到反比例函数解析式,即可得解;(2)当01x ≤≤时,第二颗弹珠未弹出,故第二颗弹珠的解析式为20y =;再分别根据(1)中的结论,即可求出当13x <≤和36x <≤时第二颗弹珠的解析式;(3)由图可知看出,前2分钟,弹珠的速度逐渐增大,则第2分钟末两颗弹珠速度相差最大,分别求出第2分钟末时两颗弹珠的速度,再相减即可的解;(4)第2分钟末到第3分钟末,第一颗弹珠的速度由8米/分钟逐步下降到513米/分钟,第二颗弹珠的速度由2米/分逐步上升到8米/分,故在此期间必定存在一时刻,两颗弹珠的速度相同.可以根据速度相等时列方程求得时刻.【详解】(1)当02x ≤≤时,将(1,2)代入21y ax =,得2a =,212y x ∴=,∵当2x =时,18y =,∴当25x ≤≤时,116y x=, 1y ∴与x 的函数关系式为212(02)16(25)x x y x x⎧≤≤⎪=⎨≤≤⎪⎩;(2)当01x ≤≤时,第二颗弹珠未弹出,∴第二颗弹珠的解析式为20y =;当13x <≤时,第二颗弹珠的解析式为222(1)y x =-;当36x <≤时,第二颗弹珠的解析式为2161y x =-; ∴2y 与x 的函数关系式为220(01)2(1)(13)16(36)1x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪<≤-⎩;(3)由图可知看出,前2分钟,弹珠的速度逐渐增大,∴第2分钟末两颗弹珠速度相差最大,∵第一颗弹珠的速度为2218222y x =⨯==米/分钟,第二颗弹珠的速度为2122(1)212y x =⨯==-米/分钟,∴两颗弹珠的速度最大相差8-2=6米/分钟;(4)存在,理由如下:第2分钟末到第3分钟末,第一颗弹珠的速度由8米/分钟逐步下降到513米/分钟, 第二颗弹珠的速度由2米/分逐步上升到8米/分,故在此期间必定存在一时刻,两颗弹珠的速度相同. 这个时刻可以通过解方程2162(1)x x=-求得. 【点睛】本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息,明确自变量的取值范围和图象所经过的点的坐标. 6.B解析:(1)9CE =-2)详见解析;(3)132BD DE EF =- 【解析】【分析】(1)过点B 作BH AC ⊥于点H ,分别求出BH ,BE ,根据勾股定理问题得解; (2)如图在FE 上取一点G ,使FG AC =,连接DG ,先证明()ACD GFD SAS ∆∆≌,再证明()ECB DGE AAS ∆∆≌,问题得证;(3)过点D 作AE 的垂线,构造出一个30,60︒,90︒的三角形和一个等腰直角三角形,借助(2)的结论,设222EF AB AC x ===,ED =,通过解两个直角三角形,代换x 和y 的关系,得出结论.【详解】解:(1)如图,过点B 作BH AC ⊥于点H ,在等边ABC ∆中∵BC =∴AH HC ==3BH ==, ∵点E 在BD 的垂直平分线上,∴BE DE ==,在Rt BHE ∆中9EH ==∴9CE EH HC =-=(2)如图在FE 上取一点G ,使FG AC =,连接DG∵DF CD =∴FCD CFD ∠=∠∴ACD EFD ∠=∠在ACD ∆和GFD ∆中,DF CD ACD EFD FG AC =⎧⎪∠=∠⎨⎪=⎩∴()ACD GFD SAS ∆∆≌∴AD DG =∴60A DGA ∠=∠=︒∴60A DGA ADG ∠=∠=∠=︒设EBD EDB α∠=∠=∴120CBE α∠=︒-在ADE ∆中∴18060120AED αα∠=︒-︒-=︒-∴120AED CBE α∠=∠=︒-在ECB ∆和DGE ∆中120AED CBE ECB ECD EB DE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()ECB DGE AAS ∆∆≌∴BC GE =∴AB AC BC GE FG ====12AB EF =(3)如图,设222EF AB AC x ===,DP=y ,过点DP ⊥AE ,垂足为P ,∵∠AED=45°, ∠A=60°, ∴2sin sin 45DP y ED y AED ===∠︒,23sin sin 60DP y y AD A ===∠︒, ∴2=2y DE , ∴BD=AD-AB =23232161222y x DE EF DE EF -=-=-, 故答案为:612BD DE EF =-. 【点睛】本题涉及知识点较多,设计新颖,综合性强,难度较大,根据题意添加适当辅助线,构造直角三角形或构造全等是解题关键.7.B解析:(1)35t ,45t ;(2)当0<t <3时,224655S t t =--+;当3<t <7时,23391052S t t =+-;(3)75;(4)132,7713,477 【解析】【分析】(1)过点B 作x 轴垂线,利用相似三角形可求得;(2)分2种情况,一种是点P 在AD 上,另一种是点P 在CD 上,然后利用三角形面积公式可求得;(3)直接令15h OD =即可求出; (4)存在3种情况,第一种是:QP ∥BD ,第二种是EP ∥CD 或EQ ∥CB ,第三种是QE ∥BD ,分别按照几何性质分析求解.【详解】 (1)如下图,过点B 作x 轴垂线,垂足为点M根据平移的特点,可得∠BOM=∠DBA∵∠BMO=∠DAB=90°,∴△BMO ∽△DAB ∵AB=4,AD=BC=3∴BD=5∵BM OM BO DA BA BD==,OB=t ∴BM=35t ,OM=45t (2)情况一:当0<t <3时,图形如下,过点P 作OD 的垂线,交OD 于点N∵∠NDP=∠BDA ,∠PND=∠BAD ,∴△PND ∽△BAD∵AP=t ,∴PD=3-t∵PN BA PD BD =,∴PN=()435t - 图中,OD=5+t∴()()243124562555OBD t S t t t -=+=--+情况二:当3<t <7时,图形如下,过点P 作OD 的垂线,交OD 于点N图中,PD=t -3,OD=5+t同理,△PND ∽△BCD ,可得PN=()335t - ∴()()23313395251052OBD t S t t t -=+=-+- (3)情况一:当0<t <3时则h=PN=()435t - ∵15h OD =∴()43555t t -+= 解得:t=75情况二:当3<t <7时则h=PN=()335t - ∵15h OD =∴()33555t t -+= 解得:t=7(舍)(4)情况一:QP ∥BD ,图形如下由题意可得:BQ=43t ,AP=t ,则QA=4-43t ,DP=3-t ∵BD ∥QP ∴QA PA QB PD= 代入得:4()2243t t =-解得:t=32∴OD=5+t=132 情况二:如下图,EP ∥CD(或EQ ∥CB)∵点E 是点A 关于QP 对称的点∴EP=PA ,EQ=QA ,QP=QP∴△APQ ≌△EPQ∵EP ∥CD ,CD ⊥AD∴EP ⊥AD∴∠APQ=∠EPQ=45°∴△AQP 是等腰直角三角形,AQ=PA ∴4-43t t = 解得:t=127∴OD=5+t=477 情况三:如下图,QE ∥BD ,延长QE 交DA 于点N∵△APQ ≌△EPQ ,∴∠QEP=∠QAP=90° ∴△ENP 是等腰直角三角形∵QN ∥BD ,∴∠NQA=∠DBA ,∠A=∠A ∴△QNA ∽△BDA ∵BQ=43t ,AP=t ,QA=4-43t,DP=3-t ∴QN QA AN BD BA AD== ∴QN=5-43t,NA=3-t∴EN=QN -QE=QN -QA=1-3t,NP=NA -AP=3-2t ,EP=PA=t ∴在Rt △ENP 中,()2223213t t t ⎛⎫-+-= ⎪⎝⎭解得:t=1213或t=3(舍) ∴OD=5+t=7713【点睛】本题考查动点问题,解题关键是利用相似将图形中各边用t 表示出来.8.B解析:(1)y =12x 2﹣32x ﹣2;(2)点M 的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)点P 的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2). 【解析】 【分析】(1)根据题意直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,则点A 、B 的坐标分别为:(0,-2)、(4,0),即可求解; (2)由题意直线MA 的表达式为:y =(12m ﹣32)x ﹣2,则点N (43m -,0),当MN AN =32时,则NH ON =32,即4343m m m ---=32,进行分析即可求解; (3)根据题意分∠PAB=∠AOB=90°、∠PAB=∠OAB 、∠PAB=∠OBA 三种情况,分别求解即可.【详解】解:(1)直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,﹣2)、(4,0),则c=﹣2,将点B的坐标代入抛物线表达式并解得:a=12,故抛物线的表达式为:y=12x2﹣32x﹣2①;(2)设点M(m,12m2﹣32m﹣2)、点A(0,﹣2),将点M、A的坐标代入一次函数表达式:y=kx+b并解得:直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即:4343mmm---=32,解得:m=5或﹣2或2或1,故点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)①∠PAB=∠AOB=90°时,则直线AP的表达式为:y=﹣2x﹣2②,联立①②并解得:x=﹣1或0(舍去0),故点P(﹣1,0);②当∠PAB=∠OAB时,当点P在AB上方时,无解;当点P在AB下方时,将△OAB沿AB折叠得到△O′AB,直线OA交x轴于点H、交抛物线为点P,点P为所求,则BO=OB=4,OA=OA=2,设OH=x,则sin∠H=BO OAHB HA'=,即:2444x x=++,解得:x=83,则点H(﹣83,0),.则直线AH的表达式为:y=﹣34x﹣2③,联立①③并解得:x=32,故点P(32,﹣258);③当∠PAB=∠OBA时,当点P在AB上方时,则AH=BH,设OH=a,则AH=BH=4﹣a,AO=2,故(4﹣a)2=a2+4,解得:a=32,故点H(32,0),则直线AH的表达式为:y=43x﹣2④,联立①④并解得:x=0或173(舍去0),故点P(173,509);当点P在AB下方时,同理可得:点P(3,﹣2);综上,点P的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、勾股定理的运用等,要注意分类讨论,解题全面.9.C解析:(1)2233(06)53103343(68)8333031503(810)t tS t t tt t t⎧+⎪⎪⎪⎪=-+-<⎨⎪⎪-+<⎪⎪⎩,S的最大值为63;(2)存在,m的值为165或32163-或163或1423-.【解析】【分析】(1)分06t、68t和810t三种情况分别表示出有关线段求得两个变量之间的函数关系即可.(2)分两种情形:①如图31-中,由题意点P在AB上运动的时间与点R在BC上运动的时间相等,即8m=.当RP BR=时,当PB BR=时,当PR PB=时,分别构建方程求解即可.②如图32-中,作RH BC⊥于H.首先证明90BPR∠=︒,根据BP PR=构建方程即可解决问题.【详解】解:(1)如图21-中,当06t时,点P与点Q都在AB上运动,PM AC⊥,//NQ PM,90ANQ AMP∴∠=∠=︒,AQ t=,2AP t=+,60A∠=︒,1122AN AQ t∴==,33QN==,112AM t=+,33PM.∴此时两平行线截平行四边形ABCD的面积为33S+.如图22-中,当68t 时,点P 在BD 上运动,点Q 仍在AB 上运动.则AQ t =,12AN t =,142CN t =-,3QN t =,6BP t =-,10DP t =-,3(10)PM t =-,而43BC =,故此时两平行线截平行四边形ABCD 的面积为: BCNQ BCMP S S S =+四边形四边形()()3111434433106222t t t t ⎛⎫⎛⎫⎡⎤=+⋅-++-⋅- ⎪ ⎪⎣⎦ ⎪⎝⎭⎝⎭ 253103343t t =-+-, 如图23-中,当810t 时,点P 和点Q 都在BD 上运动.则202DQ t =-,(202)3QN t =-,10DP t =-,(10)3PM t =-.∴此时两平行线截平行四边形ABCD 的面积为2333031503S t =-+故S 关于t 的函数关系式为2233(06)53103343(68)3331503(810)t S t t t t ⎪⎪⎪=+-<⎨-+<⎪⎩, 当06t 时,S 随t 增大而增大, 当68t <时,S 随t 增大而增大, 当810t <时,S 随t 增大而减小,∴当t=8时,S 最大,代入可得S=63; (2)如图31-中,由题意点P 在AB 上运动的时间与点R 在BC 上运动的时间相等,8m =. 当RP BR =时,3PB BR =,则有383m m -=⋅,解得165m =, 当PB BR =时,则有38m m -=,解得32163m =-, 当PR PB =时,3BR PB =,则有33(8)m m =-,解得163m =. 如图32-中,作RH BC ⊥于H .在Rt △CHR 中,2(8)CR m =-,30RCH ∠=︒, 182RH CR m ∴==-,8BP m =-,RH BP ∴=,HR BP ∥,∴四边形RHBP 是平行四边形,90RHB ∠=︒,∴四边形RHBP 是矩形,90BPR ∴∠=︒,当BP PR =时,则有83(12)m m -=-,解得1423m =- 综上所述,满足条件的m 的值为165或32163-163或1423-. 【点睛】本题属于四边形综合题,考查了平行四边形的性质,多边形的面积,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决。
中考数学 数学中考数学压轴题的专项培优练习题(含答案
一、中考数学压轴题1.如图,抛物线214y x bx c =++与x 轴交于点A (-2,0),交y 轴于点B (0,52-).直线32y kx =+过点A 与y 轴交于点C ,与抛物线的另一个交点是D .(1) 求抛物线214y x bx c =++与直线32y kx =+的解析式; (2)点P 是抛物线上A 、D 间的一个动点,过P 点作PM ∥CE 交线段AD 于M 点.①过D 点作DE ⊥y 轴于点E ,问是否存在P 点使得四边形PMEC 为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;②作PN ⊥AD 于点N ,设△PMN 的周长为m ,点P 的横坐标为x ,求m 关于x 的函数关系式,并求出m 的最大值.2.在平面直角坐标系中,抛物线24y mx mx n =-+(m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且:3:4∆∆=ABC BCE S S .(1)求点A ,点B 的坐标;(2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上, ①求直线CE 的解析式;②求抛物线的解析式.3.已知:如图,在平面直角坐标系中,点O 为坐标原点,()2,0C .直线26y x =+与x 轴交于点A ,交y 轴于点B .过C 点作直线AB 的垂线,垂足为E ,交y 轴于点D . (1)求直线CD 的解析式;(2)点G 为y 轴负半轴上一点,连接EG ,过点E 作EH EG ⊥交x 轴于点H .设点G 的坐标为()0,t ,线段AH 的长为d .求d 与t 之间的函数关系式(不要求写出自变量的取值范围)(3)过点C 作x 轴的垂线,过点G 作y 轴的垂线,两线交于点M ,过点H 作HN GM ⊥于点N ,交直线CD 于点K ,连接MK ,若MK 平分NMB ∠,求t 的值.4.如图,已知抛物线()2y ax bx 2a 0=+-≠与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且()D 2,3,()B 4,0-.(1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C ,求BMC 面积的最大值;(3)在(2)中BMC 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.5.已知.在Rt △OAB 中,∠OAB=90°,∠BOA=30°,OA=23,若以O 为坐标原点,OA 所在直线为x 轴,建立如图所示的平面直角坐标系,点B 在第一象限内,将Rt △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处.(1)求经过点O ,C ,A 三点的抛物线的解析式.(2)若点M 是抛物线上一点,且位于线段OC 的上方,连接MO 、MC ,问:点M 位于何处时三角形MOC 的面积最大?并求出三角形MOC 的最大面积.(3)抛物线上是否存在一点P ,使∠OAP=∠BOC ?若存在,请求出此时点P 的坐标;若不存在,请说明理由.6.(1)阅读理解:如图①,在ABC 中,若8AB =,5AC =,求BC 边上的中线AD 的取值范围. 可以用如下方法:将ACD 绕着点D 逆时针旋转180︒得到EBD △,在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是______;(2)问题解决:如图②,在ABC 中,D 是BC 边上的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE CF EF +>;(3)问题拓展:如图③,在四边形ABCD 中,180B D ∠+∠=︒,CB CD =,100BCD ∠=︒,以C 为顶点作一个50︒的角,角的两边分别交AB 、AD 于E 、F 两点,连接EF ,探索线段BE ,DF ,EF 之间的数量关系,并说明理由.7.已知:如图,二次函数213222y x x =-++的图象交x 轴于A 点和B 点(A 点在B 点左则),交y 轴于E 点,作直线,EB D 是直线EB 上方抛物线上的一个动点.过D 点作 直线l 平行于直线.EB M 是直线 EB 上的任意点,N 是直线l 上的任意点,连接,MO NO ,始终保持MON ∠为90︒,以MO 和ON 边,作矩形MONC .(1)在D 点移动过程中,求出当DEB ∆的面积最大时点D 的坐标;在DEB ∆的面积最大 时,求矩形MONC 的面积的最小值.(2)在DEB ∆的面积最大时,线段ON 交直线EB 于点G ,当点,,,D N G B 四个点组成平行 四边形时,求此时线段ON 与抛物线的交点坐标.8.在平面直角坐标系xOy 中,对于点A 和图形M ,若图形M 上存在两点P ,Q ,使得3AP AQ =,则称点A 是图形M 的“倍增点”.(1)若图形M 为线段BC ,其中点()2,0B -,点()2,0C ,则下列三个点()1,2D -,()1,1E -,()0,2F 是线段BC 的倍增点的是_____________;(2)若O 的半径为4,直线l :2y x =-+,求直线l 上O 倍增点的横坐标的取值范围;(3)设直线1y x =-+与两坐标轴分别交于G ,H ,OT 的半径为4,圆心T 是x 轴上的动点,若线段GH 上存在T 的倍增点,直接写出圆心T 的横坐标的取值范围.9.问题背景:如图,四边形ABCD 中,AD BC ∥,8BC =,17AD =+32AB =45ABC ∠=︒,P 为边AD 上一动点,连接BP 、CP .问题探究(1)如图1,若30PBC ∠=︒,则AP 的长为__________.(2)如图2,请求出BPC △周长的最小值;(3)如图3,过点P 作PE BC ⊥于点E ,过点E 分别作EM PB ⊥于M ,EN PC ⊥于点N ,连接MN①是否存在点P ,使得PMN 的面积最大?若存在,求出PMN 面积的最大值,若不存在,请说明理由;②请直接写出PMN 面积的最小值.10.如图,在ABC 中,90ABC ∠=︒,AB BC <,O 为AC 中点,点D 在BO 延长线上,CD BC =,AE BC ∥,CE CA =,AE 交BD 于点G .(1)若28DCE ∠=︒,求AOB ∠的度数;(2)求证:AG GE =;(3)设DC 交GE 于点M .①若3AB =,4BC =,求::AG GM ME 的值;②连结DE ,分别记ABG ,DGM ,DME 的面积为1S ,2S ,3S ,当AC DE 时,123::S S S = .(直接写出答案)11.如图,矩形ABCD 中,AD >AB ,连接AC ,将线段AC 绕点A 顺时针旋转90∘得到线段AE ,平移线段AE 得到线段DF (点A 与点D 对应,点E 与点F 对应),连接BF ,分别交直线AD ,AC 于点G ,M ,连接EF .(1) 依题意补全图形;(2) 求证:EG ⊥AD ;(3) 连接EC ,交BF 于点N ,若AB =2,BC =4,设MB =a ,NF =b ,试比较()()11a b ++与9+62之间的大小关系,并证明.12.如图1,平面直角坐标系xoy 中,A (-4,3),反比例函数(0)k y k x=<的图象分别交矩形ABOC 的两边AC ,BC 于E ,F (E ,F 不与A 重合),沿着EF 将矩形ABOC 折叠使A ,D 重合.(1)①如图2,当点D 恰好在矩形ABOC 的对角线BC 上时,求CE 的长;②若折叠后点D 落在矩形ABOC 内(不包括边界),求线段CE 长度的取值范围. (2)若折叠后,△ABD 是等腰三角形,请直接写出此时点D 的坐标.13.如图,抛物线2(40) y ax bx a =++≠与x 轴交于()() 3,0, 4,0A C -两点,与y 轴交于点B .()1求这条抛物线的顶点坐标;()2已知AD AB =(点D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动:同时另一个点Q 以某一速度从点B 沿线段BC 移动,经过()t s 的移动,线段PQ 被BD 垂直平分,求t 的值;()3在()2的情况下,抛物线的对称轴上是否存在一点M ,使MQ MC +的值最小?若存在,请求出点M 的坐标:若不存在,请说明理由.14.如图①,在△ABC 中,∠ACB =90°,∠B =30°,AC =1,D 为AB 的中点,EF 为△ACD 的中位线,四边形EFGH 为△ACD 的内接矩形(矩形的四个顶点均在△ACD 的边上). (1)计算矩形EFGH 的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 重叠部分的面积为316时,求矩形平移的距离; (3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E F G H ,将矩形1111E F G H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为α,求cos α的值.15.定义:将函数l 的图象绕点P (m ,0)旋转180°,得到新的函数l '的图象,我们称函数l '是函数关于点P 的相关函数.例如:当m =1时,函数y =(x +1)2+5关于点P (1,0)的相关函数为y =﹣(x ﹣3)2﹣5.(1)当m =0时①一次函数y =x ﹣1关于点P 的相关函数为 ;②点(12,﹣98)在二次函数y =﹣ax 2﹣ax +1(a ≠0)关于点P 的相关函数的图象上,求a 的值.(2)函数y =(x ﹣1)2+2关于点P 的相关函数y =﹣(x +3)2﹣2,则m = ; (3)当m ﹣1≤x ≤m +2时,函数y =x 2﹣mx ﹣12m 2关于点P (m ,0)的相关函数的最大值为6,求m 的值.16.如图,在▱ABCD 中,对角线AC ⊥BC ,∠BAC =30°,BC =23,在AB 边的下方作射线AG ,使得∠BAG =30°,E 为线段DC 上一个动点,在射线AG 上取一点P ,连接BP ,使得∠EBP =60°,连接EP 交AC 于点F ,在点E 的运动过程中,当∠BPE =60°时,则AF =_____.17.已知四边形ABCD为矩形,对角线AC、BD相交于点O,AD=AO.点E、F为矩形边上的两个动点,且∠EOF=60°.(1)如图1,当点E、F分别位于AB、AD边上时,若∠OEB=75°,求证:DF=AE;(2)如图2,当点E、F同时位于AB边上时,若∠OFB=75°,试说明AF与BE的数量关系;(3)如图3,当点E、F同时在AB边上运动时,将△OEF沿OE所在直线翻折至△OEP,取线段CB的中点Q.连接PQ,若AD=2a(a>0),则当PQ最短时,求PF之长.18.如图,在矩形ABCD中,点E为BC的中点,连接AE,过点D作DF AE⊥于点F,过点C作CN DF⊥于点N,延长CN交AD于点M.(1)求证:AM MD=(2)连接CF,并延长CF交AB于G①若2AB=,求CF的长度;②探究当ABAD为何值时,点G恰好为AB的中点.19.已知菱形ABCD中,∠ABC=60°,AB=4,点M在BC边上,过点M作PM∥AB交对角线BD于点P,连接PC.(1)如图1,当BM=1时,求PC的长;(2)如图2,设AM与BD交于点E,当∠PCM=45°时,求证:BEDE=33+;(3)如图3,取PC的中点Q,连接MQ,AQ.①请探究AQ和MQ之间的数量关系,并写出探究过程;②△AMQ的面积有最小值吗?如果有,请直接写出这个最小值;如果没有,请说明理由.20.如图,在平面直角坐标系xOy 中,已知Rt ABC 的直角顶点()0,12C ,斜边AB 在x 轴上,且点A 的坐标为()9,0-,点D 是AC 的中点,点E 是BC 边上的一个动点,抛物线212y ax bx =++过D ,C ,E 三点.(1)当//DE AB 时,①求抛物线的解析式;②平行于对称轴的直线x m =与x 轴,DE ,BC 分别交于点F ,H ,G ,若以点D ,H ,F 为顶点的三角形与GHE △相似,求点m 的值.(2)以E 为等腰三角形顶角顶点,ED 为腰构造等腰EDG △,且G 点落在x 轴上.若在x 轴上满足条件的G 点有且只有一个时,请直接写出....点E 的坐标. 21.如图1,Rt △ABC 中,点D ,E 分别为直角边AC ,BC 上的点,若满足AD 2+BE 2=DE 2,则称DE 为R △ABC 的“完美分割线”.显然,当DE 为△ABC 的中位线时,DE 是△ABC 的一条完美分割线.(1)如图1,AB =10,cos A =45,AD =3,若DE 为完美分割线,则BE 的长是 . (2)如图2,对AC 边上的点D ,在Rt △ABC 中的斜边AB 上取点P ,使得DP =DA ,过点P 画PE ⊥PD 交BC 于点E ,连结DE ,求证:DE 是直角△ABC 的完美分割线.(3)如图3,在Rt △ABC 中,AC =10,BC =5,DE 是其完美分割线,点P 是斜边AB 的中点,连结PD 、PE ,求cos ∠PDE 的值.22.在平面直角坐标系xOy 中,点A 、B 为反比例函数()4x 0x y =>的图像上两点,A 点的横坐标与B 点的纵坐标均为1,将()4x 0x y =>的图像绕原点O 顺时针旋转90°,A 点的对应点为A’,B 点的对应点为B’.(1)点A ’的坐标是 ,点B’的坐标是 ;(2)在x 轴上取一点P ,使得PA+PB 的值最小,直接写出点P 的坐标. 此时在反比例函数()4x 0xy =>的图像上是否存在一点Q ,使△A’B’Q 的面积与△PAB 的面积相等,若存在,求出点Q的横坐标;若不存在,请说明理由;(3)连接AB’,动点M从A点出发沿线段AB’以每秒1个单位长度的速度向终点B’运动;动点N同时从B’点出发沿线段B’A’以每秒1个单位长度的速度向终点A’运动.当其中一个点停止运动时,另一个点也随之停止运动.设运动的时间为t秒,试探究:是否存在使△MNB’为等腰直角三角形的t值.若存在,求出t的值;若不存在,说明理由.23.如图,平行四边形ABCD中,AB⊥AC,AB=2,AC=4.对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转α°(0°<α<180°),分别交直线BC、AD于点E、F.(1)当α=_____°时,四边形ABEF是平行四边形;(2)在旋转的过程中,从A、B、C、D、E、F中任意4个点为顶点构造四边形,①当α=_______°时,构造的四边形是菱形;②若构造的四边形是矩形,求该矩形的两边长.24.在综合与实践课上老师将直尺摆放在三角板上,使直尺与三角板的边分别交于点P、M、N、Q,(1)如图①所示.当∠CNG=42°,求∠HMC 的度数.(写出证明过程)(2)将直尺向下平移至图 2 位置,使直尺的边缘通过点 C,交 AB 于点 P,直尺另一侧与三角形交于 N、Q 两点。
2023年辽宁省沈阳市第一二六中学中考数学压轴题专项训练
辽宁省沈阳市第一二六中学中考数学压轴题专项训练(学生版)中考数学压轴题(1)一次函数、反比例函数与几何综合1.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A,与y轴交于点B(0,9),与直线OC交于点C(8,3).(1)求直线AB的函数表达式;(2)过点C作CD⊥x轴于点D,将△ACD沿射线CB平移得到的三角形记为△A′C′D′,点A,C,D的对应点分别为A′,C′,D′,若△A′C′D′与△BOC重叠部分的面积为S,平移的距离CC′=m,当点A′与点B重合时停止运动.①若直线C′D′交直线OC于点E,则线段C′E的长为(用含有m的代数式表示);②当0<m<时,S与m的关系式为;③当S=时,m的值为.2.如图,平面直角坐标系中,O是坐标原点,直线y=kx+15(k≠0)经过点C(3,6),与x 轴交于点A,与y轴交于点B.线段CD平行于x轴,交直线y=x于点D,连接OC,AD.(1)填空:k=,点A的坐标是(,);(2)求证:四边形OADC是平行四边形;(3)动点P从点O出发,沿对角线OD以每秒1个单位长度的速度向点D运动,直到点D为止;动点Q同时从点D出发,沿对角线DO以每秒1个单位长度的速度向点O运动,直到点O为止.设两个点的运动时间均为t秒.①当t=1时,△CPQ的面积是.②当点P,Q运动至四边形CP AQ为矩形时,请直接写出此时t的值.3.在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B.(1)k的值是;(2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.①如图,点E为线段OB的中点,且四边形OCED是平行四边形时,求▱OCED的周长;②当CE平行于x轴,CD平行于y轴时,连接DE,若△CDE的面积为,请直接写出点C的坐标.4.如图,直线y=x+6分别与x轴、y轴交于点A、B,点C为线段AB上一动点(不与A、B重合),以C为顶点作∠OCD=∠OAB,射线CD交线段OB于点D,将射线OC绕点O顺时针旋转90°交射线CD 于点E,连结BE.(1)证明:=;(用图1)(2)当△BDE为直角三角形时,求DE的长度;(用图2)(3)点A关于射线OC的对称点为F,求BF的最小值.(用图3)5.如图,△AOB是等边三角形,过点A作y轴的垂线,垂足为C,点C的坐标为(0,).P是直线AB上在第一象限内的一动点,过点P作y轴的垂线,垂足为D,交AO于点E,连接AD,作DM⊥AD交x轴于点M,交AO于点F,连接BE,BF.(1)填空:若△AOD是等腰三角形,则点D的坐标为;(2)当点P在线段AB上运动时(点P不与点A,B重合),设点M的横坐标为m.①求m值最大时点D的坐标;②是否存在这样的m值,使BE=BF?若存在,求出此时的m值;若不存在,请说明理由.6.如图,在平面直角坐标系中,四边形ABCD,A在y轴的正半轴上,B,C在x轴上,AD∥BC,BD平分∠ABC,交AO于点E,交AC于点F,∠CAO=∠DBC.若OB,OC的长分别是一元二次方程x2﹣5x+6=0的两个根,且OB>OC.请解答下列问题:(1)求点B,C的坐标;(2)若反比例函数y=(k≠0)图象的一支经过点D,求这个反比例函数的解析式;(3)平面内是否存在点M,N(M在N的上方),使以B,D,M,N为顶点的四边形是边长比为2:3的矩形?若存在,请直接写出在第四象限内点N的坐标;若不存在,请说明理由.7.如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.8.如图,在平面直角坐标系中,点A坐标为(6,0),点B坐标为(2,﹣2),直线AB与y轴交于点C.(1)求直线AB的函数表达式及线段AC的长;(2)点B关于y轴的对称点为点D.①请直接写出点D的坐标为;②在直线BD上找点E,使△ACE是直角三角形,请直接写出点E的横坐标为.9.在平面直角坐标系中,y关于x的一次函数y=x+5﹣c(c为常数),其图象与y轴交于点A,与x轴交于点B.(1)当c=4时,求线段OA的长;(2)若△OAB的面积为18.①求出满足条件的一次函数表达式;②若点A在y轴正半轴,点B在x轴负半轴上,且点C在直线AB上,当S△OAC=5S△OBC时,请直接写出点C的坐标.10.如图,在平面直角坐标系中,一次函数y=x+12的图象分别交x,y轴于点A和B,与经过点C(,0),D(0,﹣3)的直线交于点E.(1)求直线CD的函数解析式及点E的坐标;(2)点P是线段DE上的动点,连接BP.①当BP分△BDE面积为1:2时,请直接写出点P的坐标;②将△BPE沿着直线BP折叠,点E对应点E',当点E'落在坐标轴上时,直接写出点P的坐标.11.如图,在平面直角坐标系中,直线AB与y轴交于点A,与x轴交于点B,OB=2OA,点N在线段OB 上,过点N作NM⊥AB于M,当动点D从点A匀速运动到点M时,动点E恰好从点B匀速运动点O;当点D运动到线段AM中点时,动点E恰好运动到点N,设AD=x,OE=y,且.(1)求线段OA的长;(2)求线段BM的长;(3)连接DE,当△DEB的面积最大时,直接写出x的值.12.如图,在平面直角坐标系中,矩形OABC的边OA在x轴的正半轴上,OC在y轴的正半轴上,OA=3,OC=.动点P从C点出发沿折线CB﹣BA向终点A运动、在边CB上以每秒1个单位长度的速度匀速运动,在边BA上以每秒个单位长度的速度匀速运动.过点P作线段PD与射线OA相交于点D,且∠PDO=60°,连接PO,BO,PD与BO相交于点E.设点P的运动时间为t,△OPD与△OAB重合部分的面积为S.(1)直接写出点B的坐标(,);(2)当点P与点C重合时,求OD的长;(3)当点P在边BA上运动时,求BP的长(用含t的代数式表示);(4)直接写出S关于t的函数关系式及自变量t的取值范围.13.如图,在平面直角坐标系中,菱形OABC的边OA在x轴的正半轴上,点B,C在第一象限,∠C=120°,边OA=8.点P从原点O出发,沿x轴正半轴以每秒1个单位长度的速度做匀速运动:点Q从点A出发,沿边AB→BC→CO以每秒2个单位长度的速度做匀速运动.过点P作直线EP垂直于x轴并交折线OCB于E,交对角线OB于F,点P和点Q同时出发,分别沿各自路线运动,点Q运动到原点O时,P 和Q两点同时停止运动.(1)请直接填写点A的坐标(,),B的坐标(,),C的坐标(,);(2)当t=1时,求线段EF的长;(3)求t为何值时,点E与点Q重合;(4)设△AEQ的面积为S,当4≤t≤8,请直接写出s与t的函数关系式.14.如图,在平面直角坐标系xOy中,直线AB的表达式为y=kx+2,且经过点(1,4),与x轴、y轴分别交于点A、B,将直线AB向下平移4个单位得到直线l.(1)求直线l的表达式;(2)将△AOB绕点O逆时针旋转90°后得到△A′OB′(点A的对应点是点A′,点B的对应点是点B′),求直线A′B′与直线AB的交点坐标;(3)设直线l与x轴交于点C,点D为该平面直角坐标系内的点,如果以点A、B、C、D为顶点的四边形是平行四边形,求点D的坐标.15.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴交于点A,与y轴交于点B,将线段AB绕点A顺时针旋转90°,得到线段AC,过点B,C作直线,交x轴于点D.(1)点C的坐标为;求直线BC的表达式;(2)若点E为线段BC上一点,且△ABE的面积为,求点E的坐标;(3)在(2)的条件下,在平面内是否存在点P,使以点A,B,E,P为顶点的四边形为平行四边形,直接写出点P的坐标16.已知,在平面直角坐标系中,点O为坐标原点,直线y=kx+3与x轴交于点B,与y轴交于点A,OA =OB.(1)如图1,求直线AB的解析式;(2)如图2,点C是第一象限内一点,BC⊥OB,AD⊥AC交x轴负半轴于点D,若点D的横坐标为t,线段BC的长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,当d=﹣2t时,点E是线段AB上,点F在线段OA上,OF=BE,连接CE,作FG∥x轴,连接CG交线段AB于点H,连接DF、AG,若∠ECG=45°,DF=AG,求点H的坐标.17.如图,直线y=kx+b与x轴交于点A(4,0),与y轴交于点B(0,2),P是x轴上的动点.(1)求k的值.(2)连结PB,当∠PBA=90°时,求OP的长.(3)过点P作AB的平行线,交y轴于点M,点Q在直线x=2上.是否存在点Q,使得△PMQ是等腰直角三角形?若存在,请直接写出所有符合条件的点Q的坐标,若不存在,请说明理由.18.如图,在平面直角坐标系中,直线l1:y=kx+1交y轴于点A,交x轴于点B(4,0),过点E(2,0)的直线l2平行于y轴,交直线l1于点D,点P是直线l2上一动点(异于点D),连接P A、PB.(1)求直线l1的解析式;(2)设P(2,m),求△ABP的面积S的表达式(用含m的代数式表示);(3)当△ABP的面积为3时,则以点B为直角顶点作等腰直角△BPC,请直接写出点C的坐标.19.如图1,在平面直角坐标系中,已知直线l:y=kx+b与x轴交于点A,与y轴交于点B,直线CD相交于点D,其中AC=14,C(﹣6,0),D(2,8).(1)求直线l函数表达式;(2)如图2,点P为线段CD延长线上的一点,连接PB,当△PBD的面积为7时,将线段BP沿着y 轴方向平移,使得点P落在直线AB上的点P'处,求点P'到直线CD的距离;(3)若点E为直线CD上的一点,在平面直角坐标系中是否存在点F,使以点A、D、E、F为顶点的四边形为菱形,若存在请直接写出点F的坐标;若不存在,请说明理由.20.如图,在平面直角坐标系中,直线l1的解析式为y=﹣x,直线l2与l1交于点A(a,﹣a),与y轴交于点B(0,b),其中a,b满足﹣a=3.(1)求直线l2的解析式.(2)在平面直角坐标系中第二象限有一点P(m,5),使得S△AOP=S△AOB,请求出点P的坐标.(3)已知平行于y轴左侧有一动直线,分别与l1,l2交于点M、N,且点M在点N的下方,点Q为y 轴上一动点,且△MNQ为等腰直角三角形,请求出满足条件的点Q的坐标.21.如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式;(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(﹣,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.22.把正方形纸片放在直角坐标系中,如图所示,正方形纸片ABCD的边长为3,点E、F分别在BC、CD 上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知3BE=BC.(1)请直接写出D、E两点的坐标,并求出直线EF的解析式;(2)在直线EF上是否存在点M,使得△AFM的面积是△AEF的面积的一半,若存在,请求出点M的坐标,若不存在,请说明理由.(3)若点P、Q分别是线段AG、AF上的动点,则EP+PQ的最小值是多少?并求出此时点Q的坐标.23.在平面直角坐标系中,点A的坐标为(﹣,0),点B在直线l:上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.(1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.①若BA=BO,求证:CD=CO.②若∠CBO=45°,求四边形ABOC的面积.(2)是否存在点B,使得以A,B,C为顶点的三角形与△BCO相似?若存在,求OB的长;若不存在,请说明理由.24.如图,平面直角坐标系中,直线AC解析式为y=mx+b与y轴交于点A,与x轴交于点C,直线BE解析式为y=nx+b﹣10交y轴于点E,与x轴交于点B.(1)求线段AE长;(2)连接AB,K为线段AB上一点,F为线段AC上一点,连接FK交y轴于点G,若直线FK解析式为y=﹣x+k,求tan∠AGK的值;(3)在(2)的条件下,若∠ABE=45°,∠ACB=2∠EBO,AC=15,取AG中点H,连接KH,若KH =3,求F点坐标.25.如图在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b分别交x轴,y轴于点A、B,OA=4,∠OBA的外角平分线交x轴于点D.(1)求点D的坐标;(2)点P是线段BD上一点(不与B、D重合),过点P作PC⊥BD交x轴于点C,设点P的横坐标为t,△BCD的面积为S,求S与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,PC的延长线交y轴于点E,当PC=PB时,将射线EP绕点E旋转45°交直线AB于点F,求F点坐标.26.如图1,在平面直角坐标系中,直线l1:y=﹣x+2与x轴交于点A,与y轴交于点B,与直线l2交于点C(m,3),直线l2与x轴交于点D(﹣2,0).(1)求直线l2的解析式;(2)如图2,点P在线段CD上,连接AP,3S△APD=2S△ACD,过点P的直线交x轴负半轴于点M,交y轴正半轴于点N,请问:+是否为定值?若是,求出定值;若不是,请说明理由.(3)当点E在直线l1上运动时,平面内是否存在一点F,使得以点C、D、E、F为顶点的四边形是菱形?若存在,求出点E的坐标;若不存在,请说明理由.27.在正方形ABCD中,点E是直线BC上一点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)如图1,若点E是BC的中点.求证:AE=EF;(2)如图2,若点E是BC边上任意一点(不含B,C),结论“AE=EF”还成立吗?若成立,请证明;若不成立,请说明理由;(3)如图3,若点E是BC延长线上任意一点,结论“AE=EF”还成立吗?若成立,请证明若不成立,请说明理由;(4)如图4,在平面直角坐标系xOy中,点O与点B重合,正方形的边长为4,若点F恰好落在直线y =x+7上,请直接写出此时点E的坐标.28.如图,在平面直角坐标系xOy中,点A在y轴的正半轴上,点B在x轴的正半轴上,OA=OB=10.(1)求直线AB的解析式;(2)若点P是直线AB上的动点,当S△OBP=S△OAP时,求点P的坐标;(3)将直线AB向下平移10个单位长度得到直线l,点M,N是直线l上的动点(M,N的横坐标分别是x M,x N,且x M<x N),MN=4,求四边形ABNM的周长的最小值,并说明理由.29.如图1,在平面直角坐标系中,O为坐标原点,直线y=ax+10a分别交x轴、y轴于点A、B,△AOB 的面积为25.(1)求a的值;(2)如图2,点D为AB上一点(D不与A、B重合),C为x轴正半轴一点,连接CD交y轴于点E,C、D关于点E对称,设点D的横坐标为t,∠DCA的正切值为s,求s关于t的函数关系式;(3)如图3,在(2)的条件下,F为DE上一点,K为CF的中点,连接BK,2∠ACD=90°﹣∠BKF,P为第一象限一点,CP⊥OC,连接FP、FB,将FP沿FB翻折交BD于点Q,FQ=FP,当s=时,求直线PQ的解析式.30.直线y=kx+10k交x轴、y轴于A、B两点.(1)如图1,求点A坐标;(2)如图2,点D为第三象限内一点,连接DB交x轴于点C,若BA=BD,∠DAC=∠ABD,设点D 的横坐标为t,求AC长(用t的代数式来表示);(3)如图3,在(2)的条件下,作射线DO,当DO∥AB时,在射线DO上是否存在一点E,使得∠AEB =45°,若存在,请求出直线BE的解析式;若不存在,请说明理由.31.如图1,在平面直角坐标系xOy中,已知直线AB:y=﹣x+3与直线CD:y=kx﹣2相交于点M(4,a),分别交坐标轴于点A、B、C、D,点P是线段CD延长线上的一个点,△PBM的面积为15.(1)求直线CD解析式和点P的坐标;(2)如图2,当点P为线段CD上的一个动点时,将BP绕点B逆时针旋转90°得到BQ,连接PQ与OQ.点Q随着点P的运动而运动,请求出点Q运动所形成的线段所在直线的解析式,以及OQ的最小值.(3)在(1)的条件下,直线AB上有任意一点F,平面直角坐标系内是否存在点N,使得以点B、D、F、N为顶点的四边形是菱形,如果存在,请直接求出点N的坐标;如果不存在,请说明理由.32.如图,直线y=k(x﹣6)交x轴正半轴于点A,交y轴正半轴于点B,且△AOB的面积等于27.(1)求直线AB的解析式;(2)P为线段AB上一点,过点B作BD∥x轴,交OP延长线于点D,设点P的横坐标为m,线段BD 的长为d,求d与m的函数关系式;(3)在(2)的条件下,过点P作PE⊥x轴,垂足为E,连接AE交OP于点F,Q为PE延长线上一点,若DE+EF=AF,∠AQD=45°,求PQ的长.33.如图,在平面直角坐标系xOy中,直线l1:y=x+m与y轴交于点A(0,3),直线l2:y=x﹣与x轴交于点B,点M,N分别是直线l1,l2在第一象限内的动点,且∠MON=60°,连接MN.(1)直接写出m的值,点B的坐标,∠OAM及∠OBN的度数;(2)求AM•BN的值;(3)当△MON是直角三角形时,直接写出点M的坐标.34.如图,在平面直角坐标系中,矩形OABC的边OC、OA分别在x轴、y轴上,点B的坐标为(8,4),连接AC.动点P从点A出发,以每秒个单位长度的速度沿对角线AC向终点C匀速运动,动点Q从点C出发,以每秒4个单位长度的速度沿C→O→A路线,向终点A匀速运动,两点同时出发,一点到达终点,另一点即停,连接PQ.设运动时间为t秒(t>0).(1)用含t的代数式表示:CQ=;CP=;(2)当点Q在边OC上,且△PQC为直角三角形时,直接写出t的值:t=;(3)过点P作PE⊥AB交AB于点E,连接EQ交对角线AC于点F,①t=时,S△EFP:S△EF A=2:3;②当0<t<2时,t=,EQ取得最小值;当2<t<3时,QE的最小值为.35.如图,在平面直角坐标系中,直线y=3x+6与x轴交于点B,与y轴交于点A,点C(3,0),连接AC 作点O关于直线AB的对称点E,线段OE交直线AB于点F,过点E作EH⊥x轴于点H,连接EB.(1)求证:△EHO∽△BOA;(2)①设HE=a,用含a的代数式表示HO=;②求a的值,并直接写出直线BE的表达式;(3)点M在直线BE上,连接AM,以线段AM为边作正方形AMPN(点A、M、P、N以逆时针方向排序),点Q在平面内,当四边形BCNQ为菱形时,连接PQ,请直接写出PQ的长度.36.如图,在平面直角坐标系中,矩形ABCO的顶点B的坐标是(6,4),动点P从点A出发,以每秒1个单位的速度沿线段AB运动,动点Q从点C出发,以每秒2个单位的速度沿线段OC运动,连接OB,连接PQ与线段PQ相交于点D,两点同时出发,当点Q到达点O时,P、Q同时停止运动,设运动时间为t(t>0).(1)AP=,OQ=;(请用含t的代数式表示)(2)当时,求t的值;(3)在P、Q运动的过程中,将矩形AOCB沿PQ折叠,点A,点O的对应点分别是点E,点F,①当点F恰好落在线段OB上时,直接写出此时的t值;②连接PF,连接OF,当∠PFO=45°时,直接写出此时点F的坐标.37.如图1,在坐标系中的△ABC,点A、B在x轴,点C在y轴,且∠ACB=90°,∠B=30°,AC=4,D是AB的中点.(1)求直线BC的表达式.(2)如图2,若E、F分别是边AC,CD的中点,矩形EFGH的顶点都在△ACD的边上.①请直接写出下列线段的长度:EF=,FG=.②将矩形EFGH沿射线AB向右平移,设矩形移动的距离为m,矩形EFGH与△CBD重叠部分的面积为S,当S=时,请直接写出平移距离m的值.(3)如图3,在(2)的条件下,在矩形EFGH平移过程中,当点F在边BC上时停止平移,再将矩形EFGH绕点G按顺时针方向旋转,当点H落在直线CD上时,此时矩形记作E1F1GH1,由H1向x轴作垂线,垂足为Q,则=.38.如图,点A、B在x轴上,点C在y轴上,且OA=2,OB=4,OC=8,直线MN过AB的中点且与y 轴平行,与直线BC交于点M,与x轴交于点N.(1)求点M的坐标.(2)若点P是直线MN上的一个动点,直接写出点P的坐标,使以P、C、M为顶点的三角形与△MNB 相似.(3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到直线MN上的点F,最后返回到点C.要使动点G走过的路程最短,请直接写出点E、F的坐标,并直接写出最短路程.(4)点Q是y轴上的一点,点R在x轴上,直接写出使△MQR为等腰直角三角形的Q的坐标.39.如图,在平面直角坐标系中,直线l1:y=x+与过点A(3,0)的直线l2交于点C(1,m),与x 轴交于点B.(1)点B坐标,直线l2的表达式;(2)点P是直线l2上的一个动点,过点P作EF⊥x轴于点E,交直线l1于点F,利用(1)中的结论,解答下列各问:①若PF=AB,求点P的横坐标;②过点P作PQ⊥l1于点Q,若PQ=2PE,请直接写出点P的坐标;③直线l1与y轴交于点D,过点B作y轴的平行线l3,在x轴上方的l3上有一点G,在线段BD上有一点H,若DH=BG,请直接写出OG+OH的最小值.40.在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象经过点A(6,0)和点B(0,9).与直线y=x相交于点C,过点C作CE⊥x轴于点E,将△OCE沿射线OC平移,移动后的三角形记为△O′C′E′(点O,C,E的对应点分别记为点O′,C′,E′),点O′与点C重合时运动停止.(1)求直线AB的表达式及点C的坐标;(2)①如图,当点E′落在线段AB上时,设点E′的横坐标为a,求a的值;②设△O′C′E′与△ACE重叠部分面积为S,△OCE沿射线OC平移的距离OO′为t,直接写出S=时,t的值.41.如图①,在矩形OABC中,OA=4,OC=3,分别以OC、OA所在的直线为x轴、y轴,建立如图所示的坐标系,连接OB,反比例函数y=(x>0)的图象经过线段OB的中点D,并与矩形的两边交于点E和点F,直线l:y=kx+b经过点E和点F.(1)求反比例函数的解析式;(2)在第一象限内,请直接写出关于x的不等式kx+b≤的解集:.(3)如图②,将线段OB绕点O顺时针旋转一定角度,使得点B的对应点H恰好落在x轴的正半轴上,连接BH,作OM⊥BH,点N、点G为线段OM.上的动点,且GN=.①的值为;②求四边形CGNH周长的最小值.42.已知,矩形OCBA在平面直角坐标系中的位置如图所示,点C在x轴的正半轴上,点A在y轴的正半轴上,已知点B的坐标为(4,2),反比例函数y=的图象经过AB的中点D,且与BC交于点E,设直线DE的解析式为y=mx+n,连接OD,OE.(1)求反比例函数y=的表达式和点E的坐标;(2)点M为y轴正半轴上一点,若△MBO的面积等于△ODE的面积,求点M的坐标;(3)点P为x轴上一点,点Q为反比例函数y=图象上一点,是否存在点P、Q使得以点P,Q,D,E为顶点的四边形为平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.43.如图1,矩形OABC的顶点A、C分别落在x轴、y轴的正半轴上,点B(4,3),反比例函数y=(x >0)的图象与AB、BC分别交于D、E两点,BD=1,点P是线段OA上一动点.(1)求反比例函数关系式和点E的坐标;(2)如图2,连接PE、PD,求PD+PE的最小值;(3)如图3,当∠PDO=45°时,求线段OP的长.44.如图,在平面直角坐标系中,一次函数y=﹣x+1与反比例函数y=的图象在第四象限相交于点A(2,﹣1),一次函数的图象与x轴相交于点B.(1)求反比例函数的表达式及点B的坐标;(2)当一次函数值小于反比例函数值时,请直接写出x的取值范围是;(3)点C是第二象限内直线AB上的一个动点,过点C作CD∥x轴,交反比例函数y=的图象于点D,若以O,B,C,D为顶点的四边形为平行四边形,请直接写出点C的坐标为.45.如图,一次函数y=kx+b(k>0)的图象与反比例函数y=(x>0)的图象交于点A,与x轴交于点B,与y轴交于点C,AD⊥x轴于点D,CB=CD,点C关于直线AD的对称点为点E.(1)点E是否在这个反比例函数的图象上?请说明理由;(2)连接AE、DE,若四边形ACDE为正方形.①求k、b的值;②若点P在y轴上,当|PE﹣PB|最大时,求点P的坐标.46.如图,一次函数y=x+1的图象与反比例函数y=(x>0)的图象交于点A(a,3),与y轴交于点B.(1)求a,k的值;(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.①求△ABC的面积;②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.47.如图,在平面直角坐标系xOy中,一次函数y=﹣x+5的图象与反比例函数y=(k>0)的图象交于A、B两点(点A在点B左边),交x轴于点C,延长AO交反比例函数y=(k>0)的图象于点E,点F为第四象限内一点,∠AFE=90°,连接OF.(1)填空:FO AO(填“>”、“=”或“<”);(2)连接CF,若AF平分∠OAC.①若△AFC的面积为10,求k的值;②连接BF,四边形AOFB能否为菱形?若能,直接写出符合条件的k的值;若不能,说明理由.48.如图1,在平面直角坐标系中,直线l:y=﹣2x+2与x轴交于点A,将直线l绕着点A顺时针旋转45°后,与y轴交于点B,过点B作BC⊥AB,交直线l于点C.(1)求点A和点C的坐标;(2)如图2,将△ABC以每秒3个单位的速度沿y轴向上平移t秒,若存在某一时刻t,使A、C两点的对应点D、F恰好落在某反比例函数的图象上,此时点B对应点E,求出此时t的值;(3)在(2)的情况下,若点P是x轴上的动点,是否存在这样的点Q,使得以P、Q、E、F四个点为顶点的四边形是菱形?若存在,请直接写出符合题意的点Q的坐标;若不存在,请说明理由.49.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B在反比例函数y=的第一象限内的图象上,OA=6,OC=10,动点P在x轴的上方,且满足S△P AO=.(1)若点P在这个反比例函数的图象上,求点P的坐标;(2)连接PO、P A,求PO+P A的最小值;(3)若点Q是平面内一点,使得以A、B、P、Q为顶点的四边形是菱形,则请你直接写出满足条件的所有点Q的坐标.50.如图,在平面直角坐标系中,四边形ABCO为矩形,B(5,4),D(﹣3,0),点P从点A出发,以每秒1cm的速度沿AB方向向终点B运动;点Q从点D出发,以每秒2cm的速度沿DC方向向终点C运动,已知动点P、Q同时出发,当点P、Q有一点到达终点时,P、Q都停止运动,设运动时间为t秒.(1)用含t的代数式表示:BP=cm,CQ=cm;(2)函数y=的图象在第一象限内的一支双曲线经过点P,且与线段BC交于点M,若出△POM的面积为7.5cm2,试求此时t的值;(3)点P、Q在运动过程的中,是否存在某一时刻t,使坐标平面上存在点E,以P、Q、C、E为顶点的四边形刚好是菱形?若存在,请求出所有满足条件的t的值,若不存在,请说明理由.51.在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,并与反比例函数y=(k≠0)的图象在第一象限相交于点C,且点B是AC的中点.(1)如图1,求反比例函数y=(k≠0)的解析式;(2)如图2,若矩形FEHG的顶点E在直线AB上,顶点F在点C右侧的反比例函数y=(k≠0)图象上,顶点H,G在x轴上,且EF=4.①求点F的坐标;②若点M是反比例函数的图象第一象限上的动点,且在点F的左侧,连结MG,并在MG左侧作正方形GMNP.当顶点N或顶点P恰好落在直线AB上,直接写出对应的点M的横坐标.52.如图(一),平面直角坐标系中,已知A(2,0)、B(0,4),以AB为直角边作等腰直角△ABC,其中∠BAC=90°,AC=AB,点C在第一象限内.双曲线y=经过点C.(1)求双曲线y=的表达式;(2)过点B的直线BE交x轴于点E,交线段AC于点D,若∠DBC=∠OBA.求直线BE的解析式;(3)在(2)的条件下,直线BE沿y轴正方向平移,恰好经过点C时,与双曲线k的另一个交点为F (m,n),如图(二).①连接FB、FD,则四边形ABFD的面积是;②连接OF,求OF的长度.53.如图,在平面直角坐标系中,一次函数y1=x﹣2的图象与反比例函数(k≠0)的图象交于A(﹣2,a)、B(m,2)两点,与y轴交于点C,与x轴交于点D,连接OA、OB.(1)求反比例函数(k≠0)的表达式;(2)求△AOB的面积;(3)点N为坐标轴上一点,点M为y2的图象上一点,当以点C、D、M、N为顶点的四边形是平行四边形时,请直接写出所有满足条件的N点的坐标.54.如图,一次函数y1=k1x+4与反比例函数y2=的图象交于点A(2,m)和B(﹣6,﹣2),与y轴交于点C.(1)求一次函数与反比例函数的表达式;(2)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点,设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=5:1时,求点P的坐标;(3)在(2)的条件下,点M是直线OP上的一个动点,当△MBC是以BC为斜边的直角三角形时,求点M的坐标.55.如图,等边△OAB和等边△AEF的一边都在x轴上,双曲线y=(k>0)经过OB的中点C和AE的中点D.已知等边△OAB的边长为4.(1)求k的值;(2)求等边△AEF的边长;(3)将等边△AEF绕点A任意旋转,得到等边△AE'F',P是E'F'的中点(如图2所示),连结BP,直接写出BP的最大值.56.如图,在平面直角坐标系中,直线y=3x+b经过点A(﹣1,0),与y轴正半轴交于B点,与反比例函数y=(x>0)交于点C,且AC=3AB,BD∥x轴交反比例函数y=(x>0)于点D.(1)求b、k的值;(2)如图1,若点E为线段BC上一点,设E的横坐标为m,过点E作EF∥BD,交反比例函数y=(x >0)于点F.若EF=BD,求m的值.(3)如图2,在(2)的条件下,连接FD并延长,交x轴于点G,连接OD,在直线OD上方是否存在。
人教版中考数学压轴题 易错题测试题试卷
一、中考数学压轴题1.问题背景:如图,四边形ABCD 中,AD BC ∥,8BC =,17AD =+,32AB =,45ABC ∠=︒,P 为边AD 上一动点,连接BP 、CP .问题探究(1)如图1,若30PBC ∠=︒,则AP 的长为__________.(2)如图2,请求出BPC △周长的最小值;(3)如图3,过点P 作PE BC ⊥于点E ,过点E 分别作EM PB ⊥于M ,EN PC ⊥于点N ,连接MN①是否存在点P ,使得PMN 的面积最大?若存在,求出PMN 面积的最大值,若不存在,请说明理由;②请直接写出PMN 面积的最小值.2.已知:如图,AB 为O 的直径,弦CD AB ⊥垂足为E ,点H 为弧AC 上一点.连接DH 交AB 于点F ,连接HA 、BD ,点G 为DH 上一点,连接AG ,HAG BDC ∠=∠. (1)如图1,求证:AG HD ⊥;(2)如图2,连接HC ,若HC HF =,求证:HC HA =;(3)如图3,连接HO 交AG 于点K ,若点F 为DG 的中点,HC 2HG =,求KG AK的值.3.已知抛物线217222y x mx m 的顶点为点C .(1)求证:不论m 为何实数,该抛物线与x 轴总有两个不同的交点;(2)若抛物线的对称轴为直线3x =,求m 的值和C 点坐标;(3)如图,直线1y x =-与(2)中的抛物线并于A B 、两点,并与它的对称轴交于点D ,直线x k =交直线AB 于点M ,交抛物线于点N .求当k 为何值时,以C D M N 、、、为顶点的四边形为平行四边形.4.如图,在四边形ABCD 中,∠B=90°,AD//BC ,AD=16,BC=21,CD=13.(1)求直线AD 和BC 之间的距离;(2)动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 从点A 出发,在线段AD 上以每秒1个单位长度的速度运动,点P 、Q 同时出发,当点Q 运动到点D 时,两点同时停止运动,设运动时间为t 秒.试求当t 为何值时,以P 、Q 、D 、C 为顶点的四边形为平行四边形?(3)在(2)的条件下,是否存在点P ,使△PQD 为等腰三角形?若存在,请直接写出相应的t 值,若不存在,请说明理由.5.如图,AB ∥CD ,定点E ,F 分别在直线AB ,CD 上,平行线AB ,CD 之间有一动点P . (1)如图1,当P 点在EF 的左侧时,∠AEP ,∠EPF ,∠PFC 满足数量关系为 ,如图2,当P 点在EF 的右侧时,∠AEP ,∠EPF ,∠PFC 满足数量关系为 . (2)如图3,当∠EPF =90°,F P 平分∠EFC 时,求证:EP 平分∠AEF ;(3)如图4,QE ,QF 分别平分∠PEB 和∠PFD ,且点P 在EF 左侧.①若∠EPF =60°,则∠EQF = .②猜想∠EPF 与∠EQF 的数量关系,并说明理由;6.如图,矩形ABCD 中,AB =8,BC =12,E 是BC 边的中点,点P 在线段AD 上,过P 作PF ⊥AE 于F ,设PA =x .(1)求证:△PFA ∽△ABE ;(2)当点P 在线段AD 上运动时,是否存在实数x ,使得以点P ,F ,E 为顶点的三角形也与△ABE 相似?若存在,请求出x 的值;若不存在,请说明理由;(3)探究:当以D 为圆心,DP 为半径的⊙D 与线段AE 只有一个公共点时,请直接写出DP 满足的条件: .7.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,第一颗弹珠弹出后其速度1y (米/分钟)与时间x (分钟)前2分钟满足二次函数21y ax ,后3分钟满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分钟.(1)求第一颗弹珠的速度1y (米/分钟)与时间x (分钟)之间的函数关系式;(2)第一颗弹珠弹出1分钟后,弹出第二颗弹珠,第二颗弹珠的运行情况与第一颗相同,直接写出第二颗弹珠的速度2y (米/分钟)与弹出第一颗弹珠后的时间x (分钟)之间的函数关系式;(3)当两颗弹珠同时在轨道上时,第____分钟末两颗弹珠的速度相差最大,最大相差______;(4)判断当两颗弹珠同时在轨道上时,是否存在某时刻速度相同?请说明理由,并指出可以通过解哪个方程求出这一时刻.8.如图,在等边ABC ∆中,延长AB 至点D ,延长AC 交BD 的中垂线于点E ,连接BE ,DE .(1)如图1,若310DE =,23BC =,求CE 的长;(2)如图2,连接CD 交BE 于点M ,在CE 上取一点F ,连接DF 交BE 于点N ,且DF CD =,求证:12AB EF =;(3)在(2)的条件下,若45AED ∠=︒直接写出线段BD ,EF ,ED 的等量关系9.如图,90EOF ∠=︒,矩形ABCD 的边BA 、BC 分别在OF 、OE 上,4AB =,3BC =,矩形ABCD 沿射线OD 方向,以每秒1个单位长度的速度运动.同时点P 从点A 出发沿折线AD DC -以每秒1个单位长度的速度向终点C 运动,当点P 到达点C 时,矩形ABCD 也停止运动,设点P 的运动时间为()t s ,PDO △的面积为S . (1)分别写出点B 到OF 、OE 的距离(用含t 的代数式表示);(2)当点P 不与矩形ABCD 的顶点重合时,求S 与t 之间的函数关系式;(3)设点P 到BD 的距离为h ,当15h OD =时,求t 的值; (4)若在点P 出发的同时,点Q 从点B 以每秒43个单位长度的速度向终点A 运动,当点Q 停止运动时,点P 与矩形ABCD 也停止运动,设点A 关于PQ 的对称点为E ,当PQE 的一边与CDB △的一边平行时,直接写出线段OD 的长.10.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH .(1)求证:EDO EAO ∆≅∆;(2)设BF x =,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域;(3)连接AG ,当AEG ∆是等腰三角形时,求BF 的长.11.问题提出(1)如图①,在ABC 中,2,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.12.已知:如图①,在等腰直角ABC ∆中,斜边2AC =.(1)请你在图①的AC 边上求作一点P ,使得90APB ∠=︒;(2)如图②,在(1)问的条件下,将AC 边沿BC 方向平移,使得点A 、P 、C 对应点分别为E 、Q 、D ,连接AQ ,BQ .若平移的距离为1,求AQB ∠的大小及此时四边形ABDE 的面积;(3)将AC 边沿BC 方向平移m 个单位至ED ,是否存在这样的m ,使得在直线DE 上有一点M ,满足30AMB ∠=︒,且此时四边形ABDE 的面积最大?若存在,求出四边形ABDE 面积的最大值及平移距离m 的值;若不存在,请说明理由.13.如图,在平面直角坐标系xoy 中,直线122y x =-+与x 轴交于点B ,与y 轴交于点,C 抛物线2y ax bx c =++的对称轴是直线3,2x =与x 轴的交点为点,A 且经过点B C 、两点.(1)求抛物线的解析式;(2)点M 为抛物线对称轴上一动点,当BM CM -的值最小时,请你求出点M 的坐标;(3)抛物线上是否存在点N ,过点N 作NH x ⊥轴于点,H 使得以点、、B N H 为顶点的三角形与ABC 相似?若存在,请直接写出点N 的坐标;若不存在,请说明理由.14.(1)探究发现数学活动课上,小明说“若直线21y x =-向左平移3个单位,你能求平移后所得直线所对应函数表达式吗?”经过一番讨论,小组成员展示了他们的解答过程:在直线21y x =-上任取点()01A -,, 向左平移3个单位得到点()31,'--A 设向左平移3个单位后所得直线所对应的函数表达式为2y x n =+.因为2y x n =+过点()31,'--A , 所以61n -+=-,所以5n =,填空:所以平移后所得直线所对应函数表达式为(2)类比运用已知直线21y x =-,求它关于x 轴对称的直线所对应的函数表达式;(3)拓展运用将直线21y x =-绕原点顺时针旋转90°,请直接写出:旋转后所得直线所对应的函数表达式 .15.定义:两个相似等腰三角形,如果它们的底角有一个公共的顶点,那么把这两个三角形称为“关联等腰三角形”.如图,在ABC ∆与AED ∆中,,BA BC EA ED == ,且,ABC AED ∆∆所以称ABC ∆与AED ∆为“关联等腰三角形”,设它们的顶角为α,连接,EB DC ,则称DC EB 会为“关联比". 下面是小颖探究“关联比”与α之间的关系的思维过程,请阅读后,解答下列问题:[特例感知]()1当ABC ∆与AED ∆为“关联等腰三角形”,且90α︒=时, ①在图1中,若点E 落在AB 上,则“关联比”DC EB=②在图2中,探究ABE ∆与ACD ∆的关系,并求出“关联比”DC EB的值.[类比探究]()2如图3,①当ABC ∆与AED ∆为“关联等腰三角形”,且120a ︒=时,“关联比”DC EB = ②猜想:当ABC ∆与AED ∆为“关联等腰三角形”,且n α=︒时,“关联比”DC EB= (直接写出结果,用含n 的式子表示)[迁移运用] ()3如图4, ABC ∆与AED ∆为“关联等腰三角形”.若90,4,ABC AED AC ︒∠=∠==点P 为AC 边上一点,且1PA =,点E 为PB 上一动点,求点E 自点B 运动至点P 时,点D 所经过的路径长.16.在平面直角坐标系中,点O 为坐标原点,抛物线(2)()y a x x m =++与x 轴交于点A C 、(点A 在点C 的左侧),与y 轴正半轴交于点B ,24OC OB ==.(1)如图1,求a m 、的值;(2)如图2,抛物线的顶点坐标是M ,点D 是第一象限抛物线上的一点,连接AD 交抛物线的对称轴于点N ,设点D 的横坐标是t ,线段MN 的长为d ,求d 与t 的函数关系式;(3)如图3,在(2)的条件下,当154d =时,过点D 作DE x 轴交抛物线于点E ,点P 是x 轴下方抛物线上的一个动点,连接PE 交x 轴于点F ,直线211y x b =+经过点D 交EF 于点G ,连接CG ,过点E 作EH CG 交DG 于点H ,若3CFG EGH S S =△△,求点P 的坐标.17.如图,在等边△ABC 中,AB =BC =AC =6cm ,点P 从点B 出发,沿B →C 方向以1.5cm/s的速度运动到点C 停止,同时点Q 从点A 出发,沿A →B 方向以1cm/s 的速度运动,当点P 停止运动时,点Q 也随之停止运动,连接PQ ,过点P 作BC 的垂线,过点Q 作BC 的平行线,两直线相交于点M .设点P 的运动时间为x (s ),△MPQ 与△ABC 重叠部分的面积为y (cm 2)(规定:线段是面积为0的图形).(1)当x = (s )时,PQ ⊥BC ;(2)当点M 落在AC 边上时,x = (s );(3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.18.已知:在平面直角坐标系中,抛物线223y ax ax a =--与x 轴交于点A ,B (点B 在点A 的右侧),点C 为抛物线的顶点,点C 的纵坐标为-2.(1)如图1,求此抛物线的解析式;(2)如图2,点P 是第一象限抛物线上一点,连接AP ,过点C 作//CD y 轴交AP 于点D ,设点P 的横坐标为t ,CD 的长为m ,求m 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,点E 在DP 上,且ED AD =,点F 的横坐标大于3,连接EF ,BF ,PF ,且EP EF BF ==,过点C 作//CG PF 交DP 于点G ,若72CG AG =,求点P 的坐标.19.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =13,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.20.如图,在平面直角坐标系中,矩形ABCD 的顶点,A D 在坐标轴上,两点的坐标分别是点()0,,A m 点(),0,D m 且m 满足:322m m -+62=边AB 与x 轴交于点,E 点F 是边AD 上一动点,连接FB ,分别与x 轴,y 轴交于点,P 点,H 且FD BE =.(1)求m 的值; (2)若45,APF ∠=︒求证:AHF HFA ∠=∠;(3)若点F 的纵坐标为,n 则线段HF 的长为 .(用含n 的代数式表示)21.将一个直角三角形纸片ABO ,放置在平面直角坐标系中,点(3)A ,,点()0, 3B ,点(0,0)O(I)过边OB 上的动点D (点D 不与点B ,O 重合)作DE OB ⊥交AB 于点E ,沿着DE 折叠该纸片,点B 落在射线BO 上的点F 处.①如图,当D 为OB 中点时,求E 点的坐标;②连接AF ,当AEF ∆为直角三角形时,求E 点坐标:(Ⅱ) P 是AB 边上的动点(点 P 不与点B 重合),将AOP ∆沿OP 所在的直线折叠,得到'A OP ∆,连接'BA ,当'BA 取得最小值时,求P 点坐标(直接写出结果即可).22.阅读材料:等腰三角形具有性质“等边对等角”.事实上,不等边三角形也具有类似性质“大边对大角”:如图1.在△ABC中,如果AB>AC,那么∠ACB>∠ABC.证明如下:将AB沿△ABC的角平分线AD翻折(如图2),因为AB>AC,所以点B落在AC的延长线上的点B'处.于是,由∠ACB>∠B',∠ABC=∠B',可得∠ACB>∠ABC.(1)灵活运用:从上面的证法可以看出,折纸常常能为证明一个命题提供思路和方法.由此小明想到可用类似方法证明“大角对大边”:如图3.在△ABC中,如果∠ACB>∠ABC,那么AB>AC.小明的思路是:沿BC的垂直平分线翻折……请你帮助小明完成后面的证明过程.(2)拓展延伸:请运用上述方法或结论解决如下问题:如图4,已知M为正方形ABCD的边CD上一点(不含端点),连接AM并延长,交BC的延长线于点N.求证:AM+AN>2BD.23.如图1,在平面直角坐标系中,O是坐标原点,矩形OACB的顶点A、B分别在x轴和y轴上,已知OA=5,OB=3,点D的坐标是(0,1),点P从点B出发以每秒1个单位的速度沿折线BCA的方向运动,当点P与点A重合时,运动停止,设运动的时间为t秒.(1)点P 运动到与点C 重合时,求直线DP 的函数解析式;(2)求△OPD 的面积S 关于t 的函数解析式,并写出对应t 的取值范围;(3)点P 在运动过程中,是否存在某些位置使△ADP 是不以DP 为底边的等腰三角形,若存在,请求出点P 的坐标;若不存在,请说明理由.24.问题一:如图①,已知AC =160km ,甲,乙两人分别从相距30km 的A ,B 两地同时出发到C 地.若甲的速度为80km /h ,乙的速度为60km /h ,设乙行驶时间为x (h ),两车之间距离为y (km ).(1)当甲追上乙时,x = . (2)请用x 的代数式表示y .问题二:如图②,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB =30°.(3)分针OD 指向圆周上的点的速度为每分钟转动 km ,时针OE 指向圆周上的点的速度为每分钟转动 °;(4)若从2:00起计时,求几分钟后分针与时针第一次重合?25.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若161A E EC=-,求nm 的值.(3)如图二,在(2)的条件下,直线AB 上有一点P ,BP=2,点E 是直线DC 上一动点,在BE 左侧作矩形BEFG 且始终保持BE nBG m=,设AB=33,试探究点E 移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题 1.B解析:(1)333-;(2)18;(3)①2716;②972625【解析】 【分析】(1)过点B 作BF ⊥AD ,交DA 的延长线于点F ,利用等腰直角三角形ABF 求得AF 和BF 的长,再利用Rt △PBF 求得PF 的长,进而得解;(2)作点B 关于直线AD 的对称点B',连接B'C ,交AD 于点P',连接BP',根据两点之间线段最短可知当B',P ,C 三点共线时,BPC △周长取得最小值,再利用勾股定理计算即可;(3)①②根据EM PB ⊥,EN PC ⊥可得点E 、M 、P 、N 在以PE 为直径的圆上,利用圆周角定理和直角三角形两锐角互余可证得△MPN ∽△CPB ,进而可知当MN 最大时,PMN 面积的最大,当MN 最小时,PMN 面积的最小,由圆的性质可知当MN 为直径时MN 最大,当MN ⊥PE 时,MN 最小,最后利用勾股定理、等积法和相似三角形的性质求解即可. 【详解】解:(1)如图,过点B 作BF ⊥AD ,交DA 的延长线于点F ,∵AD ∥BC ,∠ABC =45°, ∴∠FAB =∠ABC =45°, ∵BF ⊥AD ,∴在Rt △ABF 中,AF 2+BF 2=AB 2, ∵32AB =∴AF =BF =22AB =23232⨯=, ∵AD ∥BC ,∠PBC =30°, ∴∠FPB =∠PBC =30°, ∵在Rt △PBF 中,tan ∠FPB =BFPF∴tan30°=33PF =,∴33 PF=∴333AP PF AF=-=-;(2)如图,作点B关于直线AD的对称点B',连接B'C,交AD于点P',连接BP',∵点B与点B'关于直线AD对称,∴AD垂直平分BB',BF=B'F=3,∴P'B=P'B',BB'=6,∴当点P在点P'时,PB+PC取得最小值,最小值为B'C的长,此时△BPC的周长最小,在Rt△BB'C中,B'C=22226810'BB BC+=+=,∴△BPC的周长最小值为B'C+BC=10+8=18;(3)①∵EM PB⊥,EN PC⊥,∴∠EMP=∠ENP=90°,∴点E、M、P、N在以PE为直径的圆上,如图所示,则∠PMN=∠PEN,∵PE BC⊥,EN PC⊥,∴∠PEC=∠ENC=90°,∴∠PEN+∠NEC =∠NEC+∠PCB=90°,∴∠PEN =∠PCB,∴∠PMN=∠PCB,又∵∠MPN=∠CPB,∴△MPN∽△CPB,∴2PMNPCBS MNS BC⎛⎫= ⎪⎝⎭∵PE BC⊥,∴PE=3,∴11831222PCBS BC PE==⨯⨯=∴2 128PMNS MN⎛⎫= ⎪⎝⎭∴当MN取得最大值时,PMN的面积取得最大值,当MN=PE=3时,23128PMNS⎛⎫= ⎪⎝⎭解得2716PMNS=即当MN=PE=3时,PMN的面积最大,最大值为27 16;②由①可知,2 128PMNS MN⎛⎫= ⎪⎝⎭,∴当MN取得最小值时,PMN的面积取得最小值,由垂径定理可知,当MN⊥PE时,MN取得最小值,如图,当MN⊥PE时,则弧ME=弧NE∴∠MPE=∠NPE,∵PE BC⊥,∴∠PEB=∠PEC=90°,∴△PEB≌△PEC,∴EB=EC=12BC=4,在Rt△BEP中,BP2222435BE PE+=+=,∵1122BEPS BE PE BP ME ==∴1143522ME ⨯⨯=⨯∴125 ME=,在Rt△PME中,PM2222129355 PE ME⎛⎫-=-=⎪⎝⎭∵1122PMES PM ME PE MH ==∴191213 2552MH ⨯⨯=⨯∴3625 MH=,∴72225 MN MH==,∴227292512825PMNS⎛⎫⎪⎛⎫==⎪ ⎪⎝⎭⎪⎝⎭,解得972625PMNS=,∴PMN面积的最小值为972625.【点睛】本题考查了等腰直角三角形、特殊角的三角函数、相似三角形的判定及性质、勾股定理、垂径定理和圆周角定理等相关知识,有点难度,属中考压轴题,能够将第(3)问转化为利用圆的相关知识和相似三角形的性质解决是解决本题的关键.2.A解析:(1)详见解析;(2)详见解析;(3)15KGAK=【解析】【分析】(1)根据同弧所对的圆周角相等,进行角度计算,得90AHG HAG∠+∠=︒,进而得到90AGH∠=︒,即可证明AG HD⊥;(2)连接AC、AD、CF,根据同弧所对的圆周角相等,进行角度计算,得HFA HAF∠=∠,进而得到HF HA=,再根据已知HC HF=,得到HC HA=;(3)在DH上截取DT HC=,过点C作CM HD⊥于点M,通过证明AHC≌ATD得到AH AT=,进而得到HG CH GD+=,再根据F为DG中点,得到GF DF=,通过勾股定理逆用,证明90HCF∠=︒,再通过解ACE△得1tan3CAB∠=,解△CDH得1tan2CDF∠=,求得OF、OH,逆用勾股定理证明90HOF∠=︒,易求1tan2KHG∠=,1tan3HAG∠=,最后求得KGAK的值.【详解】(1)证明:如图,设HAG∠为α,∵HAG BDC ∠=∠, ∴HAG BDC α∠=∠=, ∵CD AB ⊥,∴90BDC DBE ∠+∠=︒ ∴90DBE α∠=︒-,∵AHG ∠与ABD ∠为同对弧AD 所对的圆周角, ∴90AHG ABD α∠=∠=︒-, ∴90AHG HAG ∠+∠=︒,∴18090AGH AHG HAG ∠=︒-∠-∠=︒ ∴AG HD ⊥(2)如图,连接AC 、AD 、CF ,∵AB 为直径,AB CD ⊥, ∴CE DE =, ∴AB 垂直平分CD , ∴AC AD =,FC FD =,∴ACD ADC ∠=∠,FCD FDC ∠=∠,∴ACD FCD ADC FDC ∠-∠=∠-∠,即ACF ADF ∠=∠, 设FCD FDC α∠=∠=,ACF ADF β∠=∠=, ∵ADH ∠与ACH ∠为同对弧AH 所对的圆周角, ∴ADH ACH β∠=∠=, ∴2HCF HCA ACF β∠=∠+∠=, ∵HFC FCD FDC ∠=∠+∠, ∴2HFC α∠=, ∵HC HF =, ∴HCF HFC ∠=∠, ∴22αβ=, ∴αβ=, ∵AB 为直径, ∴90ADB ∠=︒, ∴90HDB β∠=︒-,∵HAB ∠与为HDB ∠同对弧BH 所对的圆周角, ∴90HAB HDB β∠=∠=︒-, ∵AB CD ⊥,∴9090BFD αβ∠=︒-=︒-, ∵9090HFA BFD αβ∠=∠=︒-=︒-, ∴HFA HAF ∠=∠, ∴HF HA =, ∴HC HA =;(3)如图,在DH 上截取DT HC =,∵ADH ∠与ACH ∠同对弧AH 所对的圆周角, ∴ADH ACH ∠=∠, ∵AB 为直径,且AB CD ⊥ ∴AC =AD , ∴AC AD =, ∴AHC ≌ATD , ∴AH AT =, ∵AG HT ⊥, ∴HG TG =,∴HG CH GT DT GD +=+=, 设2HG k =,则4CH k =,GD 6k =, ∵F 为DG 中点, ∴3GF DF k ==,∴5HF HG GF k =+=,FD =CF =3k ,在HCF 中,由勾股定理逆定理得90HCF ∠=︒, 过点C 作CM HD ⊥于点M , 由△HCF 面积,可求CM =125k , ∴229=5MF CF CM k -=, ∴1tan 2CM CM CDF MD MF FD ∠===+,解ACE △得1tan 3CAB ∠=, 易求OF ,OH ,由勾股定理逆定理得90HOF ∠=︒, 易求1tan 2KHG ∠=,1tan 3HAG ∠=, ∴15KG AK =. 【点睛】本题考查圆与三角形综合,主要考查知识点有同弧所对的圆周角相等,垂径定理,三角形全等的判定与性质,勾股定理的逆用,解直角三角形,锐角三角函数等,知识点跨度大,计算量多;熟练掌握圆的性质和三角形相关知识是解决本题的关键. 3.(1)详见解析;(2)3m =,点C 坐标为(3,2)-;(3)5k =或417k 或417k时,可使得C D M N 、、、为顶点的四边形是平行四边形.【解析】 【分析】 (1)从2172022x mxm的判别式出发,判别式总大于等于3,而证得;(2)根据抛物线的对称轴32b xa来求m 的值;然后利用配方法把抛物线解析式转化为顶点式,由此可以写出点C 的坐标;(3)根据平行四边形的性质得到:215|1(3)|422MN k k kCD . 需要分类讨论:①当四边形CDMN 是平行四边形,2151(3)422MN k k k,通过解该方程可以求得k 的值;②当四边形CDNM 是平行四边形,2153(1)422NM k kk ,通过解该方程可以求得k 的值. 【详解】 解:(1)2217()4(2)(2)322m m m, ∵不论m 为何实数,总有2(2)0m -≥,2(2)30m ,∴无论m 为何实数,关于x 的一元二次方程2172022x mxm总有两个不相等的实数根,∴无论m 为何实数,抛物线217222y x mxm与x 轴总有两个不同的交点. (2)抛物线的对称轴为直线3x =,3122m ,即3m =,此时,抛物线的解析式为221513(3)2222y x xx ,∴顶点C 坐标为(3,2)-;(3)//,CD MN C D MN 、、、为顶点的四边形是平行四边形,∴四边形CDMN 是平行四边形(直线在抛物线的上方)或四边形CDMN (直线在抛物线的下方),如图所示,由已知215(3,2),(,1),(3)22D M k k N k k k,, (3,2)C ,4CD ∴=,2151(3)422MNk k kCD,①当四边形CDMN 是平行四边形,2151(3)422MNk k k,整理得,28150k k -+=,解得13k =(不合题意,舍去),25k =; ②当四边形CDNM 是平行四边形,2153(1)422NMk kk ,整理得2810k k , 解得,12417417k k ,,综上,5k =或417k或417k时,可使得C D M N 、、、为顶点的四边形是平行四边形. 【点睛】本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式,抛物线的顶点公式和平行四边形的判定与性质.在求有关动点问题时要注意分析题意分情况讨论结果.4.A解析:(1)12;(2)5s或373s;(3)163s或685s或72s【解析】【分析】(1)AD与BC之间的距离即AB的长,如下图,过点D作BC的垂线,交BC于点E,在RtDEC中可求得DE的长,即AB的长,即AD与BC间的距离;(2)四边形QDCP为平行四边形,只需QD=CP即可;(3)存在3大类情况,情况一:QP=PD,情况二:PD=QD,情况三:QP=QD,而每大类中,点P存在2种情况,一种为点P还未到达点C,另一种为点P从点C处返回.【详解】(1)如下图,过点D作BC的垂线,交BC于点E∵∠B=90°,AD∥BC∴AB⊥BC,AB⊥AD∴AB的长即为AD与BC之间的距离∵AD=16,BC=21,∴EC=5∵DC=13∴在Rt DEC中,DE=12同理,DE的长也是AD与BC之间的距离∴AD与BC之间的距离为12(2)∵AD∥BC∴只需QD=PC,则四边形QDCP是平行四边形QD=16-t,PC=21-2t或PC=2t-21∴16-t=21-2t或16-t=2t-21解得:t=5s或t=37 3s(3)情况一:QP=PD图形如下,过点P作AD的垂线,交AD于点F∵PQ=PD ,PF ⊥QD ,∴QF=FD∵AF ∥BP ,AB ∥FP ,∠B=90°∴四边形ABPF 是矩形,∴AF=BP由题意得:AQ=t ,则QD=16-t ,QF=8-2t ,AF=8+2t BP=2t 或BP=21-(2t -21)=42-2t∵AF=BP∴8+2t =2t 或8+2t =42-2t 解得:t=163或t=685情况二:PD=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F同理QD=16-t ,PF=AB=12BP=2t 或21-(2t -21)=42-2t则FD=AD -AF=AD -BP=16-2t 或FD=16-(42-2t)=2t -26∴在Rt PFD 中,()22212162PD t =+-或()22212226PD t =+-∵PD=QD ,∴22PD QD =∴()()22216t 12162t =+--或()()22216t 12226t =+--解得:2个方程都无解情况三:QP=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F同理:QD=16-t ,FP=12BP=2t 或BP=42-2tQF=AF -AQ=BP -AQ=2t -t=t 或QF=42-2t -t=42-3t在Rt QFP 中,22212PQ t =+或()22212423PQ t =+- ∵PQ=QD ,∴22PQ QD =∴()22216t 12t =+-或()()22216t 12423t =+--第一个方程解得:t=72,第二个方程解得:无解 综上得:t=163或685或72 【点睛】本题考查四边形中的动点问题,用到了勾股定理、平行四边形的性质、矩形的性质,解题关键是根据点Q 运动的轨迹,得出BP 的长度. 5.E解析:(1)∠EPF=∠AEP+∠PFC,∠AEP+∠EPF+∠PFC=360°;(2)见解析;(3)①150°,∠EQF=180°-12∠EPF 【解析】【分析】(1)如下图,过点P 作AB 的平行线,根据平行线的性质可推导出角度关系;(2)如下图,根据(1)的结论,可得∠AEP+∠PFC=∠EPF=90°,利用△EPF 内角和为180°可推导得出∠PEF+∠PFE=90°,从而得出∠PEF=∠AEP ;(3)①根据(1)的结论知:∠AEP+∠PFC=∠EPF=60°,再利用角平分线的性质得出∠PEQ+∠PFQ=150°,最后在四边形EPFQ 中得出结论;②根据(1)的结论知:∠AEP+∠PFC=∠EPF°,再利用角平分线的性质得出∠PEQ+∠PFQ=180°-1EPF 2∠,最后在四边形EPFQ 中得出结论. 【详解】(1)如下图,过点P 作PQ ∥AB∵PQ ∥AB ,AB ∥CD ,∴PQ ∥CD∴∠AEP=∠EPQ ,∠QPF=∠PFC又∵∠EPF=∠EPQ+∠QPF∴∠EPF=∠AEP+∠PFC如下图,过点P 作PQ ∥AB同理,AB ∥QP ∥CD∴∠AEP+∠QPE=180°,∠QPF+∠PFC=180°∴∠AEP+∠EPF+∠PFC=∠AEP+∠EPQ+∠QPF+∠PFC=360°(2)根据(1)的结论知:∠AEP+∠PFC=∠EPF=90°∵PF 是∠CFE 的角平分线,∴∠PFC=∠PFE在△PEF 中,∵∠EPF=90°,∴∠PEF+∠PFE=90°∴∠PEF+∠PFE=∠AEP+∠PFC∴∠PEF=∠AEP ,∴PE 是∠AEF 的角平分线(3)①根据(1)的结论知:∠AEP+∠PFC=∠EPF=60°∴∠BEP+∠PFD=180°-∠AEP+180°-∠PFC=300°∵EQ 、QF 分别是∠PEB 和∠PFD 的角平分线∴∠PEQ=QEB ,∠PFQ=∠QFD∴∠PEQ+∠PFQ=150°在四边形PEQF 中,∠EQF=360°-∠EPF -(∠PEQ+∠PFQ)=360°-60°-150°=150° ②根据(1)的结论知:∠AEP+∠PFC=∠EPF∴∠BEP+∠PFD=180°-∠AEP+180°-∠PFC=360°-∠EPF∵EQ 、QF 分别是∠PEB 和∠PFD 的角平分线∴∠PEQ=∠QEB ,∠PFQ=∠QFD∴∠PEQ+∠PFQ=()1360EPF 2∠︒-=180°-1EPF 2∠ ∴在四边形PEQF 中: ∠EQF=360°-∠EPF -(∠PEQ+∠PFQ)=360°-EPF ∠-(180°-1EPF 2∠)=180°-1EPF 2∠ 【点睛】本题考查“M ”型模型,解题关键在过两条平行线中间的点作已知平行线的平行线,然后利用平行线的性质进行角度转化可推导结论.6.D解析:(1)见解析;(2)存在,满足条件的x 的值为6或253;(3)DP =485或10<DP ≤12【解析】【分析】(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:①当∠PEF=∠EAB 时,则得到四边形ABEP为矩形,从而求得x的值;②当∠PEF=∠AEB时,再结合(1)中的结论,得到等腰△APE.再根据等腰三角形的三线合一得到F是AE的中点,运用勾股定理和相似三角形的性质进行求解.(3)首先计算圆D与线段相切时,x的值,在画出圆D过E时,半径r的值,确定x的值,半径比这时大时符合题意,根据图形确定x的取值范围,从而得出DP的范围.【详解】(1)证明:∵矩形ABCD,∴∠ABE=90°,AD∥BC,∴∠PAF=∠AEB,又∵PF⊥AE,∴∠PFA=90°=∠ABE,∴△PFA∽△ABE.(2)解:分二种情况:①若△EFP∽△ABE,如图1,则∠PEF=∠EAB,∴PE∥AB,∴四边形ABEP为矩形,∴PA=EB=6,即x=6.②如图2,若△PFE∽△ABE,则∠PEF=∠AEB,∵AD∥BC∴∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F 为AE 的中点,Rt △ABE 中,AB =8,BE =6,∴AE =22AB BE +=2286+=10,∴EF =152AE =, ∵△PFE ∽△ABE ,∴PE EF AE BE =, ∴5106x =, ∴PE =253, ∴满足条件的x 的值为6或253. (3)如图3,当⊙D 与AE 相切时,设切点为G ,连接DG ,∵AP =x ,∴PD ═DG =12﹣x ,∵∠DAG =∠AEB ,∠AGD =∠B =90°,∴△AGD ∽△EBA ,∴AD DG AE AB =, ∴1212108x -=, ∴x =125, ∴12481255DP =-=, 当⊙D 过点E 时,如图4,⊙D 与线段有两个公共点,连接DE ,此时PD =DE =10,故答案为:DP =485或10<DP ≤12. 【点睛】本题考查动点问题,动点在不同地方时,得到的图形是不同的,解题关键是确定动点运动过程中,有几种对应的图形,然后再根据图形性质分析求解. 7.(1)212(02)16(25)x x y x x ⎧≤≤⎪=⎨≤≤⎪⎩;(2)220(01)2(1)(13)16(36)1x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪<≤-⎩;(3)第2分钟末两颗弹珠速度相差最大,最大相差6米/分钟;(4)存在,理由详见解析【解析】【分析】(1)将(1,2)代入21y ax =,得2a =,从而得到212y x =,再代入2x =求出18y =,即可得到反比例函数解析式,即可得解;(2)当01x ≤≤时,第二颗弹珠未弹出,故第二颗弹珠的解析式为20y =;再分别根据(1)中的结论,即可求出当13x <≤和36x <≤时第二颗弹珠的解析式;(3)由图可知看出,前2分钟,弹珠的速度逐渐增大,则第2分钟末两颗弹珠速度相差最大,分别求出第2分钟末时两颗弹珠的速度,再相减即可的解;(4)第2分钟末到第3分钟末,第一颗弹珠的速度由8米/分钟逐步下降到513米/分钟,第二颗弹珠的速度由2米/分逐步上升到8米/分,故在此期间必定存在一时刻,两颗弹珠的速度相同.可以根据速度相等时列方程求得时刻.【详解】(1)当02x ≤≤时,将(1,2)代入21y ax =,得2a =,212y x ∴=,∵当2x =时,18y =,∴当25x ≤≤时,116y x=, 1y ∴与x 的函数关系式为212(02)16(25)x x y x x⎧≤≤⎪=⎨≤≤⎪⎩;(2)当01x ≤≤时,第二颗弹珠未弹出,∴第二颗弹珠的解析式为20y =;当13x <≤时,第二颗弹珠的解析式为222(1)y x =-;当36x <≤时,第二颗弹珠的解析式为2161y x =-; ∴2y 与x 的函数关系式为220(01)2(1)(13)16(36)1x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪<≤-⎩;(3)由图可知看出,前2分钟,弹珠的速度逐渐增大,∴第2分钟末两颗弹珠速度相差最大,∵第一颗弹珠的速度为2218222y x =⨯==米/分钟,第二颗弹珠的速度为2122(1)212y x =⨯==-米/分钟,∴两颗弹珠的速度最大相差8-2=6米/分钟;(4)存在,理由如下:第2分钟末到第3分钟末,第一颗弹珠的速度由8米/分钟逐步下降到513米/分钟, 第二颗弹珠的速度由2米/分逐步上升到8米/分,故在此期间必定存在一时刻,两颗弹珠的速度相同. 这个时刻可以通过解方程2162(1)x x=-求得. 【点睛】本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息,明确自变量的取值范围和图象所经过的点的坐标. 8.B解析:(1)9CE =-2)详见解析;(3)132BD DE EF =- 【解析】【分析】(1)过点B 作BH AC ⊥于点H ,分别求出BH ,BE ,根据勾股定理问题得解; (2)如图在FE 上取一点G ,使FG AC =,连接DG ,先证明()ACD GFD SAS ∆∆≌,再证明()ECB DGE AAS ∆∆≌,问题得证;(3)过点D 作AE 的垂线,构造出一个30,60︒,90︒的三角形和一个等腰直角三角形,借助(2)的结论,设222EF AB AC x ===,2ED y =,通过解两个直角三角形,代换x和y 的关系,得出结论.【详解】解:(1)如图,过点B 作BH AC ⊥于点H ,在等边ABC ∆中∵23BC =∴3AH HC ==,223BH BC CH =-=, ∵点E 在BD 的垂直平分线上, ∴310BE DE == ,在Rt BHE ∆中229EH BE BH =-=∴93CE EH HC =-=-(2)如图在FE 上取一点G ,使FG AC =,连接DG∵DF CD =∴FCD CFD ∠=∠∴ACD EFD ∠=∠在ACD ∆和GFD ∆中,DF CD ACD EFD FG AC =⎧⎪∠=∠⎨⎪=⎩∴()ACD GFD SAS ∆∆≌∴AD DG =∴60A DGA ∠=∠=︒∴60A DGA ADG ∠=∠=∠=︒设EBD EDB α∠=∠=∴120CBE α∠=︒-在ADE ∆中∴18060120AED αα∠=︒-︒-=︒-∴120AED CBE α∠=∠=︒-。
青岛市中考数学几何综合压轴题易错专题
青岛市中考数学几何综合压轴题易错专题一、中考数学几何综合压轴题 1.(1)问题发现如图1,在△OAB 和△OCD 中,OA=OB ,OC=OD ,∠AOB=∠COD=40°,连接AC ,BD 交于点M .填空: ①ACBD的值为 ; ②∠AMB 的度数为 . (2)类比探究如图2,在△OAB 和△OCD 中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线于点M .请判断ACBD的值及∠AMB 的度数,并说明理由; (3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD=1,OB=7,请直接写出当点C 与点M 重合时AC 的长.解析:(1)①1;②40°;(2390°;(3)AC 的长为33 【分析】(1)①证明△COA ≌△DOB (SAS ),得AC=BD ,比值为1;②由△COA ≌△DOB ,得∠CAO=∠DBO ,根据三角形的内角和定理得:∠AMB=180°-(∠DBO+∠OAB+∠ABD )=180°-140°=40°;(2)根据两边的比相等且夹角相等可得△AOC ∽△BOD ,则3AC OC BD OD=形的性质得∠AMB 的度数;(3)正确画图形,当点C 与点M 重合时,有两种情况:如图3和4,同理可得:△AOC ∽△BOD ,则∠AMB=90°,3ACBD=AC 的长. 【详解】 (1)问题发现: ①如图1,∵∠AOB=∠COD=40°, ∴∠COA=∠DOB , ∵OC=OD ,OA=OB , ∴△COA ≌△DOB (SAS ), ∴AC=BD , ∴1ACBD,= ②∵△COA ≌△DOB , ∴∠CAO=∠DBO , ∵∠AOB=40°, ∴∠OAB+∠ABO=140°,在△AMB 中,∠AMB=180°-(∠CAO+∠OAB+∠ABD )=180°-(∠DBO+∠OAB+∠ABD )=180°-140°=40°, (2)类比探究: 如图2,3ACBD=∠AMB=90°,理由是:Rt △COD 中,∠DCO=30°,∠DOC=90°, ∴303OD tan OC ︒= 同理得:303OB tan OA ︒= ∴OD OB OC OA=, ∵∠AOB=∠COD=90°, ∴∠AOC=∠BOD , ∴△AOC ∽△BOD , ∴3AC OC BD OD=,∠CAO=∠DBO , 在△AMB 中,∠AMB=180°-(∠MAB+∠ABM )=180°-(∠OAB+∠ABM+∠DBO )=90°; (3)拓展延伸:①点C 与点M 重合时,如图3,同理得:△AOC ∽△BOD , ∴∠AMB=90°,3ACBD=, 设BD=x ,则AC=3x ,Rt △COD 中,∠OCD=30°,OD=1, ∴CD=2,BC=x-2,Rt △AOB 中,∠OAB=30°,OB=7, ∴AB=2OB=27,在Rt △AMB 中,由勾股定理得:AC 2+BC 2=AB 2, (3x )2+(x −2)2=(27)2, x 2-x-6=0, (x-3)(x+2)=0, x 1=3,x 2=-2, ∴AC=33;②点C 与点M 重合时,如图4,同理得:∠AMB=90°,3ACBD= 设BD=x ,则3,在Rt △AMB 中,由勾股定理得:AC 2+BC 2=AB 2, 3)2+(x+2)27)2. x 2+x-6=0, (x+3)(x-2)=0, x 1=-3,x 2=2, ∴3.综上所述,AC 的长为33 【点睛】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC ∽△BOD ,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目. 2.(基础巩固)(1)如图①,ABC ACD CED α∠=∠=∠=,求证:ABC CED ∽△△. (尝试应用)(2)如图②,在菱形ABCD 中,60A ∠=︒,点E ,F 分别为边,AD AB 上两点,将菱形ABCD 沿EF 翻折,点A 恰好落在对角线DB 上的点P 处,若2PD PB =,求AEAF的值. (拓展提高)(3)如图③,在矩形ABCD 中,点P 是AD 边上一点,连接,PB PC ,若2,4,120PA PD BPC ==∠=︒,求AB 的长.解析:(1)见解析;(2)54;(3)113AB = 【分析】(1)由,ABC ACD ACE A ABC α∠=∠=∠=∠+∠证明A DCE ∠=∠,再根据相似三角形的判定方法解题即可;(2)由菱形的性质,得到AB AD =,60A ∠=︒,继而证明ABD △是等边三角形,结合(1)中相似三角形对应边成比例的性质,设,2,,BP a DP a AE PE x AF PF y ======,则3,3DE a x BF a y =-=-可整理得到54x y =,据此解题; (3)在AD 边上取点E ,F ,使得30ABE DCF ∠=∠=︒,由矩形的性质,得到120BEP BPC PFC ∠=∠=∠=︒,结合(1)中相似三角形对应边成比例的性质解题即可.【详解】解:(1)证明:∵,ABC ACD ACE A ABC α∠=∠=∠=∠+∠, ∴DCE A αα∠+=∠+,即A DCE ∠=∠, ∵ABC CED α∠=∠=, ∴ABC CED ∽△△; (2)∵四边形ABCD 是菱形, ∴AB AD =, ∴60A ∠=︒,∴ABD △是等边三角形,∴60EPF A ADB ABD ∠=∠=∠=∠=︒, 由(1)得,EPD PFB ∽,∴DE PD PEPB BF PF==, 设,2,,BP a DP a AE PE x AF PF y ======,则3,3DE a x BF a y =-=- ∴323a x a xa a y y-==-, 可得3ay xy ax -=①,32ax xy ay -=②, ①-②,得332ay ax ax ay -=-, ∴54x y =, ∴AE AF 的值为54; (3)如图,在AD 边上取点E ,F ,使得30ABE DCF ∠=∠=︒,设AB =CD =m ,∵四边形ABCD 是矩形, ∴90A D ∠=∠=︒,∴120BEP BPC PFC ∠=∠=∠=︒, 60BPE DFC ︒∠=∠=1,sin 60233AB BE CF AE BE ∴====︒= DF , 223PE AE ∴=-= 443PF DF ∴=-= 由(1)可得,BEP PFC ∽, ∴BE EPPF FC=, ∴2332433m m -=-22380m m +-=, 解得113m =311m = ∴113AB =. 【点睛】本题考查相似三角形的综合题、等边三角形的性质、菱形的性质、矩形的性质等知识,是重要考点,难度一般,掌握相关知识是解题关键. 3.[问题解决](1)如图1.在平行四边形纸片ABCD (AD >AB )中,将纸片沿过点A 的直线折叠,使点B 落在AD 上的点B '处,折线AE 交BC 于点E ,连接B 'E .求证:四边形ABEB '是菱形. [规律探索](2)如图2,在平行四边形纸片ABCD (AD >AB )中,将纸片沿过点P 的直线折叠,点B 恰好落在AD 上的点Q 处,点A 落在点A ′处,得到折痕FP ,那么△PFQ 是等腰三角形吗?请说明理由. [拓展应用](3)如图3,在矩形纸片ABCD (AD >AB )中,将纸片沿过点P 的直线折叠,得到折痕FP ,点B 落在纸片ABCD 内部点B '处,点A 落在纸片ABCD 外部点A '处,A B ''与AD 交于点M ,且A 'M =B 'M .已知:AB =4,AF =2,求BP 的长.解析:(1)证明见解析;(2)是,理由见解析;(3)422. 【分析】(1)由平行线的性质和翻折可推出CEB ABE '∠=∠,即//AB B E '.故四边形ABEB '是平行四边形,再由翻折可知AB AB '=,即证明平行四边形ABEB '是菱形. (2)由翻折和平行线的性质可知BPF QPF ∠=∠,BPF QFP ∠=∠,即得出QPF QFP ∠=∠,即PFQ △是等腰三角形.(3)延长PB '交AD 于点G ,根据题意易证()FA M GB M ASA ''≅,得出结论2A F B G AF ''===,FM GM =.根据(2)同理可知PFG △为等腰三角形,即FG =PG .再在Rt A FM '中,2222FM A M A F ''=+242PG FG FM ===422PB PB PG B G ''==-=.【详解】(1)由平行四边形的性质可知//AD BC , ∴AB E CEB ''∠=∠, 由翻折可知AB E ABE '∠=∠, ∴CEB ABE '∠=∠, ∴//AB B E '.∴四边形ABEB '是平行四边形. 再由翻折可知AB AB '=, ∴四边形ABEB '是菱形. (2)由翻折可知BPF QPF ∠=∠, ∵//AD BC , ∴BPF QFP ∠=∠, ∴QPF QFP ∠=∠, ∴QF =QP ,∴PFQ △是等腰三角形.(3)如图,延长PB '交AD 于点G , 根据题意可知90FA M GB M ''∠=∠=︒,在FA M '和GB M '中,90FA M GB M A M B M FMA GMB ''''∠=∠''=︒⎧⎪=⎨⎪∠=∠⎩, ∴()FA M GB M ASA ''≅,∴2A F B G AF ''===,FM GM =. 根据(2)同理可知PFG △为等腰三角形. ∴FG =PG . ∵2A F AM '==,∴在Rt A FM '中,2222FM A M A F ''=+=, ∴242FG FM ==, ∴42PG =,∴422PB PB PG B G ''==-=-.【点睛】本题为矩形的折叠问题.考查矩形的性质,折叠的性质,平行线的性质,菱形的判定,等腰三角形的判定和性质,全等三角形的判定和性质以及勾股定理,综合性强.掌握折叠的性质和正确的连接辅助线是解答本题的关键. 4.[探究函数4y x x=+的图象与性质] (1)函数4y x x=+的自变量x 的取值范围是 ; (2)下列四个函数图象中函数4y x x=+的图象大致是 ;(3)对于函数4y x x=+,求当x 0>时,y 的取值范围.请将下列的求解过程补充完整. 解:∵x 0> ∴()2224y xx=+=+=+∵2≥∴ y ≥ .[拓展运用](4)若函数259x x y x -+=,则y 的取值范围 .解析:(1)0x ≠;(2)C ;(3)4,4;(4)1y ≥ 【详解】试题分析:本题的⑴问抓住函数是由分式给定的,所以抓住是分母不为0,即可确定自变量的取值范围.本题的⑵问结合第⑴问中的0x ≠,即0x >或0x <进行分类讨论函数值y 的大致取值范围,即可得到函数的大致图象.本题的第⑶问根据函数的配方逆向展开即推出“( )”应填写“常数”部分,再根据配方情况可以得到当当0x >时,y 的取值范围.本题的⑷问现将函数改写为95y x x=+-的形式,再按⑶的形式进行配方变形即可求y 的取值范围. 试题解析:(1)由于函数4y x x=+是分式给定的,所要满足分母不为0,所以0x ≠. 故填:0x ≠.(2)0x ≠即0x >或0x <;当0x >时,y 的值是正数,此时画出的图象只能在第一象限;当0x <时,y 的值是负数,此时画出的图象只能在第三象限;所以函数4y x x=+的图象只在直角坐标系的一、三象限.故其大致图象应选C.(3)∵244xx =-+, ∴()22244y xx=+=+=+.故分别填:44,; (4) ∵0x >(这里隐含有y 首先是正数)∴2222599551x x y xx x-+==-+=+-=+ ∵2≥∴ 1y ≥.5.(问题情境)如图1,点E 是平行四边形ABCD 的边AD 上一点,连接BE 、CE .求证:BCE1S2=S 平行四边形ABCD .(说明:S 表示面积) 请以“问题情境”为基础,继续下面的探究(探究应用1)如图2,以平行四边形ABCD 的边AD 为直径作⊙O ,⊙O 与BC 边相切于点H ,与BD 相交于点M .若AD =6,BD =y ,AM =x ,试求y 与x 之间的函数关系式. (探究应用2)如图3,在图1的基础上,点F 在CD 上,连接AF 、BF ,AF 与CE 相交于点G ,若AF =CE ,求证:BG 平分∠AGC .(迁移拓展)如图4,平行四边形ABCD 中,AB :BC =4:3,∠ABC =120°,E 是AB 的中点,F 在BC 上,且BF :FC =2:1,过D 分别作DG ⊥AF 于G ,DH ⊥CE 于H ,请直接写出DG :DH 的值.解析:【问题情境】见解析;【探究应用1】18y x=;【探究应用2】见解析;【迁移拓1927 【分析】(1)作EF ⊥BC 于F ,则S △BCE =12BC×EF ,S 平行四边形ABCD =BC×EF ,即可得出结论; (2)连接OH ,由切线的性质得出OH ⊥BC ,OH =12AD =3,求出平行四边形ABCD 的面积=AD×OH =18,由圆周角定理得出AM ⊥BD ,得出△ABD 的面积=12BD×AM =12平行四边形的面积=9,即可得出结果;(3)作BM ⊥AF 于M ,BN ⊥CE 于N ,同图1得:△ABF 的面积=△BCE 的面积=12平行四边形ABCD 的面积,得出12AF×BM =12CE×BN ,证出BM =BN ,即可得出BG 平分∠AGC .(4)作AP ⊥BC 于P ,EQ ⊥BC 于Q ,由平行四边形的性质得出∠ABP =60°,得出∠BAP =30°,设AB =4x ,则BC =3x ,由直角三角形的性质得出BP =12AB =2x ,BQ =12BE ,AP =3=3,由已知得出BE =2x ,BF =2x ,得出BQ =x ,EQ 3,PF =4x ,QF =3x ,QC =4x ,由勾股定理求出AF 22AP PF +=7,CE 22EQ QC +19,连接DF 、DE ,由三角形的面积关系得出AF×DG =CE×DH ,即可得出结果. 【详解】(1)证明:作EF ⊥BC 于F ,如图1所示: 则S △BCE =12BC×EF ,S 平行四边形ABCD =BC×EF ,∴12BCEABCDSS =.(2)解:连接OH ,如图2所示: ∵⊙O 与BC 边相切于点H , ∴OH ⊥BC ,OH =12AD =3,∴平行四边形ABCD 的面积=AD×OH =6×3=18, ∵AD 是⊙O 的直径, ∴∠AMD =90°, ∴AM ⊥BD ,∴△ABD 的面积=12BD×AM =12平行四边形的面积=9, 即12xy =9,∴y 与x 之间的函数关系式y =18x; (3)证明:作BM ⊥AF 于M ,BN ⊥CE 于N ,如图3所示:同图1得:△ABF 的面积=△BCE 的面积=12平行四边形ABCD 的面积, ∴12AF×BM =12CE×BN ,∵AF =CE , ∴BM =BN , ∴BG 平分∠AGC .(4)解:作AP ⊥BC 于P ,EQ ⊥BC 于Q ,如图4所示: ∵平行四边形ABCD 中,AB :BC =4:3,∠ABC =120°, ∴∠ABP =60°,∴∠BAP =30°,设AB =4x ,则BC =3x ,∴BP =12AB =2x ,BQ =12BE ,AP =, ∵E 是AB 的中点,F 在BC 上,且BF :FC =2:1, ∴BE =2x ,BF =2x , ∴BQ =x ,∴EQ ,PF =4x ,QF =3x ,QC =4x ,由勾股定理得:AF =,CE , 连接DF 、DE ,则△CDE 的面积=△ADF 的面积=12平行四边形ABCD 的面积, ∴AF×DG =CE×DH ,∴DG :DH =CE :AF :=【点睛】本题是圆的综合题目,考查了圆周角定理、平行四边形的性质、三角形面积公式、含30°角的直角三角形的性质、勾股定理、角平分线的判定等知识;本题综合性强,需要添加辅助线,熟练掌握平行四边形的性质和勾股定理是解题的关键.6.(感知)如图1,在平面直角坐标系中,点C 的坐标为(0,0.5),点A 的坐标为(1,0),将线段CA 绕着点C 按逆时针方向旋转90︒至线段CB ,过点B 作BM y ⊥轴,垂足为点M ,易知AOC CMB ∆∆≌,得到点B 的坐标为(0.5,1.5).(探究)如图2,在平面直角坐标系中,点A 的坐标为(1,0),点C 的坐标为(0,)(0)m m >,将线段CA 绕着点C 按逆时针方向旋转90︒至线段CB .(1)求点B 的坐标.(用含m 的代数式表示)(2)求出BC 所在直线的函数表达式.(拓展)如图3,在平面直角坐标系中,点A 的坐标为(1,0),点C 在y 轴上,将线段CA 绕着点C 按逆时针方向旋转90︒至线段CB ,连结BO 、BA ,则BO BA +的最小值为_______.解析:【探究】(1)点B 坐标为(,1)m m +;(2)1y x m m=+5 【分析】探究:(1)证明△AOC ≌△CMB (AAS ),即可求解;(2)根据点B 的坐标为(m ,m+1),点C 坐标()0,m ,即可求解;拓展:BO+BA=2222(1)(1)(1)m m m m +++-++,BO+BA 的值,相当于求点P (m ,m )到点M (1,-1)和点N (0,-1)的最小值,即可求解.【详解】解:探究:(1)过点B 作BM y ⊥轴,垂足为点M .BMC 90∠∴=︒,MCB B 90∠∠∴+=︒.线段CA 绕着点C 按逆时针方向旋转90︒至线段CB ,BCA 90CB CA ∠∴=︒=,.MCB ACO 90∠∠∴+=︒.B ACO ∠∠∴=.ACO 90∠=︒,ΔAOC ΔCMB ∴≌,MC OA,MB OC ∴==.点C 坐标()0,m ,点A 坐标()1,0,∴点B 坐标为()m,m 1+(2)∵点B 的坐标为(m ,m+1),点C 为(0,m ),设直线BC 为:y=kx+b ,1b m km b m =⎧⎨+=+⎩,解得:1k m b m⎧=⎪⎨⎪=⎩, ∴1y x m m=+; 则BC 所在的直线为:1y x m m =+; 拓展:如图作BH ⊥OH 于H .设点C 的坐标为(0,m ),由(1)知:OC=HB=m ,OA=HC=1,则点B (m ,1+m ),则:BO+BA=2222(1)(1)(1)m m m m +++-++,BO+BA 的值,相当于求点P (m ,m )到点M (1,-1)和点N (0,-1)的最小值,相当于在直线y=x 上寻找一点P (m ,m ),使得点P 到M (0,-1),到N (1,-1)的距离和最小,作M 关于直线y=x 的对称点M′(-1,0),易知PM+PN=PM′+PN≥NM′,22(11)(01)5--++故:BO+BA 55【点睛】本题为一次函数综合题,主要考查的是三角形全等的思维拓展,其中拓展,将BO+BA 的值转化点P (m ,m )到点M (1,-1)和点N (0,-1)的最小值,是本题的新颖点 7.探究:如图1和2,四边形ABCD 中,已知AB AD =,90BAD ∠=︒,点E ,F 分别在BC 、CD 上,45EAF ∠=︒.(1)①如图 1,若B 、ADC ∠都是直角,把ABE △绕点A 逆时针旋转90︒至ADG ,使AB 与AD 重合,则能证得EF BE DF =+,请写出推理过程;②如图 2,若B 、D ∠都不是直角,则当B 与D ∠满足数量关系_______时,仍有EF BE DF =+;(2)拓展:如图3,在ABC 中,90BAC ∠=︒,22AB AC ==D 、E 均在边BC 上,且45DAE ∠=︒.若1BD =,求DE 的长.解析:(1)①见解析;②180B D ∠+∠=︒,理由见解析;(2)5=3DE 【分析】(1)①根据旋转的性质得出AE =AG ,∠BAE =∠DAG ,BE =DG ,求出∠EAF =∠GAF =45°,根据SAS 推出△EAF ≌△GAF ,根据全等三角形的性质得出EF =GF ,即可求出答案; ②根据旋转的性质得出AE =AG ,∠B =∠ADG ,∠BAE =∠DAG ,求出C 、D 、G 在一条直线上,根据SAS 推出△EAF ≌△GAF ,根据全等三角形的性质得出EF =GF ,即可求出答案; (2)根据等腰直角三角形性质好勾股定理求出∠ABC =∠C =45°,BC =4,根据旋转的性质得出AF =AE ,∠FBA =∠C =45°,∠BAF =∠CAE ,求出∠FAD =∠DAE =45°,证△FAD ≌△EAD ,根据全等得出DF =DE ,设DE =x ,则DF =x ,BF =CE =3−x ,根据勾股定理得出方程,求出x 即可.【详解】(1)①如图1,∵把ABE △绕点A 逆时针旋转90︒至ADG ,使AB 与AD 重合,∴AE AG =,BAE DAG ∠=∠,BE DG =∵90BAD ∠=︒,45EAF ∠=︒,∴45BAE DAF ∠+∠=︒,∴45DAG DAF ∠+∠=︒,即45EAF GAF ∠=∠=︒,在EAF △和GAF 中AF AF EAF GAF AE AG =⎧⎪∠=∠⎨⎪=⎩∴()EAF GAF SAS ≌,∴EF GF =,∵BE DG =,∴EF GF BE DF ==+;②180B D ∠+∠=︒,理由是:把ABE △绕A 点旋转到ADG ,使AB 和AD 重合,则AE AG =,B ADG ∠=∠,BAE DAG ∠=∠,∵180B ADC ︒∠+∠=,∴180ADC ADG ∠+∠=︒,∴C ,D ,G 在一条直线上,和①知求法类似,45EAF GAF ∠=∠=︒,在EAF △和GAF 中AF AF EAF GAF AE AG =⎧⎪∠=∠⎨⎪=⎩∴()EAF GAF SAS △≌△,∴EF GF =,∵BE DG =,∴EF GF BE DF ==+;故答案为:180B D ∠+∠=︒(2)∵ABC 中,22AB AC ==,90BAC ∠=∴45ABC C ∠=∠=︒,由勾股定理得:2222(22)(22)4BC AB AC =+=+= ,把AEC 绕A 点旋转到AFB △,使AB 和AC 重合,连接DF .则AF AE =,45FBA C ∠=∠=︒,BAF CAE ∠=∠,∵45DAE ∠=︒,∴904545FAD FAB BAD CAE BAD BAC DAE ∠=∠+∠=∠+∠=∠-∠=︒-︒=︒, ∴45FAD DAE ∠=∠=︒,在FAD △和EAD 中AD AD FAD EAD AF AE =⎧⎪∠=∠⎨⎪=⎩∴FAD EAD △≌△,∴DF DE =,设DE x =,则DF x =,∵1BC =,∴413BF CE x x ==--=-,∵45FBA ∠=︒,45ABC ∠=︒,∴90FBD ∠=︒,由勾股定理得:222DF BF BD =+,222(3)1x x =-+, 解得:5=3x , 即5=3DE . 【点睛】本题考查了旋转的性质,全等三角形的性质和判定,勾股定理的应用,此题是开放性试题,首先在特殊图形中找到规律,然后再推广到一般图形中,对学生的分析问题,解决问题的能力要求比较高.8.()1问题发现如图①,正方形,ABCD DEFG 、将正方形DEFG 绕点D 旋转,直线AE CG 、交于点,P 请直接写出线段AE 与CG 的数量关系是 ,位置关系是 _;()2拓展探究如图②,矩形,2,2,ABCD DEFG AD DE AB DG ==、将矩形DEFG 绕点D 旋转,直线,AE CG 交于点,P ()1中线段关系还成立吗/若成立,请写出理由;若不成立,请写出线段AE CG 、的数量关系和位置关系,并说明理由;()3解决问题在()2的条件下,24,28,AD DE AB DG ====矩形DEFG 绕D 点旋转过程中,请直接写出当点P 与点G 重合时,线段AE 的长,解析:()1,AE CG AE CG =⊥;()()21中数量关系不成立,位置关系成立.1,2AE AE CG CG =⊥,理由见解析;()32565 【分析】(1)证明△ADE ≌△CDG (SAS ),可得AE =CG ,∠DAG =∠DCG ,再由直角三角形两个锐角互余即可证得AE ⊥CG ;(2)先证明△ADE ∽△CDG ,利用相似三角形的性质证明即可.(3)先通过作图找到符合题意的两种情况,第一种情况利用勾股定理求解即可;第二种情况借助相似三角形及勾股定理计算即可.【详解】(1),AE CG AE CG =⊥;理由如下:由题意知在正方形ABCD DEFG 、中,90EDG ADC ∠=∠=︒,,AD DC DE DG ==,EDG GDA ADC GDA ∴∠+∠=∠+∠EDA GDC ∴∠=∠在△ADE 与△CDG 中,AD DC ADE CDG DE DG =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CDG (SAS )∴AE CG =,DEA DGC ∠=∠∵对顶角相等,∴,DEA EDG DGC GPE ∠+∠=∠+∠90.GPE ∴∠=AE CG ∴⊥.(2)(1)中数量关系不成立,位置关系成立.即:1,2AE AE CG CG =⊥ 理由如下:由题意知在矩形ABCD DEFG 、中,90EDG ADC ∠=∠=︒, EDG GDA ADC GDA ∴∠+∠=∠+∠EDA GDC ∴∠=∠2,2AD DE AB DG ==,12ED DG AD DC ∴== .EDAGDC ∴ 12AE CG ∴=,DEA DGC ∠=∠ ∵对顶角相等∴,DEA EDG DGC GPE ∠+∠=∠+∠90.GPE ∴∠=AE CG ∴⊥.综上所述:1,2AE AE CG CG =⊥ (3)如图1,当点G 、P 在点A 处重合时,连接AE ,则此时∠ADE =∠GDE =90°∴在Rt △ADE 中,AE 22224225AD DE +=+,如图1,当点G 、P 重合时, 则点A 、E 、G 在同一直线上,∵AD =DG =4,∴∠DAG =∠DGA ,∵∠ADC =∠AGP =90°,∠AOD =∠COG ,∴∠DAG =∠COG ,∴∠DGA =∠COG ,又∵∠GDO =∠CDG ,∴△GDO ∽△CDG , ∴DO DG OG DG DC CG == ∴448DO OG CG== ∴DO =2,CG =2OG ,∴OC =DC -DO =8-2=6,∵在Rt △COG 中,OG 2+GC 2=OC 2,∴OG 2+(2OG )2=62,∴OG 655 ∴CG 1255由(2)得:12AE CG = ∴AE 655综上所述,AE 的长为25655 【点睛】本题综合考查了全等三角形及相似三角形的判定及性质,以及勾股定理的应用,根据题意画出符合题意的图形是解决本题的关键.9.如图1,在正方形ABCD 中,点,E F 分别在边,AB AD 上,且AE AF =,延长FD 到点G ,使得DG DF =,连接,,EF GE CE .(特例感知)(1)图1中GE 与CE 的数量关系是______________.(结论探索)(2)图2,将图1中的AEF 绕着点A 逆时针旋转()090αα︒<<︒,连接FD 并延长到点G ,使得DC DF =,连接,,GE CE BE ,此时GE 与CE 还存在(1)中的数量关系吗?判断并说明理由.(拓展应用)(3)在(2)的条件下,若5,32AB AE ==EFG 是以EF 为直角边的直角三角形时,请直接写出GE 的长.解析:(1) GE 2CE ,(2)存在,证明见解析,(3)581016或4.【分析】(1)连接GC ,证△CDG ≌△CBE ,得出△GCE 为等腰直角三角形即可;(2)类似(1)的方法,先证△AFD ≌△AEB ,再证△CDG ≌△CBE ,得出△GCE 为等腰直角三角形即可;(3)根据E 、F 是直角顶点分类讨论,结合(2)中结论,利用勾股定理求解即可.【详解】解:(1)连接GC ,∵AE =AF ,AD =AB ,∴DF =BE ,∵DG DF =,∴DG = BE ,∵∠GDC =∠B =90°,DC =BC ,∴△CDG ≌△CBE ,∴CE =CG ,∠GCD =∠ECB ,∵∠ECB +∠DCE =90°,∴∠GCE =∠GCD +∠DCE =90°,∴GE 2CE ;故答案为:GE 2CE ;(2) 存在,连接GC,∵AE=AF,AD=AB,∠FAE=∠DAB=90°,∴∠FAD=∠EAB,∴△FAD≌△EAB,∴FD=EB=GD,∠FDA=∠EBA,∵∠GDC+∠FDA=90°,∠EBC+∠EBA=90°,∴∠GDC=∠EBC,∵DC=BD,∴△CDG≌△CBE,与(1)同理,GE=2CE;(3)当∠FEG=90°时,如图1,因为∠FEA=∠GEC=45°,所以,A、E、C在一条直线上,∵AB=5,∴AC=52,CE=52-32=22,GE=2EC=4;如图2,E在CA延长线上,同理可得,EC=82,GE=2EC=16;当∠EFG=90°时,如图3,∠AFD=∠EFG+∠AFE=135°,由(2)得,∠AFD=∠AEB=135°,DF=BE,所以,B、E、F在一条直线上,作AM⊥EF,垂足为M,∵5,32==AB AE∴EF=6,AM=ME=MF=3,224=-,BM AB AMBE=DF=1,FG=2,22210=+=;GE FG EF如图4,同图3,BE=DF=7,FG=14,EF=6,22258=+=,GE FG EF综上,GE的长为258或210或16或4.【点睛】本题考查了旋转的性质、全等三角形的判定与性质、勾股定理和等腰直角三角形的性质,解题关键是恰当的连接辅助线,构造全等三角形;会分类讨论,结合题目前后联系,解决问题.10.探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:,.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D 的坐标:;拓展:(3)如图3,点P(2,n)在函数(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.解析:(1)答案见解析;(2)①;②(﹣3,3)或(7,1)或(﹣1,﹣3);(3).【详解】试题分析:(1)用P1、P2的坐标分别表示出OQ和PQ的长即可证得结论;(2)①直接利用两点间距离公式可求得MN的长;②分AB、AC、BC为对角线,可求得其中心的坐标,再利用中点坐标公式可求得D点坐标;(3)设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,则可知OR=OS=2,利用两点间距离公式可求得R的坐标,再由PR=PS=n,可求得n的值,可求得P点坐标,利用中点坐标公式可求得M点坐标,由对称性可求得N点坐标,连接MN交直线OL于点E,交x轴于点S,此时EP=EM,FP=FN,此时满足△PEF的周长最小,利用两点间距离公式可求得其周长的最小值.试题解析:(1)∵P1(x1,y1),P2(x2,y2),∴Q1Q2=OQ2﹣OQ1=x2﹣x1,∴Q1Q=,∴OQ=OQ1+Q1Q=x1+=,∵PQ为梯形P1Q1Q2P2的中位线,∴PQ= =,即线段P1P2的中点P(x,y)P的坐标公式为x=,y=;(2)①∵M(2,﹣1),N(﹣3,5),∴MN==,故答案为;②∵A(2,2),B(﹣2,0),C(3,﹣1),∴当AB为平行四边形的对角线时,其对称中心坐标为(0,1),设D (x ,y ),则x+3=0,y+(﹣1)=2,解得x=﹣3,y=3,∴此时D 点坐标为(﹣3,3),当AC 为对角线时,同理可求得D 点坐标为(7,1),当BC 为对角线时,同理可求得D 点坐标为(﹣1,﹣3),综上可知D 点坐标为(﹣3,3)或(7,1)或(﹣1,﹣3),故答案为(﹣3,3)或(7,1)或(﹣1,﹣3);(3)如图,设P 关于直线OL 的对称点为M ,关于x 轴的对称点为N ,连接PM 交直线OL 于点R ,连接PN 交x 轴于点S ,连接MN 交直线OL 于点E ,交x 轴于点F ,又对称性可知EP=EM ,FP=FN ,∴PE+PF+EF=ME+EF+NF=MN ,∴此时△PEF 的周长即为MN 的长,为最小,设R (x ,),由题意可知OR=OS=2,PR=PS=n ,∴=2,解得x=﹣(舍去)或x=,∴R (,),∴,解得n=1,∴P (2,1),∴N (2,﹣1),设M (x ,y ),则=,=,解得x=,y=,∴M(,),∴MN==,即△PEF 的周长的最小值为.考点:一次函数综合题;阅读型;分类讨论;最值问题;探究型;压轴题.11.某数学兴趣小组在数学课外活动中,对多边形内两要互相垂直的线段做了如下探究: (观察与猜想)(1)如图1,在正方形ABCD 中,点E ,F 分别是AB ,AD 上的两点,连接DE ,CF ,DE CF ⊥,则DECF的值为__________;(2)如图2,在矩形ABCD 中,7AD =,4CD =,点E 是AD 上的一点,连接CE ,BD ,且CE BD ⊥,则CEBD的值为__________;(类比探究)(3)如图3,在四边形ABCD 中,90A B ∠=∠=︒,点E 为AB 上一点,连接DE ,过点C 作DE 的垂线交ED 的延长线于点G ,交AD 的延长线于点F ,求证:DE AB CF AD ⋅=⋅;(拓展延伸)(4)如图4,在Rt ABD ∆中,90BAD ∠=︒,9AD =,1tan 3ADB ∠=,将ABD ∆沿BD 翻折,点A 落在点C 处得CBD ∆,点E ,F 分别在边AB ,AD 上,连接DE ,CF ,且DE CF ⊥.①求DECF的值; ②连接BF ,若1AE =,直接写出BF 的长度.解析:(1)1;(2)47;(3)证明见解析;(4)①53;②3295BF =【分析】(1)先根据正方形的性质可得,90AD DC A CDF =∠=∠=︒,再根据直角三角形的性质可得ADE DCF ∠=∠,然后根据三角形全等的判定定理与性质可得DE CF =,由此即可得出答案;(2)先根据矩形的性质可得90A CDE ∠=∠=︒,再根据直角三角形的性质可得ADB DCE ∠=∠,然后根据相似三角形的判定与性质即可得;(3)如图(见解析),先根据矩形的判定与性质可得,90A B CH G H A ∠=∠===∠︒,再根据直角三角形的性质、对顶角相等可得FCH EDA ∠=∠,然后根据相似三角形的判定可得DEA CFH ~,由此即可得证;(4)①如图(见解析),先证出DEA CFG ~,从而可得9DE AD CF CG CG==,再分别在Rt ABD △和Rt ADH中,解直角三角形可得AH =DH的性质可得,2DH AC AC AH ⊥=ADC 的面积公式求出CG 的长,由此即可得出答案;②先根据(4)①中,相似三角形的性质可得53DE A FG CF E ==,可求出35FG =,再根据翻折的性质可得9CD AD ==,然后在Rt CDG 中,利用勾股定理可得365DG =,从而可得65AF =,最后在Rt ABF 中,利用勾股定理即可得. 【详解】解:(1)四边形ABCD 是正方形, ,90AD DC A CDF ∴=∠=∠=︒,90ADE CDE ∴∠+∠=︒,DE CF ⊥,90DCF CDE ∴∠+∠=︒,ADE DCF ∴∠=∠,在ADE 和DCF 中,90A CDF AD DC ADE DCF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,()ADE DCF ASA ∴≅,DE CF ∴=,1DECF∴=; (2)四边形ABCD 是矩形,90A CDE ∴∠=∠=︒, 90ADB CDB ∴∠+∠=︒,CE BD ⊥,90DCE CDB ∴∠+∠=︒, ADB DCE ∴∠=∠,在ADB △和DCE 中,90A CDE ADB DCE∠=∠=︒⎧⎨∠=∠⎩,ADB DCE ∴~,47CE CD BD AD =∴=; (3)如图,过点C 作CH AF ⊥交AF 的延长线于点H ,∵CG EG ⊥,90A B ∠=∠=︒, ∴90G H A B ∠=∠=∠=∠=︒, ∴四边形ABCH 为矩形,∴AB CH =,90FCH CFH DFG FDG ∠+∠=∠+∠=︒,CFH DFG ∠=∠,FCH FDG ∴∠=∠, EDA FDG ∠=∠,FCH EDA ∴∠=∠,在DEA △和CFH △中,90EDA FCHA H ∠=∠⎧⎨∠=∠=︒⎩,∴DEA CFH ~, ∴DE ADCF CH =, ∴DE ADCF AB=, ∴DE AB CF AD ⋅=⋅;(4)①过C 作CG AD ⊥于点G ,连接AC 交BD 于点H ,∵CF DE ⊥,90BAD ∠=︒,∴90FCG CFG CFG EDA ∠+∠=∠+∠=︒,∴FCG EDA ∠=∠, 在DEA △和CFG △中,90EDA FCGEAD FGC ∠=∠⎧⎨∠=∠=︒⎩,∴DEA CFG ~, ∴DE ADCF CG=, 在Rt ABD △中,1tan 3AB ADB AD ∠==,9AD =, ∴3AB =,在Rt ADH 中,1tan 3AH ADH DH ∠==, 设AH a =,则3DH a =,∴222AH DH AD +=,即()22239a a +=,∴aa =∴AH =DH =由翻折的性质得:,2DH AC AC AH ⊥== 1122ADCSAC DH AD CG =⋅=⋅,∴11922CG =⨯, 解得275CG =, ∴952735DE AD CF CG ===;②由(4)①已证:DEA CFG ~,53DE CF =, 53DE C AE FG F ∴==, 1AE =, 513FG ∴=,解得35FG =, 由翻折的性质得:9CD AD ==,在Rt CDG中,365DG =, 33669555AF AD FG DG ∴=--==--,在Rt ABF中,BF ===【点睛】本题考查了正方形的性质、相似三角形的判定与性质、翻折的性质、解直角三角形等知识点,较难的是题(4)①,通过作辅助线,构造直角三角形和相似三角形是解题关键. 12.如图1,在Rt △ABC 中,∠B=90°,BC=2AB=8,点D ,E 分别是边BC ,AC 的中点,连接DE ,将△EDC 绕点C 按顺时针方向旋转,记旋转角为α. (1)问题发现 ① 当0α︒=时,AEBD= ;② 当时,AEBD= (2)拓展探究试判断:当0°≤α<360°时,AEDB的大小有无变化?请仅就图2的情况给出证明. (3)问题解决当△EDC 旋转至A 、D 、E 三点共线时,直接写出线段BD 的长.解析:(1)55.(2)无变化;理由参见解析.(3)5125. 【分析】(1)①当α=0°时,在Rt △ABC 中,由勾股定理,求出AC 的值是多少;然后根据点D 、E 分别是边BC 、AC 的中点,分别求出AE 、BD 的大小,即可求出AEBD的值是多少. ②α=180°时,可得AB ∥DE ,然后根据AC BC AE BD =,求出AEBD的值是多少即可. (2)首先判断出∠ECA=∠DCB ,再根据5EC AC DC BC ==△ECA ∽△DCB ,即可求出AE BD 的值是多少,进而判断出AEBD的大小没有变化即可. (3)根据题意,分两种情况:①点A ,D ,E 所在的直线和BC 平行时;②点A ,D ,E 所在的直线和BC 相交时;然后分类讨论,求出线段BD 的长各是多少即可. 【详解】(1)①当α=0°时, ∵Rt △ABC 中,∠B=90°,∴2222(82)845AB BC +÷+= ∵点D 、E 分别是边BC 、AC 的中点, ∴4525AE ==, ∴255AE BD ==.②如图1,,当α=180°时,可得AB ∥DE , ∵AC BC AE BD =, ∴45582AE AC BD BC === (2)如图2,,当0°≤α<360°时,AE BD 的大小没有变化, ∵∠ECD=∠ACB ,∴∠ECA=∠DCB ,又∵52EC AC DC BC ==, ∴△ECA ∽△DCB ,∴52AE EC BD DC ==. (3)①如图3,,∵5CD=4,CD ⊥AD ,∴2222(45)480168AC CD ---∵AD=BC ,AB=DC ,∠B=90°,∴四边形ABCD 是矩形,∴BD=AC=45②如图4,连接BD ,过点D 作AC 的垂线交AC 于点Q ,过点B 作AC 的垂线交AC 于点P ,,∵AC=45CD=4,CD ⊥AD ,∴2222(45)480168AC CD ---,∵点D 、E 分别是边BC 、AC 的中点,∴DE=111(82)4222AB =⨯÷=⨯=2, ∴AE=AD-DE=8-2=6,由(2),可得5AE BD = ∴1255=.综上所述,BD 的长为5125 13.(1)(探究发现)如图1,EOF ∠的顶点O 在正方形ABCD 两条对角线的交点处,90EOF ︒∠=,将EOF ∠绕点O 旋转,旋转过程中,EOF ∠的两边分别与正方形ABCD 的边BC 和CD 交于点E 和点F (点F 与点C ,D 不重合).则,,CE CF BC 之间满足的数量关系是 .(2)(类比应用)如图2,若将(1)中的“正方形ABCD ”改为“120BCD ∠=的菱形ABCD ”,其他条件不变,当60EOF ∠=时,上述结论是否仍然成立?若成立,请给出证明;若不成立,请猜想结论并说明理由.(3)(拓展延伸)如图3,120BOD =∠,34OD =,4OB =,OA 平分BOD ∠,13AB =2OB OA >,点C 是OB 上一点,60CAD ∠=,求OC 的长.解析:(1)CE CF BC +=(2)结论不成立.12CE CF BC +=(3)14【分析】 (1)结论:CE CF BC +=.根据正方形性质,证()BOE COF ASA ∆≅∆,根据全等三角形性质可得结论;(2)结论不成立.12CE CF BC +=.连接EF ,在CO 上截取CJ CF =,连接FJ .根据菱形性质,证180EOF ECF ︒∠+∠=,,,,O E C F 四点共圆,分别证EOF ∆是等边三角形,CFJ ∆是等边三角形,根据等边三角形性质证()OFJ EFC SAS ∆≅∆,根据全等三角形性质可得结论;(3)由2OB OA >可知BAO ∆是钝角三角形,90BAO ∠>,作AH OB ⊥于H ,设=OH x .根据勾股定理,可得到21OA OH ==,由180COD ACD ︒∠+∠=,得,,,A C O D 四点共圆,再证ACD ∆是等边三角形,由(2)可知:OC OD OA +=,故可得OC .【详解】(1)如图1中,结论:CE CF BC +=.理由如下:∵四边形ABCD 是正方形,∴AC BD ⊥,OB OC =,45OBE OCF ︒∠=∠=,∵90EOF BOC ︒∠=∠=,∴BOE OCF ∠=∠,∴()BOE COF ASA ∆≅∆,∴BE CF =,∴CE CF CE BE BC +=+=.故答案为CE CF BC +=.(2)如图2中,结论不成立.12CE CF BC +=.理由:连接EF ,在CO 上截取CJ CF =,连接FJ .∵四边形ABCD 是菱形,120BCD ∠=,∴60BCO OCF ︒∠=∠=,∵180EOF ECF ︒∠+∠=,∴,,,O E C F 四点共圆,∴60OFE OCE ︒∠=∠=,∵60EOF ︒∠=,∴EOF ∆是等边三角形,∴OF FE =,60OFE ︒∠=,∵CF CJ =,60FCJ ︒∠=,∴CFJ ∆是等边三角形,∴FC FJ =,60EFC OFE ︒∠=∠=,∴OFJ CFE ∠=∠,∴()OFJ EFC SAS ∆≅∆,∴OJ CE =, ∴12CF CE CJ OJ OC BC +=+==, (3)如图3中,由2OB OA >可知BAO ∆是钝角三角形,90BAO ∠>,作AH OB ⊥于H ,设=OH x .在Rt ABH ∆中,2133BH x -∵4OB =,∴21334x x -=,解得32x =(舍弃)或12,∴21OA OH ==,∵180COD ACD ︒∠+∠=,∴,,,A C O D 四点共圆,∵OA 平分COD ∠,∴60AOC AOD ︒∠=∠=,∴60ADC AOC ︒∠=∠=,∵60CAD ︒∠=,∴ACD ∆是等边三角形,由(2)可知:OC OD OA +=, ∴31144OC =-=. 【点睛】考核知识点:正方形性质,全等三角形判定和性质,等边三角形判定和性质,圆的性质.综合运用各个几何性质定理是关键;此题比较综合.14.性质探究如图①,在等腰三角形ABC 中,0120ACB ∠=,则底边AB 与腰AC 的长度之比为________.理解运用⑴若顶角为120°的等腰三角形的周长为83+________;⑵如图②,在四边形EFGH 中,EF EG EH ==.①求证:EFG EHG FGH ∠+∠=∠;②在边,FG GH 上分别取中点,M N ,连接MN .若0120FGH ∠=,10EF =,直接写出线段MN 的长.类比拓展顶角为2σ的等腰三角形的底边与一腰的长度之比为________(用含σ的式子表示). 解析:31)432)①见解析;②532sin α.【分析】性质探究:作CD ⊥AB 于D ,则∠ADC=∠BDC=90°,由等腰三角形的性质得出AD=BD ,∠A=∠B=30°,由直角三角形的性质得出AC=2CD ,3,得出3,即可得出结果;理解运用:(1)同上得出则AC=2CD ,3,由等腰三角形的周长得出33CD=2,得出3(2)①由等腰三角形的性质得出∠EFG=∠EGF ,∠EGH=∠EHG ,得出∠EFG+∠EHG=∠EGF+∠EGH=∠FGH 即可;②连接FH ,作EP ⊥FH 于P ,由等腰三角形的性质得出PF=PH ,由①得:∠EFG+∠EHG=∠FGH=120°,由四边形内角和定理求出∠FEH=120°,由等腰三角形的性质得出∠EFH=30°,由直角三角形的性质得出PE=12EF=5,PF=3PE=53,得出FH=2PF=103,证明MN 是△FGH 的中位线,由三角形中位线定理即可得出结果; 类比拓展:作AD ⊥BC 于D ,由等腰三角形的性质得出BD=CD ,∠BAD=12∠BAC=α,由三角函数得出BD=AB×sinα,得出BC=2BD=2AB×sinα,即可得出结果.【详解】性质探究 解:作CD ⊥AB 于D ,如图①所示:则∠ADC=∠BDC=90°,∵AC=BC ,∠ACB=120°,∴AD=BD ,∠A=∠B=30°,∴AC=2CD ,3,∴3, ∴23AB CD AC 3 3 理解运用(1)解:如图①所示: 同上得:AC=2CD ,3,∵3∴33解得:CD=2,∴3∴△ABC 的面积=12AB×CD=1233故答案为3(2)①证明:∵EF=EG=EH ,∴∠EFG=∠EGF ,∠EGH=∠EHG ,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH ;②解:连接FH ,作EP ⊥FH 于P ,如图②所示:。
中考数学中考数学压轴题 易错题测试提优卷试题
一、中考数学压轴题1.如图,在平面直角坐标系中,点(1,2)A ,(5,0)B ,抛物线22(0)y ax ax a =->交x 轴正半轴于点C ,连结AO ,AB .(1)求点C 的坐标;(2)求直线AB 的表达式;(3)设抛物线22(0)y ax ax a =->分别交边BA ,BA 延长线于点D ,E .①若2AE AO =,求抛物线表达式;②若CDB △与BOA △相似,则a 的值为 .(直接写出答案)2.如图所示,在平面直角坐标系中,点(),C m m 在一三象限角平分线上,点(),0B n 在x 轴上,且m=2n -+2n -+4,点A 在y 轴的正半轴上;四边形AOBC 的面积为6 (1)求点A 的坐标;(2)P 为AB 延长线上一点,//PQ OC ,交CB 延长线于Q ,探究OAP ∠、ABQ ∠、Q ∠的数量关系并说明理由;(3)作AD 平行CB 交CO 延长线于D ,BE 平分CBx ∠,BE 反向延长线交CO 延长线于,若设ADO α∠=,F β∠=,试求2αβ+的值.3.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”.(1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”:①个位上的数字是千位上的数字的两倍;②百位上的数字与十位上的数字之和是12的倍数;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后这两个“和平数”为“相关和平数”.例如:1423于4132为“相关和平数”求证:任意的两个“相关和平数”之和是1111的倍数.4.定义:如果一个三角形一条边上的高与这条边的比值是3:5,那么称这个三角形为“准黄金”三角形,这条边就叫做这个三角形的“金底”.(概念感知)(1)如图1,在ABC 中,12AC =,10BC =,30ACB ∠=︒,试判断ABC 是否是“准黄金”三角形,请说明理由.(问题探究)(2)如图2,ABC 是“准黄金”三角形,BC 是“金底”,把ABC 沿BC 翻折得到DBC △,连AB 接AD 交BC 的延长线于点E ,若点C 恰好是ABD △的重心,求AB BC的值.(拓展提升) (3)如图3,12l l //,且直线1l 与2l 之间的距离为3,“准黄金”ABC 的“金底”BC 在直线2l 上,点A 在直线1l 上.105AB BC =,若ABC ∠是钝角,将ABC ∠绕点C 按顺时针方向旋转()090αα︒<<︒得到A B C '',线段A C '交1l 于点D .①当30α=︒时,则CD =_________;②如图4,当点B 落在直线1l 上时,求AD CD 的值.5.如图,在等边ABC ∆中,延长AB 至点D ,延长AC 交BD 的中垂线于点E ,连接BE ,DE .(1)如图1,若310DE =,23BC =,求CE 的长;(2)如图2,连接CD 交BE 于点M ,在CE 上取一点F ,连接DF 交BE 于点N ,且DF CD =,求证:12AB EF =;(3)在(2)的条件下,若45AED ∠=︒直接写出线段BD ,EF ,ED 的等量关系6.如图,在平面直角坐标中,点O 为坐标原点,ABC ∆的三个顶点坐标分别为()A O m ,,(),B m O -,(),C n O ,5AC =且OBA OAB ∠=∠,其中m ,n 满足725m n m n +=⎧⎨-=⎩.(1)求点A ,C 的坐标;(2)点P 从点A 出发,以每秒1个单位长度的速度沿y 轴负方向运动,设点P 的运动时间为t 秒.连接BP 、CP ,用含有t 的式子表示BPC ∆的面积为S (直接写出t 的取值范围);(3)在(2)的条件下,是否存在t 的值,使得ΔΔ32PAB POC S S =,若存在,请求出t 的值,并直接写出BP 中点Q 的坐标;若不存,请说明理由.7.在平面直角坐标系xOy 中,对于点A 和图形M ,若图形M 上存在两点P ,Q ,使得3AP AQ =,则称点A 是图形M 的“倍增点”.(1)若图形M 为线段BC ,其中点()2,0B -,点()2,0C ,则下列三个点()1,2D -,()1,1E -,()0,2F 是线段BC 的倍增点的是_____________;(2)若O 的半径为4,直线l :2y x =-+,求直线l 上O 倍增点的横坐标的取值范围;(3)设直线1y x =-+与两坐标轴分别交于G ,H ,OT 的半径为4,圆心T 是x 轴上的动点,若线段GH 上存在T 的倍增点,直接写出圆心T 的横坐标的取值范围.8.如图,直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣32x+c 经过A ,B 两点,与x 轴的另一交点为C .(1)求抛物线的解析式;(2)M 为抛物线上一点,直线AM 与x 轴交于点N ,当32MN AN =时,求点M 的坐标; (3)P 为抛物线上的动点,连接AP ,当∠PAB 与△AOB 的一个内角相等时,直接写出点P 的坐标.9.对于平面直角坐标系xOy 中的任意点()P x y ,,如果满足x y a += (x ≥0,a 为常数),那么我们称这样的点叫做“特征点”.(1)当2≤a ≤3时,①在点(1,2),(1,3),(2.5,0)A B C 中,满足此条件的特征点为__________________;②⊙W 的圆心为(,0)W m ,半径为1,如果⊙W 上始终存在满足条件的特征点,请画出示意图,并直接写出m 的取值范围;(2)已知函数()10Z x x x=+>,请利用特征点求出该函数的最小值.10.如图,平面上存在点P 、点M 与线段AB .若线段AB 上存在一点Q ,使得点M 在以PQ 为直径的圆上,则称点M 为点P 与线段AB 的共圆点.已知点P (0,1),点A (﹣2,﹣1),点B (2,﹣1).(1)在点O (0,0),C (﹣2,1),D (3,0)中,可以成为点P 与线段AB 的共圆点的是 ;(2)点K 为x 轴上一点,若点K 为点P 与线段AB 的共圆点,请求出点K 横坐标x K 的取值范围;(3)已知点M (m ,﹣1),若直线y =12x +3上存在点P 与线段AM 的共圆点,请直接写出m 的取值范围.11.如图1,抛物线23y ax bx =++与x 轴交于点(1,0)A -、点B ,与y 轴交于点C ,顶点D 的横坐标为1,对称轴交x 轴交于点E ,交BC 与点F .(1)求顶点D 的坐标;(2)如图2所示,过点C 的直线交直线BD 于点M ,交抛物线于点N .①若直线CM 将BCD ∆分成的两部分面积之比为2:1,求点M 的坐标;②若NCB DBC ∠=∠,求点N 的坐标.12.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与y 轴交于点C 0,3().(1)求抛物线的解析式及顶点M 坐标;(2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点D 作DE //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时,PDE ABMC 1S S 9=四边形. 13.问题背景:如图,四边形ABCD 中,AD BC ∥,8BC =,17AD =+32AB =,45ABC ∠=︒,P 为边AD 上一动点,连接BP 、CP .问题探究(1)如图1,若30PBC ∠=︒,则AP 的长为__________.(2)如图2,请求出BPC △周长的最小值;(3)如图3,过点P 作PE BC ⊥于点E ,过点E 分别作EM PB ⊥于M ,EN PC ⊥于点N ,连接MN①是否存在点P ,使得PMN 的面积最大?若存在,求出PMN 面积的最大值,若不存在,请说明理由;②请直接写出PMN 面积的最小值.14.在菱形ABCD 中,点P 是对角线BD 上一点,点M 在CB 的延长线上,且PC PM =, 连接PA .()1如图①,求证:PA PM =;()2如图②,连接,AM PM 与AB 交于点,120O ADC ︒∠=求证 =PC AM ;()3连接AM ,当 90ADC ︒∠=时,PC 与AM 的数量关系是15.已知:如图,四边形ABCD ,AB DC ,CB AB ⊥,16AB cm =,6BC cm =,8CD cm =,动点Q 从点D 开始沿DA 边匀速运动,运动速度为1/cm s ,动点P 从点A 开始沿AB 边匀速运动,运动速度为2/cm s .点P 和点Q 同时出发,O 为四边形ABCD 的对角线的交点,连接 PO 并延长交CD 于M ,连接QM .设运动的时间为()t s ,08t <<.(1)当t 为何值时,PQ BD ?(2)设五边形QPBCM 的面积为()2S cm ,求S 与t 之间的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使PQM 的面积等于五边形面积的1115?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使点Q 在MP 的垂直平分线上?若存在,求出t 的值;若不存在,请说明理由.16.在平面直角坐标系中,点O 为坐标原点,抛物线(2)()y a x x m =++与x 轴交于点A C 、(点A 在点C 的左侧),与y 轴正半轴交于点B ,24OC OB ==.(1)如图1,求a m 、的值;(2)如图2,抛物线的顶点坐标是M ,点D 是第一象限抛物线上的一点,连接AD 交抛物线的对称轴于点N ,设点D 的横坐标是t ,线段MN 的长为d ,求d 与t 的函数关系式;(3)如图3,在(2)的条件下,当154d =时,过点D 作DE x 轴交抛物线于点E ,点P 是x 轴下方抛物线上的一个动点,连接PE 交x 轴于点F ,直线211y x b =+经过点D 交EF 于点G ,连接CG ,过点E 作EH CG 交DG 于点H ,若3CFG EGH S S =△△,求点P 的坐标.17.如图,直线y =﹣x+4与抛物线y =﹣12x 2+bx+c 交于A ,B 两点,点A 在y 轴上,点B 在x 轴上.(1)求抛物线的解析式; (2)在x 轴下方的抛物线上存在一点P ,使得∠ABP =90°,求出点P 坐标;(3)点E 是抛物线对称轴上一点,点F 是抛物线上一点,是否存在点E 和点F 使得以点E ,F ,B ,O 为顶点的四边形是平行四边形?若存在,求出点F 的坐标;若不存在,请说明理由.18.如图,等腰△ABC ,AB =CB ,边AC 落在x 轴上,点B 落在y 轴上,将△ABC 沿y 轴翻折,得到△ADC(1)直接写出四边形ABCD 的形状:______;(2)在x 轴上取一点E ,使OE =OB ,连结BE ,作AF ⊥BC 交BE 于点F .①直接写出AF 与AD 的关系:____(如果后面的问题需要,可以直接使用,不需要再证明);②取BF 的中点G ,连接OG ,判断OG 与AD 的数量关系,并说明理由;(3)若四边形ABCD 的周长为8,直接写出GE 2+GF 2=____.19.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P .(1)当BP = 时,△MBP ~△DCP ;(2)当⊙P 与正方形ABCD 的边相切时,求BP 的长;(3)设⊙P 的半径为x ,请直接写出正方形ABCD 中恰好有两个顶点在圆内的x 的取值范围.20.将一个直角三角形纸片ABO ,放置在平面直角坐标系中,点0(3)A ,,点()0, 3B ,点(0,0)O(I)过边OB 上的动点D (点D 不与点B ,O 重合)作DE OB ⊥交AB 于点E ,沿着DE 折叠该纸片,点B 落在射线BO 上的点F 处.①如图,当D 为OB 中点时,求E 点的坐标;②连接AF ,当AEF ∆为直角三角形时,求E 点坐标:(Ⅱ) P 是AB 边上的动点(点 P 不与点B 重合),将AOP ∆沿OP 所在的直线折叠,得到'A OP ∆,连接'BA ,当'BA 取得最小值时,求P 点坐标(直接写出结果即可).21.ABC 内接于O ,AB BC =,连接BO ;(1)如图1,连接CO 并延长交O 于点M ,连接AM ,求证://AM BO ;(2)如图2,延长BO 交AC 于点H ,点F 为BH 上一点,连接AF ,若AH HF AB BF =,求证:BAF HAF ∠=∠;(3)在(2)的条件下,如图3,点E 为AB 上一点,点D 为O 上一点,连接ED 、OE ,若CBD 3ABH 90∠+∠=︒,若OF 3=,FH 4=,1362EBD S ∆=,连接OE ,求线段OE 的长.22.已知菱形ABCD 中,∠ABC=60°,AB=4,点M 在BC 边上,过点M 作PM ∥AB 交对角线BD 于点P ,连接PC .(1)如图1,当BM=1时,求PC 的长;(2)如图2,设AM 与BD 交于点E ,当∠PCM=45°时,求证:BE DE =33+; (3)如图3,取PC 的中点Q ,连接MQ ,AQ .①请探究AQ 和MQ 之间的数量关系,并写出探究过程;②△AMQ 的面积有最小值吗?如果有,请直接写出这个最小值;如果没有,请说明理由.23.如图,在平面直角坐标系xOy 中,已知Rt ABC 的直角顶点()0,12C ,斜边AB 在x 轴上,且点A 的坐标为()9,0-,点D 是AC 的中点,点E 是BC 边上的一个动点,抛物线212y ax bx =++过D ,C ,E 三点.(1)当//DE AB 时,①求抛物线的解析式;②平行于对称轴的直线x m =与x 轴,DE ,BC 分别交于点F ,H ,G ,若以点D ,H ,F 为顶点的三角形与GHE △相似,求点m 的值.(2)以E 为等腰三角形顶角顶点,ED 为腰构造等腰EDG △,且G 点落在x 轴上.若在x 轴上满足条件的G 点有且只有一个时,请直接写出....点E 的坐标. 24.如图1,D 是等边△ABC 外一点,且AD =AC ,连接BD ,∠CAD 的角平分交BD 于E . (1)求证:∠ABD =∠D ;(2)求∠AEB 的度数;(3)△ABC 的中线AF 交BD 于G (如图2),若BG =DE ,求AF DE的值.25.综合与探究:如图1,在平面直角坐标系xOy 中,四边形OABC 是边长为4的菱形,60C ︒∠=(1)把菱形OABC 先向右平移4个单位后,再向下平移()03m m <<个单位,得到菱形''''O A B C ,在向下平移的过程中,易知菱形''''O A B C 与菱形OABC 重叠部分的四边形'AEC F 为平行四边形,如图2.试探究:当m 为何值时,平行四边形'AEC F 为菱形:(2)如图,在()1的条件下,连接''',AC B O G 、为CE 的中点J 为EB 的中点,H 为AC 上一动点,I 为''B O 上一动点,连接,,,GH HI IJ 求GH HI IJ ++的最小值,并直接写出此时,H I 点的坐标.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.C解析:(1)点C 的坐标为(2,0);(2)1522y x =-+;(3)①2481515y x x =-;②10 13.【解析】【分析】(1)求得对称轴,由对称性可知C点坐标;(2)利用待定系数法求解可得;(3)①由AE=3AO的关系,建立K型模型相似,求得点E坐标代入解析式可得;②若△CDB与△BOA相似,则∠OAB=∠CDB=90°,由相似关系可得点D坐标,代入解析式y=ax2-2ax可得a值.【详解】解:(1)把0y=代入22y ax ax=-,得220ax ax-=,解得:0x=,或2x=.∵点C在x轴正半轴上,∴点C的坐标为(2,0).(2)设直线表达式为y kx b=+,把点(1,2)A,(5,0)B分别代入y kx b=+,得250k bk b+=⎧⎨+=⎩,解得1252kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB的表达式为:1522y x=-+.(3)①作AH x⊥轴于点H,EF AH⊥于点F(如图),∵222125OA=+=,2222420AB,22525OB==,∴222OA AB OB+=.∴90EAO OAB∠=∠=︒.由EFA AHO△∽△,得2EF FA EAAH HO AO===,∴4EF=,2FA=,∴点E坐标为()3,4-.把(3,4)E-代入22y ax ax=-,得964a a+=,解得:415a=.∴2481515y x x =-. ②若△CDB 与△BOA 相似,如图,作DG ⊥BC ,∴CD BD BC AO AB BO ==,∠OAB=∠CDB=90°, 35525==, ∴35CD =65BD =, ∵523BC =-=, ∴356565535DG ==, ∴156225x -+=,解得:135x =, ∴点D 的坐标为:(135,65), 把点D 代入22y ax ax =-,即16913622555a a -⨯= 解得:1013a =; 故答案为:1013. 【点睛】本题是二次函数的综合问题,考查了二次函数的基本性质,数形结合与K 型模型的使用,以及相似存在性问题,内容综合较好,难度相当入门级压轴问题.2.A解析:(1)A (0,1)(2)结论:∠ABQ +∠OAB ﹣∠Q =135°.(3)α+2β=45°.【解析】【分析】(1)利用二次根式的性质求出m 、n 的值,求出B 、C 两点坐标,由S 四边形AOBC =S△OBC+S△AOC,推出1 2×2×4+12×OA×4=6,求出OA即可;(2)如图2中,结论:∠ABQ+∠OAB﹣∠Q=135°.根据三角形内角和定理,三角形的外角的性质即可解决问题;(3)由AD∥BC,推出∠ADC=∠DCB=α,由BE平分∠CBx,推出∠CBE=∠EBx,由∠CBE=∠F+∠OCB=α+β,推出∠OBF=∠EBx=α+β,由OC平分∠AOB,可得∠COB=45°=∠F+∠OBF=α+(α+β),由此即可解决问题;【详解】解:(1)由题意2020nn-≥⎧⎨-≥⎩,,得,解得n=2,∴m=4,B(2,0),C(4,4).如图:∵S四边形AOBC=S△OBC+S△AOC,∴12×2×4+12×OA×4=6,∴OA=1,∴A(0,1).(2)结论:∠ABQ+∠OAB﹣∠Q=135°.如图:理由如下:∵OC∥PQ,∴∠Q=∠OCB,∵∠ABQ=∠1+∠OCB=∠1+∠Q,∠1=180°﹣∠OAB﹣∠AOC=180°﹣∠OAB﹣45°=135°﹣∠OAB ,∴∠ABQ =∠Q +135°﹣∠OAB ,∴∠ABQ +∠OAB ﹣∠Q =135°.(3)如图:∵AD ∥BC ,∴∠ADC =∠DCB =α,∵BE 平分∠CBx ,∴∠CBE =∠EBx ,∵∠CBE =∠F +∠OCB =α+β,∴∠OBF =∠EBx =α+β,∵C (4,4),∴OC 平分∠AOB ,∴∠COB =45°=∠F +∠OBF =α+(α+β),∴α+2β=45°.【点睛】本题考查平行线的判定和性质、角平分线的定义、三角形的内角和定理、三角形的外角性质等知识,解题的关键是灵活运用所学知识解决问题,属于压轴题.3.(1)1001;9999;(2)2754和4848;(3)见解析【解析】【分析】(1)根据“和平数”的定义可直接得出最小的“和平数”是1001,最大的“和平数”是9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又由029a ≤≤得到a 的可能取值为1,2,3,4;根据百位上的数字与十位上的数字之和是12的倍数,可知m +n =12,得到122a m +=,由a 的可能取值可得m 的取值,即可求得符合条件的“和平数”;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c ,计算它们的和,根据“和平数”的定义可知a+b=c+d ,因式分解可得原式= 1111(a+b ),即可证明.【详解】解:(1)根据“和平数”的定义可得:最小的“和平数”1001,最大的“和平数”9999,故答案为1001;9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又∵029a ≤≤,∴a 的可能取值为1,2,3,4;∵百位上的数字与十位上的数字之和是12的倍数,∴m+n =0或m+n =12,∵“和平数”中a+m =n+2a ,当m+n =0时,即m=n =0,则此时a =0,不符合题意,∴m+n =12,∴a+m =12−m +2a ,解得:122a m +=, ∵a 的可能取值为1,2,3,4;且m 为正整数,∴m 的可能取值为7,8;当a =2时,m =7,这个“和平数”是2754;当a =4时,m =8,这个“和平数”是4848;综上所述,满足条件的“和平数”是2754和4848;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c , ∴(100010010)(100010010)a b c d b a d c +++++++110011001111a b c d =+++1100()11()a b c d =+++由“和平数”的定义可知:a+b =c+d ,∴原式1100()11()a b a b =+++1111()a b =+,∵a ,b 为正整数,则1111()a b +能被1111整除,即(100010010)(100010010)a b c d b a d c +++++++能被1111整除,∴任意的两个“相关和平数”之和是1111的倍数.【点睛】本题考查新定义运算、因式分解的应用;能够读懂题意,根据数的特点,确定数的取值范围,进行正确的因式分解是解题关键.4.A解析:(1)ABC 是“准黄金”三角形,理由见解析;(2)32910AB BC =;(3)①125615-;②35AD CD =. 【解析】【分析】 (1)过点A 作AD BC ⊥于点D ,先求出AD 的长度,然后得到61035AD BC ==,即可得到结论; (2)根据题意,由“金底”的定义得:3:5AE BC =,设3AE k =,5BC k =,由勾股定理求出AB 的长度,根据比值即可求出AB BC的值; (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,先求出AC 的长度,由相似三角形的性质,得到AF=2DF ,由解直角三角形,得到3CF DF =,则(23)35AC x =+=,即可求出DF 的长度,然后得到CD 的长度;②由①可知,得到CE 和AC 的长度,分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,然后根据相似三角形的判定和性质,得到DF AF AE EC=,然后求出CD 和AD 的长度,即可得到答案.【详解】解:(1)ABC 是“准黄金”三角形.理由:如图,过点A 作AD BC ⊥于点D ,∵12AC =,30ACB ∠=︒, ∴162AD AC ==. ∴:6:103:5AD BC ==.∴ABC 是“准黄金”三角形.(2)∵点A ,D 关于BC 对称,∴BE AD ⊥,AE ED =.∵ABC 是“准黄金”三角形,BC 是“金底”,∴:3:5AE BC =.不防设3AE k =,5BC k =,∵点C 为ABD △的重心,∴:2:1BC CE =. ∴52k CE =,152k BE =. ∴2215329(3)22k AB k k ⎛⎫=+= ⎪⎝⎭. ∴329329:5AB k k BC ==. (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,如图:由题意得AE=3,∵35AE BC =, ∴BC=5, ∵105AB BC =, ∴10AB ,在Rt △ABE 中,由勾股定理得:22(10)31BE =-=,∴156EC =+=,∴223635AC =+=∵∠AEC=∠DFA=90°,∠ACE=∠DAF , ∴△ACE ∽△DAF , ∴3126AE E D C F AF ===, 设DF x =,则2AF x =,∵∠ACD=30°, ∴3CF x =, ∴(23)35AC x ==解得:65315DF x ==∴2125615CD DF ==②如图,过点A 作AE BC ⊥于点E ,则3AE =.∵ABC是“准黄金”三角形,BC是“金底”,∴:3:5AE BC=.∴5BC=.∵10 ABBC=,∴10AB.∴221BE AB AE=-=.∴6CE BE BC=+=,2236935AC CE AE=+=+=.分别过点B',D作B G BC'⊥,DF AC⊥,垂足分别为点G,F,∴90B GC DFC'∠=∠=︒,3B G'=,5C BB C'==,则CG4=.∵GCB FCDα'∠=∠=,∴AEC DFA∽△△.∴::::3:4:5DF FC CD B G GC CB''==.∴设3DF k=,4FC k=,5CD k=.∵12l l//,∴ACE CAD∠=∠,且90AEC AFD∠=∠=︒.∴AEC DFA∽△△.∴DF AFAE EC=.∴33543k k-=,解得35k=∴355CD k==2222959595102AF DFAD⎛⎫⎛⎫+=+=⎪ ⎪⎪ ⎪⎝⎭⎝⎭=.∴935253552ADCD===.【点睛】本题属于相似形综合题,主要考查了重心的性质,等腰直角三角形的性质,勾股定理,解直角三角形,旋转的性质以及勾股定理的综合运用,解决问题的关键是依据题意画出图形,根据数形结合的思想进行解答.5.B解析:(1)93CE =-;(2)详见解析;(3)612BD DE EF =- 【解析】 【分析】(1)过点B 作BH AC ⊥于点H ,分别求出BH ,BE ,根据勾股定理问题得解; (2)如图在FE 上取一点G ,使FG AC =,连接DG ,先证明()ACD GFD SAS ∆∆≌,再证明()ECB DGE AAS ∆∆≌,问题得证;(3)过点D 作AE 的垂线,构造出一个30,60︒,90︒的三角形和一个等腰直角三角形,借助(2)的结论,设222EF AB AC x ===,2ED y =,通过解两个直角三角形,代换x 和y 的关系,得出结论. 【详解】解:(1)如图,过点B 作BH AC ⊥于点H , 在等边ABC ∆中∵23BC = ∴3AH HC ==,223BH BC CH =-=,∵点E 在BD 的垂直平分线上,∴310BE DE == , 在Rt BHE ∆中229EH BE BH =-=∴93CE EH HC =-=-(2)如图在FE 上取一点G ,使FG AC =,连接DG ∵DF CD = ∴FCD CFD ∠=∠ ∴ACD EFD ∠=∠ 在ACD ∆和GFD ∆中,DF CD ACD EFD FG AC =⎧⎪∠=∠⎨⎪=⎩∴()ACD GFD SAS ∆∆≌ ∴AD DG = ∴60A DGA ∠=∠=︒ ∴60A DGA ADG ∠=∠=∠=︒ 设EBD EDB α∠=∠= ∴120CBE α∠=︒- 在ADE ∆中∴18060120AED αα∠=︒-︒-=︒- ∴120AED CBE α∠=∠=︒- 在ECB ∆和DGE ∆中120AED CBE ECB ECD EB DE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()ECB DGE AAS ∆∆≌ ∴BC GE =∴AB AC BC GE FG ====12AB EF =(3)如图,设222EF AB AC x ===,DP=y , 过点DP ⊥AE ,垂足为P , ∵∠AED=45°, ∠A=60°, ∴2sin sin 45DP y ED AED ===∠︒,23sin sin 603DP y AD A ===∠︒,∴2=y DE , ∴BD=AD-AB =2323216122y x DE EF DE EF -=-=-, 故答案为:612BD DE EF =-. 【点睛】本题涉及知识点较多,设计新颖,综合性强,难度较大,根据题意添加适当辅助线,构造直角三角形或构造全等是解题关键.6.A解析:(1)A (0,4),C (3,0);(2)S=()()51004251042t t t t ⎧-+<<⎪⎪⎨⎪->⎪⎩;(3)存在,满足条件的t 的值为3617或36,点Q 的坐标为162,17⎛⎫- ⎪⎝⎭或()2,16--.【解析】 【分析】(1)解方程组求出m ,n 即可解决问题.(2)分两种情形:如图1中,当0<t <4时,如图2中,当t >4时,根据S=12•BC•OP 求解即可.(3)分两种情形分别构建方程求解即可. 【详解】解:(1)由725m n m n +=⎧⎨-=⎩,解得:43m n =⎧⎨=⎩, ∴A (0,4),C (3,0); (2)如图1中,当0<t <4时,S=1 2•BC•OP=12×5×(4-t)=-52t+10.如图2中,当t>4时,S=12•BC•OP=12×5×(t-4)=52t-10.综上所述,S=()()51004251042t tt t⎧-+<<⎪⎪⎨⎪->⎪⎩,(3)当04t<<时,由题意,1314(4)3222t t⨯⨯=⨯⨯-⨯,解得3617t=,此时,363241717OP=-=,32(0,)17P∴,(4,0)B-,BQ∴的中点Q的坐标为162,17⎛⎫- ⎪⎝⎭,当4t>时,由题意,1314(4)3222t t⨯⨯=⨯⨯-⨯,解得36t=,此时36432OP=-=,(0,32)P∴-,(4,0)B -,BP ∴的中点Q 的坐标为(2,16)--.综上所述,满足条件的t 的值为3617或36.点Q 的坐标为16(2,)17-或(2,16)--.【点睛】本题属于三角形综合题,考查了解方程组,三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.7.A解析:(1)()1,1E -;(2)12m -≤≤-或01m ≤≤3)9t ≤≤. 【解析】 【分析】(1)首先要理解点A 是图形M 的“倍增点”的定义,将三个点逐一代入验证即可; (2)分两种情况:①点"倍增点”在O 的外部,分别求得“倍增点”横坐标的最大值和最小值,②点"倍增点"在O 的内部,依次求得“倍增点"横坐标的最大值和最小值,即可确定“倍增点”横坐标的范围;(3)分别求得线段GH 两端点为T "倍增点”时横坐标的最大值和最小值即可. 【详解】(1)()1,2D -到线段BC 的距离为2,32DC ==⨯ ∴()1,2D -不是线段BC 的倍增点;()1,1E -到线段BC 的距离为1,3EC ==>,∴在线段BC 上必存在一点P 使EP=3,∴()1,1E -是线段BC 的倍增点;()0,2F 到线段BC 的距离为2,32FC ==<⨯ ∴()0,2F 不是线段BC 的倍增点;综上,()1,1E -是线段BC 的倍增点; (2)设直线l 上“倍增点”的横坐标为m , 当点在O 外时,222(2)8,m m +-+≤解方程222(2)8m m +-+=,得11m =21m =当点在O 内部时,43(4+≥解得:m≥0或m≤-2∴直线l上“倍增点”的橫坐标的取值范围为1312m-≤≤-或0131m≤≤+;(3)如图所示,当点G(1,0)为T"倍增点"时,T(9,0),此时T的横坐标为最大值,当点H(0,1)为T“倍增点”时,则T(63,此时T的横坐标为最小值;∴圆心T(t, 0)的横坐标的取值范围为:639t-≤≤.【点睛】在正确理解点A是图形M的“倍增点”定义的基础上,利用(1)判断是否是倍增点的不等关系式,即可列不等式组求解范围.8.B解析:(1)y=12x2﹣32x﹣2;(2)点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)点P的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2).【解析】【分析】(1)根据题意直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,-2)、(4,0),即可求解;(2)由题意直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MN AN =32时,则NHON=32,即4343mmm---=32,进行分析即可求解;(3)根据题意分∠PAB=∠AOB=90°、∠PAB=∠OAB、∠PAB=∠OBA三种情况,分别求解即可.【详解】解:(1)直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,﹣2)、(4,0),则c=﹣2,将点B的坐标代入抛物线表达式并解得:a=12,故抛物线的表达式为:y=12x2﹣32x﹣2①;(2)设点M(m,12m2﹣32m﹣2)、点A(0,﹣2),将点M、A的坐标代入一次函数表达式:y=kx+b并解得:直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即:4343mmm---=32,解得:m=5或﹣2或2或1,故点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)①∠PAB=∠AOB=90°时,则直线AP的表达式为:y=﹣2x﹣2②,联立①②并解得:x=﹣1或0(舍去0),故点P(﹣1,0);②当∠PAB=∠OAB时,当点P在AB上方时,无解;当点P在AB下方时,将△OAB沿AB折叠得到△O′AB,直线OA交x轴于点H、交抛物线为点P,点P为所求,则BO=OB=4,OA=OA=2,设OH=x,则sin∠H=BO OAHB HA'=,即:2444x x=++,解得:x=83,则点H(﹣83,0),.则直线AH的表达式为:y=﹣34x﹣2③,联立①③并解得:x=32,故点P(32,﹣258);③当∠PAB=∠OBA时,当点P在AB上方时,则AH=BH,设OH=a,则AH=BH=4﹣a,AO=2,故(4﹣a)2=a2+4,解得:a=32,故点H(32,0),则直线AH的表达式为:y=43x﹣2④,联立①④并解得:x=0或173(舍去0),故点P(173,509);当点P在AB下方时,同理可得:点P(3,﹣2);综上,点P 的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、勾股定理的运用等,要注意分类讨论,解题全面.9.A解析:(1)①(1,2),(2.5,0)A C ;②2232m -+≤≤;(2)最小值为2. 【解析】 【分析】(1)①根据“特征点”的定义判断即可;②如图2中,当⊙W 1与直线y =−x +2相切时,1(22,0)W -,当⊙W 2与直线y =−x +3相切时,2(32,0)W +,结合图象,⊙W 与图中阴影部分有交点时,⊙W 上存在满足条件的特征点.(2)特征点的图象是由原点向外扩大,当与反比例函数的图象第一次有交点时,1x x+的值最小(如图3中). 【详解】解:(1)①∵1+2=3,1+3=4,2.5+0=2.5, 又∵2≤a ≤3, ∴A ,C 是特征点,故答案为:(1,2),(2.5,0)A C ; ②如图1,∵2≤a ≤3,∴直线y =−x +2和直线y =−x +3之间的区域(包括两直线)上的点都为“特征点”, 直线y =−x +2和直线y =−x +3分别与x 轴的交点为(2,0)P ,(3,0)Q ,当⊙W 1与直线y =−x +2相切时,设切点为M ,此时2OP =,1MW MP ⊥,145MPW ∠=︒,则1MPW 为等腰直角三角形, ∵⊙W 1半径为1,即11MW =,∴12PW =,则1122OW OP PW =-=-, ∴1(22,0)W -,当⊙W 2与直线y =−x +3相切时,设切点为N ,此时3OQ =,2NW NQ ⊥,245NQW ∠=︒,则2NQW 为等腰直角三角形, 同理得:22QW =,则2232OW OQ QW =+=+, ∴2(32,0)W +,观察图象可知满足条件的m 取值范围为:2232m -≤≤+; (2)根据0x >,在第一象限画出1y x=的图象, ∴在此坐标系中图象上的点就是1x x ⎛⎫⎪⎝⎭,,∵特征点满足x y a +=(x ≥0,a 为常数), ∴在此图象上对应的就是1x a x+=, ∴将特征点的图象由原点向外扩大,当与反比例函数1y x =的图象第一次有交点时,1x x+出现最小值, 如图2,由x >0可将1x a x+=整理得:210x ax -+=, ∴2()40a ∆=--=,解得:12a =,22a =-(舍去),∴2a =, ∴12Z x x =+=,即()10Z x x x=+>的最小值为2.【点睛】本题属于反比例函数综合题,考查了直线与圆的位置关系,反比例函数的性质等知识,解题的关键是理解题意,学会利用图象法解决问题,属于中考压轴题.10.C解析:(1)C ;(2)﹣12≤x k 22﹣1≤x k 2;(3)m≤3﹣10或10【解析】 【分析】(1)由题意可知当Q 与A 重合时,点C 在以AP 为直径的圆上,所以可以成为点P 与线段AB 的共圆点的是C ;(2)根据题意由两点的距离公式可得AP=BP=22,分别画以AP 和BP 为直径的圆交x 轴于4个点:K 1、K 2、K 3、K 4,结合图形2可得4个点的坐标,从而得结论; (3)由题意先根据直线y=12x+3,当x=0和y=0计算与x 轴和y 轴的交点坐标,分两种情况:M 在A 的左侧和右侧,先计算圆E 与直线y=12x+3相切时m 的值,从而根据图形可得结论. 【详解】解:(1)如图1,可以成为点P 与线段AB 的共圆点的是C ,故答案为:C ;(2)∵P (0,1),点A (﹣2,﹣1),点B (2,﹣1). ∴AP =BP =22(20)(11)--+--=22,如图2,分别以PA 、PB 为直径作圆,交x 轴于点K 1、K 2、K 3、K 4,∵OP =OG =1,OE ∥AB , ∴PE =AE 2, ∴OE =12AG =1, ∴K 1(﹣12,0),k 2(120),k 32﹣1,0),k 4(2,0), ∵点K 为点P 与线段AB 的共圆点, ∴﹣12≤x k ≤122﹣1≤x k 2;(3)分两种情况:①如图3,当M 在点A 的左侧时,Q 为线段AM 上一动点,以PQ 为直径的圆E 与直线y =12x+3相切于点F ,连接EF ,则EF ⊥FH ,当x =0时,y =3,当y =0时,y =12x+3=0,x =﹣6, ∴ON =3,OH =6, ∵tan ∠EHF =ON EF OH FH ==36=12, 设EF =a ,则FH =2a ,EH 5, ∴OE =65,Rt △OEP 中,OP =1,EP =a , 由勾股定理得:EP 2=OP 2+OE 2, ∴2221(65)a a =+, 解得:a 3522+3522-, ∴QG =2OE =2(65)=﹣10, ∴m≤3﹣10②如图4,当M 在点A 的右侧时,Q 为线段AM 上一动点,以PQ 为直径的圆E 与直线y =12x+3相切于点F ,连接EF ,则EF ⊥FH ,同理得QG =10, ∴10综上,m 的取值范围是m≤3﹣10或10. 【点睛】本题属于圆和一次函数综合题,考查一次函数的应用,新定义:M 为点P 与线段AB 的共圆点,圆的切线的性质等知识,解题的关键是理解题意,学会利用图象法解决问题,学会利用特殊点解决取值范围问题.11.A解析:(1)(1,4)D ;(2)158(,)33M ,274(,)33M ;(3)N 的坐标为57(,)24. 【解析】 【分析】(1)将点A 坐标代入函数关系式可得a 与b 的方程,再根据顶点D 的横坐标为1可得另一个关于a 和b 的方程,联立方程组求解即可得到a 和b 的值,进而求得抛物线的函数关系式,再将顶点D 的横坐标代入即可求得点D 坐标;(2)①如图,取DB 得三等分点12,M M ,过点12,M M 分别作x 轴,y 轴的平行线分别交DE 、x 轴于点G 、H 、P 、Q ,通过证相似三角形可得点M 的横纵坐标与点B 、D 的横纵坐标之间的数量关系,进而得解;(3)取线段BC 的中点G ,连接GM ,由中点坐标可得33(,)22G ,根据等腰三角形的三线合一可得GM ⊥BC ,在根据两条直线互相垂直可求得:GM l y x =,与:26BD l y x =-+联立方程组可求得点M 的坐标,再由(2,2),(0,3)M C 利用待定系数法可得1:32CM l y x =-+,最后将132y x =-+与2y x 2x 3=-++联立方程组即可求得点N 的坐标. 【详解】解:(1)将(1,0)A -代入23y ax bx =++可得03a b =-+①∵顶点D 的横坐标为1,∴12ba-=,即2b a =-② 联立①②解得1,2a b =-=∴2y x 2x 3=-++ 当1x =时,4y =(1,4)D ∴(2)由(1)得2y x 2x 3=-++ 当y=0时,x 1=-1,x 2=3, ∴B (3,0),即BO=3,如图,取DB 的三等分点12,M M ,过点12,M M 分别作x 轴,y 轴的平行线分别交DE 、x 轴于点G 、H 、P 、Q ,则可得△DGM 1∽△DHM 2∽△DEB ,△BQM 2∽△BPM 1∽△BED ,且相似比为1:2:3, ∴12833M D y y == 115()33M D B D x x x x =+-=158(,)33M ∴同理可得:274(,)33M∴点M 的坐标为:158(,)33M ,274(,)33M(3)NCB DBC ∠=∠CM MB ∴=取线段BC 的中点G ,作直线GM ,∵点B (3,0),点C (0,3) ∴中点G 的坐标为33(,)22∵CM MB =,点G 为线段BC 的中点, ∴GM ⊥BC , ∴设直线GM 为y=x+m 将33(,)22G 代入得m=0, ∴:GM l y x =① 设直线BD 为y=kx+n将,B D 坐标代入得k=-2,n=6, ∴:26BD l y x =-+②联立①②可得22x y =⎧⎨=⎩∴(2,2)M 设直线MC 为y=k 2x+n 2将(2,2),(0,3)M C 坐标代入得k 2=12-,n 2=3, ∴1:32CM l y x =-+③联立③与2y x 2x 3=-++可得5274x y ⎧=⎪⎪⎨⎪=⎪⎩∴57(,)24N 故N 的坐标为57(,)24. 【点睛】本题考查了一次函数与二次函数的综合应用以及相似三角形的判定及性质的应用,能够根据题意做出正确的辅助线,利用数形结合思想进行转化是解决本题的关键.12.C解析:(1)21y x 43=-+(,顶点M4;(2)P 2);(3)1m =2,2m =1【解析】 【分析】(1)由点C 的坐标,可求出c的值,再把()A、()B 代入解析式,即可求出a 、b 的值,即可求出抛物线的解析式,将解析式化为顶点式,即可求出顶点M 的坐标;(2)因为A 、B 关于抛物线的对称轴对称,连接BC 与抛物线对称轴交于一点,即为所求点P ,设对称轴与x 轴交于点H ,证明PHB COB ∽,即可求出PH 的长,从而求出点P 的 坐标;(3)根据点A 、B 、M 、C 的坐标,可求出ABMC S 四边形,从而求出PDES=OC =3,OB=OCB ∠=60,因为DE //PC ,推出 ODE ∠=60,从而得到OD =3m -,)OE 3m =-,根据PDEDOE PDOE SS S=-四边形,列出关于m 的方程,解方程即可. 【详解】(1)∵抛物线y =2ax bx c a 0++≠()过()A、()B ,()C 0,3三点, ∴c =3,∴3a 3027a 30⎧-+=⎪⎨++=⎪⎩,解得1a 3b ⎧=-⎪⎪⎨⎪=⎪⎩.。
中考数学中考数学压轴题 易错题测试卷试题
一、中考数学压轴题1.在平面直角坐标系中,直线4(0)3y x b b =-+>交x 轴于点A ,交y 轴于点B ,10AB =.(1)如图1,求b 的值;(2)如图2,经过点B 的直线(4)(40)y n x b n =++-<<与直线y nx =交于点C ,与x 轴交于点R ,//CD OA ,交AB 于点D ,设线段CD 长为d ,求d 与n 的函数关系式; (3)如图3,在(2)的条件下,点F 在第四象限,CF 交OA 于点E ,45AEF ∠=︒,点P 在第一象限,PH OA ⊥,点N 在x 轴上,点M 在PH 上,MN 交PE 于点G ,PH EN =,过点E 作EQ CF ⊥,交PH 于点Q , 32==EQ EF PM ,∠=∠OBR HNM ,BC CR =,点G 的坐标为1927,55⎛⎫ ⎪⎝⎭,连接FN ,求EFN 的面积.2.我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P 作坐标轴的平行线PM 和PN ,分别交x 轴和y 轴于点M ,N .点M 、N 在x 轴和y 轴上所对应的数分别叫做P 点的x 坐标和y 坐标,有序实数对(x ,y )称为点P 的斜坐标,记为P (x ,y )(1)如图2,ω=45°,矩形OABC 中的一边OA 在x 轴上,BC 与y 轴交于点D , OA =2,OC =1.①点A 、B 、C 在此斜坐标系内的坐标分别为A ,B ,C .②设点P (x ,y )在经过O 、B 两点的直线上,则y 与x 之间满足的关系为 . ③设点Q (x ,y )在经过A 、D 两点的直线上,则y 与x 之间满足的关系为 . (2)若ω=120°,O 为坐标原点.①如图3,圆M 与y 轴相切原点O ,被x 轴截得的弦长OA =3,求圆M 的半径及圆心M 的斜坐标.②如图4,圆M 的圆心斜坐标为M (33y 轴的距离为1,则圆M 的半径r 的取值范围是 .3.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”.(1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”:①个位上的数字是千位上的数字的两倍;②百位上的数字与十位上的数字之和是12的倍数;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后这两个“和平数”为“相关和平数”.例如:1423于4132为“相关和平数”求证:任意的两个“相关和平数”之和是1111的倍数.4.如果关于x 的一元二次方程20ax bx c ++=有两个不相等的实数根,且其中一个根为另一个根的一半,则称这样的方程为“半等分根方程”.(1)①方程2280x x --= 半等分根方程(填“是”或“不是”);②若(1)()0x mx n -+=是半等分根方程,则代数式2252m mn n ++= ; (2)若点(,)p q 在反比例函数8x y =的图象上,则关于x 的方程260px x q -+=是半等分根方程吗?并说明理由; (3)如果方程20ax bx c ++=是半等分根方程,且相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上,试说明方程20ax bx c ++=的一个根为53. 5.已知:如图,二次函数213222y x x =-++的图象交x 轴于A 点和B 点(A 点在B 点左则),交y 轴于E 点,作直线,EB D 是直线EB 上方抛物线上的一个动点.过D 点作 直线l 平行于直线.EB M 是直线 EB 上的任意点,N 是直线l 上的任意点,连接,MO NO ,始终保持MON ∠为90︒,以MO 和ON 边,作矩形MONC .(1)在D 点移动过程中,求出当DEB ∆的面积最大时点D 的坐标;在DEB ∆的面积最大 时,求矩形MONC 的面积的最小值.(2)在DEB ∆的面积最大时,线段ON 交直线EB 于点G ,当点,,,D N G B 四个点组成平行 四边形时,求此时线段ON 与抛物线的交点坐标.6.问题提出(1)如图①,在ABC 中,2,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.7.对于平面直角坐标系xOy 中的图形W 1和图形W 2.给出如下定义:在图形W 1上存在两点A ,B (点A ,B 可以重合),在图形W 2上存在两点M ,N ,(点M 于点N 可以重合)使得AM=2BN ,则称图形W 1和图形W 2满足限距关系(1)如图1,点C(1,0),D(-1,0),E(0,3),点P 在线段DE 上运动(点P 可以与点D ,E 重合),连接OP ,CP .①线段OP 的最小值为_______,最大值为_______;线段CP 的取值范直范围是_____; ②在点O ,点C 中,点____________与线段DE 满足限距关系;(2)如图2,⊙O 的半径为1,直线3y x b =+(b>0)与x 轴、y 轴分别交于点F ,G .若线段FG 与⊙O 满足限距关系,求b 的取值范围;(3)⊙O 的半径为r(r>0),点H ,K 是⊙O 上的两个点,分别以H ,K 为圆心,1为半径作圆得到⊙H 和 K ,若对于任意点H ,K ,⊙H 和⊙K 都满足限距关系,直接写出r 的取值范围.8.如图,在平面直角坐标系xoy 中,直线122y x =-+与x 轴交于点B ,与y 轴交于点,C 抛物线2y ax bx c =++的对称轴是直线3,2x =与x 轴的交点为点,A 且经过点B C 、两点.(1)求抛物线的解析式;(2)点M 为抛物线对称轴上一动点,当BM CM -的值最小时,请你求出点M 的坐标;(3)抛物线上是否存在点N ,过点N 作NH x ⊥轴于点,H 使得以点、、B N H 为顶点的三角形与ABC 相似?若存在,请直接写出点N 的坐标;若不存在,请说明理由.9.如图,在平面直角坐标系中,点(1,2)A ,(5,0)B ,抛物线22(0)y ax ax a =->交x 轴正半轴于点C ,连结AO ,AB .(1)求点C 的坐标;(2)求直线AB 的表达式;(3)设抛物线22(0)y ax ax a =->分别交边BA ,BA 延长线于点D ,E .①若2AE AO =,求抛物线表达式;②若CDB △与BOA △相似,则a 的值为 .(直接写出答案)10.如图,射线AM 上有一点B ,AB =6.点C 是射线AM 上异于B 的一点,过C 作CD ⊥AM ,且CD =43AC .过D 点作DE ⊥AD ,交射线AM 于E . 在射线CD 取点F ,使得CF =CB ,连接AF 并延长,交DE 于点G .设AC =3x .(1) 当C 在B 点右侧时,求AD 、DF 的长.(用关于x 的代数式表示)(2)当x 为何值时,△AFD 是等腰三角形.(3)若将△DFG 沿FG 翻折,恰使点D 对应点'D 落在射线AM 上,连接'FD ,'GD .此时x 的值为 (直接写出答案)11.如图,一张半径为3cm 的圆形纸片,点O 为圆心,将该圆形纸片沿直线l 折叠,直线l 交O 于AB 、两点.(1)若折叠后的圆弧恰好经过点O ,利用直尺和圆规在图中作出满足条件的一条直线l (不写作法,保留作图痕迹),并求此时线段AB 的长度.(2)已知M 是O 一点,1cm OM =.①若折叠后的圆弧经过点M ,则线段AB 长度的取值范围是________.②若折叠后的圆弧与直线OM 相切于点M ,则线段AB 的长度为_________cm .12.注意:为了使同学们更好地解答本题的第(Ⅱ)问,我们提供了一种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行解答即可.如图,将一个矩形纸片ABCD ,放置在平面直角坐标系中,()0,0A ,()4,0B ,()0,3D ,M 是边CD 上一点,将ADM 沿直线AM 折叠,得到ANM . (Ⅰ)当AN 平分MAB ∠时,求DAM ∠的度数和点M 的坐标;(Ⅱ)连接BN ,当1DM =时,求ABN 的面积;(Ⅲ)当射线BN 交线段CD 于点F 时,求DF 的最大值.(直接写出答案) 在研究第(Ⅱ)问时,师生有如下对话:师:我们可以尝试通过加辅助线,构造出直角三角形,寻找方程的思路来解决问题. 小明:我是这样想的,延长MN 与x 轴交于P 点,于是出现了Rt NAP △.小雨:我和你想的不一样,我过点N 作y 轴的平行线,出现了两个Rt NAP △.13.如图,抛物线214y x bx c =++与x 轴交于点A (-2,0),交y 轴于点B (0,52-).直线32y kx =+过点A 与y 轴交于点C ,与抛物线的另一个交点是D .(1) 求抛物线214y x bx c =++与直线32y kx =+的解析式; (2)点P 是抛物线上A 、D 间的一个动点,过P 点作PM ∥CE 交线段AD 于M 点.①过D 点作DE ⊥y 轴于点E ,问是否存在P 点使得四边形PMEC 为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;②作PN ⊥AD 于点N ,设△PMN 的周长为m ,点P 的横坐标为x ,求m 关于x 的函数关系式,并求出m 的最大值.14.问题探究(1)如图1.在ABC 中,8BC =,D 为BC 上一点,6AD =.则ABC 面积的最大值是_______.(2)如图2,在ABC 中,60BAC ∠=︒,AG 为BC 边上的高,O 为ABC 的外接圆,若3AG =,试判断BC 是否存在最小值?若存在,请求出最小值:若不存在,请说明理由.问题解决:如图3,王老先生有一块矩形地ABCD ,6212AB =+,626BC =+,现在他想利用这块地建一个四边形鱼塘AMFN ,且满足点E 在CD 上,AD DE =,点F 在BC 上,且6CF =,点M 在AE 上,点N 在AB 上,90MFN ∠=︒,这个四边形AMFN 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.15.如图,等腰△ABC ,AB =CB ,边AC 落在x 轴上,点B 落在y 轴上,将△ABC 沿y 轴翻折,得到△ADC(1)直接写出四边形ABCD 的形状:______;(2)在x 轴上取一点E ,使OE =OB ,连结BE ,作AF ⊥BC 交BE 于点F .①直接写出AF 与AD 的关系:____(如果后面的问题需要,可以直接使用,不需要再证明);②取BF 的中点G ,连接OG ,判断OG 与AD 的数量关系,并说明理由;(3)若四边形ABCD 的周长为8,直接写出GE 2+GF 2=____.16.已知:矩形ABCD 内接于⊙O ,连接 BD ,点E 在⊙O 上,连接 BE 交 AD 于点F ,∠BDC+45°=∠BFD ,连接ED .(1)如图 1,求证:∠EBD=∠EDB ;(2)如图2,点G 是 AB 上一点,过点G 作 AB 的垂线分别交BE 和 BD 于点H 和点K ,若HK=BG+AF ,求证:AB=KG ;(3)如图 3,在(2)的条件下,⊙O 上有一点N ,连接 CN 分别交BD 和 AD 于10点 M 和点 P ,连接 OP ,∠APO=∠CPO ,若 MD=8,MC= 3,求线段 GB 的长.17.如图,在平面直角坐标系中,点O 为坐标原点,直线y =-x + m 交 y 轴的正半轴于点A ,交x 轴的正半轴于点B ,过点A 的直线AF 交x 轴的负半轴于点F ,∠AFO=45°. (1)求∠FAB 的度数;(2)点 P 是线段OB 上一点,过点P 作 PQ ⊥OB 交直线 FA 于点Q ,连接 BQ ,取 BQ 的中点C ,连接AP 、AC 、CP ,过点C 作 CR ⊥AP 于点R ,设 BQ 的长为d ,CR 的长为h ,求d 与 h 的函数关系式(不要求写出自变量h 的取值范围);(3)在(2)的条件下,过点 C 作 CE ⊥OB 于点E ,CE 交 AB 于点D ,连接 AE ,∠AEC=2∠DAP ,EP=2,作线段 CD 关于直线AB 的对称线段DS ,求直线PS 与直线 AF 的交点K 的坐标.18.将一个直角三角形纸片ABO ,放置在平面直角坐标系中,点0(3)A ,,点()0, 3B ,点(0,0)O(I)过边OB 上的动点D (点D 不与点B ,O 重合)作DE OB ⊥交AB 于点E ,沿着DE 折叠该纸片,点B 落在射线BO 上的点F 处.①如图,当D 为OB 中点时,求E 点的坐标;②连接AF ,当AEF ∆为直角三角形时,求E 点坐标:(Ⅱ) P 是AB 边上的动点(点 P 不与点B 重合),将AOP ∆沿OP 所在的直线折叠,得到'A OP ∆,连接'BA ,当'BA 取得最小值时,求P 点坐标(直接写出结果即可).19.如图,抛物线25y ax bx =+-交x 轴于点A 、B (A 在B 的左侧),交y 轴于点C ,且OB OC =,()2,0A -.(1)求抛物线的解析式;(2)点P 为第四象限抛物线上一点,过点P 作y 轴的平行线交BC 于点D ,设P 点横坐标为t ,线段PD 的长度为d ,求d 与t 的函数关系式.(不要求写出t 的取值范围) (3)在(2)的条件下,F 为BP 延长线上一点,且45PFC ∠=︒,连接OF 、CP 、PB ,FOB ∆的面积为3600169,求PBC ∆的面积. 20.ABC 内接于O ,AB BC =,连接BO ;(1)如图1,连接CO 并延长交O 于点M ,连接AM ,求证://AM BO ;(2)如图2,延长BO 交AC 于点H ,点F 为BH 上一点,连接AF ,若AH HF AB BF =,求证:BAF HAF ∠=∠;(3)在(2)的条件下,如图3,点E 为AB 上一点,点D 为O 上一点,连接ED 、OE ,若CBD 3ABH 90∠+∠=︒,若OF 3=,FH 4=,13623EBD S ∆=,连接OE ,求线段OE 的长.21.定义:将函数l 的图象绕点P (m ,0)旋转180°,得到新的函数l '的图象,我们称函数l '是函数关于点P 的相关函数.例如:当m =1时,函数y =(x +1)2+5关于点P (1,0)的相关函数为y =﹣(x ﹣3)2﹣5.(1)当m =0时①一次函数y =x ﹣1关于点P 的相关函数为 ;②点(12,﹣98)在二次函数y =﹣ax 2﹣ax +1(a ≠0)关于点P 的相关函数的图象上,求a 的值.(2)函数y =(x ﹣1)2+2关于点P 的相关函数y =﹣(x +3)2﹣2,则m = ; (3)当m ﹣1≤x ≤m +2时,函数y =x 2﹣mx ﹣12m 2关于点P (m ,0)的相关函数的最大值为6,求m 的值.22.如图,在⊙O 中,直径AB =10,tanA 3 (1)求弦AC 的长;(2)D是AB延长线上一点,且AB=kBD,连接CD,若CD与⊙O相切,求k的值;(3)若动点P以3cm/s的速度从A点出发,沿AB方向运动,同时动点Q以32cm/s的速度从B点出发沿BC方向运动,设运动时间为t (0<t<103),连结PQ.当t为何值时,△BPQ为Rt△?23.如图,在矩形ABCD中,点E为BC的中点,连接AE,过点D作DF AE⊥于点F,过点C作CN DF⊥于点N,延长CN交AD于点M.(1)求证:AM MD=(2)连接CF,并延长CF交AB于G①若2AB=,求CF的长度;②探究当ABAD为何值时,点G恰好为AB的中点.24.如图,在等腰Rt△ABC中,∠ACB=90°,AC=BC=8,点D在△ABC外,连接AD、BD,且∠ADB=90°,AB、CD相交于点E,AB、CD的中点分别是点F、G,连接FG.(1)求AB的长;(2)求证:2CD;(3)若BD=6,求FG的值.25.小明研究了这样一道几何题:如图1,在ABC中,把AB绕点A顺时针旋转()0180a a︒<<︒得到AB',把AC绕点A逆时针旋转β得到AC',连接B C''.当180a β+=︒时,请问AB C ''△边B C ''上的中线AD 与BC 的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当ABC 为等边三角形时,猜想AD 与BC 的数量关系为AD =_______BC ;②如图3,当90BAC ∠=︒,8BC =时,则AD 长为________. 猜想论证:(2)在图1中,当ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.拓展应用:(3)如图4,在四边形ABCD ,90C ∠=︒,120A B ∠+∠=︒,3BC =6CD =,3DA =P ,使PDC △与PAB △之间满足小明探究的问题中的边角关系?若存在,请画出点P 的位置(保留作图痕迹,不需要说明)并直接写出PDC △的边DC 上的中线PQ 的长度;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.B解析:(1)8b =;(2)382d n =+;(3)92EFN S =△ 【解析】【分析】(1)先用b 表示出点B 和点A 的坐标,然后利用勾股定理列出方程即可求出b 的值; (2)联立直线BC 的解析式和直线AB 的解析式即可用n 表示出点C 的坐标,从而求出点D 的坐标,从而求出d 与n 的函数关系式;(3)过点C 作CS ⊥x 轴于S ,过点F 作FT ⊥x 轴于T ,过点G 作GD ⊥y 轴于D ,MN 与y 轴交于点I ,根据相似三角形判定可得△RSC ∽△ROB ,列出比例式即可求出OR 和CS ,然后根据等角的锐角三角函数相等求出ON ,再根据等腰直角三角形的性质求出NE ,然后结合已知条件和等角的锐角三角函数相等求出TF ,即可求出结论.【详解】解:(1)当x=0时,y=b ;当y=0时,x=34b ∴点B 的坐标为(0,b ),点A 的坐标为(34b ,0)∴OB=b ,OA=34b 根据勾股定理OB 2+OA 2=AB 2b 2+(34b )2=102 解得:b=8或-8(不符合已知条件,舍去)∴b=8(2)直线BC 的解析式为(4)8=++y n x ,直线AB 的解析式为483y x =-+ 联立(4)8y n x y nx =++⎧⎨=⎩解得:22x y n =-⎧⎨=-⎩∴点C 的坐标为(-2,-2n )∵//CD OA∴点D 的纵坐标为-2n将y=-2n 代入483y x =-+中,解得:x=362+n ∴点D 的坐标为36,22⎛⎫+-⎪⎝⎭n n ∴线段CD 长d =362+n -(-2)=382+n (3)过点C 作CS ⊥x 轴于S ,过点F 作FT ⊥x 轴于T ,过点G 作GD ⊥y 轴于D ,MN 与y 轴交于点I∴OD=275,GD=195由(2)知点C 坐标为(-2,-2n )∴CS=-2n ,OS=2∵BC CR =,CS ∥y 轴∴RB=2RC ,△RSC ∽△ROB ∴12===CS RS RC OB OR RB 即22182--==n OR OR 解得:n=-2,OR=4∴CS=4∵∠=∠OBR HNM ,GD ∥x 轴∴∠=∠OBR HNM =∠DGI∴tan tan ∠=∠OBR HNM =tan ∠DGI ∴==OR OI ID OB ON GD即48927515-==ID ID ON解得:1910,7==ID ON ∵45AEF ∠=︒∴∠CES=∠AEF=45°,∠QEH=∠QEF -∠AEF=45°∴△CES 、△EFT 和△EHQ 都是等腰直角三角形∴CS=SE=4,ET=TF=2EF , EH=HQ ,设EH=HQ=a ,则∴EN=ON +OE=ON +SE -OS=9∵3==EQ EF ,PH EN = ∴,PM=a ,PH=9, ∴NH=EN +EH=9+a ,MH=PH -PM=9-a ∴tan ∠HNM =12==MH OI NH ON ∴9192-=+a a 解得:a=3∴EF=33⨯=∴TF=12= ∴S △EFN =12EN ·TF=12×9×1=92【点睛】此题考查的是一次函数与几何图形的综合题型,此题难度较大,掌握勾股定理、联立方程求交点坐标、锐角三角函数的性质、勾股定理、等腰直角三角形的性质和相似三角形的判定及性质是解决此题的关键.2.B解析:(1)①(2,0),(1,2),(﹣1,2);②y=2x;③y=﹣22x+2;(2)①半径为2,M(4323,);②2<r<4【解析】【分析】(1)①如图2−1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2−2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;③如图3−3中,作QM∥OA交OD于M.利用平行线分线段成比例定理即可解决问题;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M的半径即可解决问题;【详解】解:(1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F.由题意OC=CD=1,OA=BC=2,∴BD=OE=1,OD=CF=BE2,∴A(2,0),2),C(﹣2,故答案为:A(2,0),2),C(﹣2).②如图2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M.∵OD∥BE,OD∥PM,∴BE∥PM,∴BE OEPM OM=,∴21y x=,∴y=2x.故答案为:y=2x.③如图2﹣3中,作QM∥OA交OD于M.222MQ DMOA DOx y∴=-∴=∴22y x=-+故答案为:y=﹣22x+2.(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.∵ω=120°,OM⊥y轴,∴∠MOA=30°,∵MF⊥OA,OA=23,∴OF=FA=3,∴FM=1,OM=2FM=2,∴圆M的半径为2∵MN∥y轴,∴MN⊥OM,∴MN=233,ON=2MN=433,∴M4323,33⎛⎫⎪ ⎪⎝⎭.②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.∵MK∥x轴,ω=120°,∴∠MKO=60°,∵MK=OK=3∴△MKO是等边三角形,∴MN=3,当FN=1时,MF=3﹣1=2,当EN=1时,ME=3+1=4,观察图象可知当⊙M的半径r的取值范围为2<r<4.故答案为:2<r<4.【点睛】本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面斜坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.3.(1)1001;9999;(2)2754和4848;(3)见解析【解析】【分析】(1)根据“和平数”的定义可直接得出最小的“和平数”是1001,最大的“和平数”是9999;(2)设这个“和平数”的千位数字是a,百位数字是m,十位数字是n,其中a,m,n均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又由029a ≤≤得到a 的可能取值为1,2,3,4;根据百位上的数字与十位上的数字之和是12的倍数,可知m +n =12,得到122a m +=,由a 的可能取值可得m 的取值,即可求得符合条件的“和平数”;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c ,计算它们的和,根据“和平数”的定义可知a+b=c+d ,因式分解可得原式= 1111(a+b ),即可证明.【详解】解:(1)根据“和平数”的定义可得:最小的“和平数”1001,最大的“和平数”9999,故答案为1001;9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又∵029a ≤≤,∴a 的可能取值为1,2,3,4;∵百位上的数字与十位上的数字之和是12的倍数,∴m+n =0或m+n =12,∵“和平数”中a+m =n+2a ,当m+n =0时,即m=n =0,则此时a =0,不符合题意,∴m+n =12,∴a+m =12−m +2a ,解得:122a m +=, ∵a 的可能取值为1,2,3,4;且m 为正整数,∴m 的可能取值为7,8;当a =2时,m =7,这个“和平数”是2754;当a =4时,m =8,这个“和平数”是4848;综上所述,满足条件的“和平数”是2754和4848;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c , ∴(100010010)(100010010)a b c d b a d c +++++++110011001111a b c d =+++1100()11()a b c d =+++由“和平数”的定义可知:a+b =c+d ,∴原式1100()11()a b a b =+++1111()a b =+,∵a ,b 为正整数,则1111()a b +能被1111整除,即(100010010)(100010010)a b c d b a d c +++++++能被1111整除,∴任意的两个“相关和平数”之和是1111的倍数.【点睛】本题考查新定义运算、因式分解的应用;能够读懂题意,根据数的特点,确定数的取值范围,进行正确的因式分解是解题关键.4.(1)①不是;②0;(2)若点(,)p q 在反比例函数8y x=的图象上,则关于x 的方程260px x q -+=是半等分根方程,理由详见解析;(3)详见解析【解析】【分析】(1)①解方程2280x x --=,根据“半等分根方程”定义作出判断即可;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2n m -=,即:n =-2m 或m =-2n ,分别代入代数式2252m mn n ++=结果均为0 (2)根据点(,)p q 在反比例函数8y x =的图象上,得到8q p =,代入260px x q -+=,得到关于x 的方程2860px x p-+=,解方程,用含p 的式子表示x ,根据“半等分根方程”定义判断即可; (3)根据两点(1,)M t s +,(4,)N t s -都在抛物线上,且纵坐标相等,可以求出对称轴为52x =,根据方程20ax bx c ++=是半等分根方程,得到两根关系,根据抛物线对称轴为 12522x x +=,即可求出两个根,问题得证. 【详解】解:(1)①解方程2280x x --=得124,2x x ==-,不符合“半等分根方程”定义, 故答案为:不是;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2n m -=,即:n =-2m 或m =-2n ,当n =-2m 时,()()22225522022m mn n m m n m ++=+-+-=; 当m =-2n 时,()()22225522022m mn n n n n n ++=-+-+=; 故答案为:0;(2)若点(,)p q 在反比例函数8y x=的图象上,则关于x 的方程260px x q -+=是半等分根方程理由:∵点(,)p q 在反比例函数8y x =的图象上 ∴8q p=代入方程260px x q -+=得: 2860px x p -+= 解得:12x p =,24x p = ∵1212x x = ∴方程260px x q -+=是半等分根方程(3)∵相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上, ∴抛物线的对称轴为:(1)(4)522t t x ++-== 又∵方程20ax bx c ++=是半等分根方程∴设20ax bx c ++=的两个根分别为1x 和2x 令1212x x =则有:12522x x += 所以153x =,2103x = 所以方程20ax bx c ++=的一个根为53得证. 【点睛】本题为“新定义问题”,考查了学生自主学习的能力,解决此题关键是理解新定义概念,并结合所学数学知识进行解答.5.D解析:(1)D 点坐标为()2,3,矩形MONC 的最小值为645;(2)交点坐标为(92+),(392-),(112-),(). 【解析】【分析】(1)当△DEB 的面积最大时,直线DN 与抛物线相切,可求出直线DN 的解析式和点D 的坐标,当矩形面积最小时,MG 最小,求出MG 的最小值即可.(2)分两种情况讨论,以DB 为边和以DB 为对角线,分别求出此时ON 的解析式,联立求出交点坐标即可.【详解】解:(1)如图1所示,过点D作y轴的平行线交MB于点H,过点O作OQ垂直MB于点Q,令y=0,解得x1=﹣1,x2=4,∴A(﹣1,0),B(4,0),令x=0,y=2,∴E(0,2),设直线BE的解析式为y=kx+b,则2, 40,bk b=⎧⎨+=⎩解得122kb⎧=-⎪⎨⎪=⎩,∴直线BE的解析式为y=﹣12x+2,∵DN∥BE,∴设直线DN的解析式为y=﹣12x+b1,S△DEB=DH12⨯•(x B﹣x E),∴当△DEB面积最大时,即是DH最大的时候,∴﹣12x+b1=﹣12x2+32x+2,△=b2﹣4ac=0,即16﹣4(2b1﹣4)=0,解得b1=4,点D(2,3),S矩=2S△MOG+S平形四边形,∴矩形面积最小时就是MG最小,设QG=m,MQ=n,∴MG=m+n,∵m +n ≥∵△QOG ∽△MQO ,∴OQ 2=m •n ,∵△OEQ ∽△EOB ,∴OQ ∴m •n =165,∴m +n .∴MG , ∴S 矩=2S △MOG +S 平形四边形=645. (2)分两种情况讨论,情况一:当GN ∥DB 时,直线DB 的解析式为:y =﹣32x +6, 则直线NG 的解析式为y =﹣32x , ∴﹣32x =﹣12x 2+32x +2,解得x 1=x 2=3∴交点坐标为(92+),(392-), 情况二:DB 为对角线时,此时NG 必过DB 的中点(3,32), 设直线ON 的解析式为y =k 1x ,则k 1=12, ∴直线OD 的解析式为y =12x , 12=﹣12x 2+32x +2,解得x 1=1x 2=∴交点坐标为(112),(12),综上所述:交点坐标为(92+),(392-),(1﹣),(). 【点睛】此题考查了二次函数的性质以及二次函数与几何相结合的问题,转化矩形面积最小和三角形面积最大为某条线段的最值为解题关键.6.B解析:(1)12;(2)3)【解析】【分析】(1)如图1中,过点B 作BD CA ⊥,交CA 延长线于点D ,通过构造直角三角形,求出BD 利用三角形面积公式求解即可.(2)如图示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,确定点P 的位置,利用勾股定理与矩形的性质求出CQ 的长度即为答案.(3)解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、,通过轴对称性质的转化,最终确定最小值转化为SN 的长.【详解】(1)如解图1所示,过点B 作BD CA ⊥,交CA 延长线于点D ,135BAC ∠=,180********BAD BAC ∴∠=-∠=-=,BD CA ⊥,交CA 延长线于点D ,BAD ∴为等腰直角三角形,且90BDA ∠=,BD AD ∴=,在BAD 中,,90BD AD BDA =∠=,222BD AD AB ∴+=,即222BD AB =,4AB =222232BD AB ∴===,解得:4BD =,6AC =,11641222ABC S AC BD ∴=⋅=⨯⨯=.(2)如解图2所示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M , D 关于AB 的对称点Q ,CQ 交AB 于点P ,PD PQ ∴=,PC PD PC PQ CQ ∴+=+=,点P 为AB 上的动点,PC PD CQ ∴+≥,∴当点P 处于解图2中的位置,PC PD +取最小值,且最小值为CQ 的长度, 点C 为半圆AB 的中点,90COB ∴∠=,90BOD COD COB ∠+∠=∠=,11903033BOD COB ∴∠=∠=⨯=, 10AB =,1110522OD AB ∴==⨯=, 在Rt ODH △中,由作图知,90OHD ∠=,且30HOD BOD ∠=∠=, 155,222DH OD QH DH ∴==∴==, 222255352OH OD DH ⎛⎫∴=-=-= ⎪⎝⎭, 由作图知,四边形OMQH 为矩形,553,2OM QH MQ OH ∴==== 515522CM OM OC ∴=+=+=, 222215535322CQ CM MQ ⎛⎫⎛⎫∴=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,PC PD ∴+的最小值为53.(3)如解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、, 点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,PE SE ∴=,FP FN =,SOA POA ∠=∠,,NOB POB OS OP ON ∠=∠==,.PE EF FP SE EF FN SN ∴++=++=,SOA NOB POA POB ∠+∠=∠+∠,E 为OA 上的点,F 为OB 上的点PE EF FP SN ∴++≥,∴当点E F 、处于解图3的位置时,PE EF FP ++的长度取最小值,最小值为SN 的长度,45POA POB AOB ∠+∠=∠=,45SOA NOB ∴∠+∠=,454590SON SOA AOB NOB ∴∠=∠+∠+∠=+=.扇形AOB 的半径为20,20OS ON OP ∴===,在Rt SON 中,90SON ∠=,20,90OS ON SON ==∠=PE EF FP ∴++的长度的最小值为202【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.7.C解析:(13332CP ≤≤,②O;(2)13b ≥;(3)0<r≤3. 【解析】【分析】(1)①根据垂线段最短以及已知条件,确定OP ,CP 的最大值,最小值即可解决问题.②根据限距关系的定义判断即可.(2)直线3y x b =+与x 轴、y 轴分别交于点F ,G (0,b ),分三种情形:①线段FG 在⊙O 内部,②线段FG 与⊙O 有交点,③线段FG 与⊙O 没有交点,分别构建不等式求解即可.(3)如图3中,不妨设⊙K ,⊙H 的圆心在x 轴上位于y 轴的两侧,根据⊙H 和⊙K 都满足限距关系,构建不等式求解即可.【详解】(1)①如图1中,∵D (-1,0),E(03,∴OD=1,3OE = ∴3OE tan EDO OD∠== ∴∠EDO=60°,当OP ⊥DE 时,3•602OP OD sin =︒=,此时OP 的值最小, 当点P 与E 重合时,OP 3当CP ⊥DE 时,CP 的值最小,最小值•603CD cos =︒=当点P 与D 或E 重合时,PC 的值最大,最大值为2, 3332CP ≤. ②根据限距关系的定义可知,线段DE 上存在两点M ,N ,满足OM=2ON ,故点O 与线段DE 满足限距关系.故答案为O .(2)直线3y x b =+与x 轴、y 轴分别交于点F ,G (0,b ),当0<b <1时,线段FG 在⊙O 内部,与⊙O 无公共点,此时⊙O 上的点到线段FG 的最小距离为1-b ,最大距离为1+b ,∵线段FG 与⊙O 满足限距关系,∴1+b ≥2(1-b ), 解得13b ≥, ∴b 的取值范围为131b ≤<. 当1≤b ≤2时,线段FG 与⊙O 有公共点,线段FG 与⊙O 满足限距关系,当b >2时,线段FG 在⊙O 的外部,与⊙O 没有公共点,此时⊙O 上的点到线段FG 的最小距离为121b -,最大距离为b+1, ∵线段FG 与⊙O 满足限距关系, ∴11212b b ⎛⎫+≥- ⎪⎝⎭,而11212b b ⎛⎫+≥- ⎪⎝⎭总成立, ∴b >2时,线段FG 与⊙O 满足限距关系,综上所述,b 的取值范围为13b ≥. (3)如图3中,不妨设⊙K ,⊙H 的圆心在x 轴上位于y 轴的两侧,两圆的距离的最小值为2r-2,最大值为2r+2,∵⊙H 和⊙K 都满足限距关系,∴2r+2≥2(2r-2),解得r ≤3,故r 的取值范围为0<r ≤3.【点睛】本题属于圆综合题,考查了解直角三角形,垂线段最短,直线与圆的位置关系,限距关系的定义等知识,解题的关键是理解题意,学会利用参数构建不等式解决问题,属于中考创新题型.8.B解析:(1)213222y x x =-++;(2)3(,0)2;(3)存在;(0,2)N 或(3,2)N 或(2,3)--N 或(5,18)--N【解析】【分析】(1)由直线122y x =-+可得B 、C 两点的坐标,根据二次函数的对称轴求得A 点坐标,可设抛物线的解析式为(1)(4)y a x x =+-,将C 点坐标代入可求得a ,即可得抛物线的解析式;(2)根据绝对值的性质得出BM CM -的值最小时,点M 为BC 的垂直平分线与直线32x =的交点,求得BC 垂直平分线的解析式,联立直线32x =即可求得点M ; (3)分四种情况进行讨论,设出N 的坐标,根据相似三角形的对应边成比例的性质,求得N 的横坐标与纵坐标的关系,然后联立抛物线解析式即可求解.【详解】 解:∵直线122y x =-+与x 轴交于点B ,与y 轴交于点C , ∴当y =0时,即1022x =-+,解得:x =4,则点B 的坐标为(4,0), 当x =0时,10222=-⨯+=y ,则点C 的坐标为(0,2),由二次函数的对称性可知:点A 与点B 关于直线32x =对称, ∴点A 的坐标为(1,0)-,∵抛物线与x 轴的交点为点(1,0),(4,0)A B -,∴可设抛物线的解析式为(1)(4)y a x x =+-,又∵抛物线过点(0,2)C ,∴2(01)(04)a =+-,解得:12a =-, ∴2113(1)(4)2222y x x x x =-+-=-++ ∴抛物线的解析式为213222y x x =-++; (2)如图1,连结CM 、BM ,作线段BC 的垂直平分线l 分别交BC 、直线32x =于点'、N M ,则N 为BC 中点;由绝对值的性质可得:0≥-BM CM ,∴当BM CM -的值最小时,即0=-BM CM ,则此时CM BM =, ∴点M 为l 与直线32x =的交点,此时M 与'M 重合, 设l 的解析式为:y kx b =+,。
人教版中考数学压轴题 易错题提高题学能测试试题
一、中考数学压轴题1.如图,在平面直角坐标系中,Rt ABC △的斜边在AB 在x 轴上,点C 在y 轴上90ACB ∠=︒,OC 、OB 的长分别是一元二次方程2680x x -+=的两个根,且OC OB <.(1)求点A 的坐标;(2)D 是线段AB 上的一个动点(点D 不与点A ,B 重合),过点D 的直线l 与y 轴平行,直线l 交边AC 或边BC 于点P ,设点D 的横坐标为t ,线段DP 的长为d ,求d 关于t 的函数解析式;(3)在(2)的条件下,当12d =时,请你直接写出点P 的坐标.2.定义:如果一个三角形一条边上的高与这条边的比值是3:5,那么称这个三角形为“准黄金”三角形,这条边就叫做这个三角形的“金底”. (概念感知)(1)如图1,在ABC 中,12AC =,10BC =,30ACB ∠=︒,试判断ABC 是否是“准黄金”三角形,请说明理由.(问题探究)(2)如图2,ABC 是“准黄金”三角形,BC 是“金底”,把ABC 沿BC 翻折得到DBC △,连AB 接AD 交BC 的延长线于点E ,若点C 恰好是ABD △的重心,求AB BC的值.(拓展提升) (3)如图3,12l l //,且直线1l 与2l 之间的距离为3,“准黄金”ABC 的“金底”BC 在直线2l 上,点A 在直线1l 上.10AB BC =,若ABC ∠是钝角,将ABC ∠绕点C 按顺时针方向旋转()090αα︒<<︒得到A B C '',线段A C '交1l 于点D .①当30α=︒时,则CD =_________;②如图4,当点B 落在直线1l 上时,求AD CD的值.3.如图,矩形ABCD 中,AB =8,BC =12,E 是BC 边的中点,点P 在线段AD 上,过P 作PF ⊥AE 于F ,设PA =x .(1)求证:△PFA ∽△ABE ;(2)当点P 在线段AD 上运动时,是否存在实数x ,使得以点P ,F ,E 为顶点的三角形也与△ABE 相似?若存在,请求出x 的值;若不存在,请说明理由;(3)探究:当以D 为圆心,DP 为半径的⊙D 与线段AE 只有一个公共点时,请直接写出DP 满足的条件: .4.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,第一颗弹珠弹出后其速度1y (米/分钟)与时间x (分钟)前2分钟满足二次函数21y ax ,后3分钟满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分钟.(1)求第一颗弹珠的速度1y (米/分钟)与时间x (分钟)之间的函数关系式;(2)第一颗弹珠弹出1分钟后,弹出第二颗弹珠,第二颗弹珠的运行情况与第一颗相同,直接写出第二颗弹珠的速度2y (米/分钟)与弹出第一颗弹珠后的时间x (分钟)之间的函数关系式;(3)当两颗弹珠同时在轨道上时,第____分钟末两颗弹珠的速度相差最大,最大相差______;(4)判断当两颗弹珠同时在轨道上时,是否存在某时刻速度相同?请说明理由,并指出可以通过解哪个方程求出这一时刻.5.如图1,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于C 点,连接AC 、BC ,已知点A 、C 的坐标为()2,0A -、()0,6C -.(1)求抛物线的表达式;(2)点P 是线段BC 下方抛物线上的一动点,如果在x 轴上存在点Q ,使得以点B 、C 、P 、Q 为顶点的四边形为平行四边形,求点Q 的坐标;(3)如图2,若点M 是AOC △内一动点,且满足AM AO =,过点M 作MN OA ⊥,垂足为N ,设AMN 的内心为I ,试求CI 的最小值.6.如图,直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣32x+c 经过A ,B 两点,与x 轴的另一交点为C .(1)求抛物线的解析式;(2)M 为抛物线上一点,直线AM 与x 轴交于点N ,当32MN AN =时,求点M 的坐标; (3)P 为抛物线上的动点,连接AP ,当∠PAB 与△AOB 的一个内角相等时,直接写出点P 的坐标.7.如图,在平面直角坐标系xoy 中,直线122y x =-+与x 轴交于点B ,与y 轴交于点,C 抛物线2y ax bx c =++的对称轴是直线3,2x =与x 轴的交点为点,A 且经过点B C 、两点.(1)求抛物线的解析式;(2)点M 为抛物线对称轴上一动点,当BM CM -的值最小时,请你求出点M 的坐标;(3)抛物线上是否存在点N ,过点N 作NH x ⊥轴于点,H 使得以点、、B N H 为顶点的三角形与ABC 相似?若存在,请直接写出点N 的坐标;若不存在,请说明理由.8.如图1,抛物线23y ax bx =++与x 轴交于点(1,0)A -、点B ,与y 轴交于点C ,顶点D 的横坐标为1,对称轴交x 轴交于点E ,交BC 与点F .(1)求顶点D 的坐标;(2)如图2所示,过点C 的直线交直线BD 于点M ,交抛物线于点N .①若直线CM 将BCD ∆分成的两部分面积之比为2:1,求点M 的坐标;②若NCB DBC ∠=∠,求点N 的坐标.9.平面直角坐标系中,点A、B分别在x轴正半轴、y轴正半轴上,AO=BO,△ABO的面积为8.(1)求点A的坐标;(2)点C、D分别在x轴负半轴、y轴正半轴上(D在B点上方),AB⊥CD于E,设点D 纵坐标为t,△BCE的面积为S,求S与t的函数关系;(3)在(2)的条件下,点F为BE中点,连接OF交BC于G,当∠FOB+∠DAE=45°时,求点E坐标.10.附加题:在平面直角坐标系中,抛物线21y axa=-与y轴交于点A,点A关于x轴的对称点为点B,(1)求抛物线的对称轴;(2)求点B坐标(用含a的式子表示);(3)已知点11,Pa⎛⎫⎪⎝⎭,(3,0)Q,若抛物线与线段PQ恰有一个公共点,结合函数图像,求a的取值范围.11.如图,一张半径为3cm的圆形纸片,点O为圆心,将该圆形纸片沿直线l折叠,直线l交O于A B、两点.(1)若折叠后的圆弧恰好经过点O,利用直尺和圆规在图中作出满足条件的一条直线l (不写作法,保留作图痕迹),并求此时线段AB的长度.(2)已知M是O一点,1cmOM=.①若折叠后的圆弧经过点M,则线段AB长度的取值范围是________.②若折叠后的圆弧与直线OM相切于点M,则线段AB的长度为_________cm.12.在学习了轴对称知识之后,数学兴趣小组的同学们对课本习题进行了深入研究,请你跟随兴趣小组的同学,一起完成下列问题.(1)(课本习题)如图①,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.求证:DB=DE(2)(尝试变式)如图②,△ABC是等边三角形,D是AC边上任意一点,延长BC至E,使CE=AD .求证:DB=DE .(3)(拓展延伸)如图③,△ABC 是等边三角形,D 是AC 延长线上任意一点,延长BC 至E ,使CE=AD 请问DB 与DE 是否相等? 并证明你的结论.13.如图,等腰△ABC ,AB =CB ,边AC 落在x 轴上,点B 落在y 轴上,将△ABC 沿y 轴翻折,得到△ADC(1)直接写出四边形ABCD 的形状:______;(2)在x 轴上取一点E ,使OE =OB ,连结BE ,作AF ⊥BC 交BE 于点F .①直接写出AF 与AD 的关系:____(如果后面的问题需要,可以直接使用,不需要再证明);②取BF 的中点G ,连接OG ,判断OG 与AD 的数量关系,并说明理由;(3)若四边形ABCD 的周长为8,直接写出GE 2+GF 2=____.14.如图①,在△ABC 中,∠ACB =90°,∠B =30°,AC =1,D 为AB 的中点,EF 为△ACD 的中位线,四边形EFGH 为△ACD 的内接矩形(矩形的四个顶点均在△ACD 的边上). (1)计算矩形EFGH 的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 3 (3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E F G H ,将矩形1111E F G H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为α,求cos α的值.15.已知:矩形ABCD内接于⊙O,连接 BD,点E在⊙O上,连接 BE交 AD于点F,∠BDC+45°=∠BFD,连接ED.(1)如图 1,求证:∠EBD=∠EDB;(2)如图2,点G是 AB上一点,过点G作 AB的垂线分别交BE和 BD于点H和点K,若HK=BG+AF,求证:AB=KG;(3)如图 3,在(2)的条件下,⊙O上有一点N,连接 CN分别交BD和 AD于10点 M 和点 P,连接 OP,∠APO=∠CPO,若 MD=8,MC= 3,求线段 GB的长.16.如图,在▱ABCD中,对角线AC⊥BC,∠BAC=30°,BC=23,在AB边的下方作射线AG,使得∠BAG=30°,E为线段DC上一个动点,在射线AG上取一点P,连接BP,使得∠EBP=60°,连接EP交AC于点F,在点E的运动过程中,当∠BPE=60°时,则AF=_____.17.在△ABC中∠B=45°,∠C=30°,点D为BC边上任意一点,连接AD,将线段AD绕A 顺时针旋转90°,得到线段AE,连接DE.(1)如图1,点E落在BA的延长线上时,∠EDC= (度)直接填空.(2)如图2,点D在运动过程中,DE⊥AC时,AB=4 ,求DE的值.(3)如图3,点F为线段DE中点,AB=2a,求出动点D从B运动到C,点F经过的路径长度.18.如图所示,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=12,BC=21,AD=16.动点P 从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t(秒).(1)设△DPQ的面积为S,求S与t之间的关系式;(2)当t为何值时,四边形PCDQ是平行四边形?(3)分别求出当t为何值时,①PD=PQ;②DQ=PQ.19.如图,在等腰Rt△ABC中,∠ACB=90°,AC=BC=8,点D在△ABC外,连接AD、BD,且∠ADB=90°,AB、CD相交于点E,AB、CD的中点分别是点F、G,连接FG.(1)求AB 的长;(2)求证:AD+BD=2CD ;(3)若BD=6,求FG 的值.20.在综合与实践课上老师将直尺摆放在三角板上,使直尺与三角板的边分别交于点P 、M 、N 、Q ,(1)如图①所示.当∠CNG =42°,求∠HMC 的度数.(写出证明过程)(2)将直尺向下平移至图 2 位置,使直尺的边缘通过点 C ,交 AB 于点 P ,直尺另一侧与三角形交于 N 、Q 两点。
中考数学 数学中考数学压轴题的专项培优易错试卷练习题含答案
一、中考数学压轴题1.已知AM //CN ,点B 为平面内一点,AB ⊥BC 于B .(1)如图1,直接写出∠A 和∠C 之间的数量关系;(2)如图2,过点B 作BD ⊥AM 于点D ,求证:∠ABD =∠C ;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180°,∠BFC =5∠DBE ,求∠EBC 的度数.2.定义:如果一个三角形一条边上的高与这条边的比值是3:5,那么称这个三角形为“准黄金”三角形,这条边就叫做这个三角形的“金底”.(概念感知)(1)如图1,在ABC 中,12AC =,10BC =,30ACB ∠=︒,试判断ABC 是否是“准黄金”三角形,请说明理由.(问题探究)(2)如图2,ABC 是“准黄金”三角形,BC 是“金底”,把ABC 沿BC 翻折得到DBC △,连AB 接AD 交BC 的延长线于点E ,若点C 恰好是ABD △的重心,求AB BC的值.(拓展提升) (3)如图3,12l l //,且直线1l 与2l 之间的距离为3,“准黄金”ABC 的“金底”BC 在直线2l 上,点A 在直线1l 上.10AB BC =,若ABC ∠是钝角,将ABC ∠绕点C 按顺时针方向旋转()090αα︒<<︒得到A B C '',线段A C '交1l 于点D .①当30α=︒时,则CD =_________;②如图4,当点B 落在直线1l 上时,求AD CD 的值.3.如图,矩形ABCD 中,AB =8,BC =12,E 是BC 边的中点,点P 在线段AD 上,过P 作PF ⊥AE 于F ,设PA =x .(1)求证:△PFA ∽△ABE ;(2)当点P 在线段AD 上运动时,是否存在实数x ,使得以点P ,F ,E 为顶点的三角形也与△ABE 相似?若存在,请求出x 的值;若不存在,请说明理由;(3)探究:当以D 为圆心,DP 为半径的⊙D 与线段AE 只有一个公共点时,请直接写出DP 满足的条件: .4.已知,在Rt △ABC 和Rt △DEF 中,∠ACB=∠EDF=90°,∠A=30°,∠E=45°,AB =EF =6,如图1,D 是斜边AB 的中点,将等腰Rt △DEF 绕点D 顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE ,AC 相交于点M ,直线DF ,BC 相交于点N .(1)如图1,当α=60°时,求证:DM =BN ;(2)在上述旋转过程中,DN DM的值是一个定值吗?请在图2中画出图形并加以证明; (3)如图3,在上述旋转过程中,当点C 落在斜边EF 上时,求两个三角形重合部分四边形CMDN 的面积.5.如图,在平面直角坐标系中,Rt ABC ∆的斜边AB 在y 轴上,边AC 与x 轴交于点D ,AE 平分BAC ∠交边BC 于点E ,经过点A D E 、、的圆的圆心F 恰好在y 轴上,⊙F 与y 里面相交于另一点G .(1)求证:BC 是⊙F 的切线 ;(2)若点A D 、的坐标分别为(0,1),(2,0)A D -,求⊙F 的半径及线段AC 的长;(3)试探究线段AG AD CD 、、三者之间满足的等量关系,并证明你的结论.6.已知:如图,二次函数213222y x x =-++的图象交x 轴于A 点和B 点(A 点在B 点左则),交y 轴于E 点,作直线,EB D 是直线EB 上方抛物线上的一个动点.过D 点作 直线l 平行于直线.EB M 是直线 EB 上的任意点,N 是直线l 上的任意点,连接,MO NO ,始终保持MON ∠为90︒,以MO 和ON 边,作矩形MONC .(1)在D 点移动过程中,求出当DEB ∆的面积最大时点D 的坐标;在DEB ∆的面积最大 时,求矩形MONC 的面积的最小值.(2)在DEB ∆的面积最大时,线段ON 交直线EB 于点G ,当点,,,D N G B 四个点组成平行 四边形时,求此时线段ON 与抛物线的交点坐标.7.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若161A E EC=,求n m 的值. (3)如图二,在(2)的条件下,直线AB 上有一点P ,BP=2,点E 是直线DC 上一动点,在BE 左侧作矩形BEFG 且始终保持BE n BG m =,设AB=33E 移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.8.如图,抛物线2y x bx c =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为()3,0B ,()0,3C ,点M 是抛物线的顶点.(1)求二次函数的关系式.(2)点P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D .若OD m =,PCD 的面积为S .①求S 与m 的函数关系式,写出自变量m 的取值范围.②当S 取得最值时,求点P 的坐标.(3)在MB 上是否存在点P ,使PCD 为直角三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.9.问题背景:如图(1),ABC 内接于O ,过点A 作O 的切线l ,在l 上任取一个不同于点A 的点P ,连接PB PC 、,比较BPC ∠与BAC ∠的大小,并说明理由.问题解决:如图(2),A (0,2)、B (0,4),在x 轴正半轴上是否存在一点P ,使得cos APB ∠最小?若存在,求出点P 的坐标;若不存在,请说明理由.拓展应用:如图(3),四边形ABCD 中,//AB CD ,AD CD ⊥于D ,E 是AB 上一点,AE AD =,P 是DE 右侧四边形ABCD 内一点,若8AB =,11CD =,tan 2C =,9DEP S =,求sin APB ∠的最大值.10.附加题:在平面直角坐标系中,抛物线21y ax a =-与y 轴交于点A ,点A 关于x 轴的对称点为点B ,(1)求抛物线的对称轴;(2)求点B 坐标(用含a 的式子表示);(3)已知点11,P a ⎛⎫ ⎪⎝⎭,(3,0)Q ,若抛物线与线段PQ 恰有一个公共点,结合函数图像,求a 的取值范围.11.在平行四边形ABCD 中,60B ∠=︒,点E ,F 分别在边AB ,AD 上,且60ECF ∠=︒.(1)如图1,若AB BC =,求证:AE AF BC +=;(2)如图2,若4AB BC ==,且点E 为AB 的中点,连接BF 交CE 于点M ,求FM ;(3)如图3,若AB kBC =,探究线段BE 、DF 、BC 三之间的数量关系,说明理由.12.如图,在平面直角坐标系中,直线6y x =+与x 轴交于点A ,与y 轴交于点B ,点C在x 轴正半轴上,2ABC ACB ∠=∠.(1)求直线BC 的解析式;(2)点D 是射线BC 上一点,连接AD ,设点D 的横坐标为t ,ACD ∆的面积为S ()0S ≠,求S 与t 的函数解析式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,AD 与y 轴交于点E ,连接CE ,过点B 作AD 的垂线,垂足为点H ,直线BH 交x 轴于点F ,交线段CE 于点M ,直线DM 交x 轴于点N ,当:7:12NF FC =时,求直线DM 的解析式.13.已知:在平面直角坐标系中,抛物线223y ax ax a =--与x 轴交于点A ,B (点B 在点A 的右侧),点C 为抛物线的顶点,点C 的纵坐标为-2.(1)如图1,求此抛物线的解析式;(2)如图2,点P 是第一象限抛物线上一点,连接AP ,过点C 作//CD y 轴交AP 于点D ,设点P 的横坐标为t ,CD 的长为m ,求m 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,点E 在DP 上,且ED AD =,点F 的横坐标大于3,连接EF ,BF ,PF ,且EP EF BF ==,过点C 作//CG PF 交DP 于点G ,若728CG AG =,求点P 的坐标.14.如图①,在△ABC 中,∠ACB =90°,∠B =30°,AC =1,D 为AB 的中点,EF 为△ACD 的中位线,四边形EFGH 为△ACD 的内接矩形(矩形的四个顶点均在△ACD 的边上). (1)计算矩形EFGH 的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 重叠部分的面积为316时,求矩形平移的距离; (3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E F G H ,将矩形1111E F G H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为α,求cos α的值.15.如图,在平面直角坐标系中,Rt ABC △的斜边在AB 在x 轴上,点C 在y 轴上90ACB ∠=︒,OC 、OB 的长分别是一元二次方程2680x x -+=的两个根,且OC OB <.(1)求点A 的坐标;(2)D 是线段AB 上的一个动点(点D 不与点A ,B 重合),过点D 的直线l 与y 轴平行,直线l 交边AC 或边BC 于点P ,设点D 的横坐标为t ,线段DP 的长为d ,求d 关于t 的函数解析式;(3)在(2)的条件下,当12d =时,请你直接写出点P 的坐标.16.如图,在平面直角坐标系中,点O 为坐标原点,直线y =-x + m 交 y 轴的正半轴于点A ,交x 轴的正半轴于点B ,过点A 的直线AF 交x 轴的负半轴于点F ,∠AFO=45°. (1)求∠FAB 的度数;(2)点 P 是线段OB 上一点,过点P 作 PQ ⊥OB 交直线 FA 于点Q ,连接 BQ ,取 BQ 的中点C ,连接AP 、AC 、CP ,过点C 作 CR ⊥AP 于点R ,设 BQ 的长为d ,CR 的长为h ,求d 与 h 的函数关系式(不要求写出自变量h 的取值范围);(3)在(2)的条件下,过点 C 作 CE ⊥OB 于点E ,CE 交 AB 于点D ,连接 AE ,∠AEC=2∠DAP ,EP=2,作线段 CD 关于直线AB 的对称线段DS ,求直线PS 与直线 AF 的交点K 的坐标.17.在Rt ABC ∆中,6AB =,90B ∠=︒,8BC =,点P 从A 出发沿AC 方向在运动速度为3个单位/秒,点Q 从C 出发向点B 运动,速度为1个单位/秒,P 、Q 同时出发,点Q 到点B 时两点同时停止运动.(1)点P 在线段AC 上运动,过P 作DP PQ ⊥交边AB 于D ,2t =时,求PD PQ的值; (2)运动t 秒后,90BPQ ∠=︒,求此时t 的值;(3)t =________时,AQ QP =. 18.如图,平面直角坐标系中,抛物线228y ax ax a =--与x 轴交于B 、C 两点(点B 在点C 右侧),与y 轴交于点A ,连接AB ,25AB =.(1)求抛物线的解析式;(2)点P 在第二象限的抛物线上,连接PB 交y 轴于D ,取PB 的中点E ,过点E 作EH x ⊥轴于点H ,连接DH ,设点P 的横坐标为t .ODH 的面积为S ,求S 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,作PF y ⊥轴于F ,连接CP 、CD ,CP CD =,点S 为PF 上一点,连接BS 交y 轴于点T ,连接BF 并延长交抛物线于点R .SBC FBO 45∠+∠=︒,在射线CS 上取点Q.连接QF ,QF RF =,求直线TQ 的解析式.19.如图,在⊙O 中,直径AB =10,tanA 3(1)求弦AC 的长;(2)D 是AB 延长线上一点,且AB =kBD ,连接CD ,若CD 与⊙O 相切,求k 的值; (3)若动点P 以3cm/s 的速度从A 点出发,沿AB 方向运动,同时动点Q 以32cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为t (0<t <103),连结PQ .当t 为何值时,△BPQ 为Rt △?20.如图,在平面直角坐标系xOy 中,已知Rt ABC 的直角顶点()0,12C ,斜边AB 在x 轴上,且点A 的坐标为()9,0-,点D 是AC 的中点,点E 是BC 边上的一个动点,抛物线212y ax bx =++过D ,C ,E 三点.(1)当//DE AB 时,①求抛物线的解析式;②平行于对称轴的直线x m =与x 轴,DE ,BC 分别交于点F ,H ,G ,若以点D ,H ,F 为顶点的三角形与GHE △相似,求点m 的值.(2)以E 为等腰三角形顶角顶点,ED 为腰构造等腰EDG △,且G 点落在x 轴上.若在x 轴上满足条件的G 点有且只有一个时,请直接写出....点E 的坐标. 21.如图1,D 是等边△ABC 外一点,且AD =AC ,连接BD ,∠CAD 的角平分交BD 于E . (1)求证:∠ABD =∠D ;(2)求∠AEB 的度数;(3)△ABC 的中线AF 交BD 于G (如图2),若BG =DE ,求AF DE的值.22.(操作发现)如图1,ABC ∆为等腰直角三角形,90ACB ∠=︒,先将三角板的90︒角与ACB ∠重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0︒且小于45︒),旋转后三角板的一直角边与AB 交于点D .在三角板另一直角边上取一点F ,使CF CD =,线段AB 上取点E ,使45DCE ∠=︒,连接AF ,EF .(1)请求出EAF ∠的度数?(2)DE 与EF 相等吗?请说明理由;(类比探究)如图2,ABC ∆为等边三角形,先将三角板中的60︒角与ACB ∠重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0︒且小于30).旋转后三角板的一直角边与AB 交于点D .在三角板斜边上取一点F ,使CF CD =,线段AB 上取点E ,使30DCE ∠=︒,连接AF ,EF .(3)直接写出EAF ∠=_________度;(4)若1AE =,2BD =,求线段DE 的长度.23.综合与探究:如图1,抛物线24832999y x x =-++与x 轴交于,A B 两点(点A 在点B 的左侧),顶点为D ,P 为对称轴右侧抛物线的一个动点,直线AD 与y 轴于点C ,过点P 作//PF AD ,交x 轴于点F .(1)求直线AD 的函数表达式及点C 的坐标;(2)如图2,当//PC x 轴时,将AOC ∆以每秒1个单位长度的速度沿x 轴的正方向平移,当点C 与点P 重合时停止平移.设平移t 秒时,在平移过程中AOC ∆与四边形AFPC 重叠部分的面积为S ,求S 关于t 的函数关系式,并写出自变量t 的取值范围; (3)如图3,过点P 作x 轴的平行线,交直线AD 于点E ,直线DF 与PE 交于点M ,设点P 的横坐标为m .①当3DM MF =时,求m 的值;②试探究点P 在运动过程中,是否存在值m ,使四边形AFPE 是菱形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.24.(1)(发现)如图1,在ABC 中,//DE BC 分别交AB 于D ,交AC 于E .已知CD BE ⊥,3CD =,5BE =,求BC DE +的值.思考发现,过点E 作//EF DC ,交BC 延长线于点F ,构造BEF ,经过推理和计算能够使问题得到解决(如图2).请回答:BC DE +的值为______.(2)(应用)如图3,在四边形ABCD 中,//AB CD ,AD 与BC 不平行且AD BC =,对角线AC BD ⊥,垂足为O .若3CD =,5AB =,DAB CBA ∠=∠,求AC 的长.(3)(拓展)如图4,已知平行四边形ABCD 和矩形ABEF ,AC 与DF 交于点G ,FD FB =,且30BFD ∠=︒,60EBF ∠=︒,判断AC 与DF 的数量关系并证明.25.如图1,已知点B (0,9),点C 为x 轴上一动点,连接BC ,△ODC 和△EBC 都是等边三角形.(1)求证:DE=BO;(2)如图2,当点D恰好落在BC上时.①求点E的坐标;②在x轴上是否存在点P,使△PEC为等腰三角形?若存在,写出点P的坐标;若不存在,说明理由;③如图3,点M是线段BC上的动点(点B,点C除外),过点M作MG⊥BE于点G,MH⊥CE于点H,当点M运动时,MH+MG的值是否发生变化?若不会变化,直接写出MH+MG的值;若会变化,简要说明理由.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.A解析:(1)∠A+∠C=90°;(2)证明见解析;(3)99°.【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=a,∠ABF=b,根据∠CBF+∠BFC+∠BCF=180°,可得(2a+b)+5a+(5a+b)=180°,根据AB⊥BC,可得b+b+2a=90°,最后解方程组即可得到∠ABE=9°,即可得出∠EBC的度数.【详解】解:(1)如图1,设AM与BC的交点为O,AM //CN ,∴∠C =∠AOB ,∵AB ⊥BC ,∴∠ABO =90°,∴∠A +∠AOB =90°,即∠A +∠C =90°,故答案为:∠A +∠C =90°;(2)证明:如图2,过点B 作BG //DM ,∵BD AM ,∴∠BDM =90°,∵BG //DM ,180∴∠+∠=︒BDM DBG ,∴90∠=︒DBG ,即∠ABD +∠ABG =90°,∵AB BC ⊥,∴∠ABC =90°,∴∠CBG +∠ABG =90°,∴∠ABD =∠CBG ,∵AM //CN ,BG //DM ,∴BG //CN ,∴∠C =∠CBG ,∴∠ABD =∠C ;(3)如图3,过点B 作BG //DM ,∵BF 平分∠DBC ,BE 平分∠ABD ,∴∠DBF =∠CBF ,∠DBE =∠ABE ,由(2)可得∠ABD =∠CBG ,∴∠-∠=∠-∠DBF ABD CBF CBG ,即∠ABF =∠GBF ,设∠DBE =a ,∠ABF =b ,则∠ABE =a ,∠ABD =∠CBG =2a ,∠GBF =∠ABF =b ,∠BFC =5∠DBE =5a ,∴∠CBF =∠CBG +∠GBF =2a +b ,∵BG //DM ,∴∠AFB =∠GBF =b ,∴∠AFC =∠BFC +∠AFB =5a +b ,∵AM //CN ,∴∠AFC +∠NCF =180°,∵∠FCB +∠NCF =180°,∴∠FCB =∠AFC =5a +b ,在△BCF 中,由∠CBF +∠BFC +∠BCF =180°可得:(2a +b )+5a +(5a +b )=180°,化简得:6=90+︒a b ,由AB BC ,可得:b +b +2a =90°,化简得:=45+︒a b ,联立6=9045a b a b +︒⎧⎨+=︒⎩,解得:=936a b ︒⎧⎨=︒⎩, ∴∠ABE =9°,∴∠EBC =∠ABE +∠ABC =9°+90°=99°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.2.A解析:(1)ABC 是“准黄金”三角形,理由见解析;(2)329AB BC =3)①12561535AD CD =. 【解析】【分析】(1)过点A 作AD BC ⊥于点D ,先求出AD 的长度,然后得到61035AD BC ==,即可得到结论;(2)根据题意,由“金底”的定义得:3:5AE BC =,设3AE k =,5BC k =,由勾股定理求出AB 的长度,根据比值即可求出AB BC的值; (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,先求出AC 的长度,由相似三角形的性质,得到AF=2DF ,由解直角三角形,得到3CF DF =,则(23)35AC x =+=,即可求出DF 的长度,然后得到CD 的长度;②由①可知,得到CE 和AC 的长度,分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,然后根据相似三角形的判定和性质,得到DF AF AE EC=,然后求出CD 和AD 的长度,即可得到答案.【详解】解:(1)ABC 是“准黄金”三角形.理由:如图,过点A 作AD BC ⊥于点D ,∵12AC =,30ACB ∠=︒, ∴162AD AC ==. ∴:6:103:5AD BC ==.∴ABC 是“准黄金”三角形.(2)∵点A ,D 关于BC 对称,∴BE AD ⊥,AE ED =.∵ABC 是“准黄金”三角形,BC 是“金底”,∴:3:5AE BC =.不防设3AE k =,5BC k =,∵点C 为ABD △的重心,∴:2:1BC CE =.∴52k CE =,152k BE =. ∴2215329(3)2k AB k ⎛⎫=+= ⎪⎝⎭.∴329329:5210AB k k BC ==. (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,如图:由题意得AE=3, ∵35AE BC =, ∴BC=5, ∵10AB BC =, ∴10AB ,在Rt △ABE 中,由勾股定理得:22(10)31BE =-=,∴156EC =+=, ∴223635AC =+=∵∠AEC=∠DFA=90°,∠ACE=∠DAF ,∴△ACE ∽△DAF , ∴3126AE E D C F AF ===, 设DF x =,则2AF x =,∵∠ACD=30°, ∴3CF x =, ∴(23)35AC x ==解得:65315DF x == ∴2125615CD DF == ②如图,过点A 作AE BC ⊥于点E ,则3AE =.∵ABC 是“准黄金”三角形,BC 是“金底”,∴:3:5AE BC =.∴5BC =.∵10AB BC =,∴10AB. ∴221BE AB AE =-=.∴6CE BE BC =+=,2236935AC CE AE =+=+=.分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,∴90B GC DFC '∠=∠=︒,3B G '=,5C B B C '==,则CG 4=.∵GCB FCD α'∠=∠=,∴AEC DFA ∽△△.∴::::3:4:5DF FC CD B G GC CB ''==. ∴设3DF k =,4FC k =,5CD k =.∵12l l //,∴ACE CAD ∠=∠,且90AEC AFD ∠=∠=︒.∴AEC DFA ∽△△.∴DF AF AE EC =. ∴335436k k =,解得3510k =. ∴3552CD k ==,2222959595102AF DF AD ⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=. ∴93525355AD CD ===. 【点睛】本题属于相似形综合题,主要考查了重心的性质,等腰直角三角形的性质,勾股定理,解直角三角形,旋转的性质以及勾股定理的综合运用,解决问题的关键是依据题意画出图形,根据数形结合的思想进行解答.3.D解析:(1)见解析;(2)存在,满足条件的x的值为6或253;(3)DP=485或10<DP≤12【解析】【分析】(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:①当∠PEF=∠EAB 时,则得到四边形ABEP为矩形,从而求得x的值;②当∠PEF=∠AEB时,再结合(1)中的结论,得到等腰△APE.再根据等腰三角形的三线合一得到F是AE的中点,运用勾股定理和相似三角形的性质进行求解.(3)首先计算圆D与线段相切时,x的值,在画出圆D过E时,半径r的值,确定x的值,半径比这时大时符合题意,根据图形确定x的取值范围,从而得出DP的范围.【详解】(1)证明:∵矩形ABCD,∴∠ABE=90°,AD∥BC,∴∠PAF=∠AEB,又∵PF⊥AE,∴∠PFA=90°=∠ABE,∴△PFA∽△ABE.(2)解:分二种情况:①若△EFP∽△ABE,如图1,则∠PEF=∠EAB,∴PE∥AB,∴四边形ABEP为矩形,∴PA=EB=6,即x=6.②如图2,若△PFE∽△ABE,则∠PEF =∠AEB ,∵AD ∥BC∴∠PAF =∠AEB ,∴∠PEF =∠PAF .∴PE =PA .∵PF ⊥AE ,∴点F 为AE 的中点,Rt △ABE 中,AB =8,BE =6,∴AE =22AB BE +=2286+=10,∴EF =152AE =, ∵△PFE ∽△ABE ,∴PE EF AE BE=, ∴5106x =, ∴PE =253, ∴满足条件的x 的值为6或253. (3)如图3,当⊙D 与AE 相切时,设切点为G ,连接DG ,∵AP =x ,∴PD ═DG =12﹣x ,∵∠DAG =∠AEB ,∠AGD =∠B =90°,∴△AGD ∽△EBA ,∴AD DG AE AB =, ∴1212108x -=,∴x =125, ∴12481255DP =-=, 当⊙D 过点E 时,如图4,⊙D 与线段有两个公共点,连接DE ,此时PD =DE =10, 故答案为:DP =485或10<DP ≤12. 【点睛】本题考查动点问题,动点在不同地方时,得到的图形是不同的,解题关键是确定动点运动过程中,有几种对应的图形,然后再根据图形性质分析求解. 4.A解析:(1)详见解析;(2)3DN DM =3)92 【解析】【分析】(1)利用ASA 证ADM DBN △≌△,从而得出DM BN =;(2)如下图,先证NDQ MDP △∽△,得出DN DQ DM DP =,然后在Rt BDQ △,利用tan ∠B 得出DQ BQ 的值,最后得出DN DM的值; (3)如下图,先证点C 是EF 的中点,然后利用CD 平分EDF ∠可推导出四边形CGDH 为正方形,从而得出CHN CGM △≌△,进而得出面积.【详解】解:(1)由题意,∵60α=︒,90EDF ∠=︒,∴30BDN ∠=︒,∴BDN A ∠=∠,B EDA ∠=∠,∵点D 是斜边AB 的中点,∴AD BD =,∴ADM DBN △≌△,∴DM BN =.(2)3DN DM =,是一个定值. 证明:如图1,作DP AC ⊥于点P ,DQ BC ⊥于点Q ,∴90NQD MPD ∠=∠=︒,又∵90MDN PDQ ∠=∠=︒,∴NDQ MDP ∠=∠,∴NDQ MDP △∽△,∴DN DQ DM DP=, 在Rt BDQ △中,60B ∠=︒,∴tan ∠B 3DQ BQ== 又由(1)可知:DP BQ =, ∴3DQ DP=, ∴3DN DM =. (3)连接CD ,作CG DE ⊥于点G ,CH DF ⊥于点H ,在Rt ABC 中,点D 是AB 的中点,∴132CD AB ==, ∵AB EF =,∴12CD EF =,∵90EDF ∠=︒,∴C 是EF 中点, ∴CD 平分EDF ∠,45CDE ∠=︒,∵CG DE ⊥,CH DF ⊥,∴CG CH =,∵90CGD CHD EDF ∠=∠=∠=︒,∴四边形CGDH 为正方形,90GCH ∠=︒,∴GCM HCN ∠=∠,∴CHN CGM △≌△,∴S 四边形CMDN S =正方形21922CGDH CD ==. 【点睛】本题综合考查了全等三角形和相似三角形的证明和性质,解题关键是找出两个全等(相似)三角形,根据三角形全等(相似)的性质推出结论. 5.E解析:(1)详见解析;(2)52r =,552AC +=;(3)2AG AD CD =+,理由详见解析.【解析】【分析】 (1)连接EF ,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC ,得到FE ∥AC ,根据平行线的性质得到∠FEB=∠C=90°,证明结论;(2)连接FD ,设⊙F 的半径为r ,根据勾股定理列出方程,解方程即可求出半径的长,证FEB ∆∽AOD ∆,求出BF 的长,再证BFE ∆∽BAC ∆,即可求出AC 的长;(3)过点F 作FR AC ⊥于点R ,得到四边形RCEF 是矩形,得到EF=RC=RD+CD ,根据垂径定理解答即可.【详解】(1)如图,连接EF ,∵AE 平分BAC ∠,FAE CAE ∴∠=∠,FA FE =,FAE FEA ∴∠=∠,FAE EAC ∴∠=∠,//FE AC ∴,90FEB C ∴∠=∠=︒,又E 为⊙F 上一点,BC ∴是⊙F 的切线;(2)如图,连接FD ,设⊙F 的半径为r ,∵点A D 、的坐标分别为(0,1),(2,0)A D -,1,2,1OA OD OF r ∴===-,5AD ∴=, 在Rt FOD ∆中,由勾股定理得,222FD OF OD=+,222(1)2r r ∴=-+,解得52r =, 即⊙F 的半径为52, 90ODA OAD EBF OAD ∠+∠=∠+∠=︒,ODA EBF ∴∠=∠,90AOD FEB ∠=∠=︒,∴FEB ∆∽AOD ∆,EF BF OA DA ∴=,即2.515=, 55BF ∴=, 5552BA +∴=, //EF AC ,∴BFE ∆∽BAC ∆,EF BF AC BA∴=,即55522555AC =+, 55AC +∴= (3)2AG AD CD =+.理由如下:如图,过点F 作FR AC ⊥于点R ,则∠FRC=90°,∵∠FEC=∠C=90°,∴四边形RCEF 为矩形,EF RC RD CD ∴==+,FR AD ⊥,AR RD ∴=, 12EF RD CD AD CD ∴=+=+, 22AG EF AD CD ∴==+.【点睛】本题考查的是切线的判定、垂径定理的应用、矩形的判定和性质,掌握切线的判定定理是解题的关键.6.D解析:(1)D 点坐标为()2,3,矩形MONC 的最小值为645;(2)交点坐标为(3+13,﹣93132+),(3﹣13,﹣93132-),(1﹣5,152-),(1+5,152+). 【解析】【分析】(1)当△DEB 的面积最大时,直线DN 与抛物线相切,可求出直线DN 的解析式和点D 的坐标,当矩形面积最小时,MG 最小,求出MG 的最小值即可.(2)分两种情况讨论,以DB 为边和以DB 为对角线,分别求出此时ON 的解析式,联立求出交点坐标即可.【详解】解:(1)如图1所示,过点D 作y 轴的平行线交MB 于点H ,过点O 作OQ 垂直MB 于点Q ,令y =0,解得x 1=﹣1,x 2=4,∴A (﹣1,0),B (4,0),令x =0,y =2,∴E (0,2),设直线BE的解析式为y=kx+b,则2, 40,bk b=⎧⎨+=⎩解得122kb⎧=-⎪⎨⎪=⎩,∴直线BE的解析式为y=﹣12x+2,∵DN∥BE,∴设直线DN的解析式为y=﹣12x+b1,S△DEB=DH12⨯•(x B﹣x E),∴当△DEB面积最大时,即是DH最大的时候,∴﹣12x+b1=﹣12x2+32x+2,△=b2﹣4ac=0,即16﹣4(2b1﹣4)=0,解得b1=4,点D(2,3),S矩=2S△MOG+S平形四边形,∴矩形面积最小时就是MG最小,设QG=m,MQ=n,∴MG=m+n,∵m+n≥∵△QOG∽△MQO,∴OQ2=m•n,∵△OEQ∽△EOB,∴OQ∴m•n=165,∴m+n.∴MG,∴S矩=2S△MOG+S平形四边形=645.(2)分两种情况讨论,情况一:当GN∥DB时,直线DB的解析式为:y=﹣32x+6,则直线NG的解析式为y=﹣32 x,∴﹣32x=﹣12x2+32x+2,解得x1=x2=3∴交点坐标为(),(3),情况二:DB为对角线时,此时NG必过DB的中点(3,32),设直线ON的解析式为y=k1x,则k1=12,∴直线OD的解析式为y=12 x,1 2=﹣12x2+32x+2,解得x1=1x2=∴交点坐标为(1),(),综上所述:交点坐标为(92+),(392-),(1﹣),().【点睛】此题考查了二次函数的性质以及二次函数与几何相结合的问题,转化矩形面积最小和三角形面积最大为某条线段的最值为解题关键.7.A解析:(1;(23)存在,6【解析】【分析】(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.解直角三角形,求出∠ABA1,得到旋转角即可解决问题;(2)由△BCE∽△BA2D2,推出222A DCE nCB A B m==,可得CE=2nm,由11A EEC=推出1A CEC=A12nm,推出BH=A12nm,然后由勾股定理建立方程,解方程即可解决问题;(3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;先证明△FDG ∽△FME ,得到3FG F FM FE D ==,再结合已知条件和解直角三角形求出PM 和FM 的长度,即可得到PF 的最小值.【详解】解:(1)作A 1H ⊥AB 于H ,连接BD ,BD 1,则四边形ADA 1H 是矩形.∴AD=HA 1=n=1,在Rt △A 1HB 中,∵BA 1=BA=m=2,∴BA 1=2HA 1,∴∠ABA 1=30°,∴旋转角为30°,∵22125+= ∴D 到点D 1所经过路径的长度=30551806π⋅=; (2)∵△BCE ∽△BA 2D 2, ∴222A D CE n CB A B m==, ∴2n CE m=, ∵161EA EC =, ∴16A C EC= ∴A 126n m, ∴BH=A 12226n m n m -=, ∴42226n m n m -=⋅, ∴m 4﹣m 2n 2=6n 4,∴242416n n m m-=•, ∴3n m =(负根已舍去). (3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;由(2)可知,3BE n BG m ==, ∵四边形BEFG 是矩形, ∴3FG FE = ∵∠DFG+∠GFM=∠GFM+∠MFE=90°,∴∠DFG=∠MFE ,∵DF ⊥PF ,即∠DFM=90°,∴∠FDM+∠GDM=∠FDM+∠DFM=∠FDM+90°,∴∠FDG=∠FME ,∴△FDG ∽△FME , ∴3FG F FM FE D ==, ∵∠DFM=90°,tan 3FD FMD FM ∠==, ∴∠FDM=60°,∠FMD=30°,∴3FM DM =; 在矩形ABCD 中,有3AD AB = 333=3AD =, ∵MN ⊥AB ,∴四边形ANMD 是矩形,∴MN=AD=3,∵∠NPM=∠DMF=30°,∴PM=2MN=6,∴NP=AB =,∴DM=AN=BP=2,∴2FM DM ===∴6PF PM MF =+=【点睛】本题考查点的运动轨迹,旋转变换、解直角三角形、弧长公式、矩形的性质、相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于压轴题,中考常考题型.正确作出辅助线,正确确定动点的位置,注意利用数形结合的思想进行解题.8.B解析:(1)2y x 2x 3=-++;(2)①23S m m =-+,13m ≤≤;②P (32,3);(3)3,32⎛⎫ ⎪⎝⎭或(3-+-【解析】【分析】(1)将点B 、C 的坐标代入2y x bx c =-++即可; (2)①求出顶点坐标,直线MB 的解析式等,由PD ⊥x 轴且OD=m 知P (m ,-2m+6),即可用含m 的代数式表示出S ;②在和①的情况下,将S 和m 的关系式化为顶点式,由二次函数的图象和性质即可写出点P 的坐标;(3)分情况讨论,当∠CPD=90°时,推出PD=CO=3,则点P 的纵坐标为3,即可求出点P 的坐标;当∠PCD=90°时,证∠PDC=∠OCD ,由锐角三角函数可求出m 的值,即可写出点P 的坐标;当∠PDC=90°时,不存在点P .【详解】解:(1)将()3,0B ,()0,3C 代入2y x bx c =-++,得0=-9+3b 33c +⎧⎨=⎩, 解得23b c =⎧⎨=⎩, ∴二次函数的解析式为2y x 2x 3=-++;(2)①∵()222314y x x x =-++=--+∴顶点M (1,4),将直线BM 的解析式设为y kx b =+, 将点()3,0B ,M (1,4)代入, 可得304k b k b +=⎧⎨+=⎩, 解得26k b =-⎧⎨=⎩, ∴直线BM 的解析式为26y x =-+, 如图∵PD ⊥x 轴且OD=m ,∴P (m ,-2m+6), ∴211(26)322PCD S S PD OD m m m m ==⋅=-+=-+, 即23S m m =-+,∵点P 为线段MB 上一个动点且()3,0B ,M (1,4), ∴13m ≤≤; ②22393()24S m m m =-+=--+, ∴当32m =时,S 取最大值94, ∴P (32,3); (3)存在,理由如下:如图,当∠CPD=90°时,90COD ODP CPD ,∴四边形CODP 为矩形,∵PD=CO=3,将3y =代入直线26y x =-+, 得32x =, ∴P 3,32⎛⎫ ⎪⎝⎭;如图,当∠PCD=90°时,∵OC=3,OD=m ,22229CD OC OD m , //PD OC PDC OCD ,cos cos PDC OCD ,DC OC PD DC∴=, 2DC PD OC ∴=⋅,293(26)m m , 解得1332m (舍去),1332m =-+∴(332,1262)P -+-;当∠PDC=90°时,∵PD ⊥x 轴,∴不存在点P;综上所述,点P的坐标为3,32⎛⎫⎪⎝⎭或(332,1262)-+-.【点睛】本题考查了待定系数法求函数解析式,函数的思乡曲求极值以及直角三角形的存在性与动点结合等,解题的关键是注意分类讨论思想在解题过程中的运用.9.B解析:(1)∠BPC<∠BAC;(2)点P坐标为(22,0);(3)sin∠APB的最大值为1.【解析】【分析】(1)如图,设PB与⊙O交于点D,连接CD,根据圆周角定理可得∠BDC=∠BAC,根据三角形外角性质可得∠BDC>∠BPC,进而可得答案;(2)如图,作过A、B两点的⊙C,与x轴相切于点P,连接AC、BC、PC,可知x轴正半轴上的点除P点外都在⊙C外,由(1)可得∠APB的度数最大,根据锐角的度数越大,余弦值越小可得点P即为所求,由AC=BC可得点C在AB的垂直平分线上,由A、B坐标可得点C纵坐标为3,根据切线的性质可得PC⊥x轴,可得PC=BC=3,设P(x,0),则P (x,3),根据两点间距离公式列方程求出x的值,即可得答案;(3)如图,过点B作BH⊥CD于H,过点A作AM⊥DE于M,延长AM至N,使MN= AM,过N作DE的平行线l,作FG⊥l于G,交DE于Q,以AB为直径作⊙F,交直线l于P,由AB、CD的长可求出CH点长,根据tan2C=可得BH的长,可得AD的长,可求出△ADE点面积,根据S△DEP=9可得△ADE与△DEP对应高的比为2:1,可得点P在直线l 上,根据等腰直角三角形点性质可求出FG的长,可得FG<AB,可知⊙F与直线l有两个交点,根据圆周角定理可得∠APB=90°,可得∠APB正弦的最大值.【详解】(1)如图,设PB与⊙O交于点D,连接CD,∵∠BAC和∠BDC是BC所对的圆周角,∴∠BAC=∠BDC,∵∠BDC是△PDC的外角,∴∠BDC>∠BPC,∴∠BPC<∠BAC.(2)如图,作过A 、B 两点的⊙C ,与x 轴相切于点P ,连接AC 、BC 、PC ,∵x 轴正半轴上的点除P 点外都在⊙C 外,∴∠APB 的度数最大,∵锐角的度数越大,余弦值越小,∴点P 即为所求,∵AC=BC ,∴点C 在AB 的垂直平分线上,∵A (0,2),B (0,4),∴点C 点纵坐标为3,设点P 坐标为(x ,0),∵⊙C 与x 轴相切于点P ,∴PC ⊥x 轴,∴点C 坐标为(x ,3),BC=PC=3, ∴22(43)x +-=3,解得:x=22,∴点P 坐标为(22,0).(3)如图,过点B 作BH ⊥CD 于H ,过点A 作AM ⊥DE 于M ,延长AM 至N ,使MN=12AM ,过N 作DE 的平行线l ,作FG ⊥l 于G ,交DE 于Q ,以AB 为直径作⊙F ,交直线l 于P ,∵tan 2C =,AB=8,CD=11,∴BH 2CH=,CH=3, 解得:BH=6,∴AD=6,∵AD=AE ,∴S △ADE =18,∵S △DEP =9,AN ⊥DE ,DE//l ,MN=12AM , ∴点P 在直线l 上,∵△ADE 是等腰直角三角形,∴AM=32,MN=322,∵BF=12AB=4,BE=AB-AE=2,∴EF=2,∵∠FEQ=45°,∠FQE=90°,∴FQ=2,∴FG=FQ+QG=2+32=52<FB,∴⊙F与直线l有两个交点,∵AB是直径,∴∠APB=90°,∴sin∠APB的最大值为1.【点睛】本题考查圆周角定理、等腰三角形点性质及锐角三角函数的定义,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;在直角三角形中,锐角的正弦是角的对边比斜边;余弦是邻边比斜边;正切是对边比邻边;余切是邻边比对边.10.B解析:(1)直线x=0;(2)B(0,1a);(3)2-≤a≤13-或13≤a2【解析】【分析】(1)根据抛物线的表达式直接得出对称轴即可;(2)根据题意得出点A的坐标,再利用关于x轴对称的点的坐标规律得出点B坐标;(3)分a>0和a<0两种情况分别讨论,画图图像,求出a的范围.【详解】解:(1)在抛物线21y axa=-中,2a-=,∴对称轴为直线x=0,即y轴;(2)∵抛物线与y轴交于点A,∴A(0,1a -),∵点A关于x轴的对称点为点B,∴B(0,1a);(3)当a>0时,点A(0,1a-)在y轴负半轴上,当点P恰好在抛物线上时,代入得:11aa a -=,解得:2a=或2-(舍),当点Q恰好在抛物线上时,代入得:190 aa-=,解得:13a=或13-(舍),∴当13≤a≤2时,抛物线与线段PQ恰有一个公共点;当a<0时,点A(0,1a-)在y轴正半轴上,同理可知:当点P恰好在抛物线上时,代入得:11aa a -=,解得:2a=2-,当点Q恰好在抛物线上时,代入得:190 aa-=,解得:13a=(舍)或13-,∴当2-a≤13-时,抛物线与线段PQ只有一个公共点;综上:若抛物线与线段PQ 恰有一个公共点,a 的取值范围是2-≤a ≤13-或13≤a 2. 【点睛】本题是一道二次函数的综合题目,主要考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,画出相应的函数图象,利用分类讨论的方法和数形结合的思想解答.11.A解析:(1)证明见解析;(2)67FM =;(3)kBC DF kBE =+. 【解析】【分析】(1)连接AC ,根据题意判定平行四边形ABCD 为菱形,△ABC 为等边三角形,然后利用AAS 定理判定△BCE ≌△ACF ,从而得出BE=AF ,使问题得解;(2)连接AC ,过点M 作MN ⊥CF ,由含30°直角三角形的性质求得122BE BC ==,323CE CF BE ===CN=x ,则3MN x =,然后利用平行判定△FMN ∽△FBC ,根据相似三角形的性质求得126355MN FN ==,,然后利用勾股定理求解即可;(3)连接AC ,过点A 作AK ⊥BC ,在DA 上截取DH=CD ,根据有一个角是60°的等腰三角形是等边三角形判定△HCD 是等边三角形,然后根据AA 定理判定△BCE ∽△FCH ,根据相似三角形的性质求得HF CM CD AB k BE BC BC BC====,即HF=kBE ,从而使问题得解. 【详解】解:(1)连接AC因为在平行四边形ABCD 中,60B ∠=︒,AB BC =∴平行四边形ABCD 为菱形,△ABC 为等边三角形∴AC=BC ,∠B=∠BAC=∠DAC=∠ACB=60°,。
中考数学中考数学压轴题 复习提优专项训练试卷(1)
一、中考数学压轴题1.如图,在平面直角坐标系中,点O 为坐标原点,直线y =-x + m 交 y 轴的正半轴于点A ,交x 轴的正半轴于点B ,过点A 的直线AF 交x 轴的负半轴于点F ,∠AFO=45°. (1)求∠FAB 的度数;(2)点 P 是线段OB 上一点,过点P 作 PQ ⊥OB 交直线 FA 于点Q ,连接 BQ ,取 BQ 的中点C ,连接AP 、AC 、CP ,过点C 作 CR ⊥AP 于点R ,设 BQ 的长为d ,CR 的长为h ,求d 与 h 的函数关系式(不要求写出自变量h 的取值范围);(3)在(2)的条件下,过点 C 作 CE ⊥OB 于点E ,CE 交 AB 于点D ,连接 AE ,∠AEC=2∠DAP ,EP=2,作线段 CD 关于直线AB 的对称线段DS ,求直线PS 与直线 AF 的交点K 的坐标.2.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,第一颗弹珠弹出后其速度1y (米/分钟)与时间x (分钟)前2分钟满足二次函数21y ax =,后3分钟满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分钟.(1)求第一颗弹珠的速度1y (米/分钟)与时间x (分钟)之间的函数关系式;(2)第一颗弹珠弹出1分钟后,弹出第二颗弹珠,第二颗弹珠的运行情况与第一颗相同,直接写出第二颗弹珠的速度2y (米/分钟)与弹出第一颗弹珠后的时间x (分钟)之间的函数关系式;(3)当两颗弹珠同时在轨道上时,第____分钟末两颗弹珠的速度相差最大,最大相差______;(4)判断当两颗弹珠同时在轨道上时,是否存在某时刻速度相同?请说明理由,并指出可以通过解哪个方程求出这一时刻.3.如图,在平面直角坐标中,点O 为坐标原点,ABC ∆的三个顶点坐标分别为()A O m ,,(),B m O -,(),C n O ,5AC =且OBA OAB ∠=∠,其中m ,n 满足725m n m n +=⎧⎨-=⎩.(1)求点A ,C 的坐标;(2)点P 从点A 出发,以每秒1个单位长度的速度沿y 轴负方向运动,设点P 的运动时间为t 秒.连接BP 、CP ,用含有t 的式子表示BPC ∆的面积为S (直接写出t 的取值范围);(3)在(2)的条件下,是否存在t 的值,使得ΔΔ32PAB POC S S =,若存在,请求出t 的值,并直接写出BP 中点Q 的坐标;若不存,请说明理由.4.如图,90EOF ∠=︒,矩形ABCD 的边BA 、BC 分别在OF 、OE 上,4AB =,3BC =,矩形ABCD 沿射线OD 方向,以每秒1个单位长度的速度运动.同时点P 从点A 出发沿折线AD DC -以每秒1个单位长度的速度向终点C 运动,当点P 到达点C 时,矩形ABCD 也停止运动,设点P 的运动时间为()t s ,PDO △的面积为S .(1)分别写出点B 到OF 、OE 的距离(用含t 的代数式表示);(2)当点P 不与矩形ABCD 的顶点重合时,求S 与t 之间的函数关系式;(3)设点P 到BD 的距离为h ,当15h OD =时,求t 的值; (4)若在点P 出发的同时,点Q 从点B 以每秒43个单位长度的速度向终点A 运动,当点Q 停止运动时,点P 与矩形ABCD 也停止运动,设点A 关于PQ 的对称点为E ,当PQE 的一边与CDB △的一边平行时,直接写出线段OD 的长.5.(1)阅读理解:如图①,在ABC 中,若8AB =,5AC =,求BC 边上的中线AD 的取值范围. 可以用如下方法:将ACD 绕着点D 逆时针旋转180︒得到EBD △,在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是______;(2)问题解决:如图②,在ABC 中,D 是BC 边上的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE CF EF +>;(3)问题拓展:如图③,在四边形ABCD 中,180B D ∠+∠=︒,CB CD =,100BCD ∠=︒,以C 为顶点作一个50︒的角,角的两边分别交AB 、AD 于E 、F 两点,连接EF ,探索线段BE ,DF ,EF 之间的数量关系,并说明理由.6.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH .(1)求证:EDO EAO ∆≅∆;(2)设BFx =,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域;(3)连接AG ,当AEG ∆是等腰三角形时,求BF 的长.7.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.8.如图1,△ABC 内接于⊙O ,直径AD 交BC 于点E ,延长AD 至点F ,使DF =2OD ,连接FC 并延长交过点A 的切线于点G ,且满足AG ∥BC ,连接OC ,若cos ∠BAC =13,BC =8. (1)求证:CF 是⊙O 的切线;(2)求⊙O 的半径OC ;(3)如图2,⊙O 的弦AH 经过半径OC 的中点F ,连结BH 交弦CD 于点M ,连结FM ,试求出FM 的长和△AOF 的面积.9.平面直角坐标系中,点A、B分别在x轴正半轴、y轴正半轴上,AO=BO,△ABO的面积为8.(1)求点A的坐标;(2)点C、D分别在x轴负半轴、y轴正半轴上(D在B点上方),AB⊥CD于E,设点D 纵坐标为t,△BCE的面积为S,求S与t的函数关系;(3)在(2)的条件下,点F为BE中点,连接OF交BC于G,当∠FOB+∠DAE=45°时,求点E坐标.10.已知:如图,在平面直角坐标系中,点 A 的坐标为(6,0),2,点 P 从点 O 出发沿线段 OA 向终点 A 运动,点 P 的运动速度是每秒 2 个单位长度,点 D 是线段 OA 的中点.(1)求点B 的坐标;(2)设点P 的运动时间为点t 秒,△BDP 的面积为S,求S 与t 的函数关系式;(3)当点P 与点D 重合时,连接BP,点E 在线段AB 上,连接PE,当∠BPE=2∠OBP 时,求点E 的坐标.11.在平行四边形ABCD 中,60B ∠=︒,点E ,F 分别在边AB ,AD 上,且60ECF ∠=︒.(1)如图1,若AB BC =,求证:AE AF BC +=;(2)如图2,若4AB BC ==,且点E 为AB 的中点,连接BF 交CE 于点M ,求FM ;(3)如图3,若AB kBC =,探究线段BE 、DF 、BC 三之间的数量关系,说明理由.12.已知:如图,AB 为O 的直径,弦CD AB ⊥垂足为E ,点H 为弧AC 上一点.连接DH 交AB 于点F ,连接HA 、BD ,点G 为DH 上一点,连接AG ,HAG BDC ∠=∠. (1)如图1,求证:AG HD ⊥;(2)如图2,连接HC ,若HC HF =,求证:HC HA =;(3)如图3,连接HO 交AG 于点K ,若点F 为DG 的中点,HC 2HG =,求KG AK的值.13.已知抛物线y=﹣x 2﹣2x+3交x 轴于点A 、C (点A 在点C 左侧),交y 轴于点B .(1)求A ,B ,C 三点坐标;(2)如图1,点D 为AC 中点,点E 在线段BD 上,且BE=2DE ,连接CE 并延长交抛物线于点M ,求点M 坐标;(3)如图2,将直线AB 绕点A 按逆时针方向旋转15°后交y 轴于点G ,连接CG ,点P 为△ACG 内一点,连接PA 、PC 、PG ,分别以AP 、AG 为边,在它们的左侧作等边△APR 和等边△AGQ ,求PA+PC+PG 的最小值,并求当PA+PC+PG 取得最小值时点P 的坐标(直接写出结果即可).14.如图①,在ABC ∆中,90C ∠=︒,10,8AB BC ==.点,D E 分别是边,AC BC 上的动点,连接DE .设CD x =(0x >),BE y =,y 与x 之间的函数关系如图②所示.(1)求出图②中线段PQ 所在直线的函数表达式;(2)将DCE 沿DE 翻折,得DME .①点M 是否可以落在ABC ∆的某条角平分线上?如果可以,求出相应x 的值;如果不可以,说明理由;②直接写出....DME 与ABC ∆重叠部分面积的最大值及相应x 的值.15.将一个直角三角形纸片ABO ,放置在平面直角坐标系中,点0(3)A ,,点()0, 3B ,点(0,0)O(I)过边OB 上的动点D (点D 不与点B ,O 重合)作DE OB ⊥交AB 于点E ,沿着DE 折叠该纸片,点B 落在射线BO 上的点F 处.①如图,当D 为OB 中点时,求E 点的坐标;②连接AF ,当AEF ∆为直角三角形时,求E 点坐标:(Ⅱ) P 是AB 边上的动点(点 P 不与点B 重合),将AOP ∆沿OP 所在的直线折叠,得到'A OP ∆,连接'BA ,当'BA 取得最小值时,求P 点坐标(直接写出结果即可).16.已知:AB 为⊙O 的直径,点C 为弧AB 的中点,点D 为⊙O 上一点,连接CD ,交AB 于点M ,AE 为∠DAM 的平分线,交CD 于点E .(1)如图1,连接BE ,若∠ACD=22°,求∠MBE 的度数;(2) 如图2,连接DO 并延长,交⊙O 于点F ,连接AF ,交CD 于点N .①求证:DM 2+CN 2=CM 2;②如图3,当AD=1,10时,请直接写出....线段ME 的长. 17.已知抛物线2y ax bx c =++过点(6,0)A -,(2,0)B ,(0,3)C -.(1)求此抛物线的解析式;(2)若点H 是该抛物线第三象限的任意一点,求四边形OCHA 的最大面积;(3)若点Q 在y 轴上,点G 为该抛物线的顶点,且45GQA ∠=︒,求点Q 的坐标.18.如图,在矩形ABCD 中,点E 为BC 的中点,连接AE ,过点D 作DF AE ⊥于点F ,过点C 作CN DF ⊥于点N ,延长CN 交AD 于点M .(1)求证:AM MD =(2)连接CF ,并延长CF 交AB 于G①若2AB =,求CF 的长度;②探究当AB AD为何值时,点G 恰好为AB 的中点.19.如图1,Rt △ABC 中,点D ,E 分别为直角边AC ,BC 上的点,若满足AD 2+BE 2=DE 2,则称DE 为R △ABC 的“完美分割线”.显然,当DE 为△ABC 的中位线时,DE 是△ABC 的一条完美分割线.(1)如图1,AB =10,cos A =45,AD =3,若DE 为完美分割线,则BE 的长是 . (2)如图2,对AC 边上的点D ,在Rt △ABC 中的斜边AB 上取点P ,使得DP =DA ,过点P 画PE ⊥PD 交BC 于点E ,连结DE ,求证:DE 是直角△ABC 的完美分割线.(3)如图3,在Rt △ABC 中,AC =10,BC =5,DE 是其完美分割线,点P 是斜边AB 的中点,连结PD 、PE ,求cos ∠PDE 的值. 20.在平面直角坐标系xOy 中,点A 、B 为反比例函数()4x 0x y =>的图像上两点,A 点的横坐标与B 点的纵坐标均为1,将()4x 0x y =>的图像绕原点O 顺时针旋转90°,A 点的对应点为A’,B 点的对应点为B’.(1)点A’的坐标是 ,点B’的坐标是 ;(2)在x 轴上取一点P ,使得PA+PB 的值最小,直接写出点P 的坐标. 此时在反比例函数()4x 0xy =>的图像上是否存在一点Q ,使△A’B’Q 的面积与△PAB 的面积相等,若存在,求出点Q 的横坐标;若不存在,请说明理由;(3)连接AB’,动点M 从A 点出发沿线段AB’以每秒1个单位长度的速度向终点B’运动;动点N 同时从B’点出发沿线段B’A’以每秒1个单位长度的速度向终点A’运动.当其中一个点停止运动时,另一个点也随之停止运动.设运动的时间为t 秒,试探究:是否存在使△MNB’为等腰直角三角形的t 值.若存在,求出t 的值;若不存在,说明理由.21.发现来源于探究.小亮进行数学探究活动,作边长为a 的正方形ABCD 和边长为b 的正方形AEFG (a>b ),开始时,点E 在AB 上,如图1.将正方形AEFG 绕点A 逆时针方向旋转.(1)如图2,小亮将正方形AEFG 绕点A 逆时针方向旋转,连接BE 、DG ,当点G 恰好落在线段BE 上时,小亮发现DG ⊥BE ,请你帮他说明理由.当a=3,b=2时,请你帮他求此时DG 的长.(2)如图3,小亮旋转正方形AEFG ,点E 在DA 的延长线上,连接BF 、DF .当FG 平分∠BFD 时,请你帮他求a :b 及∠FBG 的度数.(3)如图4,BE 的延长线与直线DG 相交于点P ,a=2b .当正方形AEFG 绕点A 从图1开始,逆时针方向旋转一周时,请你帮小亮求点P 运动的路线长(用含b 的代数式表示).22.已知,抛物线212y x bx c =++与y 轴交于点()0,4C -与x 轴交于点A ,B ,且B 点的坐标为()2,0.(1)求该抛物线的解析式.(2)如图1,若点P 是线段AB 上的一动点,过点P 作//PE AC ,交BC 于E ,连接CP ,求PCE ∆面积的最大值.(3)如图2,若直线y x m =+与线段AC 交于点M ,与线段BC 交于点N ,是否存在M ,N ,使得OMN ∆为直角三角形,若存在,请求出m 的值;若不存在,请说明理由.23.综合与探究:如图1,抛物线24832999y x x =-++与x 轴交于,A B 两点(点A 在点B 的左侧),顶点为D ,P 为对称轴右侧抛物线的一个动点,直线AD 与y 轴于点C ,过点P 作//PF AD ,交x 轴于点F .(1)求直线AD 的函数表达式及点C 的坐标;(2)如图2,当//PC x 轴时,将AOC ∆以每秒1个单位长度的速度沿x 轴的正方向平移,当点C 与点P 重合时停止平移.设平移t 秒时,在平移过程中AOC ∆与四边形AFPC 重叠部分的面积为S ,求S 关于t 的函数关系式,并写出自变量t 的取值范围; (3)如图3,过点P 作x 轴的平行线,交直线AD 于点E ,直线DF 与PE 交于点M ,设点P 的横坐标为m .①当3DM MF =时,求m 的值;②试探究点P 在运动过程中,是否存在值m ,使四边形AFPE 是菱形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.24.(问题探究)课堂上老师提出了这样的问题:“如图①,在ABC 中,108BAC ∠=︒,点D 是BC 边上的一点,7224BAD BD CD AD ∠=︒==,,,求AC 的长”.某同学做了如下的思考:如图②,过点C 作CE AB ∥,交AD 的延长线于点E ,进而求解,请回答下列问题: (1)ACE ∠=___________度; (2)求AC 的长.(拓展应用)如图③,在四边形ABCD 中,12075BAD ADC ∠=︒∠=︒,,对角线AC BD 、相交于点E ,且AC AB ⊥,22EB ED AE ==,,则BC 的长为_____________.25.如图,直线y =﹣x+4与抛物线y =﹣12x 2+bx+c 交于A ,B 两点,点A 在y 轴上,点B 在x 轴上.(1)求抛物线的解析式;(2)在x 轴下方的抛物线上存在一点P ,使得∠ABP =90°,求出点P 坐标;(3)点E 是抛物线对称轴上一点,点F 是抛物线上一点,是否存在点E 和点F 使得以点E ,F ,B ,O 为顶点的四边形是平行四边形?若存在,求出点F 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题 1.F解析:(1)∠FAB=90°;(2)22d h =;(3)直线PS 与直线AF 的交点K(-2,6). 【解析】 【分析】(1)通过直线AB 的解析式可求出点A 、B 的坐标,可知AOB 是等腰直角三角形,再结合已知条件即可确定90FAB ∠=︒;(2)根据已知条件证明CP=AC=QC=BC 从而得出△ACP 是等腰直角三角形,在Rt △CRP 中,利用sin ∠CPR 22CR CP ==2CP CR =,继而得出2BQ CR =,得出答案;(3)过点 A 作AH ⊥CE 交 EC 的延长线于点 H ,延长 CH 到点 G ,使 HG=CH ,连接AG ,证明△AHC ≌△CEP ,设AH CE n ==,得出EG=CE+CH+GH=n+2+2=n+4,再通过角的等量代换,得出∠EAG=∠G ,从而有EG=EA=n+4,在Rt △AHE 中,通过勾股定理AE²=HE²+AH²可求出n 的值为6,从而得出直线AF 的解析式y = x + 8 ,再求出直线 PS 的解析式为 y=-x+4,求交点即可. 【详解】解:(1)如下图,y = -x + m ,当x=0时,y=m ∴A (0,m ),OA=m 当y=0时,0=-x+m ,x=m , ∴B (m ,0),OB=m ∴OA=OB∴∠OAB=∠OBA=45°∵∠AFO=45°,∠FAB+∠FBA+∠AFB=180° ∴∠FAB=90°(2)如下图 ,∵CP 、AC 分别是 Rt △QPB 和 Rt △QAB 的斜边上的中线∴CP=12QB ,12AC QB =, ∴CP=AC=QC=BC ∴∠CAB=∠CBA设∠CAB=∠CBA=α,∴∠CBP=45°+α ∴∠CPB=∠CBP=45°+α∴∠PCB=180°-(∠CPB+∠CBP )=90°-2α ∵∠ACB=180°-∠CAB-∠CBA=180°-2α∴∠ACP=∠ACB-∠PCB=180°-2α-(90°-2α)=90° ∵AC=CP∴△ACP 是等腰直角三角形 ∴∠CPA=∠CAP=45°∵CR ⊥AP ,∴∠CRP=90°,在Rt △CRP 中 sin ∠CPR 22CR CP ==∴2CP CR =∵12CP BQ =, ∴22BQ CR = 即22d h =(3)过点 A 作AH ⊥CE 交 EC 的延长线于点 H ,延长 CH 到点 G ,使 HG=CH ,连接AG ∴∠AHC=∠CEP=90°∴∠HAC+∠HCA=∠PCE+∠HCA ∴∠HAC=∠PCE ,∵AC=CP ∴△AHC ≌△CEP∴CH=PE=2,AH=CE ,∴GH=CH=2,AH CE n ==∴EG=CE+CH+GH=n+2+2=n+4 设∠DAP=β,则∠AEG=2β ∴α+β=45°∵∠EBD=∠EDB=∠HDA=∠HAD=45° ∴∠CAH=∠HAD-α=45°-α=β ∵AH 垂直平分 GC ∴AG=AC ∴∠GAH=∠CAH=β ∴∠G=90°-β 在△EAG 中 ∠EAG=180°-∠G-∠AEG =180°-(90°-β)-2β =90°-β ∴∠EAG=∠G ∴EG=EA=n+4在 Rt △AHE 中,AE²=HE²+AH²222(4)(2)n n n +=++ 126,2n n ==-(舍)∴AH=OE=6,EP=EB=2 ∴OB=OE+BE=8 ∴m=8,∴A (0,8) ∴OA=OF=8 , ∴F (-8,0) ∴直线 AF 的解析式为 y = x + 8 ∵CD=CE-DE=CE-BE=6-2=4∵线段 CD 关于直线 AB 的对称线段 DS ∴SD=CD=4,∠CDA=∠SDA=45° ∴∠CDS=90°, ∴SD ∥x 轴过点 S 分别作 SM ⊥x 轴于点 M ,SN ⊥y 轴于点 N ∴四边形 OMSN 、SMED 都是矩形 ∴OM=SN=OE-ME=2,ON=SM=DE=BE=2 ∴S(2,2)∵OP=OE-EP=6-2=4,∴P(4,0)设直线 PS 的解析式为 y=ax+b ∴4022a b a b +=⎧⎨+=⎩,解得:14a b =-⎧⎨=⎩∴直线 PS 的解析式为 y=-x+4 设直线PS 与直线AF 的交点K(x ,y) ∴48y x y x =-+⎧⎨=+⎩解得26x y =-⎧⎨=⎩∴直线PS 与直线AF 的交点K(-2,6).【点睛】本题考查的知识点是一次函数与几何图形,将一次函数的图象与几何图形综合在一起的问题,是考查学生综合素质和能力的热点题型,它充分体现了数学解题中的数形结合思想和整体转化思想.本题考查的知识点有一次函数图象与坐标轴的交点问题、等腰直角三角形的判定及性质、三角形内角和定理、全等三角形的判定及性质、矩形的性质、待定系数法求一次函数解析式、线段垂直平分线等.2.(1)212(02)16(25)x x y x x ⎧≤≤⎪=⎨≤≤⎪⎩;(2)220(01)2(1)(13)16(36)1x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪<≤-⎩;(3)第2分钟末两颗弹珠速度相差最大,最大相差6米/分钟;(4)存在,理由详见解析 【解析】 【分析】(1)将(1,2)代入21y ax =,得2a =,从而得到212y x =,再代入2x =求出18y =,即可得到反比例函数解析式,即可得解;(2)当01x ≤≤时,第二颗弹珠未弹出,故第二颗弹珠的解析式为20y =;再分别根据(1)中的结论,即可求出当13x <≤和36x <≤时第二颗弹珠的解析式;(3)由图可知看出,前2分钟,弹珠的速度逐渐增大,则第2分钟末两颗弹珠速度相差最大,分别求出第2分钟末时两颗弹珠的速度,再相减即可的解;(4)第2分钟末到第3分钟末,第一颗弹珠的速度由8米/分钟逐步下降到513米/分钟,第二颗弹珠的速度由2米/分逐步上升到8米/分,故在此期间必定存在一时刻,两颗弹珠的速度相同.可以根据速度相等时列方程求得时刻. 【详解】(1)当02x ≤≤时,将(1,2)代入21y ax =,得2a =,212y x ∴=,∵当2x =时,18y =, ∴当25x ≤≤时,116y x=, 1y ∴与x 的函数关系式为212(02)16(25)x x y x x⎧≤≤⎪=⎨≤≤⎪⎩;(2)当01x ≤≤时,第二颗弹珠未弹出, ∴第二颗弹珠的解析式为20y =;当13x <≤时,第二颗弹珠的解析式为222(1)y x =-;当36x <≤时,第二颗弹珠的解析式为2161y x =-; ∴2y 与x 的函数关系式为220(01)2(1)(13)16(36)1x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪<≤-⎩;(3)由图可知看出,前2分钟,弹珠的速度逐渐增大, ∴第2分钟末两颗弹珠速度相差最大,∵第一颗弹珠的速度为2218222y x =⨯==米/分钟, 第二颗弹珠的速度为2122(1)212y x =⨯==-米/分钟,∴两颗弹珠的速度最大相差8-2=6米/分钟; (4)存在,理由如下:第2分钟末到第3分钟末,第一颗弹珠的速度由8米/分钟逐步下降到513米/分钟, 第二颗弹珠的速度由2米/分逐步上升到8米/分, 故在此期间必定存在一时刻,两颗弹珠的速度相同. 这个时刻可以通过解方程2162(1)x x=-求得. 【点睛】本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息,明确自变量的取值范围和图象所经过的点的坐标.3.A解析:(1)A (0,4),C (3,0);(2)S=()()51004251042t t t t ⎧-+<<⎪⎪⎨⎪->⎪⎩;(3)存在,满足条件的t 的值为3617或36,点Q 的坐标为162,17⎛⎫- ⎪⎝⎭或()2,16--.【解析】 【分析】(1)解方程组求出m ,n 即可解决问题.(2)分两种情形:如图1中,当0<t <4时,如图2中,当t >4时,根据S=12•BC•OP 求解即可.(3)分两种情形分别构建方程求解即可. 【详解】解:(1)由725m n m n +=⎧⎨-=⎩,解得:43m n =⎧⎨=⎩,∴A (0,4),C (3,0); (2)如图1中,当0<t <4时,S=12•BC•OP=12×5×(4-t )=-52t+10. 如图2中,当t >4时,S=12•BC•OP=12×5×(t-4)=52t-10. 综上所述,S=()()51004251042t t t t ⎧-+<<⎪⎪⎨⎪->⎪⎩,(3)当04t <<时,由题意,1314(4)3222t t ⨯⨯=⨯⨯-⨯,解得3617t =, 此时,363241717OP =-=, 32(0,)17P ∴, (4,0)B -,BQ ∴的中点Q 的坐标为162,17⎛⎫- ⎪⎝⎭,当4t >时,由题意,1314(4)3222t t ⨯⨯=⨯⨯-⨯,解得36t =, 此时36432OP =-=, (0,32)P ∴-, (4,0)B -,BP ∴的中点Q 的坐标为(2,16)--.综上所述,满足条件的t 的值为3617或36.点Q 的坐标为16(2,)17-或(2,16)--.【点睛】本题属于三角形综合题,考查了解方程组,三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.4.B解析:(1)35t ,45t ;(2)当0<t <3时,224655S t t =--+;当3<t <7时,23391052S t t =+-;(3)75;(4)132,7713,477【解析】 【分析】(1)过点B 作x 轴垂线,利用相似三角形可求得; (2)分2种情况,一种是点P 在AD 上,另一种是点P 在CD 上,然后利用三角形面积公式可求得; (3)直接令15h OD =即可求出; (4)存在3种情况,第一种是:QP ∥BD ,第二种是EP ∥CD 或EQ ∥CB ,第三种是QE ∥BD ,分别按照几何性质分析求解. 【详解】(1)如下图,过点B 作x 轴垂线,垂足为点M根据平移的特点,可得∠BOM=∠DBA ∵∠BMO=∠DAB=90°,∴△BMO ∽△DAB ∵AB=4,AD=BC=3 ∴BD=5 ∵BM OM BODA BA BD==,OB=t ∴BM=35t ,OM=45t (2)情况一:当0<t <3时,图形如下,过点P 作OD 的垂线,交OD 于点N∵∠NDP=∠BDA ,∠PND=∠BAD ,∴△PND ∽△BAD ∵AP=t ,∴PD=3-t∵PN BA PD BD =,∴PN=()435t - 图中,OD=5+t ∴()()243124562555OBD t S t t t -=+=--+ 情况二:当3<t <7时,图形如下,过点P 作OD 的垂线,交OD 于点N图中,PD=t -3,OD=5+t同理,△PND ∽△BCD ,可得PN=()335t - ∴()()23313395251052OBD t S t t t -=+=-+- (3)情况一:当0<t <3时则h=PN=()435t - ∵15h OD =∴()43555t t -+= 解得:t=75情况二:当3<t <7时则h=PN=()335t - ∵15h OD =∴()33555t t -+= 解得:t=7(舍)(4)情况一:QP ∥BD ,图形如下由题意可得:BQ=43t ,AP=t ,则QA=4-43t ,DP=3-t ∵BD ∥QP∴QA PA QB PD= 代入得:4()2243t t =-解得:t=32∴OD=5+t=132 情况二:如下图,EP ∥CD(或EQ ∥CB)∵点E 是点A 关于QP 对称的点∴EP=PA ,EQ=QA ,QP=QP∴△APQ ≌△EPQ∵EP ∥CD ,CD ⊥AD∴EP ⊥AD∴∠APQ=∠EPQ=45°∴△AQP 是等腰直角三角形,AQ=PA∴4-43t t = 解得:t=127∴OD=5+t=477 情况三:如下图,QE ∥BD ,延长QE 交DA 于点N∵△APQ ≌△EPQ ,∴∠QEP=∠QAP=90°∴△ENP 是等腰直角三角形∵QN ∥BD ,∴∠NQA=∠DBA ,∠A=∠A∴△QNA ∽△BDA∵BQ=43t ,AP=t ,QA=4-43t ,DP=3-t ∴QN QA AN BD BA AD== ∴QN=5-43t ,NA=3-t ∴EN=QN -QE=QN -QA=1-3t ,NP=NA -AP=3-2t ,EP=PA=t ∴在Rt △ENP 中,()2223213t t t ⎛⎫-+-= ⎪⎝⎭ 解得:t=1213或t=3(舍) ∴OD=5+t=7713 【点睛】本题考查动点问题,解题关键是利用相似将图形中各边用t 表示出来.5.F解析:(1)28AD <<;(2)见详解;(3)EF BE DF =+,理由见详解【解析】【分析】(1)根据旋转的性质可证明ADC EDB ≅,6,AC BE AD ED ===,在ABE △中根据三角形三边关系即可得出答案;(2)延长FD 至M ,使DF=DM ,连接BM ,EM ,可得出CF BM =,根据垂直平分线的性质可得出EF EM =,利用三角形三边关系即可得出结论;(3)延长AB 至N ,使BN=DF ,连接CN ,可得NBC D ∠=∠,证明NBC FDC ≅,得出,CN CF NCB FCD =∠=∠,利用角的和差关系可推出50ECN ECF ∠=︒=,再证明NCE FCE ≅,得出EN EF =,即可得出结论.【详解】解:(1)∵,,AD ED CD BD ADC BDE ==∠=∠∴ADC EDB ≅∴6,AC BE AD ED ===在ABE △中根据三角形三边关系可得出:AB BE AE AB BE -<<+,即4216AD <<∴28AD <<故答案为:28AD <<;(2)延长FD 至M ,使DF=DM ,连接BM ,EM ,同(1)可得出CF BM =,∵,FD MD FD DE =⊥∴EF EM =在BEM △中,BE BM EM +>∴BE CF EF +>;(3)EF BE DF =+,理由如下:延长AB 至N ,使BN=DF ,连接CN ,∵180,180ABC D ABC NBC ∠+∠=︒∠+∠=︒∴NBC D ∠=∠∴NBC FDC ≅∴,CF CN NCB FCD =∠=∠∵100,50BCD FCE ∠=︒∠=︒∴50ECN ECF ∠=︒=∴NCE FCE ≅(SAS )∴EN EF =∴EF EN BE BN BE DF ==+=+∴EF BE DF =+.【点睛】本题考查的知识点有旋转的性质、全等三角形的判定及性质、线段垂直平分线的性质、三角形三边关系、角的和差等,解答此题的关键是作出辅助线,构造出与图①中结构相关的图形.此题结构精巧,考查范围广,综合性强.6.A解析:(1)详见解析;(2)y =(04x <<);(3)当AEG ∆是等腰三角形时,2BF =或43【解析】【分析】 (1)根据正方形的性质得到∠AOD=90°,AO=OD ,∠EOH=90°,OE=OH ,由全等三角形的性质即可得到结论;(2)如图1,过O 作ON ⊥AB 于N ,根据等腰直角三角形的性质得到122AN BN ON AB ====,根据勾股定理得到OF ===线段成比例定理即可得到结论;(3)①当AE=EG 时,△AEG 是等腰三角形,②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP ⊥EG 于P ③当GE=AG 时,△AEG 是等腰三角形,如图3,过G 作GQ ⊥AE 于Q ,根据相似三角形的性质或全等三角形的性质健即可得到结论.【详解】(1)∵四边形ABCD 是正方形,,OA OD AC BD ∴=⊥,90AOD ∴∠=︒,∵四边形OEGH 是正方形,,90OE OH EOH ∴=∠=︒,AOD EOH ∴∠=∠,AOD AOH EOH AOH ∴∠-∠=∠-∠,即HOD EOA ∠=∠,HDO EAO ∴∆≅∆.(2)如图1,过O 作ON⊥AB 于N ,则122AN BN ON AB ====, ∵BF=x,∴AF=4-x ,∴FN=2-x ,∴()222222248OF FN ON x x x =+=-+=-+,∴248EF y x x =--+,∵AM⊥AC,∴AE∥OB,∴BF OF AF EF=, ∴2248448x x x x y x x -+=---+, ∴()244804x x y x -+≤=<; (3)①当AE=EG 时,△AEG 是等腰三角形,则AE=OE ,∵∠EAO=90°,∴这种情况不存在;②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP⊥EG 于P ,则AP∥OE,∴∠PAE=∠AEO,∴△APE∽△EAO,∴PE AE OA OE=,∵AE=AG,∴24148 2x xPE y-+==,()22248xAE yx-=-=,∴()22222224448448xx xxx xx---+=+,解得:x=2,②当GE=AG时,△AEG是等腰三角形,如图3,过G作GQ⊥AE于Q,∴∠GQE=∠EAO=90°,∴∠GEQ+∠EGQ=∠GEQ+∠AEO=90°,∴∠EGQ=∠AEO,∵GE=OE,∴△EGQ≌△OEA(AAS),∴22EQ AO==∴24242()xAE ExQ-===,∴43x=,∴BF=2或43.【点睛】本题考查了四边形的综合题,正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质,勾股定理,正确的作出辅助线构造全等三角形是解题的关键.7.B解析:(1)12;(2)533)202【解析】【分析】(1)如图1中,过点B 作BD CA ⊥,交CA 延长线于点D ,通过构造直角三角形,求出BD 利用三角形面积公式求解即可.(2)如图示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,确定点P 的位置,利用勾股定理与矩形的性质求出CQ 的长度即为答案.(3)解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、,通过轴对称性质的转化,最终确定最小值转化为SN 的长.【详解】(1)如解图1所示,过点B 作BD CA ⊥,交CA 延长线于点D ,135BAC ∠=,180********BAD BAC ∴∠=-∠=-=,BD CA ⊥,交CA 延长线于点D ,BAD ∴为等腰直角三角形,且90BDA ∠=,BD AD ∴=,在BAD 中,,90BD AD BDA =∠=,222BD AD AB ∴+=,即222BD AB =, 42AB =,2222(42)32BD AB ∴===,解得:4BD =,6AC =,11641222ABC S AC BD ∴=⋅=⨯⨯=.(2)如解图2所示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M , D 关于AB 的对称点Q ,CQ 交AB 于点P ,PD PQ ∴=,PC PD PC PQ CQ ∴+=+=,点P 为AB 上的动点,PC PD CQ ∴+≥,∴当点P 处于解图2中的位置,PC PD +取最小值,且最小值为CQ 的长度, 点C 为半圆AB 的中点,90COB ∴∠=,90BOD COD COB ∠+∠=∠=, 11903033BOD COB ∴∠=∠=⨯=, 10AB =,1110522OD AB ∴==⨯=, 在Rt ODH △中,由作图知,90OHD ∠=,且30HOD BOD ∠=∠=, 155,222DH OD QH DH ∴==∴==, 222255352OH OD DH ⎛⎫∴=-=-= ⎪⎝⎭, 由作图知,四边形OMQH 为矩形,553,2OM QH MQ OH ∴====, 515522CM OM OC ∴=+=+=, 222215535322CQ CM MQ ⎛⎫⎛⎫∴=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, PC PD ∴+的最小值为53.(3)如解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、, 点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,PE SE ∴=,FP FN =,SOA POA ∠=∠,,NOB POB OS OP ON ∠=∠==,.PE EF FP SE EF FN SN ∴++=++=,SOA NOB POA POB ∠+∠=∠+∠, E 为OA 上的点,F 为OB 上的点PE EF FP SN ∴++≥,∴当点E F 、处于解图3的位置时,PE EF FP ++的长度取最小值,最小值为SN 的长度,45POA POB AOB ∠+∠=∠=,45SOA NOB ∴∠+∠=,454590SON SOA AOB NOB ∴∠=∠+∠+∠=+=.扇形AOB 的半径为20,20OS ON OP ∴===,在Rt SON 中,90SON ∠=,20,90OS ON SON ==∠=PE EF FP ∴++的长度的最小值为202.【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.8.D解析:(1)见解析;(2)32332232【解析】【分析】(1)由DF=2OD ,得到OF=3OD=3OC ,求得13OE OC OC OF ==,推出△COE ∽△FOE ,根据相似三角形的性质得到∠OCF=∠DEC=90°,于是得到CF 是⊙O 的切线;(2)利用三角函数值,设OE=x ,OC=3x ,得到CE=3,根据勾股定理即可得到答案;(3)连接BD ,根据圆周角定理得到角相等,然后证明△AOF ∽△BDM ,由相似三角形的性质,得到FM 为中位线,即可求出FM 的长度,由相似三角形的性质,以及中线分三角形的面积为两半,即可求出面积.【详解】解:(1) ∵DF =2OD ,∴OF =3OD =3OC ,∴13OE OC OC OF ==, ∵∠COE =∠FOC ,∴△COE ∽△FOE ,∴∠OCF =∠DEC =90°,∴CF 是⊙O 的切线;(2)∵∠COD =∠BAC ,∴cos ∠BAC =cos ∠COE =13OE OC =, ∴设OE =x ,OC =3x ,∵BC =8,∴CE =4,∵CE ⊥AD ,∴OE 2+CE 2=OC 2,∴x 2+42=9x 2,∴x =2(负值已舍去),∴OC =3x =32,∴⊙O 的半径OC 为32;(3)如图,连结BD ,由圆周角定理,则∠OAF=∠DBM ,2AOF ADC ∠=∠,∵BC ⊥AD ,∴AC AB =,∴∠ADC=∠ADB ,∴2AOF ADC BDM ∠=∠=∠,∴△AOF ∽△BDM ;∵点F 是OC 的中点,∴AO :OF=BD :DM=2,又∵BD=DC ,∴DM=CM ,∴FM 为中位线,∴∴S △AOF : S △BDM =( 2 34=;∵11111822222BDM BCD S S BC DE ∆∆==⨯•=⨯⨯⨯=∴S △AOF =34= 【点睛】本题考查了圆的综合问题,圆周角定理,切线的判定和性质,相似三角形的判定和性质,利用勾股定理求边长,以及三角形中线的性质,解题的关键是熟练掌握所学的定理和性质,运用属性结合的思想进行解题.9.A解析:(1)A (4,0);(2)2144S t =-;(3)(4,8)E - 【解析】【分析】(1)利用三角形的面积公式构建方程即可解决问题.(2)证明△CEA 和△COD 是等腰直角三角形,由EN ⊥AC ,推出42t CN NE NA +===,AC=4+t ,根据S=S △AEC -S △ABC 计算即可.(3)过点F 作FM ⊥AC 于点M ,由(2)求出点F 的坐标为(1,3)44t t -+,从而得到 1144t t OM =-=-,34t FM =+,由∠ABO=∠BDA+∠BAD=45°,∠FOB +∠DAE =45°,得出∠FOB=∠BDA ,进而得出∠MFO=∠ODA ,tan ∠MFO =tan ∠ODA ,故而OA OM OD MF =,即1 4434ttt-=+,解出t的值,再求点E的坐标即可.【详解】(1)由题意可得:211•••822AOBS OA OB OA===,∴OA2=16,∵OA>0,∴OA=OB=4,∴A(4,0),B(0,4).(2)如图,过点E作EN⊥AC于点N.∵∠AOB=90°,OA=OB,∴∠OAB=45°,∵AB⊥CD,∴∠CEA=90°,∴∠ECA=45°,∴△CEA是等腰直角三角形,∵∠ECA=45°,∠COD=90°,∴∠CDO=45°,∴△CDO是等腰直角三角形.∵点D纵坐标为t,∴CO=DO=t.∵OA=OB=4,∴AC=t+4.∴42tCN NE NA+===,∴()()2141144442224AEC ABCtS S S t t t+⎛⎫=-=⨯+⨯-⨯+⨯=-⎪⎝⎭;∴S与t的函数关系是:2144S t=-.(3)如图,过点F作FM⊥AC于点M,由(2)可知,42t CN NE +==, ∴22t ON OC CN =-=-, ∴点E 的坐标为(2,2)22t t -+, ∵点B (0,4),点F 为BE 中点,∴点F 的坐标为(1,3)44t t -+, ∴1144t t OM =-=-,34t FM =+, ∵∠ABO=∠BDA+∠BAD=45°,∠FOB +∠DAE =45°,∴∠FOB=∠BDA ,∴OF ∥AD ,∵FM ⊥AC ,∴FM ∥DO ,∴∠MFO=∠ODA ,∴tan ∠MFO =tan ∠ODA , ∴OA OM OD MF=, 即14434t t t -=+, 解得t=12或4=-4(不合题意,舍去)∴点E 的坐标为(4,8)-.【点睛】本题考查三角形综合题,解题的关键是正确作出辅助线,灵活运用所学知识,利用参数构建方程解决问题.10.B解析:(1)B(0,6);(2)S=3 960236932t tt t⎧-<≤⎪⎪⎨⎪-<≤⎪⎩,,;(3)E(4,2)【解析】【分析】(1)在Rt△AOB中,利用勾股定理可求得OB的长,从而得到点B的坐标;(2)存在2种情况,一种是点P在点D的左侧,一种是在右侧,求△PBD的面积,高始终是OB不变,仅需表示出PD的长即可;(3)如下图,作∠BPE的角平分线PF,根据角之间的关系,可得到PF∥OB,从而推导出△PEG∽△PBO,最后利用相似比的关系求得线段的长度,从而得到E的坐标.【详解】(1)∵A(6,0),AB=62,△AOB是直角三角形∴在Rt△AOB中,OB=()226266-=∴B(0,6)(2)情况一:如下图,点P在点D的左侧,即32t<≤时在△BPD中,以PD为底,则BO是△BOD的高∴高=BO=6,底=3-2t∴S=()1632962t t-=-情况二:如下图,点P在点D的右侧,即332t<≤时在△BPD中,以PD为底,则BO是△BOD的高∴高=BO=6,底=2t-3。
中考数学压轴题专项训练十套(含答案)
做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,1),B(3,1).动点P从点O出发,沿x轴正方向以每秒1个单位长度的速度移动.过点P作PQ⊥OA,垂足为Q.设点P移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日三、解答题23. (11分)如图,抛物线22++=bx ax y 与x 轴交于A (-1,0),B (4,0)两点,与y 轴交于点C ,与过点C 且平行于x 轴的直线交于另一点D ,点P 是抛物线上一动点.(1)求抛物线的解析式及点D 的坐标.(2)点E 在x 轴上,若以A ,E ,D ,P 为顶点的四边形是平行四边形,求此时点P 的坐标.(3)过点P 作直线CD 的垂线,垂足为Q .若将△CPQ 沿CP 翻折,点Q 的对应点为Q ′,是否存在点P ,使点Q ′恰好在x 轴上?若存在,求出此时点P 的坐标;若不存在,请说明理由.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,已知直线112y x=-+与坐标轴交于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E.(1)请直接写出C,D两点的坐标,并求出抛物线的解析式;(2个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于点D.(1)求抛物线的解析式;(2)点K为线段AB上一动点,过点K作x轴的垂线,交直线CD于点H,交抛物线于点G,求线段HG长度的最大值;(3)在直线l上取点M,在抛物线上取点N,使以A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日三、解答题23. (11分)如图,在平面直角坐标系中,直线3342y x =-与抛物线214y x bx c =-++交于A ,B 两点,点A 在x 轴上,点B 的横坐标为-8.(1)求抛物线的解析式.(2)点P 是直线AB 上方的抛物线上一动点(不与点A ,B 重合),过点P 作x 轴的垂线,垂足为C ,交直线AB 于点D ,作PE ⊥AB 于点E . ①设△PDE 的周长为l ,点P 的横坐标为x ,求l 关于x 的函数关系式,并求出l 的最大值.②连接PA ,以PA 为边作图示一侧的正方形APFG .随着点P 的运动,正方形的大小、位置也随之改变.当顶点F 或G 恰好落在y 轴上时,直接写出对应的点P 的坐标.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日三、解答题23. (11分)如图1,点A 为抛物线C 1:2122y x =-的顶点,点B 的坐标为(1,0),直线AB 交抛物线C 1于另一点C .(1)求点C 的坐标;(2)如图1,平行于y 轴的直线x =3交直线AB 于点D ,交抛物线C 1于点E ,平行于y 轴的直线x =a 交直线AB 于点F ,交抛物线C 1于点G ,若FG :DE =4:3,求a 的值;(3)如图2,将抛物线C 1向下平移m (m >0)个单位得到抛物线C 2,且抛物线C 2的顶点为P ,交x 轴负半轴于点M ,交射线AB 于点N ,NQ ⊥x 轴于点Q ,当NP 平分∠MNQ 时,求m 的值.图1 图2做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图1,在平面直角坐标系中,已知点A(0,,点B在x轴正半轴上,且∠ABO=30°.动点P在线段AB上,从点A向点B个单位长度的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边三角形PMN.(1)求直线AB的解析式;(2)求等边三角形PMN的边长(用含有t的代数式表示),并求出当等边三角形PMN的顶点M运动到与原点O重合时t的值;(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边三角形PMN和矩形ODCE重叠部分的面积为S,请求出当0≤t≤2时S与t的函数关系式,并求出S的最大值.图2图1做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,平面直角坐标系xOy中,点A的坐标为( 2,2),点B的坐标为(6,6),抛物线经过A,O,B三点.连接OA,OB,AB,线段AB交y 轴于点E.(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O,B重合),直线EF与抛物线交于M,N两点(点N在y轴右侧),连接ON,BN,当点F在线段OB 上运动时,求△BON面积的最大值,并求出此时点N的坐标;(4)连接AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN 相似(点B,O,P分别与点O,A,N对应)的点P的坐标.做题时间:_______至_______ 家长签字:_____________共__________分钟日期:_____月_____日三、解答题23.(11分)如图,在平面直角坐标系中,已知点A,B,C的坐标分别为( 1,0),(5,0),(0,2).(1)求过A,B,C三点的抛物线解析式.(2)点P从点A出发,沿x轴正方向以每秒1个单位长度的速度向点B移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.设点P运动的时间为t(0≤t≤6)秒,△PBF的面积为S.①求S与t的函数关系式;②当t为何值时,△PBF的面积最大?最大面积是多少?(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-4,0),点B的坐标是(0,b)(b>0).P是直线AB上的一个动点,作PC ⊥x轴,垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上),连接PP′,P′A,P′C.设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若点P′的坐标是(-1,m),求m的值.(2)若点P在第一象限,记直线AB与P′C的交点为D.当P′D:DC=1:3时,求a的值.(3)是否同时存在a,b,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.23.(1)21433y x x =-+; (2)22102412311143422tt S t t t t t ⎧<⎪⎪=-<⎨⎪⎪-+-<<⎩≤≤()()(); (3)存在,t =1或2.中考数学压轴题专项训练(二)参考答案23.(1)213222y x x =-++,(3 2),D ; (2)123(0 2) 2) 2),,,P P P --; (3)存在,点P的坐标为 (或.中考数学压轴题专项训练(三)参考答案中考数学压轴题专项训练(四)参考答案中考数学压轴题专项训练(六)参考答案中考数学压轴题专项训练(七)参考答案中考数学压轴题专项训练(八)参考答案中考数学压轴题专项训练(十)参考答案。
人教版中考数学压轴题 易错题测试综合卷检测试题
一、中考数学压轴题1.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积; (2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与A B D '''△重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x ,使得AA B ''△成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.2.如图1,平面直角坐标系xoy 中,A (-4,3),反比例函数(0)k y k x=<的图象分别交矩形ABOC 的两边AC ,BC 于E ,F (E ,F 不与A 重合),沿着EF 将矩形ABOC 折叠使A ,D 重合.(1)①如图2,当点D 恰好在矩形ABOC 的对角线BC 上时,求CE 的长;②若折叠后点D 落在矩形ABOC 内(不包括边界),求线段CE 长度的取值范围. (2)若折叠后,△ABD 是等腰三角形,请直接写出此时点D 的坐标.3.如图,AB ∥CD ,定点E ,F 分别在直线AB ,CD 上,平行线AB ,CD 之间有一动点P . (1)如图1,当P 点在EF 的左侧时,∠AEP ,∠EPF ,∠PFC 满足数量关系为 ,如图2,当P 点在EF 的右侧时,∠AEP ,∠EPF ,∠PFC 满足数量关系为 . (2)如图3,当∠EPF =90°,F P 平分∠EFC 时,求证:EP 平分∠AEF ;(3)如图4,QE ,QF 分别平分∠PEB 和∠PFD ,且点P 在EF 左侧.①若∠EPF =60°,则∠EQF = .②猜想∠EPF 与∠EQF 的数量关系,并说明理由;4.如图1,正方形CEFG 绕正方形ABCD 的顶点C 旋转,连接AF ,点M 是AF 中点. (1)当点G 在BC 上时,如图2,连接BM 、MG ,求证:BM =MG ;(2)在旋转过程中,当点B 、G 、F 三点在同一直线上,若AB =5,CE =3,则MF = ;(3)在旋转过程中,当点G 在对角线AC 上时,连接DG 、MG ,请你画出图形,探究DG 、MG 的数量关系,并说明理由.5.如果关于x 的一元二次方程20ax bx c ++=有两个不相等的实数根,且其中一个根为另一个根的一半,则称这样的方程为“半等分根方程”.(1)①方程2280x x --= 半等分根方程(填“是”或“不是”);②若(1)()0x mx n -+=是半等分根方程,则代数式2252m mn n ++= ; (2)若点(,)p q 在反比例函数8x y =的图象上,则关于x 的方程260px x q -+=是半等分根方程吗?并说明理由; (3)如果方程20ax bx c ++=是半等分根方程,且相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上,试说明方程20ax bx c ++=的一个根为53. 6.如图,在平面直角坐标中,点O 为坐标原点,ABC ∆的三个顶点坐标分别为()A O m ,,(),B m O -,(),C n O ,5AC =且OBA OAB ∠=∠,其中m ,n 满足725m n m n +=⎧⎨-=⎩.(1)求点A ,C 的坐标;(2)点P 从点A 出发,以每秒1个单位长度的速度沿y 轴负方向运动,设点P 的运动时间为t 秒.连接BP 、CP ,用含有t 的式子表示BPC ∆的面积为S (直接写出t 的取值范围);(3)在(2)的条件下,是否存在t 的值,使得ΔΔ32PAB POC S S =,若存在,请求出t 的值,并直接写出BP 中点Q 的坐标;若不存,请说明理由.7.如图,在菱形ABCD 中,AB a ,60ABC ∠=︒,过点A 作AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F .(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由;②若12,(33)2ADH a S ==+,求sin GAB ∠的值.8.对于平面直角坐标系xOy 中的图形W 1和图形W 2.给出如下定义:在图形W 1上存在两点A ,B (点A ,B 可以重合),在图形W 2上存在两点M ,N ,(点M 于点N 可以重合)使得AM=2BN ,则称图形W 1和图形W 2满足限距关系(1)如图1,点C(1,0),D(-1,0),E(0,3),点P 在线段DE 上运动(点P 可以与点D ,E 重合),连接OP ,CP .①线段OP 的最小值为_______,最大值为_______;线段CP 的取值范直范围是_____; ②在点O ,点C 中,点____________与线段DE 满足限距关系;(2)如图2,⊙O 的半径为1,直线3y x b =+(b>0)与x 轴、y 轴分别交于点F ,G .若线段FG 与⊙O 满足限距关系,求b 的取值范围;(3)⊙O 的半径为r(r>0),点H ,K 是⊙O 上的两个点,分别以H ,K 为圆心,1为半径作圆得到⊙H 和 K ,若对于任意点H ,K ,⊙H 和⊙K 都满足限距关系,直接写出r 的取值范围.9.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若161A E EC=-,求n m 的值. (3)如图二,在(2)的条件下,直线AB 上有一点P ,BP=2,点E 是直线DC 上一动点,在BE 左侧作矩形BEFG 且始终保持BE n BG m =,设AB=33,试探究点E 移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.10.如图,在平面直角坐标系中,点(1,2)A ,(5,0)B ,抛物线22(0)y ax ax a =->交x 轴正半轴于点C ,连结AO ,AB .(1)求点C 的坐标;(2)求直线AB 的表达式;(3)设抛物线22(0)y ax ax a =->分别交边BA ,BA 延长线于点D ,E .①若2AE AO =,求抛物线表达式;②若CDB △与BOA △相似,则a 的值为 .(直接写出答案)11.如图,一张半径为3cm 的圆形纸片,点O 为圆心,将该圆形纸片沿直线l 折叠,直线l 交O 于AB 、两点.(1)若折叠后的圆弧恰好经过点O ,利用直尺和圆规在图中作出满足条件的一条直线l (不写作法,保留作图痕迹),并求此时线段AB 的长度.(2)已知M 是O 一点,1cm OM =.①若折叠后的圆弧经过点M ,则线段AB 长度的取值范围是________.②若折叠后的圆弧与直线OM 相切于点M ,则线段AB 的长度为_________cm .12.如图1,在O 中,弦AB ⊥弦CD ,垂足为点E ,连接AD 、BC 、AO ,AD AB =.(1)求证:2CAO CDB ∠=∠(2)如图2,过点O 作OH AD ⊥,垂足为点H ,求证:2OH CE DE +=(3)如图3,在(2)的条件下,延长DB 、AC 交于点F ,过点D 作DM AC ⊥,垂足为M ,交AB 于N ,若12BC =,3AF BF =,求MN 的长.13.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P .(1)当BP = 时,△MBP ~△DCP ;(2)当⊙P 与正方形ABCD 的边相切时,求BP 的长;(3)设⊙P 的半径为x ,请直接写出正方形ABCD 中恰好有两个顶点在圆内的x 的取值范围.14.在平面直角坐标系xOy 中,点A 为x 轴上的动点,点B 为x 轴上方的动点,连接OA ,OB ,AB .(1)如图1,当点B 在y 轴上,且满足OAB ∠的角平分线与OBA ∠的角平分线交于点P ,请直接写出P ∠的度数;(2)如图2,当点B 在y 轴上,OAB ∠的角平分线与OBA ∠的角平分线交于点P ,点C 在BP 的延长线上,且满足45AOC ∠=︒,求OAB OCB∠∠;(3)如图3,当点B 在第一象限内,点P 是AOB ∆内一点,点M ,N 分别是线段OA ,OB 上一点,满足:1902APB AOB ∠=︒+∠,PM PN =,180ONP OMP ∠+∠=︒.以下结论:①OM ON =;②AP 平分OAB ∠;③BP 平分OBA ∠;④AM BN AB +=.正确的是:________.(请填写正确结论序号,并选择一个正确的结论证明,简写证明过程).15.已知:矩形ABCD 内接于⊙O ,连接 BD ,点E 在⊙O 上,连接 BE 交 AD 于点F ,∠BDC+45°=∠BFD ,连接ED .(1)如图 1,求证:∠EBD=∠EDB ;(2)如图2,点G 是 AB 上一点,过点G 作 AB 的垂线分别交BE 和 BD 于点H 和点K ,若HK=BG+AF ,求证:AB=KG ;(3)如图 3,在(2)的条件下,⊙O 上有一点N ,连接 CN 分别交BD 和 AD 于10点 M 和点 P ,连接 OP ,∠APO=∠CPO ,若 MD=8,MC= 3,求线段 GB 的长.16.如图,在平面直角坐标系中,点O 为坐标原点,直线y =-x + m 交 y 轴的正半轴于点A ,交x 轴的正半轴于点B ,过点A 的直线AF 交x 轴的负半轴于点F ,∠AFO=45°. (1)求∠FAB 的度数;(2)点 P 是线段OB 上一点,过点P 作 PQ ⊥OB 交直线 FA 于点Q ,连接 BQ ,取 BQ 的中点C ,连接AP 、AC 、CP ,过点C 作 CR ⊥AP 于点R ,设 BQ 的长为d ,CR 的长为h ,求d 与 h 的函数关系式(不要求写出自变量h 的取值范围);(3)在(2)的条件下,过点 C 作 CE ⊥OB 于点E ,CE 交 AB 于点D ,连接 AE ,∠AEC=2∠DAP ,EP=2,作线段 CD 关于直线AB 的对称线段DS ,求直线PS 与直线 AF 的交点K 的坐标.17.将一个直角三角形纸片ABO ,放置在平面直角坐标系中,点0(3)A ,,点()0, 3B ,点(0,0)O(I)过边OB 上的动点D (点D 不与点B ,O 重合)作DE OB ⊥交AB 于点E ,沿着DE 折叠该纸片,点B 落在射线BO 上的点F 处.①如图,当D 为OB 中点时,求E 点的坐标;②连接AF ,当AEF ∆为直角三角形时,求E 点坐标:(Ⅱ) P 是AB 边上的动点(点 P 不与点B 重合),将AOP ∆沿OP 所在的直线折叠,得到'A OP ∆,连接'BA ,当'BA 取得最小值时,求P 点坐标(直接写出结果即可).18.如图,在长方形ABCD 中,AB =4cm ,BE =5cm ,点E 是AD 边上的一点,AE 、DE 分别长acm .bcm ,满足(a -3)2+|2a +b -9|=0.动点P 从B 点出发,以2cm/s 的速度沿B→C→D 运动,最终到达点D ,设运动时间为t s .(1)a =______cm ,b =______cm ;(2)t 为何值时,EP 把四边形BCDE 的周长平分?(3)另有一点Q 从点E 出发,按照E→D→C 的路径运动,且速度为1cm/s ,若P 、Q 两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t 为何值时,△BPQ 的面积等于6cm 2.19.已知四边形ABCD 为矩形,对角线AC 、BD 相交于点O ,AD =AO .点E 、F 为矩形边上的两个动点,且∠EOF =60°.(1)如图1,当点E 、F 分别位于AB 、AD 边上时,若∠OEB =75°,求证:DF =AE ; (2)如图2,当点E 、F 同时位于AB 边上时,若∠OFB =75°,试说明AF 与BE 的数量关系;(3)如图3,当点E 、F 同时在AB 边上运动时,将△OEF 沿OE 所在直线翻折至△OEP ,取线段CB 的中点Q .连接PQ ,若AD =2a (a >0),则当PQ 最短时,求PF 之长.20.如图,直角梯形ABCD 中,1//,90,60,3,9,AD BC A C AD cm BC cm O ︒︒∠∠====的圆心1O 从点A 开始沿折线——A D C 以1/cm s 的速度向点C 运动,2O 的圆心2O 从点B 开始沿BA 边以3/cm s 的速度向点A 运动,1O 半径为22,cm O 的半径为4cm ,若12,O O 分别从点A 、点B 同时出发,运动的时间为ts(1)请求出2O 与腰CD 相切时t 的值;(2)在03s t s ≤<范围内,当t 为何值时,1O 与2O 外切?21.如图1,Rt △ABC 中,点D ,E 分别为直角边AC ,BC 上的点,若满足AD 2+BE 2=DE 2,则称DE 为R △ABC 的“完美分割线”.显然,当DE 为△ABC 的中位线时,DE 是△ABC 的一条完美分割线.(1)如图1,AB =10,cos A =45,AD =3,若DE 为完美分割线,则BE 的长是 .(2)如图2,对AC 边上的点D ,在Rt △ABC 中的斜边AB 上取点P ,使得DP =DA ,过点P 画PE ⊥PD 交BC 于点E ,连结DE ,求证:DE 是直角△ABC 的完美分割线.(3)如图3,在Rt △ABC 中,AC =10,BC =5,DE 是其完美分割线,点P 是斜边AB 的中点,连结PD 、PE ,求cos ∠PDE 的值.22.如图1,D 是等边△ABC 外一点,且AD =AC ,连接BD ,∠CAD 的角平分交BD 于E . (1)求证:∠ABD =∠D ;(2)求∠AEB 的度数;(3)△ABC 的中线AF 交BD 于G (如图2),若BG =DE ,求AF DE的值.23.问题探究(1)如图1.在ABC 中,8BC =,D 为BC 上一点,6AD =.则ABC 面积的最大值是_______.(2)如图2,在ABC 中,60BAC ∠=︒,AG 为BC 边上的高,O 为ABC 的外接圆,若3AG =,试判断BC 是否存在最小值?若存在,请求出最小值:若不存在,请说明理由.问题解决:如图3,王老先生有一块矩形地ABCD ,6212AB =,626BC =+,现在他想利用这块地建一个四边形鱼塘AMFN ,且满足点E 在CD 上,AD DE =,点F 在BC 上,且6CF =,点M 在AE 上,点N 在AB 上,90MFN ∠=︒,这个四边形AMFN 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.24.已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.25.小明研究了这样一道几何题:如图1,在ABC 中,把AB 绕点A 顺时针旋转()0180a a ︒<<︒得到AB ',把AC 绕点A 逆时针旋转β得到AC ',连接B C ''.当180a β+=︒时,请问AB C ''△边B C ''上的中线AD 与BC 的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当ABC 为等边三角形时,猜想AD 与BC 的数量关系为AD =_______BC ;②如图3,当90BAC ∠=︒,8BC =时,则AD 长为________. 猜想论证:(2)在图1中,当ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.拓展应用:(3)如图4,在四边形ABCD ,90C ∠=︒,120A B ∠+∠=︒,3BC =6CD =,3DA =P ,使PDC △与PAB △之间满足小明探究的问题中的边角关系?若存在,请画出点P 的位置(保留作图痕迹,不需要说明)并直接写出PDC △的边DC 上的中线PQ 的长度;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题 1.B解析:(1)2452cm ;(2)22331624(0)22588020016(4)3335x x x y x x x ⎧--+≤<⎪⎪=⎨⎪-+≤≤⎪⎩;(3)存在,使得AA B ''△成为等腰三角形的x 的值有:0秒、32秒、95. 【解析】 【分析】(1)先用勾股定理求出BD 的长,再根据旋转的性质得出10B D BD cm ''==,2CD B D BC cm '=''-=,利用B D A ∠'''的正切值求出CE 的值,利用三角形的面积差即可求阴影部分的面积;(2)分类讨论,当1605x ≤<时和当1645x ≤≤时,分别列出函数表达式; (3)分类讨论,当AB A B '=''时;当AA A B '=''时;当AB AA '='时,根据勾股定理列方程即可. 【详解】 解:(1)6AB cm =,8AD cm =,10BD cm ∴=,根据旋转的性质可知10B D BD cm ''==,2CD B D BC cm '=''-=,tan A B CEB D A A D CD'''''∠==''', 682CE∴=, 32CE cm ∴=,()28634522222A B CE A B D CED S S S cm ''''''⨯∴==-⨯÷=-; (2)①当1605x ≤<时,22CD x '=+,32CE x =, 233+22CD E S x x '∴=△, 22133368242222y x x x ∴=⨯⨯-=--+; ②当1645x ≤≤时,102BC x =-,()41023CE x =- ()221488020010223333y x x x ∴=⨯-=-+. (3)①如图1,当AB A B '=''时,0x =秒;②如图2,当AA A B '=''时,1825A N BM BB B M x '=='+'=+,245A M NB '==,2236AN A N +'=,222418623655x ⎛⎫⎛⎫∴-++= ⎪ ⎪⎝⎭⎝⎭,解得:6695x -=秒,(6695x --=舍去); ③如图2,当AB AA '='时,1825A N BM BB B M x '=='+'=+,245A M NB '==, 2222AB BB AN A N +'=+'22224183646255x x ⎛⎫⎛⎫∴+=-++ ⎪ ⎪⎝⎭⎝⎭解得:32x =秒. 综上所述:使得AA B ''△成为等腰三角形的x 的值有:0秒、32秒、6695-.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.2.E解析:(1)①EC =2; ②748CE <<;(2)点D 的坐标为233(,)82-或113(,)55- 【解析】 【分析】(1)①根据A (-4,3)和反比例函数图象上点的特征可得E 、F 的坐标,从而可表示出AE 、AF 并求得43=AE AF ,从而证得△AEF ∽△ACB ,利用相似三角形的性质的折叠的性质可推出12EC AC =,即可求得结果; ②当D 在BO 上时,由折叠的性质和同角的余角相等证得△AEF ∽△BAD ,设AF =x ,利用勾股定理可列出方程,解之得AF 的长,进而求出AE 、CE 的长,即可得出CE 的取值范围; (2)由△ABD 是等腰三角形,可得AD BD =或AD AB =,分情况进行求解即可. 【详解】解:(1)①由题意得(,3)3k E ,(4,)4--k F , ∵k 0<,则3=-k EC ,4=-k FB , ∴43=+k AE ,34=+k AF , ∴14(12)433133(12)44++===++k k AE k AF k , ∵由A (-4,3)得:4,3AC AB ==,∴43=AC AB , ∴AE ACAF AB=, 又∵∠A =∠A , ∴△AEF ∽△ACB , ∴∠AEF =∠ACB , ∴EF ∥CB ,如图2,连接AD 交EF 于点H ,由折叠的性质得:AH =DH , ∵D 在BC 上, ∴1==AE AHEC DH,则AE EC =, ∴122==EC AC ; ②由折叠得EF 垂直平分AD ,∴90AHE =︒∠,则90∠+∠=︒EAH AEF , 又∵90∠+∠=∠=︒BAD EAH BAC , ∴∠=∠BAD AEF ,如图,当D 落在BO 上时,∵90∠=∠=︒EAF ABD ,∴△AEF ∽△BAD , ∴=AE AF AB BD ,则43==AB AE BD AF , ∴4393344=÷=⨯=BD AB , 设AF =x ,则FB =3-x ,FD=AF =x ,在Rt △BDF 中,由勾股定理得:222FB BD FD +=,即2229(3)4⎛⎫-+= ⎪⎝⎭x x ,解得:7532=x ,∴7532=AF , ∴44752533328==⨯=AE AF , ∴2574488=-=-=CE AE , ∴748CE <<,即折叠后点D 落在矩形ABOC 内(不包括边界),CE 的取值范围为748CE <<; (2)∵△ABD 是等腰三角形,显然AB AD ≠, ∴AD BD =或AD AB =,①当AD BD =时,BAD ABD ∠=∠, 由(1)得:∠=∠BAD AEF , ∴∠=∠ABD AEF ,如图,过点D 作//DG x 轴分别交AB 、y 轴于点M 、N ,则DM AB ⊥,4==MN AC , ∴90∠=∠=︒BMD EAF ,1322==BM AB , ∴△AEF ∽△MBD , ∴=AE AF MB MD ,则43==MB AE MD AF , ∴43393248=÷=⨯=MD MB , ∴923488=-=-=DN MN MD , ∴点D 的坐标为233(,)82-; ②当AD AB =时,如图,过点D 作//DG x 轴分别交AB 、y 轴于点M 、N ,则3AD AB ==,DM AB ⊥,4==MN AC , ∴90∠=∠=︒AMD EAF , 由(1)得∠=∠BAD AEF , ∴△AEF ∽△MAD , ∴=AE AF AM MD ,则43==AM AE MD AF , 设4=AM a ,则3=MD a ,在Rt △MAD 中,由勾股定理得:222+=AM MD AD , 即222(4)(3)3+=a a ,解得:35a =,∴125=AM,95=MD,∴123355=-=-=BM AB AM,911455=-=-=DN MN MD,∴点D的坐标为113 (,)55 -;综上所述,若折叠后,△ABD是等腰三角形,点D的坐标为233(,)82-或113(,)55-.【点睛】本题考查了反比例函数与几何综合、相似三角形的判定与性质综合、等腰三角形的判定与性质,解题的关系是熟悉反比例函数图象上点的特征和熟练掌握相似三角形的判定与性质.3.E解析:(1)∠EPF=∠AEP+∠PFC,∠AEP+∠EPF+∠PFC=360°;(2)见解析;(3)①150°,∠EQF=180°-12∠EP F【解析】【分析】(1)如下图,过点P作AB的平行线,根据平行线的性质可推导出角度关系;(2)如下图,根据(1)的结论,可得∠AEP+∠PFC=∠EPF=90°,利用△EPF内角和为180°可推导得出∠PEF+∠PFE=90°,从而得出∠PEF=∠AEP;(3)①根据(1)的结论知:∠AEP+∠PFC=∠EPF=60°,再利用角平分线的性质得出∠PEQ+∠PFQ=150°,最后在四边形EPFQ中得出结论;②根据(1)的结论知:∠AEP+∠PFC=∠EPF°,再利用角平分线的性质得出∠PEQ+∠PFQ=180°-1EPF2∠,最后在四边形EPFQ中得出结论.【详解】(1)如下图,过点P作PQ∥AB∵PQ∥AB,AB∥CD,∴PQ∥CD ∴∠AEP=∠EPQ,∠QPF=∠PFC 又∵∠EPF=∠EPQ+∠QPF∴∠EPF=∠AEP+∠PFC如下图,过点P作PQ∥AB同理,AB ∥QP ∥CD∴∠AEP+∠QPE=180°,∠QPF+∠PFC=180°∴∠AEP+∠EPF+∠PFC=∠AEP+∠EPQ+∠QPF+∠PFC=360° (2)根据(1)的结论知:∠AEP+∠PFC=∠EPF=90° ∵PF 是∠CFE 的角平分线,∴∠PFC=∠PFE 在△PEF 中,∵∠EPF=90°,∴∠PEF+∠PFE=90° ∴∠PEF+∠PFE=∠AEP+∠PFC∴∠PEF=∠AEP ,∴PE 是∠AEF 的角平分线(3)①根据(1)的结论知:∠AEP+∠PFC=∠EPF=60° ∴∠BEP+∠PFD=180°-∠AEP+180°-∠PFC=300° ∵EQ 、QF 分别是∠PEB 和∠PFD 的角平分线 ∴∠PEQ=QEB ,∠PFQ=∠QFD ∴∠PEQ+∠PFQ=150°在四边形PEQF 中,∠EQF=360°-∠EPF -(∠PEQ+∠PFQ)=360°-60°-150°=150° ②根据(1)的结论知:∠AEP+∠PFC=∠EPF∴∠BEP+∠PFD=180°-∠AEP+180°-∠PFC=360°-∠EPF ∵EQ 、QF 分别是∠PEB 和∠PFD 的角平分线 ∴∠PEQ=∠QEB ,∠PFQ=∠QFD ∴∠PEQ+∠PFQ=()1360EPF 2∠︒-=180°-1EPF 2∠ ∴在四边形PEQF 中:∠EQF=360°-∠EPF -(∠PEQ+∠PFQ)=360°-EPF ∠-(180°-1EPF 2∠)=180°-1EPF 2∠ 【点睛】本题考查“M ”型模型,解题关键在过两条平行线中间的点作已知平行线的平行线,然后利用平行线的性质进行角度转化可推导结论.4.D解析:(1)证明见解析;(22953)DG 2MG ,理由见解析. 【解析】 【分析】(1)连接MG 并延长交AB 于N 点,证明△ANM ≌△FGM 后得到MG=MN ,AN=CG ,进而得到BN=BG ,得到△ANG 为等腰直角三角形,即可证明MG=MB. (2)分两种情况画出图形再利用(1)中的思路结合勾股定理即可求解.(3)先画出图形,然后证明△ADG ≌△ABG ,得到DG=BG ,又△BMG 为等腰直角三角形,故而得到DG=BG=2MG. 【详解】解:(1) 连接MG 并延长交AB 于N 点,如下图所示:∵GF ∥AN , ∴∠NAM=∠GFM 在△ANM 和△FGM 中∠∠=⎧⎪=⎨⎪∠=∠⎩BAM GFM AM FMNMA GMF ,∴△ANM ≌△FGM(ASA) ∴MG=MN ,CG=GF=AN ∴AB-AN=BC-CG ∴NB=GB∴△NBG 为等腰直角三角形 又M 是NG 的中点∴由直角三角形斜边上的中线等于斜边的一半知: 故有:MG=MB. (2)分类讨论:情况一:当B 、G 、F 三点在正方形ABCD 外同一直线上时延长MG 到N 点,并使得MG=MN ,连接AN ,BN∴∠∠=⎧⎪=⎨⎪=⎩MN MG AMN GMF AM FM ,∴△AMN ≌△FMG(SAS) ∴AN=GF=GC ,∠NAM=∠GFM ∴AN ∥GF∴∠NAB+∠ABG=180° 又∠ABC=90° ∴∠NAB+∠CBG=90°又在△BCG 中,∠BCG+∠CBG=90° ∴∠NAB=∠BCG∴在△ABN 中和△CBG 中:∠∠=⎧⎪=⎨⎪=⎩AB BC NAB GCB AN CG ,∴△ABN ≌△CBG(SAS)∴BN=BG ,∠ABN=∠CBG ∴∠ABC=∠NBG=90°∴△NBG 是等腰直角三角形,且∠BGN=45° 在Rt △BCG 中,2222=534--=BG BC CG 过M 点作MH ⊥BG 于H 点,∴△MHB 为等腰直角三角形 ∴MH=BH=HG=12BG=2 在Rt △MFH 中,2222MF=2529+=+=MH HF 情况二:当B 、G 、F 三点在正方形ABCD 内同一直线上时 如下图所示,延长MG 到MN ,并使得MG=MN ,连接NA 、NB ,同情况一中证明思路,∠∠=⎧⎪=⎨⎪=⎩MN MG AMN GMF AM FM ,△AMN ≌△FMG(SAS)∴AN=GF=GC ,∠NAM=∠GFM∴AN ∥GF∴∠NAB=∠ABG又∠ABG+∠GBC=90°∠GBC+∠BIF=90°∴∠BIF=∠ABG又∠BIF=∠BCG ,∠ABC=∠NAB∴∠NAB=∠GCB∴在△ABN 中和△CBG 中:∠∠=⎧⎪=⎨⎪=⎩AB BC NAB GCB AN CG ,∴△ABN ≌△CBG(SAS)∴BN=BG ,∠ABN=∠CBG∴∠ABC=∠NBG=90°∴△NBG 是等腰直角三角形,且∠BGN=45°在△BCG 中,2222=534-=-=BG BC CG过M 点作MH ⊥BG 于H 点,∴△MHB 为等腰直角三角形∴MH=BH=HG=12BG=2 ∴HF=HG-GF=2-1=1在Rt △MFH 中,2222MF=215+=+=MH HF 29 5.(3)由题意作出图形如下所示:DG 、MG 的数量关系为:2,理由如下:∵G 点在AC 上∴∠DAG=∠BAG=45°在△ADG 和△ABG 中:∠∠=⎧⎪=⎨⎪=⎩AD AB DAG BAG AG AG ,∴△ADG ≌△BAG(SAS)∴DG=BG又由(2)中的证明过程可知:△MBG 为等腰直角三角形∴2MG∴2MG故答案为:2MG.【点睛】本题考查了正方形的旋转、三角形的全等、勾股定理等知识,难度很大,关键是要能正确做出图形,利用数形结合的思想,熟练的使用正方形的性质是解题的关键.5.(1)①不是;②0;(2)若点(,)p q 在反比例函数8y x=的图象上,则关于x 的方程260px x q -+=是半等分根方程,理由详见解析;(3)详见解析【解析】【分析】(1)①解方程2280x x --=,根据“半等分根方程”定义作出判断即可;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2n m -=,即:n =-2m 或m =-2n ,分别代入代数式2252m mn n ++=结果均为0 (2)根据点(,)p q 在反比例函数8y x =的图象上,得到8q p =,代入260px x q -+=,得到关于x 的方程2860px x p-+=,解方程,用含p 的式子表示x ,根据“半等分根方程”定义判断即可;(3)根据两点(1,)M t s +,(4,)N t s -都在抛物线上,且纵坐标相等,可以求出对称轴为52x =,根据方程20ax bx c ++=是半等分根方程,得到两根关系,根据抛物线对称轴为 12522x x +=,即可求出两个根,问题得证. 【详解】解:(1)①解方程2280x x --=得124,2x x ==-,不符合“半等分根方程”定义, 故答案为:不是;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2n m-=,即:n =-2m 或m =-2n , 当n =-2m 时,()()22225522022m mn n m m n m ++=+-+-=; 当m =-2n 时,()()22225522022m mn n n n n n ++=-+-+=; 故答案为:0;(2)若点(,)p q 在反比例函数8y x=的图象上,则关于x 的方程260px x q -+=是半等分根方程理由:∵点(,)p q 在反比例函数8y x=的图象上 ∴8q p =代入方程260px x q -+=得: 2860px x p -+= 解得:12x p =,24x p = ∵1212x x = ∴方程260px x q -+=是半等分根方程(3)∵相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上, ∴抛物线的对称轴为:(1)(4)522t t x ++-== 又∵方程20ax bx c ++=是半等分根方程∴设20ax bx c ++=的两个根分别为1x 和2x 令1212x x =则有:12522x x +=所以153x =,2103x = 所以方程20ax bx c ++=的一个根为53得证. 【点睛】本题为“新定义问题”,考查了学生自主学习的能力,解决此题关键是理解新定义概念,并结合所学数学知识进行解答.6.A解析:(1)A (0,4),C (3,0);(2)S=()()51004251042t t t t ⎧-+<<⎪⎪⎨⎪->⎪⎩;(3)存在,满足条件的t 的值为3617或36,点Q 的坐标为162,17⎛⎫- ⎪⎝⎭或()2,16--. 【解析】【分析】(1)解方程组求出m ,n 即可解决问题.(2)分两种情形:如图1中,当0<t <4时,如图2中,当t >4时,根据S=12•BC•OP 求解即可.(3)分两种情形分别构建方程求解即可.【详解】解:(1)由725m n m n +=⎧⎨-=⎩, 解得:43m n =⎧⎨=⎩, ∴A (0,4),C (3,0);(2)如图1中,当0<t <4时,S=12•BC•OP=12×5×(4-t )=-52t+10. 如图2中,当t >4时,S=12•BC•OP=12×5×(t-4)=52t-10. 综上所述,S=()()51004251042t t t t ⎧-+<<⎪⎪⎨⎪->⎪⎩, (3)当04t <<时,由题意,1314(4)3222t t ⨯⨯=⨯⨯-⨯, 解得3617t =, 此时,363241717OP =-=, 32(0,)17P ∴, (4,0)B -,BQ ∴的中点Q 的坐标为162,17⎛⎫- ⎪⎝⎭, 当4t >时,由题意,1314(4)3222t t ⨯⨯=⨯⨯-⨯, 解得36t =,此时36432OP =-=,(0,32)P ∴-,(4,0)B -,BP ∴的中点Q 的坐标为(2,16)--.综上所述,满足条件的t 的值为3617或36.点Q 的坐标为16(2,)17-或(2,16)--. 【点睛】本题属于三角形综合题,考查了解方程组,三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型. 7.E解析:(1)3EF EC =,见解析;(2)27BK =;(3)①AGH 是等边三角形,见解析;②1(62)4- 【解析】【分析】 (1)连接EF ,AC ,由菱形的性质,可证Rt AEB Rt AFD ∆≅∆,然后得到AEF ∆为等边三角形,由解直角三角形得到3AE EC =,即可得到答案;(2)由菱形的性质和等边三角形的性质,求出AF 的长度,然后得到BF 的长度,然后由相似三角形的性质,得到AB BK FB BA=,即可求出答案; (3)①由等边三角形的性质,先证明ABG ACH ≅,然后得到AG AH =,然后得到60BAH GAB GAH ︒∠+∠=∠=,即可得到答案; ②由三角形的面积公式得到31DH =+,然后得到AHF △为等腰直角三角形,再由解直角三角形的性质,即可求出答案.【详解】解:(1)3EF EC =;理由:∵四边形ABCD 是菱形,60ABC ∠=︒,,60,//AB AD BC ABC ADC AD BC ︒∴==∠=∠=,120BAD ︒∴∠=,∵AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F ,90AEB AFD ︒∴∠=∠=Rt AEB Rt AFD ∴∆≅∆,,30AE AF BAE DAF ∴=∠=∠=︒,60EAF ∴∠=︒,AEF ∴∆为等边三角形,EF AE ∴=.连接AC ,1602BAC BAD ︒∴∠=∠= 30EAC ︒∴∠= 在Rt AEC ∆中,tan EC EAC AE ∠=3AE EC ∴=,3EF EC ∴=(2)如图:∵四边形ABCD 是菱形,60,ABC AB a ︒∠==, ACD ∴是等边三角形,//,,60AB CD AD CD a ADC ︒==∠=.AF CD ⊥,垂足为F , 1,902CF DF a BAF AFD ︒∴==∠=∠= 在Rt ADF 中,sin AF ADF AD ∠=, 3AF a ∴=在Rt ABF 中,22BF AB AF =+,72BF a ∴= AK BF ⊥,垂足为K ,90AKB FAB ︒∴∠=∠=ABK FBA ∠=∠~Rt AKB Rt FAB ∴∆∆,AB BK FB BA∴=, 27BK a ∴=, (3)如图:①AGH 是等边三角形.理由:连接AC .,60AB BC ABC ︒=∠=,ABC ∴为等边三角形,,60AB AC ABC ACB ︒∴=∠=∠=,120ABG ︒∴∠=.//AB CD ,60BCH ABC ︒∴∠=∠=,120ACH ︒∴∠=ABG ACH ∴∠=∠,又BG CH =,ABG ACH ∴≅,,AG AH GAB HAC ∴=∠=∠.60BAH HAC BAC ︒∠+∠=∠=,60BAH GAB GAH ︒∴∠+∠=∠=,AGH ∴为等边三角形;②ADC 为等边三角形,2,1AD DC AC CF DF ∴=====,AF ∴=.1(32ADH S =, 11(322DH ∴⨯=,1DH ∴=1CH DH CD ∴=-=,HF DH DF =-=AF HF ∴=,AHF ∴为等腰直角三角形,45AHF ︒∴∠=.过点C 作CM AH ⊥,垂足为M .在Rt CMH 中,sin CM CHM CH∠=, 12CM ∴=, 在Rt AMC 中,sin CM MAC AC ∠=, 1sin 4MAC ∴∠=. 又GAB HAC ∠=∠, 1sin sin 4GAB HAC ∴∠=∠=; 【点睛】本题考查了解直角三角形,相似三角形的判定和性质,等边三角形的判定和性质,菱形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,解题的关键是熟练掌握所学的定理和性质,正确作出辅助线进行解题.8.C解析:(1)①32,3,32CP ≤≤,②O;(2)13b ≥;(3)0<r≤3. 【解析】【分析】(1)①根据垂线段最短以及已知条件,确定OP ,CP 的最大值,最小值即可解决问题.②根据限距关系的定义判断即可.(2)直线3y x b =+与x 轴、y 轴分别交于点F ,G (0,b ),分三种情形:①线段FG 在⊙O 内部,②线段FG 与⊙O 有交点,③线段FG 与⊙O 没有交点,分别构建不等式求解即可.(3)如图3中,不妨设⊙K ,⊙H 的圆心在x 轴上位于y 轴的两侧,根据⊙H 和⊙K 都满足限距关系,构建不等式求解即可.【详解】(1)①如图1中,∵D (-1,0),E(03,∴OD=1,3OE =∴3OE tan EDO OD∠== ∴∠EDO=60°,当OP ⊥DE 时,3•60OP OD sin =︒=,此时OP 的值最小, 当点P 与E 重合时,OP 3当CP ⊥DE 时,CP 的值最小,最小值•603CD cos =︒=当点P 与D 或E 重合时,PC 的值最大,最大值为2,3332CP ≤. ②根据限距关系的定义可知,线段DE 上存在两点M ,N ,满足OM=2ON ,故点O 与线段DE 满足限距关系.故答案为O .(2)直线3y x b =+与x 轴、y 轴分别交于点F ,G (0,b ), 当0<b <1时,线段FG 在⊙O 内部,与⊙O 无公共点,此时⊙O 上的点到线段FG 的最小距离为1-b ,最大距离为1+b , ∵线段FG 与⊙O 满足限距关系,∴1+b ≥2(1-b ),解得13b ≥, ∴b 的取值范围为131b ≤<. 当1≤b ≤2时,线段FG 与⊙O 有公共点,线段FG 与⊙O 满足限距关系, 当b >2时,线段FG 在⊙O 的外部,与⊙O 没有公共点,此时⊙O 上的点到线段FG 的最小距离为121b -,最大距离为b+1, ∵线段FG 与⊙O 满足限距关系,∴11212b b ⎛⎫+≥-⎪⎝⎭, 而11212b b ⎛⎫+≥- ⎪⎝⎭总成立, ∴b >2时,线段FG 与⊙O 满足限距关系,综上所述,b 的取值范围为13b ≥. (3)如图3中,不妨设⊙K ,⊙H 的圆心在x 轴上位于y 轴的两侧,两圆的距离的最小值为2r-2,最大值为2r+2,∵⊙H 和⊙K 都满足限距关系,∴2r+2≥2(2r-2),解得r ≤3,故r 的取值范围为0<r ≤3.【点睛】本题属于圆综合题,考查了解直角三角形,垂线段最短,直线与圆的位置关系,限距关系的定义等知识,解题的关键是理解题意,学会利用参数构建不等式解决问题,属于中考创新题型.9.A解析:(1)5π;(2)3;(3)存在,63+【解析】【分析】(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.解直角三角形,求出∠ABA1,得到旋转角即可解决问题;(2)由△BCE∽△BA2D2,推出222A DCE nCB A B m==,可得CE=2nm,由161A EEC=-推出16A CEC=,推出A1C=26nm•,推出BH=A1C=26nm•,然后由勾股定理建立方程,解方程即可解决问题;(3)当A、P、F,D,四点共圆,作PF⊥DF,PF与CD相交于点M,作MN⊥AB,此时PF 的长度为最小值;先证明△FDG∽△FME,得到3FGFFM FED==,再结合已知条件和解直角三角形求出PM和FM的长度,即可得到PF的最小值.【详解】解:(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.∴AD=HA1=n=1,在Rt△A1HB中,∵BA1=BA=m=2,∴BA1=2HA1,∴∠ABA1=30°,∴旋转角为30°,∵22125+=∴D到点D1所经过路径的长度3055π⋅⋅=;(2)∵△BCE∽△BA2D2,∴222A D CE n CB A B m ==, ∴2n CE m=, ∵161EA EC=-, ∴16A C EC =, ∴A 1C=26n m⋅, ∴BH=A 1C=2226n m n m -=⋅, ∴42226n m n m-=⋅, ∴m 4﹣m 2n 2=6n 4, ∴242416n n m m-=•, ∴33n m =(负根已舍去). (3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;由(2)可知,33BE n BG m ==, ∵四边形BEFG 是矩形,∴3FG FE = ∵∠DFG+∠GFM=∠GFM+∠MFE=90°,∴∠DFG=∠MFE ,∵DF ⊥PF ,即∠DFM=90°,∴∠FDM+∠GDM=∠FDM+∠DFM=∠FDM+90°,∴∠FDG=∠FME ,∴△FDG ∽△FME ,∴3FG F FM FE D ==,∵∠DFM=90°,tan FD FMD FM ∠==, ∴∠FDM=60°,∠FMD=30°,∴2FM DM =;在矩形ABCD 中,有AD AB =3=,则3AD =, ∵MN ⊥AB ,∴四边形ANMD 是矩形,∴MN=AD=3,∵∠NPM=∠DMF=30°,∴PM=2MN=6,∴NP=AB =,∴DM=AN=BP=2,∴2FM DM ===∴6PF PM MF =+=【点睛】本题考查点的运动轨迹,旋转变换、解直角三角形、弧长公式、矩形的性质、相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于压轴题,中考常考题型.正确作出辅助线,正确确定动点的位置,注意利用数形结合的思想进行解题.10.C解析:(1)点C 的坐标为(2,0);(2)1522y x =-+;(3)①2481515y x x =-;②1013. 【解析】【分析】(1)求得对称轴,由对称性可知C 点坐标;(2)利用待定系数法求解可得;(3)①由AE=3AO 的关系,建立K 型模型相似,求得点E 坐标代入解析式可得;②若△CDB 与△BOA 相似,则∠OAB=∠CDB=90°,由相似关系可得点D 坐标,代入解析式y=ax 2-2ax 可得a 值.【详解】解:(1)把0y =代入22y ax ax =-,得220ax ax -=,解得:0x =,或2x =.∵点C 在x 轴正半轴上,∴点C 的坐标为(2,0).(2)设直线表达式为y kx b =+,把点(1,2)A ,(5,0)B 分别代入y kx b =+,得250k b k b +=⎧⎨+=⎩,解得1252k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线AB 的表达式为:1522y x =-+. (3)①作AH x ⊥轴于点H ,EF AH ⊥于点F (如图),∵222125OA =+=,2222420AB ,22525OB ==,∴222OA AB OB +=. ∴90EAO OAB ∠=∠=︒.由EFA AHO △∽△,得2EF FA EA AH HO AO ===, ∴4EF =,2FA =,∴点E 坐标为()3,4-.把(3,4)E -代入22y ax ax =-,得964a a +=,解得:415a =. ∴2481515y x x =-. ②若△CDB 与△BOA 相似,如图,作DG ⊥BC ,∴CD BD BC AO AB BO==,∠OAB=∠CDB=90°, 35525==, ∴355CD =655BD =, ∵523BC =-=, ∴356565535DG ==, ∴156225x -+=,解得:135x =, ∴点D 的坐标为:(135,65), 把点D 代入22y ax ax =-,即16913622555a a -⨯= 解得:1013a =; 故答案为:1013. 【点睛】本题是二次函数的综合问题,考查了二次函数的基本性质,数形结合与K 型模型的使用,以及相似存在性问题,内容综合较好,难度相当入门级压轴问题.11.A解析:(1)图见解析,33cm ;(2)①25cm 42cm AB ≤≤26【解析】【分析】(1)连接AO ,直线l 垂直平分PO .13cm 22OH PO ==,在Rt △AHO 中即可求解; (2)①分两种情况求解;②过O 作弦AB 的垂直与圆交于点D ,与弧AB 交于点C ,与AB 交于点E ,过M 作OM 的垂线,两条垂线的交点为O',连接AO ,得到OO'垂直平分AB ,O'为弧ABM 所在圆的圆心,10cm OO '=,在Rt △ADO 中即可求解;。
人教版中考数学压轴题 易错题检测试题
一、中考数学压轴题1.将一个直角三角形纸片ABO ,放置在平面直角坐标系中,点0(3)A ,,点()0, 3B ,点(0,0)O(I)过边OB 上的动点D (点D 不与点B ,O 重合)作DE OB ⊥交AB 于点E ,沿着DE 折叠该纸片,点B 落在射线BO 上的点F 处.①如图,当D 为OB 中点时,求E 点的坐标;②连接AF ,当AEF ∆为直角三角形时,求E 点坐标:(Ⅱ) P 是AB 边上的动点(点 P 不与点B 重合),将AOP ∆沿OP 所在的直线折叠,得到'A OP ∆,连接'BA ,当'BA 取得最小值时,求P 点坐标(直接写出结果即可).2.如图1,在O 中,弦AB ⊥弦CD ,垂足为点E ,连接AD 、BC 、AO ,AD AB =.(1)求证:2CAO CDB ∠=∠(2)如图2,过点O 作OH AD ⊥,垂足为点H ,求证:2OH CE DE +=(3)如图3,在(2)的条件下,延长DB 、AC 交于点F ,过点D 作DM AC ⊥,垂足为M ,交AB 于N ,若12BC =,3AF BF =,求MN 的长.3.注意:为了使同学们更好地解答本题的第(Ⅱ)问,我们提供了一种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行解答即可.如图,将一个矩形纸片ABCD ,放置在平面直角坐标系中,()0,0A ,()4,0B ,()0,3D ,M 是边CD 上一点,将ADM 沿直线AM 折叠,得到ANM . (Ⅰ)当AN 平分MAB ∠时,求DAM ∠的度数和点M 的坐标;(Ⅱ)连接BN ,当1DM =时,求ABN 的面积;(Ⅲ)当射线BN 交线段CD 于点F 时,求DF 的最大值.(直接写出答案) 在研究第(Ⅱ)问时,师生有如下对话:师:我们可以尝试通过加辅助线,构造出直角三角形,寻找方程的思路来解决问题. 小明:我是这样想的,延长MN 与x 轴交于P 点,于是出现了Rt NAP △.小雨:我和你想的不一样,我过点N 作y 轴的平行线,出现了两个Rt NAP △.4.如图所示,在平面直角坐标系中,点(),C m m 在一三象限角平分线上,点(),0B n 在x 轴上,且m=2n -+2n -+4,点A 在y 轴的正半轴上;四边形AOBC 的面积为6 (1)求点A 的坐标;(2)P 为AB 延长线上一点,//PQ OC ,交CB 延长线于Q ,探究OAP ∠、ABQ ∠、Q ∠的数量关系并说明理由;(3)作AD 平行CB 交CO 延长线于D ,BE 平分CBx ∠,BE 反向延长线交CO 延长线于,若设ADO α∠=,F β∠=,试求2αβ+的值.5.如图1,在平面直角坐标系中,抛物线239334y x x =--x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C .(1)过点C 的直线5334y x =-x 轴于点H ,若点P 是第四象限内抛物线上的一个动点,且在对称轴的右侧,过点P 作//PQ y 轴交直线CH 于点Q ,作//PN x 轴交对称轴于点N ,以PQ PN 、为邻边作矩形PQMN ,当矩形PQMN 的周长最大时,在y 轴上有一动点K ,x 轴上有一动点T ,一动点G 从线段CP 的中点R 出发以每秒1个单位的速度沿R K T →→的路径运动到点T ,再沿线段TB 以每秒2个单位的速度运动到B 点处停止运动,求动点G 运动时间的最小值:(2)如图2, 将ABC ∆绕点B 顺时针旋转至A BC ''∆的位置, 点A C 、的对应点分别为A C ''、,且点C '恰好落在抛物线的对称轴上,连接AC '.点E 是y 轴上的一个动点,连接AE C E '、, 将AC E ∆'沿直线C E '翻折为A C E ∆'', 是否存在点E , 使得BAA ∆'为等腰三角形?若存在,请求出点E 的坐标;若不存在,请说明理由.6.在平面直角坐标系中,抛物线24y mx mx n =-+(m >0)与x 轴交于A ,B 两点,点B在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且:3:4∆∆=ABC BCE S S .(1)求点A ,点B 的坐标;(2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上, ①求直线CE 的解析式;②求抛物线的解析式.7.已知,在Rt △ABC 和Rt △DEF 中,∠ACB=∠EDF=90°,∠A=30°,∠E=45°,AB =EF =6,如图1,D 是斜边AB 的中点,将等腰Rt △DEF 绕点D 顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE ,AC 相交于点M ,直线DF ,BC 相交于点N .(1)如图1,当α=60°时,求证:DM =BN ;(2)在上述旋转过程中,DN DM 的值是一个定值吗?请在图2中画出图形并加以证明; (3)如图3,在上述旋转过程中,当点C 落在斜边EF 上时,求两个三角形重合部分四边形CMDN 的面积.8.如图,在平面直角坐标中,点O 为坐标原点,ABC ∆的三个顶点坐标分别为()A O m ,,(),B m O -,(),C n O ,5AC =且OBA OAB ∠=∠,其中m ,n 满足725m n m n +=⎧⎨-=⎩.(1)求点A ,C 的坐标;(2)点P 从点A 出发,以每秒1个单位长度的速度沿y 轴负方向运动,设点P 的运动时间为t 秒.连接BP 、CP ,用含有t 的式子表示BPC ∆的面积为S (直接写出t 的取值范围);(3)在(2)的条件下,是否存在t 的值,使得ΔΔ32PAB POC S S =,若存在,请求出t 的值,并直接写出BP 中点Q 的坐标;若不存,请说明理由.9.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.10.如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx+c 的图象与x 轴交于A (﹣3,0)、B (2,0)两点,与y 轴交于点C (0,3).(1)求抛物线的解析式;(2)点E (m ,2)是直线AC 上方的抛物线上一点,连接EA 、EB 、EC ,EB 与y 轴交于D .①点F 是x 轴上一动点,连接EF ,当以A 、E 、F 为顶点的三角形与△BOD 相似时,求出线段EF 的长;②点G 为y 轴左侧抛物线上一点,过点G 作直线CE 的垂线,垂足为H ,若∠GCH =∠EBA ,请直接写出点H 的坐标.11.平面直角坐标系中,点A 、B 分别在x 轴正半轴、y 轴正半轴上,AO =BO ,△ABO 的面积为8.(1)求点A 的坐标;(2)点C 、D 分别在x 轴负半轴、y 轴正半轴上(D 在B 点上方),AB ⊥CD 于E ,设点D 纵坐标为t ,△BCE 的面积为S ,求S 与t 的函数关系;(3)在(2)的条件下,点F 为BE 中点,连接OF 交BC 于G ,当∠FOB +∠DAE =45°时,求点E 坐标.12.如图1,已知抛物线21833y x x c =--+与x 轴相交于A 、B 两点(B 点在A 点的左侧),与y 轴相交于C 点,且10AB =.(1)求这条抛物线的解析式;(2)如图2,D 点在x 轴上,且在A 点的右侧,E 点为抛物线上第二象限内的点,连接ED 交抛物线于第二象限内的另外一点F ,点E 到y 轴的距离与点F 到y 轴的距离之比为3:1,已知4tan 3BDE ∠=,求点E 的坐标; (3)如图3,在(2)的条件下,点G 由B 出发,沿x 轴负方向运动,连接EG ,点H 在线段EG 上,连接DH ,EDH EGB ∠=∠,过点E 作EK DH ⊥,与抛物线相交于点K ,若EK EG =,求点K 的坐标.13.如图,射线AM 上有一点B ,AB =6.点C 是射线AM 上异于B 的一点,过C 作CD ⊥AM ,且CD =43AC .过D 点作DE ⊥AD ,交射线AM 于E . 在射线CD 取点F ,使得CF =CB ,连接AF 并延长,交DE 于点G .设AC =3x .(1) 当C 在B 点右侧时,求AD 、DF 的长.(用关于x 的代数式表示)(2)当x 为何值时,△AFD 是等腰三角形.(3)若将△DFG 沿FG 翻折,恰使点D 对应点'D 落在射线AM 上,连接'FD ,'GD .此时x 的值为 (直接写出答案)14.在平面直角坐标系xOy 中,点A 为x 轴上的动点,点B 为x 轴上方的动点,连接OA ,OB ,AB .(1)如图1,当点B 在y 轴上,且满足OAB ∠的角平分线与OBA ∠的角平分线交于点P ,请直接写出P ∠的度数;(2)如图2,当点B 在y 轴上,OAB ∠的角平分线与OBA ∠的角平分线交于点P ,点C 在BP 的延长线上,且满足45AOC ∠=︒,求OAB OCB∠∠;(3)如图3,当点B 在第一象限内,点P 是AOB ∆内一点,点M ,N 分别是线段OA ,OB 上一点,满足:1902APB AOB ∠=︒+∠,PM PN =,180ONP OMP ∠+∠=︒.以下结论:①OM ON =;②AP 平分OAB ∠;③BP 平分OBA ∠;④AM BN AB +=.正确的是:________.(请填写正确结论序号,并选择一个正确的结论证明,简写证明过程).15.如图,在⊙O 中,直径AB =10,tanA =33. (1)求弦AC 的长;(2)D 是AB 延长线上一点,且AB =kBD ,连接CD ,若CD 与⊙O 相切,求k 的值; (3)若动点P 以3cm/s 的速度从A 点出发,沿AB 方向运动,同时动点Q 以32cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为t (0<t <103),连结PQ .当t 为何值时,△BPQ 为Rt △?16.如图,直角梯形ABCD 中,1//,90,60,3,9,AD BC A C AD cm BC cm O ︒︒∠∠====的圆心1O 从点A 开始沿折线——A D C 以1/cm s 的速度向点C 运动,2O 的圆心2O 从点B 开始沿BA 边以3/cm s 的速度向点A 运动,1O 半径为22,cm O 的半径为4cm ,若12,O O 分别从点A 、点B 同时出发,运动的时间为ts(1)请求出2O 与腰CD 相切时t 的值;(2)在03s t s ≤<范围内,当t 为何值时,1O 与2O 外切?17.如图1,Rt △ABC 中,点D ,E 分别为直角边AC ,BC 上的点,若满足AD 2+BE 2=DE 2,则称DE 为R △ABC 的“完美分割线”.显然,当DE 为△ABC 的中位线时,DE 是△ABC 的一条完美分割线.(1)如图1,AB =10,cos A =45,AD =3,若DE 为完美分割线,则BE 的长是 . (2)如图2,对AC 边上的点D ,在Rt △ABC 中的斜边AB 上取点P ,使得DP =DA ,过点P 画PE ⊥PD 交BC 于点E ,连结DE ,求证:DE 是直角△ABC 的完美分割线.(3)如图3,在Rt △ABC 中,AC =10,BC =5,DE 是其完美分割线,点P 是斜边AB 的中点,连结PD 、PE ,求cos ∠PDE 的值.18.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠.(1)若80A ∠=︒,则BDC ∠的度数为______;(2)若A α∠=,直线MN 经过点D .①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示); ②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).19.问题提出(1)如图1,已知三角形ABC ,请在BC 边上确定一点D ,使得AD 的值最小. 问题探究(2)如图2,在等腰ABC 中,AB AC =,点P 是AC 边上一动点,分别过点A ,点C 作线段BP 所在直线的垂线,垂足为点,D E ,若5,6AB BC ==,求线段BP 的取值范围,并求AD CE +的最大值.问题解决(3)如图3,正方形ABCD 是一块蔬菜种植基地,边长为3千米,四个顶点处都建有一个蔬菜采购点,根据运输需要,经过顶点A 处和BC 边的两个三等分点E F 、之间的某点P 建设一条向外运输的快速通道,其余三个采购点都修建垂直于快速通道的蔬菜输送轨道,分别为BB '、CC '、DD '.若你是此次项目设计的负责人,要使三条运输轨道的距离之和()BB CC DD '''++最小,你能不能按照要求进行规划,请通过计算说明.20.如图1,在平面直角坐标系中,O是坐标原点,矩形OACB的顶点A、B分别在x轴和y轴上,已知OA=5,OB=3,点D的坐标是(0,1),点P从点B出发以每秒1个单位的速度沿折线BCA的方向运动,当点P与点A重合时,运动停止,设运动的时间为t秒.(1)点P运动到与点C重合时,求直线DP的函数解析式;(2)求△OPD的面积S关于t的函数解析式,并写出对应t的取值范围;(3)点P在运动过程中,是否存在某些位置使△ADP是不以DP为底边的等腰三角形,若存在,请求出点P的坐标;若不存在,请说明理由.21.发现来源于探究.小亮进行数学探究活动,作边长为a的正方形ABCD和边长为b的正方形AEFG(a>b),开始时,点E在AB上,如图1.将正方形AEFG绕点A逆时针方向旋转.(1)如图2,小亮将正方形AEFG绕点A逆时针方向旋转,连接BE、DG,当点G恰好落在线段BE上时,小亮发现DG⊥BE,请你帮他说明理由.当a=3,b=2时,请你帮他求此时DG的长.(2)如图3,小亮旋转正方形AEFG,点E在DA的延长线上,连接BF、DF.当FG平分∠BFD时,请你帮他求a:b及∠FBG的度数.(3)如图4,BE的延长线与直线DG相交于点P,a=2b.当正方形AEFG绕点A从图1开始,逆时针方向旋转一周时,请你帮小亮求点P 运动的路线长(用含b 的代数式表示).22.如图,二次函数23y x x m =-++的图象与x 轴的一个交点为(4,0)B ,另一个交点为A ,且与y 轴相交于C 点(1)则m =_________;C 点坐标为___________;(2)在直线BC 上方的抛物线上是否存在一点M ,使得它与B ,C 两点构成的三角形面积最大,若存在,求出此时M 点坐标;若不存在,请简要说明理由.(3)P 为抛物线上一点,它关于直线BC 的对称点为Q①当四边形PBQC 为菱形时,求点P 的坐标;②点P 的横坐标为(04)t t <<,当t =________时,四边形PBQC 的面积最大.23.问题一:如图①,已知AC =160km ,甲,乙两人分别从相距30km 的A ,B 两地同时出发到C 地.若甲的速度为80km /h ,乙的速度为60km /h ,设乙行驶时间为x (h ),两车之间距离为y (km ).(1)当甲追上乙时,x = .(2)请用x 的代数式表示y . 问题二:如图②,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB =30°.(3)分针OD 指向圆周上的点的速度为每分钟转动 km ,时针OE 指向圆周上的点的速度为每分钟转动 °;(4)若从2:00起计时,求几分钟后分针与时针第一次重合?24.综合与探究:如图1,抛物线24832999y x x =-++与x 轴交于,A B 两点(点A 在点B 的左侧),顶点为D ,P 为对称轴右侧抛物线的一个动点,直线AD 与y 轴于点C ,过点P 作//PF AD ,交x 轴于点F .(1)求直线AD 的函数表达式及点C 的坐标;(2)如图2,当//PC x 轴时,将AOC ∆以每秒1个单位长度的速度沿x 轴的正方向平移,当点C 与点P 重合时停止平移.设平移t 秒时,在平移过程中AOC ∆与四边形AFPC 重叠部分的面积为S ,求S 关于t 的函数关系式,并写出自变量t 的取值范围; (3)如图3,过点P 作x 轴的平行线,交直线AD 于点E ,直线DF 与PE 交于点M ,设点P 的横坐标为m .①当3DM MF =时,求m 的值;②试探究点P 在运动过程中,是否存在值m ,使四边形AFPE 是菱形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.25.如图,矩形ABCD 中,AD >AB ,连接AC ,将线段AC 绕点A 顺时针旋转90∘得到线段AE ,平移线段AE 得到线段DF (点A 与点D 对应,点E 与点F 对应),连接BF ,分别交直线AD ,AC 于点G ,M ,连接EF .(1) 依题意补全图形;(2) 求证:EG ⊥AD ;(3) 连接EC ,交BF 于点N ,若AB =2,BC =4,设MB =a ,NF =b ,试比较()()11a b ++与9+62【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.E解析:(I )①33,2⎛⎫ ⎪ ⎪⎝⎭;②E 点坐标为3,2⎛⎫ ⎪ ⎪⎝⎭或23,1⎛⎫ ⎪ ⎪⎝⎭;(II )333333,22⎛⎫-- ⎪ ⎪⎝⎭【解析】 【分析】(I )①过点E 做EH ⊥OA ,交OA 于点H ,由D 为OB 中点结合DE ∥OA ,可得出DE 为△BOA 的中位线,再根据点A 、B 的坐标即可得出点E 的坐标;②根据折叠的性质结合角的计算可得出∠AEF=60°≠90°,分∠AFE=90°和∠EAF=90°两种情况考虑,利用含30度角的直角三角形以及勾股定理即可求出点E 的坐标;(II )根据三角形的三边关系,找出当点A′在y 轴上时,BA′取最小值,根据折叠的性质可得出直线OP 的解析式,再根据点A 、B 的坐标利用待定系数法求出直线AB 的解析式,联立两直线解析式成方程组,解之即可得出点P 的坐标.【详解】(I )过点E 做EH ⊥OA ,交OA 于点H ,①∵DE OB ⊥,OA OB ⊥ ,∴//DE OA .∵D 为OB 中点,∴D 点的坐标为30,2⎛⎫ ⎪⎝⎭,∴DE 为OA ∆B 的中位线,∴点E 为线段AB 的中点,又∵EH BO ∥,∴EH 为OA ∆B 的中位线,∴点H 为线段OA 的中点,∴点H 的坐标为3⎫⎪⎪⎝⎭, ∴点E 的坐标为33,22⎛⎫ ⎪ ⎪⎝⎭. ②∵点(3)A ,,点()0, 3B ,∴3OA =,OB=3 ∴3tan =3B , ∴∠B=30°,由折叠可知: BDE FDE ∆∆≌.∴ 30EFD ABO ∠=∠=︒,DF BD =∴6090AEF ABO DPE ∠=∠+∠=︒≠︒.∵AEF ∆是直角三角形,∴90AFE ∠=︒或90EAF ∠=︒(i )当90AFE ∠=︒时,如图1所示18060AFO AFE EFD ∠=︒-∠-∠=︒. 在Rt AOF ∆中,60AFO ∠=︒,3OA =∴30FAO ∠=︒,2AF OF =,22AF OF AO -=,∴1OF =,2AF =. 在Rt DEF ∆中,30DFE ∠=︒ , 2OB OF DF BD -==. ∴2EF DE =,221EF DE DF -==,∴3DE =23DF =. ∵2OD OF DF =+=.∴点E 的坐标为32⎫⎪⎪⎝⎭; (ii)当90EAF ∠=︒时,如图2所示.∵90AOB ∠=︒,30ABO ∠=︒∴60BAO ∠=︒,∴30FAO EAF BAO ∠=∠-∠=︒.在Rt AOF ∆中,30FAO ∠=︒ ,3AO =, ∴2AF OF =,∵22AF OF AO -=,∴1OF =,2AF =. 在Rt DEF ∆中,30DFE ∠=︒ , 22OB OF DF +==, ∴2EF DE =,∵22EF DE DF -=,∴23DE =, ∵1OD DF OF =-=,∴点E 的坐标为23,13⎛⎫ ⎪ ⎪⎝⎭. 综上所述:当AEF ∆为直角三角形时,E 点坐标为3,2⎛⎫ ⎪ ⎪⎝⎭或23,1⎛⎫ ⎪ ⎪⎝⎭. (II )由折叠可知:'AOP A OP ∆∆≌,∴'3OA OA ==,'AOP A OP ∠=∠,又∵3OB =,∴当点'A 在y 轴上时,'BA 取最小值,如图3所示.∵ 90AOB ∠=︒∴ 45AOP ∠=︒∴直线OP 的解析式为y x =设直线AB 的解析式为 y kx b =+,将A 、()0,3B 代入 y kx b =+中,03b b +==⎪⎩,解得:3k b ⎧=⎪⎨=⎪⎩, ∴直线AB的解忻式为3y =+.联立直线OP 、AB 的解析式成方程组,3y x y =⎧⎪⎨=+⎪⎩,解得:x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴.当'BA 取得最小值时,P点坐标为⎝⎭. 【点睛】本题考查了三角形的中位线、待定系数法求一次函数解析式、含30度角的直角三角形、勾股定理以及折叠的性质,解题的关键是:(I )①找出DE 为△BOA 的中位线;②分∠AFE=90°和∠EAF=90°两种情况求点E 的坐标;(II )根据三角形三边关系找出BA′取得最小值点A′的位置.2.B解析:(1)见解析;(2)见解析;(3)MN =【解析】【分析】(1)连接OB ,OD ,利用圆周角定理结合三角形内角和定理可得结果;(2)过O 作OT ⊥BC 于T ,连接OB ,OC ,在ED 上找点G ,使得CE=EG ,连接BG ,证明AOH OBT ∆∆≌,得到OH=BT ,设∠BDC=α,利用垂直平分线的性质得到BC=BG ,结合三角形外角的性质得到BC=BG=GD ,从而可得结果;(3)在AF 上作点Q ,使得AQ=BQ ,连接BQ ,OQ ,过B 作BW ⊥AF 于点W ,设BF=x ,则AF=3x ,推出△QBF 为直角三角形,利用勾股定理得出AQ 、BQ 、BW 、FW 、AW 的表达式,从而得到4tan 3BW F FW ∠==,1tan 3BW CAB AW ∠==,设BE=n ,则DE=3n ,EG=3n-12,在△BEG 中,利用勾股定理求出n 的值,得到BE 、DE 、EG 、EC 的值,利用三角函数算出NE 的长,再证明△CBE ∽△ADE ,得到13CE BC BF AE AD AF ===,算出AE ,从而得到AN ,最后在△AMN 利用勾股定理求出MN 的长.【详解】解:(1)连接OB ,OD ,∵AD=AB ,∴弧AC=弧AD ,∴∠AOB=∠AOD ,∴∠OAB=∠OBA ,∠OAD=∠ODA ,∴BAO DAO ∠=∠,∵CAB CDB ∠=∠,∴2CAO CDB ∠=∠;(2)过O 作OT ⊥BC 于T ,连接OB ,OC ,在ED 上找点G ,使得CE=EG ,连接BG , ∵∠COB=2∠CAB ,∠CAB=∠CDB ,∠AOB=∠AOD ,2CAO CDB ∠=∠,∴2∠OAH=2∠BAO=∠COB ,∵OC=OB ,OT ⊥BC ,∴∠OAH=∠BOT ,又∵∠OTB=∠OHA=90°,OB=OA ,∴AOH OBT ∆∆≌,∴OH=BT ,∵BC=2BT ,∴2OH=BC ,设∠BDC=α,∴∠BCD=∠BAD=2α,∵CE=GE ,AB ⊥CD ,∴BC=BG ,则∠BGC=∠BCG=2α,∵∠BDC=α,∴∠GBD=α,∴BC=BG=GD ,∴DE=EG+GD=CE+BC=CE+2OH ,即2OH CE DE +=;(3)在AF 上作点Q ,使得AQ=BQ ,连接BQ ,OQ ,过B 作BW ⊥AF 于点W , ∵AQ=BQ ,OA=OB ,∴OQ 垂直平分AB ,∴∠QAB=∠QBA ,∵AF=3BF ,设BF=x ,则AF=3x ,∵AB ⊥CD ,∴∠ACD+∠CAB=90°,∵∠ACD=∠ABD ,∴∠ABD+∠ABQ=90°,∴△QBF 为直角三角形,设AQ=QB=a ,则FQ=3x-a ,在△QBF 中,()2223x a a x -=+,解得:43a x =, 即AQ=BQ=43x ,QF=53x , ∴BW=BF×BQ÷QF=45x , ∴2235BF BW x -=, ∴AW=AF-FW=125x , ∴4tan 3BW F FW ∠==,1tan 3BW CAB AW ∠==, 由(2)知:BC=BG=DG=12,CE=EG ,∴BE=ED·tan ∠BDC , 设BE=n ,则DE=3n ,EG=3n-12, 在△BEG 中,()22231212n n +-=,解得:n=365或0(舍), ∴BE=365,DE=1085,EG=EC=485,在△DMC 和△BDE 中,∠MCD=∠EBD ,∠DMC=∠DEB ,∴∠MDC=∠EDB ,∴tan ∠MDC=tan ∠EDB=tan ∠CAB=13, ∴NE=DE×13=365, ∵∠BCE=∠BAD ,∠CBE=∠ADE ,∴△CBE ∽△ADE ,∴13CE BC BF AE AD AF ===, ∴AE=3CE=1445, ∴AN=AE-NE=1085, ∴设MN=m ,则AM=3m ,在△AMN 中, ()22210835m m ⎛⎫+= ⎪⎝⎭, 解得:m=5410或5410-(舍) ∴541025MN =.【点睛】本题属于圆的综合题,考查了相似三角形的判定和性质,勾股定理,圆周角定理,难度较大,要会综合题中的条件作出适当辅助线帮助解决问题.3.A解析:(I )30DAM ∠=︒,)3,3M;(II )245;(III )DF 的最大值为47. 【解析】【分析】(Ⅰ)由折叠的性质得:△ANM ≌△ADM ,由角平分线结合得:∠BAM=∠MAN=∠NAB=30°,由特殊角的三角函数可求DM 的长,写出M 的坐标; (Ⅱ)如图2,作辅助线,构建直角三角形,设NQ=x ,则AQ=MQ=1+x ,在Rt △ANQ 中,由勾股定理列等式可得关于x 的方程:(x+1)2=32+x 2,求出x ,得出AB 是AQ 的45,即可得出△NAQ 和△NAB 的关系,得出结论;(III )如图3,过A 作AH ⊥BF 于H ,证明△ABH ∽△BFC ,得BH CF AH BC=,Rt △AHN 中,AH ≤AN=3,AB=4,可知:当点N 、H 重合(即AH=AN )时,AH 最大,BH 最小,CF 最小,DF 最大,此时点M 、F 重合,B 、N 、M 三点共线,如图4所示,求此时DF 的长即可.【详解】(I )如图()0,0A ,()4,0B ,()0,3D ,3AD ∴=,4AB =,由折叠得:ANM ADM ≌△△,MAN DAM ∴∠=∠,AN 平分MAB ∠,MAN NAB ∴∠=∠,BAM MAN NAB ∴∠=∠=∠,四边形ABCD 是矩形,90DAB ∴∠=︒,30DAM ∴∠=︒,3tan 3tan 3033DM AD DAM ∴=⋅∠=⨯︒==, 30DAM ∴∠=︒,)3,3M ; (II )延长MN 交AB 的延长线于点Q ,四边形ABCD 是矩形,AB CD ∴∥,DMA MAQ ∴∠=∠,由折叠得:ANM ADM ≌△△,DMA AMQ ∴∠=∠,3AN AD ==,1MN MD ==,MAQ AMQ ∴∠=∠,MQ AQ ∴=,设NQ x =,则1AQ MQ x ==+,90ANM ∠=︒,90ANQ ∴∠=︒,在Rt ANQ △中,由勾股定理得:222AQ AN NQ =+, ()22213x x ∴+=+,解得:4x =, 4NQ ∴=,5AQ =,4AB =,5AQ =, 441412434552525NAB NAQ S S AN NQ ∴==⨯⋅=⨯⨯⨯=△△; (III )如图3,过A 作AH BF ⊥于H ,四边形ABCD 是矩形,AB CD ∴∥,90AHB BCF ∴∠=∠=︒,ABH BFC ∴∽△△,BH CF AH BC∴=,Rt AHN 中,3AH AN =≤,4AB =,∴当点N 、H 重合(即AH AN =)时,AH 最大,BH 最小,CF 最小,DF 最大,此时点M 、F 重合,B 、N 、M 三点共线,如图4所示,由折叠得:AD AH =,AD BC =,AH BC ∴=,在ABH 和BFC △中,HBA BFC ANB BCF AH BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABH BFC AAS ∴≌()△△, CF BH ∴=, 由勾股定理得:2222437BH AB AH =-=-=7CF ∴=,DF ∴的最大值为47DC CF -=【点睛】本题是四边形的综合题,考查了三角形全等和相似的性质和判定、折叠的性质、勾股定理、图形与坐标特点、特殊的三角函数值,熟练掌握折叠的性质是关键,注意图形与坐标特点,第II 问构建直角三角形,利用勾股定理列方程是关键.4.A解析:(1)A (0,1)(2)结论:∠ABQ +∠OAB ﹣∠Q =135°.(3)α+2β=45°.【解析】【分析】(1)利用二次根式的性质求出m 、n 的值,求出B 、C 两点坐标,由S 四边形AOBC =S △OBC +S △AOC ,推出12×2×4+12×OA ×4=6,求出OA 即可; (2)如图2中,结论:∠ABQ +∠OAB ﹣∠Q =135°.根据三角形内角和定理,三角形的外角的性质即可解决问题;(3)由AD ∥BC ,推出∠ADC =∠DCB =α,由BE 平分∠CBx ,推出∠CBE =∠EBx ,由∠CBE=∠F+∠OCB=α+β,推出∠OBF=∠EBx=α+β,由OC平分∠AOB,可得∠COB=45°=∠F+∠OBF=α+(α+β),由此即可解决问题;【详解】解:(1)由题意2020nn-≥⎧⎨-≥⎩,,得,解得n=2,∴m=4,B(2,0),C(4,4).如图:∵S四边形AOBC=S△OBC+S△AOC,∴12×2×4+12×OA×4=6,∴OA=1,∴A(0,1).(2)结论:∠ABQ+∠OAB﹣∠Q=135°.如图:理由如下:∵OC∥PQ,∴∠Q=∠OCB,∵∠ABQ=∠1+∠OCB=∠1+∠Q,∠1=180°﹣∠OAB﹣∠AOC=180°﹣∠OAB﹣45°=135°﹣∠OAB,∴∠ABQ=∠Q+135°﹣∠OAB,∴∠ABQ+∠OAB﹣∠Q=135°.(3)如图:∵AD ∥BC ,∴∠ADC =∠DCB =α,∵BE 平分∠CBx ,∴∠CBE =∠EBx ,∵∠CBE =∠F +∠OCB =α+β,∴∠OBF =∠EBx =α+β,∵C (4,4),∴OC 平分∠AOB ,∴∠COB =45°=∠F +∠OBF =α+(α+β),∴α+2β=45°.【点睛】本题考查平行线的判定和性质、角平分线的定义、三角形的内角和定理、三角形的外角性质等知识,解题的关键是灵活运用所学知识解决问题,属于压轴题.5.A解析:(1)min 119342t R H '==;(2)(0,30,6)或(0,3(0,12).【解析】【分析】(1)根据题意设239(33)4P m m --,5(,33)4Q m m -,以及作R 关于y 轴对称3(3,33)2R '-,并过R '点作直线3:4x l y =的垂线交于H 点R H '即为所求,从而进行分析求解即可; (2)根据题意分四种情形即①当AA''=A''B 时;②当AA''=AB 时;③当AA''=A''B 时;④当A''B=AB 时分别画出图形并进行分析求解.【详解】解:(1)设239(33)4P m m --,5(,33)4Q m m -,23932()2(3)422PQMN C QP NP m m ∴=+=-+-矩形, 302-<,开口向下, ∴当33m =时,(33,33)P -,最少时间12t RK RK TB =++, 3(3,33)2R -,作R 关于y 轴对称3(3,33)2R '--,过R '点作直线3:43x l y =-的垂线交于H 点R H '即为所求, 令y=0,解得5312x =, 12()530H ∴,, t R K K T TH =+''+'',∴过R ''作R H l ''⊥,22min 3119(33)(330)3242125t R H ∴==++'--=+. (2)①当AA''=A''B 时,如图2中,此时,A''在对称轴上对称性可知∠AC′E=∠A''C′E又∠HEC′=∠A''C′E∴∠AC′E=∠HEC′∴HE=HC'=5 3−2 3=3 3,∴OE=HE-HO=3 3−3,∴E(0,3−3 3),②当AA''=AB时,如图3中,设A″C′交y轴于J.此时AA''=AB=BC'=A''C',∴四边形A''ABC'为菱形,由对称性可知,∠AC'E=∠A''C'E=30°,∴JE= 3JC′=3,2∴OE=OJ-JE=6∴E(0,6)③当AA''=A''B时,如图4中,设AC′交y轴于M.此时,A''在对称轴上∠MC'E=75°又∠AMO=∠EMC'=30°∴∠MEC'=75°∴ME=MC'∴3∴3,∴E(0,3.④当A''B=AB时,如图5中,此时AC'=A''C'=A''B=AB∴四边形AC'A''B 为菱形由对称性可知,C'',E ,B 共线 由抛物线239334y x x =--x 轴交于A B 、两点(点A 在点B 的左侧)可知, 令x=0,解得y=−3x=0,解得:x 1=3,x 23 ∴A (−30),30),3 ∴3=12,∴E (0,12).综上满足条件的点E 坐标为(0,3)或(0,6)或(0,3)或(0,12).【点睛】本题考查二次函数综合题,解题的关键是学会构建二次函数解决最值问题,学会利用垂线段最短解决最短问题,学会用分类讨论的思想思考问题,属于中考压轴题.6.A解析:(1) A (12,0) B (72,0);(2) ①23333y x =-+,②24316373y x x =+ 【解析】【分析】(1)根据抛物线的解析式可得对称轴为x =2,利用:3:4∆∆=ABC BCE S S 得出CA :CE =3:4,由△AOE ∽△AGC 可得13=AO AG ,进而求得OA 、OB 的长,即可求得点A 、点B 的坐标; (2)根据旋转的性质求出C 点坐标,利用C 点坐标和△AOE ∽△AGC 可求得E 点坐标,,分别利用待定系数法即可求得直线CE 和抛物线的解析式.【详解】解:(1)∵抛物线的解析式为24(0)=-+>y mx mx n m ,∴对称轴为直线422-=-=m x m, 如图,设对称轴与x 轴交于G ,则//CG y 轴,2OG =,∴△AOE ∽△AGC , ∴=AO AE AG AC , ∵:3:4ABC BCE S S =,∴CA :CE =3:4 ,则31AE AC =, ∴13==AO AE AG AC , ∴1142==OA OG ,3342==AG OG , 则23==AB AG ,72=+=OB OA AB , ∴A (12,0), B (72,0); (2)如图,设O 旋转后落在点Q 处,过点C 作CP y ⊥轴于点P ,由旋转的性质得:△BCO ≌△ACQ ,∴BO =AQ =72,CO =CQ , ∴OQ==== ∵CP y ⊥轴,∴12==OP OQ ∴点C的坐标为(2,,则CG =由(1)得△AOE ∽△AGC ,13==OE AE CG AC ,∴3OE =,即点E的坐标为(0,3, ①设CE 的解析式为y kx b =+,分别代入C (2,,E 得:23k b b ⎧+=⎪⎨=⎪⎩,解得:k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴CE的解析式为33y x =-+; ②将A (12,0),C (2,分别代入24y mx mx n =-+得:120448m m n m m n ⎧-+=⎪⎨⎪-+=⎩,解得:99m n ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线解析式为2999y x x =-+. 【点睛】本题考查了二次函数的综合、旋转的性质、相似三角形的性质和求一次函数的解析式,正确的理解题意,熟练运算“数形结合思想”是解题的关键. 7.A解析:(1)详见解析;(2)DN DM =3)92【解析】【分析】(1)利用ASA 证ADM DBN △≌△,从而得出DM BN =;(2)如下图,先证NDQ MDP △∽△,得出DN DQ DM DP =,然后在Rt BDQ △,利用tan ∠B 得出DQ BQ 的值,最后得出DN DM的值; (3)如下图,先证点C 是EF 的中点,然后利用CD 平分EDF ∠可推导出四边形CGDH 为正方形,从而得出CHN CGM △≌△,进而得出面积.【详解】解:(1)由题意,∵60α=︒,90EDF ∠=︒,∴30BDN ∠=︒,∴BDN A ∠=∠,B EDA ∠=∠,∵点D 是斜边AB 的中点,∴AD BD =,∴ADM DBN △≌△,∴DM BN =.(2)3DN DM=,是一个定值. 证明:如图1,作DP AC ⊥于点P ,DQ BC ⊥于点Q ,∴90NQD MPD ∠=∠=︒,又∵90MDN PDQ ∠=∠=︒,∴NDQ MDP ∠=∠,∴NDQ MDP △∽△,∴DN DQ DM DP=, 在Rt BDQ △中,60B ∠=︒,∴tan ∠B 3DQ BQ== 又由(1)可知:DP BQ =, ∴3DQ DP=, ∴3DN DM =. (3)连接CD ,作CG DE ⊥于点G ,CH DF ⊥于点H ,在Rt ABC 中,点D 是AB 的中点,∴132CD AB ==, ∵AB EF =,∴12CD EF =,∵90EDF ∠=︒,∴C 是EF 中点,∴CD 平分EDF ∠,45CDE ∠=︒, ∵CG DE ⊥,CH DF ⊥,∴CG CH =, ∵90CGD CHD EDF ∠=∠=∠=︒, ∴四边形CGDH 为正方形,90GCH ∠=︒, ∴GCM HCN ∠=∠,∴CHN CGM △≌△, ∴S 四边形CMDN S =正方形21922CGDH CD==. 【点睛】本题综合考查了全等三角形和相似三角形的证明和性质,解题关键是找出两个全等(相似)三角形,根据三角形全等(相似)的性质推出结论.8.A解析:(1)A (0,4),C (3,0);(2)S=()()51004251042t t t t ⎧-+<<⎪⎪⎨⎪->⎪⎩;(3)存在,满足条件的t 的值为3617或36,点Q 的坐标为162,17⎛⎫- ⎪⎝⎭或()2,16--.【解析】 【分析】(1)解方程组求出m ,n 即可解决问题.(2)分两种情形:如图1中,当0<t <4时,如图2中,当t >4时,根据S=12•BC•OP 求解即可.(3)分两种情形分别构建方程求解即可. 【详解】 解:(1)由725m n m n +=⎧⎨-=⎩,解得:43m n =⎧⎨=⎩,∴A (0,4),C (3,0); (2)如图1中,当0<t <4时,S=1 2•BC•OP=12×5×(4-t)=-52t+10.如图2中,当t>4时,S=12•BC•OP=12×5×(t-4)=52t-10.综上所述,S=()()51004251042t tt t⎧-+<<⎪⎪⎨⎪->⎪⎩,(3)当04t<<时,由题意,1314(4)3222t t⨯⨯=⨯⨯-⨯,解得3617t=,此时,363241717OP=-=,32(0,)17P∴,(4,0)B-,BQ∴的中点Q的坐标为162,17⎛⎫- ⎪⎝⎭,当4t>时,由题意,1314(4)3222t t⨯⨯=⨯⨯-⨯,解得36t=,此时36432OP=-=,(0,32)P∴-,(4,0)B-,BP∴的中点Q的坐标为(2,16)--.综上所述,满足条件的t的值为3617或36.点Q的坐标为16(2,)17-或(2,16)--.【点睛】本题属于三角形综合题,考查了解方程组,三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.9.B解析:(1)12;(2)53;(3)202. 【解析】 【分析】(1)如图1中,过点B 作BD CA ⊥,交CA 延长线于点D ,通过构造直角三角形,求出BD 利用三角形面积公式求解即可.(2)如图示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,确定点P 的位置,利用勾股定理与矩形的性质求出CQ 的长度即为答案.(3)解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、,通过轴对称性质的转化,最终确定最小值转化为SN 的长. 【详解】(1)如解图1所示,过点B 作BD CA ⊥,交CA 延长线于点D ,135BAC ∠=,180********BAD BAC ∴∠=-∠=-=,BD CA ⊥,交CA 延长线于点D ,BAD ∴为等腰直角三角形,且90BDA ∠=,BD AD ∴=,在BAD 中,,90BD AD BDA =∠=,222BD AD AB ∴+=,即222BD AB =,42AB =,2222(42)32BD AB ∴===,解得:4BD =,6AC =,11641222ABCSAC BD ∴=⋅=⨯⨯=.(2)如解图2所示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,D 关于AB 的对称点Q ,CQ 交AB 于点P ,PD PQ ∴=,PC PD PC PQ CQ ∴+=+=,点P 为AB 上的动点,PC PD CQ ∴+≥,∴当点P 处于解图2中的位置,PC PD +取最小值,且最小值为CQ 的长度,点C 为半圆AB 的中点,90COB ∴∠=,90BOD COD COB ∠+∠=∠=, 11903033BOD COB ∴∠=∠=⨯=,10AB =,1110522OD AB ∴==⨯=, 在Rt ODH △中,由作图知,90OHD ∠=,且30HOD BOD ∠=∠=,155,222DH OD QH DH ∴==∴==, 222255352OH OD DH ⎛⎫∴=-=-=⎪⎝⎭, 由作图知,四边形OMQH 为矩形,553,2OM QH MQ OH ∴====, 515522CM OM OC ∴=+=+=, 222215535322CQ CM MQ ⎛⎫⎛⎫∴=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, PC PD ∴+的最小值为53.(3)如解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、, 点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,PE SE ∴=,FP FN =,SOA POA ∠=∠,,NOB POB OS OP ON ∠=∠==,.PE EF FP SE EF FN SN ∴++=++=,SOA NOB POA POB ∠+∠=∠+∠, E 为OA 上的点,F 为OB 上的点 PE EF FP SN ∴++≥,∴当点E F 、处于解图3的位置时,PE EF FP ++的长度取最小值,最小值为SN 的长度,45POA POB AOB ∠+∠=∠=, 45SOA NOB ∴∠+∠=,454590SON SOA AOB NOB ∴∠=∠+∠+∠=+=.扇形AOB 的半径为20,20OS ON OP ∴===,在Rt SON 中,90SON ∠=,20,90OS ON SON ==∠=PE EF FP ∴++的长度的最小值为202.【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.10.E解析:(1)y =﹣21122x -x+3;(2)①EF 的长为2;②点H 的坐标为(﹣45,135)或(﹣445,99). 【解析】 【分析】(1)用待定系数法求出函数解析式即可;(2)①得出EAB ODB ∠=∠,当时,当时,可求出的长; ②(Ⅰ)求出直线CE 的解析式为132y x =+,得出APE EBA ∠=∠,则GCH APE EBA CHN MGH ∠=∠=∠=∠=∠,得出//GC PB ,由1tan tan tan 2AE EBA CHN MGH BE ∠=∠=∠==,设CN MG m ==,则2HN m =,12MH m =,则1212MH HN m m +=+=,解得,25m =,可求出H 点的坐标;(Ⅱ)过点H 作MN PB ⊥,过点C 作CN MH ⊥于点N ,过点G 作GM HM ⊥于点M ,证得GCH EBA HCN MHG ∠=∠=∠=∠,由(Ⅰ)知:1tan 2EBA ∠=,则1tan tan 2GM HG MHG GCH HM CH ∠==∠==,设MG a =,则2MH a =,证明HMG CNH ∆∆∽,则2NH a =,4CN a =,又(0,3)C ,得出(3,34)G a a --,代入211322y x x =--+中,得449CN =,可求出H 点坐标.【详解】解:(1)将A (﹣3,0)、B (2,0)、C (0,3)代入y =ax2+bx+c 得,0930423a b ca b c c =-+⎧⎪=++⎨⎪=⎩, 解得:12123a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,∴抛物线的解析式为:y =﹣21122x -x+3; (2)①将E (m ,2)代入y =﹣21122x -x+3中,。
数学中考数学压轴题的专项培优练习题(及解析
一、中考数学压轴题1.如图,等腰△ABC ,AB =CB ,边AC 落在x 轴上,点B 落在y 轴上,将△ABC 沿y 轴翻折,得到△ADC(1)直接写出四边形ABCD 的形状:______;(2)在x 轴上取一点E ,使OE =OB ,连结BE ,作AF ⊥BC 交BE 于点F .①直接写出AF 与AD 的关系:____(如果后面的问题需要,可以直接使用,不需要再证明);②取BF 的中点G ,连接OG ,判断OG 与AD 的数量关系,并说明理由;(3)若四边形ABCD 的周长为8,直接写出GE 2+GF 2=____.2.如图,在四边形ABCD 中,∠B=90°,AD//BC ,AD=16,BC=21,CD=13.(1)求直线AD 和BC 之间的距离;(2)动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 从点A 出发,在线段AD 上以每秒1个单位长度的速度运动,点P 、Q 同时出发,当点Q 运动到点D 时,两点同时停止运动,设运动时间为t 秒.试求当t 为何值时,以P 、Q 、D 、C 为顶点的四边形为平行四边形?(3)在(2)的条件下,是否存在点P ,使△PQD 为等腰三角形?若存在,请直接写出相应的t 值,若不存在,请说明理由.3.如图,在平面直角坐标系中,直线6y x =+与x 轴交于点A ,与y 轴交于点B ,点C 在x 轴正半轴上,2ABC ACB ∠=∠.(1)求直线BC的解析式;∆的面积为(2)点D是射线BC上一点,连接AD,设点D的横坐标为t,ACD S≠,求S与t的函数解析式,并直接写出自变量t的取值范围;S()0(3)在(2)的条件下,AD与y轴交于点E,连接CE,过点B作AD的垂线,垂足为点H,直线BH交x轴于点F,交线段CE于点M,直线DM交x轴于点N,当NF FC=时,求直线DM的解析式.:7:124.综合与实践A纸是我们学习工作最常用的纸张之一,其长宽之比是2:1,我们定义:长宽之比是42:1的矩形纸片称为“标准纸”.操作判断:()1如图1所示,矩形纸片2=是一张“标准纸”,将纸片折叠一次,使点()ABCD AD ABAB=求CF的B与D重合,再展开,折痕EF交AD边于点,E交BC边于点F,若1,长,()2如图2,在()1的基础上,连接,BD折痕EF交BD于点O,连接,BE判断四边形BFDE的形状,并说明理由.探究发现:()3如图3所示,在(1)和(2)的基础上,展开纸片后,将纸片再折叠一次,使点A 与点C 重合,再展开,痕MN 交AD 边于点M ,BC 交边于点,N 交BD 也是点O .然后将四边形ENFM 剪下,探究纸片ENFM 是否为“标准纸”,说明理由.5.如图,在等边ABC ∆中,延长AB 至点D ,延长AC 交BD 的中垂线于点E ,连接BE ,DE .(1)如图1,若310DE =,23BC =,求CE 的长;(2)如图2,连接CD 交BE 于点M ,在CE 上取一点F ,连接DF 交BE 于点N ,且DF CD =,求证:12AB EF =; (3)在(2)的条件下,若45AED ∠=︒直接写出线段BD ,EF ,ED 的等量关系6.如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx+c 的图象与x 轴交于A (﹣3,0)、B (2,0)两点,与y 轴交于点C (0,3).(1)求抛物线的解析式;(2)点E (m ,2)是直线AC 上方的抛物线上一点,连接EA 、EB 、EC ,EB 与y 轴交于D .①点F 是x 轴上一动点,连接EF ,当以A 、E 、F 为顶点的三角形与△BOD 相似时,求出线段EF 的长;②点G 为y 轴左侧抛物线上一点,过点G 作直线CE 的垂线,垂足为H ,若∠GCH =∠EBA ,请直接写出点H 的坐标.7.如图,平面上存在点P 、点M 与线段AB .若线段AB 上存在一点Q ,使得点M 在以PQ 为直径的圆上,则称点M 为点P 与线段AB 的共圆点.已知点P (0,1),点A (﹣2,﹣1),点B (2,﹣1).(1)在点O (0,0),C (﹣2,1),D (3,0)中,可以成为点P 与线段AB 的共圆点的是 ;(2)点K 为x 轴上一点,若点K 为点P 与线段AB 的共圆点,请求出点K 横坐标x K 的取值范围;(3)已知点M (m ,﹣1),若直线y =12x +3上存在点P 与线段AM 的共圆点,请直接写出m 的取值范围.8.如图1,抛物线23y ax bx =++与x 轴交于点(1,0)A -、点B ,与y 轴交于点C ,顶点D 的横坐标为1,对称轴交x 轴交于点E ,交BC 与点F .(1)求顶点D 的坐标;(2)如图2所示,过点C 的直线交直线BD 于点M ,交抛物线于点N .①若直线CM 将BCD ∆分成的两部分面积之比为2:1,求点M 的坐标;②若NCB DBC ∠=∠,求点N 的坐标.9.问题背景:如图(1),ABC 内接于O ,过点A 作O 的切线l ,在l 上任取一个不同于点A 的点P ,连接PB PC 、,比较BPC ∠与BAC ∠的大小,并说明理由.问题解决:如图(2),A (0,2)、B (0,4),在x 轴正半轴上是否存在一点P ,使得cos APB ∠最小?若存在,求出点P 的坐标;若不存在,请说明理由.拓展应用:如图(3),四边形ABCD 中,//AB CD ,AD CD ⊥于D ,E 是AB 上一点,AE AD =,P 是DE 右侧四边形ABCD 内一点,若8AB =,11CD =,tan 2C =,9DEP S =,求sin APB ∠的最大值.10.平面直角坐标系中,点A 、B 分别在x 轴正半轴、y 轴正半轴上,AO =BO ,△ABO 的面积为8.(1)求点A 的坐标;(2)点C 、D 分别在x 轴负半轴、y 轴正半轴上(D 在B 点上方),AB ⊥CD 于E ,设点D 纵坐标为t ,△BCE 的面积为S ,求S 与t 的函数关系;(3)在(2)的条件下,点F 为BE 中点,连接OF 交BC 于G ,当∠FOB +∠DAE =45°时,求点E 坐标.11.如图,矩形ABCD 中,AD >AB ,连接AC ,将线段AC 绕点A 顺时针旋转90∘得到线段AE ,平移线段AE 得到线段DF (点A 与点D 对应,点E 与点F 对应),连接BF ,分别交直线AD ,AC 于点G ,M ,连接EF .(1) 依题意补全图形;(2) 求证:EG ⊥AD ;(3) 连接EC ,交BF 于点N ,若AB =2,BC =4,设MB =a ,NF =b ,试比较()()11a b ++与9+62之间的大小关系,并证明.12.已知:如图①,在等腰直角ABC ∆中,斜边2AC =.(1)请你在图①的AC 边上求作一点P ,使得90APB ∠=︒;(2)如图②,在(1)问的条件下,将AC 边沿BC 方向平移,使得点A 、P 、C 对应点分别为E 、Q 、D ,连接AQ ,BQ .若平移的距离为1,求AQB ∠的大小及此时四边形ABDE 的面积;(3)将AC 边沿BC 方向平移m 个单位至ED ,是否存在这样的m ,使得在直线DE 上有一点M ,满足30AMB ∠=︒,且此时四边形ABDE 的面积最大?若存在,求出四边形ABDE 面积的最大值及平移距离m 的值;若不存在,请说明理由.13.已知四边形ABCD 是正方形,点P 在直线BC 上,点G 在直线AD 上(P ,G 不与正方形顶点重合,且在CD 的同侧),PD =PG ,DF ⊥PG 于点H ,交直线AB 于点F ,将线段PG 绕点P 逆时针旋转90°得到线段PE ,连结EF .(1)如图1,当点P 与点G 分别在线段BC 与线段AD 上时.①求证:DF =PG ;②若AB =3,PC =1,求四边形PEFD 的面积;(2)如图2,当点P 与点G 分别在线段BC 与线段AD 的延长线上时,请猜想四边形PEFD 是怎样的特殊四边形,并证明你的猜想.14.在平面直角坐标系xOy 中,点A 为x 轴上的动点,点B 为x 轴上方的动点,连接OA ,OB ,AB .(1)如图1,当点B 在y 轴上,且满足OAB ∠的角平分线与OBA ∠的角平分线交于点P ,请直接写出P ∠的度数;(2)如图2,当点B 在y 轴上,OAB ∠的角平分线与OBA ∠的角平分线交于点P ,点C 在BP 的延长线上,且满足45AOC ∠=︒,求OAB OCB∠∠;(3)如图3,当点B 在第一象限内,点P 是AOB ∆内一点,点M ,N 分别是线段OA ,OB 上一点,满足:1902APB AOB ∠=︒+∠,PM PN =,180ONP OMP ∠+∠=︒.以下结论:①OM ON =;②AP 平分OAB ∠;③BP 平分OBA ∠;④AM BN AB +=.正确的是:________.(请填写正确结论序号,并选择一个正确的结论证明,简写证明过程).15.已知AM //CN ,点B 为平面内一点,AB ⊥BC 于B .(1)如图1,直接写出∠A 和∠C 之间的数量关系;(2)如图2,过点B 作BD ⊥AM 于点D ,求证:∠ABD =∠C ;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180°,∠BFC =5∠DBE ,求∠EBC 的度数.16.(1)如图1,A是⊙O上一动点,P是⊙O外一点,在图中作出PA最小时的点A.(2)如图2,Rt△ABC中,∠C=90°,AC=8,BC=6,以点C为圆心的⊙C的半径是3.6,Q是⊙C上一动点,在线段AB上确定点P的位置,使PQ的长最小,并求出其最小值.(3)如图3,矩形ABCD中,AB=6,BC=9,以D为圆心,3为半径作⊙D,E为⊙D上一动点,连接AE,以AE为直角边作Rt△AEF,∠EAF=90°,tan∠AEF=13,试探究四边形ADCF的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.17.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.(1)当BP=时,△MBP~△DCP;(2)当⊙P与正方形ABCD的边相切时,求BP的长;(3)设⊙P的半径为x,请直接写出正方形ABCD中恰好有两个顶点在圆内的x的取值范围.18.将一个直角三角形纸片ABO,放置在平面直角坐标系中,点(3)A,,点()0, 3B,点(0,0)O(I)过边OB上的动点D (点D不与点B,O重合)作DE OB⊥交AB于点E,沿着DE折叠该纸片,点B落在射线BO上的点F处.①如图,当D为OB中点时,求E点的坐标;②连接AF,当AEF∆为直角三角形时,求E点坐标:(Ⅱ)P是AB边上的动点(点P不与点B重合),将AOP∆沿OP所在的直线折叠,得到'A OP∆,连接'BA,当'BA取得最小值时,求P点坐标(直接写出结果即可).19.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()A.180° B.270° C.360° D.540°(1)请写出这道题的正确选项;(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB∥EF,请直接写出∠BAD,∠ADE,∠DEF之间的数量关系.(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD,ED分别平分∠BAC,∠CEF时,∠ACE与∠ADE之间有怎样的数量关系?请你直接写出结果,不需要证明.(4)彭敏同学又提出来了,如果像图4这样,AB∥EF,当∠ACD=90°时,∠BAC、∠CDE 和∠DEF之间又有怎样的数量关系?请你直接写出结果,不需要证明.20.阅读材料:等腰三角形具有性质“等边对等角”.事实上,不等边三角形也具有类似性质“大边对大角”:如图1.在△ABC中,如果AB>AC,那么∠ACB>∠ABC.证明如下:将AB沿△ABC的角平分线AD翻折(如图2),因为AB>AC,所以点B落在AC的延长线上的点B'处.于是,由∠ACB>∠B',∠ABC=∠B',可得∠ACB>∠ABC.(1)灵活运用:从上面的证法可以看出,折纸常常能为证明一个命题提供思路和方法.由此小明想到可用类似方法证明“大角对大边”:如图3.在△ABC中,如果∠ACB>∠ABC,那么AB>AC.小明的思路是:沿BC的垂直平分线翻折……请你帮助小明完成后面的证明过程.(2)拓展延伸:请运用上述方法或结论解决如下问题:如图4,已知M为正方形ABCD的边CD上一点(不含端点),连接AM并延长,交BC的延长线于点N.求证:AM+AN>2BD.21.在平面直角坐标系xOy 中,点A 、B 为反比例函数()4x 0x y =>的图像上两点,A 点的横坐标与B 点的纵坐标均为1,将()4x 0xy =>的图像绕原点O 顺时针旋转90°,A 点的对应点为A’,B 点的对应点为B’.(1)点A’的坐标是 ,点B’的坐标是 ; (2)在x 轴上取一点P ,使得PA+PB 的值最小,直接写出点P 的坐标. 此时在反比例函数()4x 0xy =>的图像上是否存在一点Q ,使△A’B’Q 的面积与△PAB 的面积相等,若存在,求出点Q 的横坐标;若不存在,请说明理由;(3)连接AB’,动点M 从A 点出发沿线段AB’以每秒1个单位长度的速度向终点B’运动;动点N 同时从B’点出发沿线段B’A’以每秒1个单位长度的速度向终点A’运动.当其中一个点停止运动时,另一个点也随之停止运动.设运动的时间为t 秒,试探究:是否存在使△MNB’为等腰直角三角形的t 值.若存在,求出t 的值;若不存在,说明理由.22.问题探究(1)如图1.在ABC 中,8BC =,D 为BC 上一点,6AD =.则ABC 面积的最大值是_______.(2)如图2,在ABC 中,60BAC ∠=︒,AG 为BC 边上的高,O 为ABC 的外接圆,若3AG =,试判断BC 是否存在最小值?若存在,请求出最小值:若不存在,请说明理由.问题解决:如图3,王老先生有一块矩形地ABCD ,6212AB =+,626BC =+,现在他想利用这块地建一个四边形鱼塘AMFN ,且满足点E 在CD 上,AD DE =,点F 在BC 上,且6CF =,点M 在AE 上,点N 在AB 上,90MFN ∠=︒,这个四边形AMFN 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.23.已知,抛物线212y x bx c =++与y 轴交于点()0,4C -与x 轴交于点A ,B ,且B 点的坐标为()2,0.(1)求该抛物线的解析式.(2)如图1,若点P 是线段AB 上的一动点,过点P 作//PE AC ,交BC 于E ,连接CP ,求PCE ∆面积的最大值.(3)如图2,若直线y x m =+与线段AC 交于点M ,与线段BC 交于点N ,是否存在M ,N ,使得OMN ∆为直角三角形,若存在,请求出m 的值;若不存在,请说明理由.24.已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.25.如图,射线AM 上有一点B ,AB =6.点C 是射线AM 上异于B 的一点,过C 作CD ⊥AM ,且CD =43AC .过D 点作DE ⊥AD ,交射线AM 于E . 在射线CD 取点F ,使得CF =CB ,连接AF 并延长,交DE 于点G .设AC =3x .(1) 当C 在B 点右侧时,求AD 、DF 的长.(用关于x 的代数式表示)(2)当x 为何值时,△AFD 是等腰三角形.(3)若将△DFG 沿FG 翻折,恰使点D 对应点'D 落在射线AM 上,连接'FD ,'GD .此时x 的值为 (直接写出答案)【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.A解析:(1)菱形;(2)①AF=ADAF⊥AD;②2,理由见解析;(3)4AD OG【解析】【分析】(1)由折叠的性质可得AB=AD=BC=CD,可得四边形ABCD是菱形;(2)①由菱形的性质可得AD∥BC,且AF⊥BC,可得AD⊥AF,由等腰三角形的性质和外角的性质可求∠OBE=∠OEB=45°,∠ABE=∠AFB,可得AF=AB;②取AB中点M,由三角形中位线定理可得MO∥AD,AD=2MO,AF∥MG,AF=2MG,且AF=AD,AD⊥AF,可得MO=MG,MG⊥MO,可得2OM,即可得OG与AD的数量关系;(3)连接AG,由等腰三角形的性质可得AG⊥BF,且∠BEO=45°,可得AG=GE,由勾股定理可求解.【详解】解:(1)∵将△ABC沿y轴翻折∴AB=AD,BC=CD又∵AB=CB∴AB=AD=BC=CD∴四边形ABCD是菱形故答案为:菱形;(2)①∵四边形ABCD是菱形∴AD∥BC,且AF⊥BC∴AD⊥AF,∴∠FAC+∠CAD=90°,且∠CAD+∠ADO=90°,∴∠FAC=∠ADO,∴∠ABD=∠ADB,∴∠ABD=∠FAC∵OE=OB∴∠OBE=∠OEB=45°∴∠ABD+∠OBE=∠FAC+∠OEB∴∠ABE=∠AFB∴AF=AB∴AF=AD,故答案为:AF=AD,AD⊥AF;②AD=2OG;如图,取AB中点M,∵点M是AB的中点,点G是BF的中点,点O是AC的中点,∴MO∥AD,AD=2MO,AF∥MG,AF=2MG,且AF=AD,AD⊥AF ∴MO=MG,MG⊥MO∴GO=2OM∵AD=2MO=2GO;(3)∵四边形ABCD的周长为8,∴AB=BC=CD=AD=2=AF如图,连接AG,∵AB=AF,点G是BF的中点,∴AG⊥BF,且∠BEO=45°∴∠GAE=∠BEO=45°∵AG2+GF2=AF2=4,∴GE2+GF2=4,故答案为:4;【点睛】本题是四边形综合题,考查了菱形的判定和性质,等腰直角三角形的性质,三角形中位线定理,折叠的性质,添加恰当辅助线是本题的关键.2.A解析:(1)12;(2)5s或373s;(3)163s或685s或72s【解析】【分析】(1)AD与BC之间的距离即AB的长,如下图,过点D作BC的垂线,交BC于点E,在RtDEC中可求得DE的长,即AB的长,即AD与BC间的距离;(2)四边形QDCP为平行四边形,只需QD=CP即可;(3)存在3大类情况,情况一:QP=PD,情况二:PD=QD,情况三:QP=QD,而每大类中,点P存在2种情况,一种为点P还未到达点C,另一种为点P从点C处返回.【详解】(1)如下图,过点D作BC的垂线,交BC于点E∵∠B=90°,AD∥BC∴AB⊥BC,AB⊥AD∴AB的长即为AD与BC之间的距离∵AD=16,BC=21,∴EC=5∵DC=13∴在Rt DEC中,DE=12同理,DE的长也是AD与BC之间的距离∴AD与BC之间的距离为12(2)∵AD∥BC∴只需QD=PC,则四边形QDCP是平行四边形QD=16-t,PC=21-2t或PC=2t-21∴16-t=21-2t或16-t=2t-21解得:t=5s或t=37 3s(3)情况一:QP=PD图形如下,过点P 作AD 的垂线,交AD 于点F∵PQ=PD ,PF ⊥QD ,∴QF=FD∵AF ∥BP ,AB ∥FP ,∠B=90°∴四边形ABPF 是矩形,∴AF=BP由题意得:AQ=t ,则QD=16-t ,QF=8-2t ,AF=8+2t BP=2t 或BP=21-(2t -21)=42-2t∵AF=BP∴8+2t =2t 或8+2t =42-2t 解得:t=163或t=685情况二:PD=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F同理QD=16-t ,PF=AB=12BP=2t 或21-(2t -21)=42-2t则FD=AD -AF=AD -BP=16-2t 或FD=16-(42-2t)=2t -26∴在Rt PFD 中,()22212162PD t =+-或()22212226PD t =+-∵PD=QD ,∴22PD QD =∴()()22216t 12162t =+--或()()22216t 12226t =+--解得:2个方程都无解情况三:QP=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F同理:QD=16-t ,FP=12BP=2t 或BP=42-2tQF=AF -AQ=BP -AQ=2t -t=t 或QF=42-2t -t=42-3t在Rt QFP 中,22212PQ t =+或()22212423PQ t =+- ∵PQ=QD ,∴22PQ QD =∴()22216t 12t =+-或()()22216t 12423t =+--第一个方程解得:t=72,第二个方程解得:无解 综上得:t=163或685或72 【点睛】本题考查四边形中的动点问题,用到了勾股定理、平行四边形的性质、矩形的性质,解题关键是根据点Q 运动的轨迹,得出BP 的长度. 3.A解析:(1)6y x =-+;(2)636S t =-,()6t >;(3)5599y x =+ 【解析】【分析】(1)求出点A 、B 的坐标,从而得出△ABO 是等腰直角三角形,再根据2ABC ACB ∠=∠可得△OCB 也是等腰直角三角形,从而可求得点C 的坐标,将点B 、C 代入可求得解析式;(2)存在2种情况,一种是点D 在线段BC 上,另一种是点D 在线段BC 的延长线上,分别利用三角形的面积公式可求得;(3)如下图,先证ACR CAD ∆≅∆,从而推导出//RD AC ,进而得到CF RG =,同理还可得NF DG =,RD CN =,然后利用:7:12NF FC =可得到N 、D 的坐标,代入即可求得.【详解】解:(1)直线6y x =+与x 轴交于点A ,与y 轴交于点B ,(6,0)A ∴-,(0,6)B .6OA OB ∴==. 45BAO ∴∠=︒,180BAO ABC BCO ∠+∠+∠=︒,2ABC ACB ∠=∠,45BCO ∴∠=︒6OC OB ∴==,()6,0C ∴.设直线BC 的解析式为y kx b =+,将B 、C 两点坐标代得606k b b +=⎧⎨=⎩解得16k b =-⎧⎨=⎩∴直线BC 的解析式为6y x =-+.(2)点D 是射线BC 上一点,点D 的横坐标为t ,(,6)D t t ∴-+,6(6)12AC =--=.如下图,过点D 作DK AC ⊥于点K ,当点D 在线段BC 上时,6DK t =-+, 16362S AC DK t ∴=⋅=-+()06t ≤<; 如下图,当点D 在线段BC 的延长线上时,6DK t =-,636S t ∴=-()6t >.(3)如图,延长CE 交AB 于点R ,连接DR 交BF 于点G ,交y 轴于点P .45BAO BCO ∠=∠=︒,BA BC ∴=.AO CO =,BO AC ⊥EA EC ∴=,EAC ECA ∴∠=∠.ACR CAD ∴∆≅∆.BAD BCR ∴∠=∠.AR CD ∴=.BR BD ∴=.//RD AC ∴.BH AD ⊥,HBD BAD BCR ∴∠=∠=∠.MB MC ∴=,∠MRB MRB MBR ∠=∠MR MB ∴=.CM MR ∴=.//RD AC ,::1:1CF RG CM RM ∴==.CF RG ∴=.同理NF DG =.RD CN =.∵:7:12NF FC =.:7:12DG RG ∴=.RP PD BP ==,5tan 19PG OF OBF BP OB∴==∠= 6OB ∴=,3019OF ∴=,6OC =,8419CF ∴=. 7RD GN ∴==.1ON ∴=,72PD =.52OP OB BP ∴=-=. (1,0)N ∴-,75,22D ⎛⎫ ⎪⎝⎭. 设直线 DN 的解析式为y ax c =+,将N 、D 两点代入,07522a c a c -+=⎧⎪⎨+=⎪⎩ 解得5959a c ⎧=⎪⎪⎨⎪=⎪⎩∴直线DM 的解析式为5599y x =+. 【点睛】本题考查了一次函数与图形的综合,需要用到全等、三角函数和平面直角坐标系的知识,解题关键是想办法确定函数图像上点的坐标.4.(1) CF;(2) 四边形BFDE 是菱形,理由见解析;(3) 纸片ENFM 是“标准纸",理由见解析【解析】【分析】(1)1AB =,则AD =ABCD是矩形,得到1,CD AB BC AD ==-=FB FD =,设CF x =,则FB FD x ==,在Rt DCF △中,222+=CD CF DF,可得)2221x x +=即可求解.(2)当顶点B 与点D 重合时,折痕EF 垂直平分BD ,可得OB OD =,90BOF DOE ∠=∠=,在矩形ABCD 中,//AD BC ,得到OBF ODE ∠=∠,在BOF 和DOE △中,,OBF ODE OB OD BOF DOE ∠=∠=∠=∠,,可得BOF DOE ≅,OE OF =,再根据OB OD =,可得四边形BFDE 是平行四边形,最后根据EF BD ⊥,即可求证平行四边形BFDE 是菱形.(3)由()2可知,OE OF =,同理可知,OM ON =,可得四边形ENFM 是平行四边形,根据90DOE DAB ∠=∠=︒,得到DOEDAB ,再根据2AD AB =,可得222OE AB OD AD ===,进而得到22OE OD =,22EF BD =,同理可得,22MN AC =,根据四边形ABCD 是矩形,可得AC BD =,EF MN =,四边形ENFM 是矩形,90EMF ∠=,2MF ODtan FEM ME OE∠===,2MF ME =,即可求证纸片ENFM 是“标准纸". 【详解】 解:()11,AB =则2,2AD AB ==四边形ABCD 是矩形1,2CD AB BC AD ∴==-=由折叠得FB FD = 设CFx =,则2FB FD x ==- 在Rt DCF △中,222+=CD CF DF()22212x x +=-24x =答:CF 长为2 ()2四边形BFDE 是菱形.理由:当顶点B 与点D 重合时,折痕EF 垂直平分,BDOB OD ∴=,90BOF DOE ∠=∠=在矩形ABCD 中,//,AD BCOBF ODE ∴∠=∠在BOF 和DOE △中,,OBF ODE OB OD BOF DOE ∠=∠=∠=∠,BOF DOE ∴≅ OE OF ∴=OB OD =∴四边形BFDE 是平行四边形EF BD ⊥平行四边形BFDE 是菱形.()3纸片ENFM 是“标准纸”理由如下:由()2可知,,OE OF =同理可知,,OM ON =∴四边形ENFM 是平行四边形90DOE DAB ∠=∠=︒ DOEDAB ∴2AD =222OE AB OD AD ∴===22OE OD ∴= 22EF BD ∴=同理可得,2MN AC =四边形ABCD 是矩形,AC BD ∴=, EF MN ∴=∴四边形ENFM 是矩形.90EMF ∴∠=.2,MF ODtan FEM ME OE∴∠=== 2MF ME ∴=.∴纸片ENFM 是“标准纸".【点睛】此题主要考查矩形的判定和性质、勾股定理、全等三角形的判定和性质、菱形的判定及三角函数,灵活运用判定和性质是解题关键.5.B解析:(1)93CE =-;(2)详见解析;(3)612BD DE EF =- 【解析】 【分析】(1)过点B 作BH AC ⊥于点H ,分别求出BH ,BE ,根据勾股定理问题得解; (2)如图在FE 上取一点G ,使FG AC =,连接DG ,先证明()ACD GFD SAS ∆∆≌,再证明()ECB DGE AAS ∆∆≌,问题得证;(3)过点D 作AE 的垂线,构造出一个30,60︒,90︒的三角形和一个等腰直角三角形,借助(2)的结论,设222EF AB AC x ===,2ED y =,通过解两个直角三角形,代换x 和y 的关系,得出结论. 【详解】解:(1)如图,过点B 作BH AC ⊥于点H , 在等边ABC ∆中∵23BC = ∴3AH HC ==,223BH BC CH =-=,∵点E 在BD 的垂直平分线上,∴310BE DE == , 在Rt BHE ∆中229EH BE BH =-=∴93CE EH HC =-=-(2)如图在FE 上取一点G ,使FG AC =,连接DG ∵DF CD =∴FCD CFD ∠=∠ ∴ACD EFD ∠=∠ 在ACD ∆和GFD ∆中,DF CD ACD EFD FG AC =⎧⎪∠=∠⎨⎪=⎩∴()ACD GFD SAS ∆∆≌ ∴AD DG = ∴60A DGA ∠=∠=︒ ∴60A DGA ADG ∠=∠=∠=︒ 设EBD EDB α∠=∠= ∴120CBE α∠=︒- 在ADE ∆中∴18060120AED αα∠=︒-︒-=︒- ∴120AED CBE α∠=∠=︒- 在ECB ∆和DGE ∆中120AED CBE ECB ECD EB DE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()ECB DGE AAS ∆∆≌ ∴BC GE =∴AB AC BC GE FG ====12AB EF =(3)如图,设222EF AB AC x ===,DP=y , 过点DP ⊥AE ,垂足为P , ∵∠AED=45°, ∠A=60°,∴2sin sin 45DP y ED y AED ===∠︒,23sin sin 60DP y yAD A ===∠︒, ∴2=y DE , ∴BD=AD-AB =23232161222y x DE EF DE EF -=-=-, 故答案为:612BD DE EF =-. 【点睛】本题涉及知识点较多,设计新颖,综合性强,难度较大,根据题意添加适当辅助线,构造直角三角形或构造全等是解题关键.6.E解析:(1)y =﹣21122x -x+3;(2)①EF 的长为52;②点H 的坐标为(﹣45,135)或(﹣445,99). 【解析】 【分析】(1)用待定系数法求出函数解析式即可;(2)①得出EAB ODB ∠=∠,当时,当时,可求出的长; ②(Ⅰ)求出直线CE 的解析式为132y x =+,得出APE EBA ∠=∠,则GCH APE EBA CHN MGH ∠=∠=∠=∠=∠,得出//GC PB ,由1tan tan tan 2AE EBA CHN MGH BE ∠=∠=∠==,设CN MG m ==,则2HN m =,12MH m =,则1212MH HN m m +=+=,解得,25m =,可求出H 点的坐标;(Ⅱ)过点H 作MN PB ⊥,过点C 作CN MH ⊥于点N ,过点G 作GM HM ⊥于点M ,证得GCH EBA HCN MHG ∠=∠=∠=∠,由(Ⅰ)知:1tan 2EBA ∠=,则1tan tan 2GM HG MHG GCH HM CH ∠==∠==,设MG a =,则2MH a =,证明HMG CNH ∆∆∽,则2NH a =,4CN a =,又(0,3)C ,得出(3,34)G a a --,代入211322y x x =--+中,得449CN =,可求出H 点坐标.【详解】解:(1)将A (﹣3,0)、B (2,0)、C (0,3)代入y =ax2+bx+c 得,0930423a b ca b c c =-+⎧⎪=++⎨⎪=⎩, 解得:12123a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,∴抛物线的解析式为:y =﹣21122x -x+3; (2)①将E (m ,2)代入y =﹣21122x -x+3中, 得﹣21122m -m+3=0,解得m =﹣2或1(舍去), ∴E (﹣2,2),∵A (﹣3,0)、B (2,0), ∴AB =5,AE =5,BE =25, ∴AB2=AE2+BE2, ∴∠AEB =∠DOB =90°,∴∠EAB+∠EBA =∠ODB+∠EBA =90°, ∴∠EAB =∠ODB , (Ⅰ)当△FEA ∽△BOD 时,∴∠AEF =∠DOB =90°, ∴F 与B 点重合, ∴EF =BE =5(Ⅱ)当△EFA∽△BOD时,∴∠AFE=∠DOB=90°,∵E(﹣2,2),∴EF=2,故:EF的长为25或2;②点H的坐标为4(5-,13)5或44(9-,5)9,(Ⅰ)过点H作HN⊥CO于点N,过点G作GM⊥HN于点M,∴∠GMN=∠CNH=90°,又∠GHC=90°,∴∠CHN+∠GHM=∠MGH+∠GHM=90°,∴∠CHN=∠MGH,∵HN⊥CO,∠COP=90°,∴HN∥AB,∴∠CHN=∠APE=∠MGH,∵E(﹣2,2),C(0,3),∴直线CE的解析式为y=12x+3,∴P(﹣6,0),∴EP=EB=5∴∠APE=∠EBA,∵∠GCH =∠EBA ,∴∠GCH =∠APE =∠EBA =∠CHN =∠MGH , ∴GC ∥PB , 又C (0,3),∴G 点的纵坐标为3,代入y =﹣21122x -x+3中,得:x =﹣1或0(舍去), ∴MN =1,∵∠AEB =90°,AE =5,BE =25, ∴tan ∠EBA =tan ∠CHN =tan ∠MGH =12AE BE =, 设CN =MG =m ,则HN =2m ,MH =12m , ∴MH+HN =2m+12m =1, 解得,m =25, ∴H 点的橫坐标为﹣45,代入y =12x+3,得:y =135,∴点H 的坐标为(﹣45,135). (Ⅱ)过点H 作MN ⊥PB ,过点C 作CN ⊥MH 于点N ,过点G 作GM ⊥HM 于点M ,∴CN ∥PB , ∴∠NCH =∠APE ,由(Ⅰ)知:∠APE =∠EBA ,则∠NCH =∠EBA , ∵∠GMN =∠CNH =90°, 又∠GHC =90°,∴∠HCN+∠NHC =∠MHG+∠NHC =90°, ∴∠HCN =∠MHG , ∵∠GCH =∠EBA ,∴∠GCH =∠EBA =∠HCN =∠MHG ,由(Ⅰ)知:APE EBA ∠=∠,则NCH EBA ∠=∠, 90GMN CNH ∠=∠=︒,又90GHC ∠=︒,90HCN NHC MHG NHC ∴∠+∠=∠+∠=︒, HCN MHG ∴∠=∠, GCH EBA ∠=∠,GCH EBA HCN MHG ∴∠=∠=∠=∠,由(Ⅰ)知:1tan 2EBA ∠=, 则1tan tan 2GM HG MHG GCH HM CH ∠==∠==, 设MG a =,则2MH a =, NCH MHG ∠=∠,N M ∠=∠, HMG CNH ∴∆∆∽,∴12MH MG HG CN NH CH ===, 2NH a ∴=,4CN a =,又(0,3)C ,(3,34)G a a ∴--,代入211322y x x =--+中,得,119a =或0(舍去),449CN ∴=, H ∴点的橫坐标为449-,代入132y x =+,得,59y =.∴点H 的坐标为445(,)99-. 综合以上可得点H 的坐标为4(5-,13)5或445(,)99-.【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、两点间的距离公式、锐角三角函数、相似三角形的判定与性质及分类讨论思想的运用.7.C解析:(1)C ;(2)﹣1≤x k ﹣1≤x k ;(3)m≤3﹣或 【解析】 【分析】(1)由题意可知当Q 与A 重合时,点C 在以AP 为直径的圆上,所以可以成为点P 与线段AB 的共圆点的是C ;(2)根据题意由两点的距离公式可得,分别画以AP 和BP 为直径的圆交x 轴于4个点:K 1、K 2、K 3、K 4,结合图形2可得4个点的坐标,从而得结论;(3)由题意先根据直线y=12x+3,当x=0和y=0计算与x 轴和y 轴的交点坐标,分两种情况:M 在A 的左侧和右侧,先计算圆E 与直线y=12x+3相切时m 的值,从而根据图形可得结论. 【详解】解:(1)如图1,可以成为点P 与线段AB 的共圆点的是C ,故答案为:C ;(2)∵P (0,1),点A (﹣2,﹣1),点B (2,﹣1). ∴AP =BP =22(20)(11)--+--=22,如图2,分别以PA 、PB 为直径作圆,交x 轴于点K 1、K 2、K 3、K 4,∵OP =OG =1,OE ∥AB , ∴PE =AE 2, ∴OE =12AG =1, ∴K 1(﹣12,0),k 2(120),k 32﹣1,0),k 4(2,0), ∵点K 为点P 与线段AB 的共圆点, ∴﹣12≤x k ≤122﹣1≤x k 2; (3)分两种情况:①如图3,当M 在点A 的左侧时,Q 为线段AM 上一动点,以PQ 为直径的圆E 与直线y =12x+3相切于点F ,连接EF ,则EF ⊥FH ,当x =0时,y =3,当y =0时,y =12x+3=0,x =﹣6, ∴ON =3,OH =6, ∵tan ∠EHF =ON EF OH FH ==36=12, 设EF =a ,则FH =2a ,EH =5a , ∴OE =6﹣5a ,Rt △OEP 中,OP =1,EP =a , 由勾股定理得:EP 2=OP 2+OE 2, ∴2221(65)a a =+-, 解得:a =3522+(舍去)或3522-, ∴QG =2OE =2(6﹣5a )=﹣3+210, ∴m≤3﹣210;②如图4,当M 在点A 的右侧时,Q 为线段AM 上一动点,以PQ 为直径的圆E 与直线y =12x+3相切于点F ,连接EF ,则EF ⊥FH ,同理得QG =10,∴综上,m 的取值范围是m≤3﹣或. 【点睛】本题属于圆和一次函数综合题,考查一次函数的应用,新定义:M 为点P 与线段AB 的共圆点,圆的切线的性质等知识,解题的关键是理解题意,学会利用图象法解决问题,学会利用特殊点解决取值范围问题.8.A解析:(1)(1,4)D ;(2)158(,)33M ,274(,)33M ;(3)N 的坐标为57(,)24. 【解析】 【分析】(1)将点A 坐标代入函数关系式可得a 与b 的方程,再根据顶点D 的横坐标为1可得另一个关于a 和b 的方程,联立方程组求解即可得到a 和b 的值,进而求得抛物线的函数关系式,再将顶点D 的横坐标代入即可求得点D 坐标;(2)①如图,取DB 得三等分点12,M M ,过点12,M M 分别作x 轴,y 轴的平行线分别交DE 、x 轴于点G 、H 、P 、Q ,通过证相似三角形可得点M 的横纵坐标与点B 、D 的横纵坐标之间的数量关系,进而得解;(3)取线段BC 的中点G ,连接GM ,由中点坐标可得33(,)22G ,根据等腰三角形的三线合一可得GM ⊥BC ,在根据两条直线互相垂直可求得:GM l y x =,与:26BD l y x =-+联立方程组可求得点M 的坐标,再由(2,2),(0,3)M C 利用待定系数法可得1:32CM l y x =-+,最后将132y x =-+与2y x 2x 3=-++联立方程组即可求得点N 的坐标. 【详解】解:(1)将(1,0)A -代入23y ax bx =++可得03a b =-+①∵顶点D 的横坐标为1,∴12ba-=,即2b a =-② 联立①②解得1,2a b =-=∴2y x 2x 3=-++ 当1x =时,4y =(1,4)D ∴(2)由(1)得2y x 2x 3=-++ 当y=0时,x 1=-1,x 2=3, ∴B (3,0),即BO=3,如图,取DB 的三等分点12,M M ,过点12,M M 分别作x 轴,y 轴的平行线分别交DE 、x轴于点G 、H 、P 、Q ,则可得△DGM 1∽△DHM 2∽△DEB ,△BQM 2∽△BPM 1∽△BED ,且相似比为1:2:3, ∴12833M D y y == 115()33M D B D x x x x =+-=158(,)33M ∴同理可得:274(,)33M∴点M 的坐标为:158(,)33M ,274(,)33M(3)NCB DBC ∠=∠CM MB ∴=取线段BC 的中点G ,作直线GM ,∵点B (3,0),点C (0,3) ∴中点G 的坐标为33(,)22∵CM MB =,点G 为线段BC 的中点, ∴GM ⊥BC , ∴设直线GM 为y=x+m 将33(,)22G 代入得m=0, ∴:GM l y x =① 设直线BD 为y=kx+n将,B D 坐标代入得k=-2,n=6, ∴:26BD l y x =-+②联立①②可得22x y =⎧⎨=⎩∴(2,2)M 设直线MC 为y=k 2x+n 2将(2,2),(0,3)M C 坐标代入得k 2=12-,n 2=3, ∴1:32CM l y x =-+③联立③与2y x 2x 3=-++可得5274x y ⎧=⎪⎪⎨⎪=⎪⎩∴57(,)24N 故N 的坐标为57(,)24. 【点睛】本题考查了一次函数与二次函数的综合应用以及相似三角形的判定及性质的应用,能够根据题意做出正确的辅助线,利用数形结合思想进行转化是解决本题的关键.9.B解析:(1)∠BPC <∠BAC ;(2)点P坐标为(0);(3)sin ∠APB 的最大值为1. 【解析】 【分析】(1)如图,设PB 与⊙O 交于点D ,连接CD ,根据圆周角定理可得∠BDC=∠BAC ,根据三角形外角性质可得∠BDC >∠BPC ,进而可得答案;(2)如图,作过A 、B 两点的⊙C ,与x 轴相切于点P ,连接AC 、BC 、PC ,可知x 轴正半轴上的点除P 点外都在⊙C 外,由(1)可得∠APB 的度数最大,根据锐角的度数越大,余弦值越小可得点P 即为所求,由AC=BC 可得点C 在AB 的垂直平分线上,由A 、B 坐标可得点C 纵坐标为3,根据切线的性质可得PC ⊥x 轴,可得PC=BC=3,设P (x ,0),则P (x ,3),根据两点间距离公式列方程求出x 的值,即可得答案;(3)如图,过点B 作BH ⊥CD 于H ,过点A 作AM ⊥DE 于M ,延长AM 至N ,使MN= AM ,过N 作DE 的平行线l ,作FG ⊥l 于G ,交DE 于Q ,以AB 为直径作⊙F ,交直线l 于P ,由AB 、CD 的长可求出CH 点长,根据tan 2C =可得BH 的长,可得AD 的长,可求出△ADE 点面积,根据S △DEP =9可得△ADE 与△DEP 对应高的比为2:1,可得点P 在直线l 上,根据等腰直角三角形点性质可求出FG 的长,可得FG <AB ,可知⊙F 与直线l 有两个交点,根据圆周角定理可得∠APB=90°,可得∠APB 正弦的最大值. 【详解】(1)如图,设PB 与⊙O 交于点D ,连接CD , ∵∠BAC 和∠BDC 是BC 所对的圆周角, ∴∠BAC=∠BDC , ∵∠BDC 是△PDC 的外角, ∴∠BDC >∠BPC , ∴∠BPC <∠BAC .(2)如图,作过A 、B 两点的⊙C ,与x 轴相切于点P ,连接AC 、BC 、PC , ∵x 轴正半轴上的点除P 点外都在⊙C 外, ∴∠APB 的度数最大,∵锐角的度数越大,余弦值越小, ∴点P 即为所求, ∵AC=BC ,∴点C 在AB 的垂直平分线上, ∵A (0,2),B (0,4), ∴点C 点纵坐标为3, 设点P 坐标为(x ,0), ∵⊙C 与x 轴相切于点P , ∴PC ⊥x 轴,∴点C 坐标为(x ,3),BC=PC=3, ∴22(43)x +-=3, 解得:x=22,∴点P 坐标为(22,0).(3)如图,过点B 作BH ⊥CD 于H ,过点A 作AM ⊥DE 于M ,延长AM 至N ,使MN=12AM ,过N 作DE 的平行线l ,作FG ⊥l 于G ,交DE 于Q ,以AB 为直径作⊙F ,交直线l 于P ,∵tan 2C =,AB=8,CD=11, ∴BH2CH=,CH=3,解得:BH=6, ∴AD=6, ∵AD=AE , ∴S △ADE =18,∵S △DEP =9,AN ⊥DE ,DE//l ,MN=12AM , ∴点P 在直线l 上, ∵△ADE 是等腰直角三角形, ∴AM=32,MN=322, ∵BF=12AB=4,BE=AB-AE=2, ∴EF=2,∵∠FEQ=45°,∠FQE=90°, ∴FQ=2, ∴FG=FQ+QG=2+322=522<FB , ∴⊙F 与直线l 有两个交点, ∵AB 是直径, ∴∠APB=90°,∴sin ∠APB 的最大值为1.【点睛】本题考查圆周角定理、等腰三角形点性质及锐角三角函数的定义,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;在直角三角形中,锐角的正弦是角的对边比斜边;余弦是邻边比斜边;正切是对边比邻边;余切是邻边比对边.10.A解析:(1)A (4,0);(2)2144S t =-;(3)(4,8)E -。
数学中考数学压轴题的专项培优易错试卷练习题及解析
一、中考数学压轴题1.已知四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P,G不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①求证:DF=PG;②若AB=3,PC=1,求四边形PEFD的面积;(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD 是怎样的特殊四边形,并证明你的猜想.2.我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y)(1)如图2,ω=45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA=2,OC=1.①点A、B、C在此斜坐标系内的坐标分别为A,B,C.②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为.③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为.(2)若ω=120°,O 为坐标原点.①如图3,圆M 与y 轴相切原点O ,被x 轴截得的弦长OA =23,求圆M 的半径及圆心M 的斜坐标.②如图4,圆M 的圆心斜坐标为M (23,23),若圆上恰有两个点到y 轴的距离为1,则圆M 的半径r 的取值范围是 .3.如图,在四边形ABCD 中,∠B=90°,AD//BC ,AD=16,BC=21,CD=13.(1)求直线AD 和BC 之间的距离;(2)动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 从点A 出发,在线段AD 上以每秒1个单位长度的速度运动,点P 、Q 同时出发,当点Q 运动到点D 时,两点同时停止运动,设运动时间为t 秒.试求当t 为何值时,以P 、Q 、D 、C 为顶点的四边形为平行四边形?(3)在(2)的条件下,是否存在点P ,使△PQD 为等腰三角形?若存在,请直接写出相应的t 值,若不存在,请说明理由.4.在梯形ABCD 中,//AD BC ,90B ∠=︒,45C ∠=︒,8AB =,14BC =,点E 、F 分别在边AB 、CD 上,//EF AD ,点P 与AD 在直线EF 的两侧,90EPF ∠=︒,PE PF =,射线EP 、FP 与边BC 分别相交于点M 、N ,设AE x =,MN y =.(1)求边AD 的长;(2)如图,当点P 在梯形ABCD 内部时,求关于x 的函数解析式,并写出定义域; (3)如果MN 的长为2,求梯形AEFD 的面积.5.如图,在等边ABC ∆中,延长AB 至点D ,延长AC 交BD 的中垂线于点E ,连接BE ,DE .(1)如图1,若310DE =,23BC =CE 的长;(2)如图2,连接CD 交BE 于点M ,在CE 上取一点F ,连接DF 交BE 于点N ,且DF CD =,求证:12AB EF =;(3)在(2)的条件下,若45AED ∠=︒直接写出线段BD ,EF ,ED 的等量关系6.如果关于x 的一元二次方程20ax bx c ++=有两个不相等的实数根,且其中一个根为另一个根的一半,则称这样的方程为“半等分根方程”.(1)①方程2280x x --= 半等分根方程(填“是”或“不是”);②若(1)()0x mx n -+=是半等分根方程,则代数式2252m mn n ++= ; (2)若点(,)p q 在反比例函数8x y =的图象上,则关于x 的方程260px x q -+=是半等分根方程吗?并说明理由; (3)如果方程20ax bx c ++=是半等分根方程,且相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上,试说明方程20ax bx c ++=的一个根为53. 7.如图,在平面直角坐标中,点O 为坐标原点,ABC ∆的三个顶点坐标分别为()A O m ,,(),B m O -,(),C n O ,5AC =且OBA OAB ∠=∠,其中m ,n 满足725m n m n +=⎧⎨-=⎩.(1)求点A ,C 的坐标;(2)点P 从点A 出发,以每秒1个单位长度的速度沿y 轴负方向运动,设点P 的运动时间为t 秒.连接BP 、CP ,用含有t 的式子表示BPC ∆的面积为S (直接写出t 的取值范围);(3)在(2)的条件下,是否存在t 的值,使得ΔΔ32PAB POC S S =,若存在,请求出t 的值,并直接写出BP 中点Q 的坐标;若不存,请说明理由.8.已知:如图,二次函数213222y x x =-++的图象交x 轴于A 点和B 点(A 点在B 点左则),交y 轴于E 点,作直线,EB D 是直线EB 上方抛物线上的一个动点.过D 点作 直线l 平行于直线.EB M 是直线 EB 上的任意点,N 是直线l 上的任意点,连接,MO NO ,始终保持MON ∠为90︒,以MO 和ON 边,作矩形MONC .(1)在D 点移动过程中,求出当DEB ∆的面积最大时点D 的坐标;在DEB ∆的面积最大 时,求矩形MONC 的面积的最小值.(2)在DEB ∆的面积最大时,线段ON 交直线EB 于点G ,当点,,,D N G B 四个点组成平行 四边形时,求此时线段ON 与抛物线的交点坐标.9.在平面直角坐标系xOy 中,对于点A 和图形M ,若图形M 上存在两点P ,Q ,使得3AP AQ =,则称点A 是图形M 的“倍增点”.(1)若图形M 为线段BC ,其中点()2,0B -,点()2,0C ,则下列三个点()1,2D -,()1,1E -,()0,2F 是线段BC 的倍增点的是_____________;(2)若O 的半径为4,直线l :2y x =-+,求直线l 上O 倍增点的横坐标的取值范围;(3)设直线1y x =-+与两坐标轴分别交于G ,H ,OT 的半径为4,圆心T 是x 轴上的动点,若线段GH 上存在T 的倍增点,直接写出圆心T 的横坐标的取值范围.10.对于平面直角坐标系xOy 中的图形W 1和图形W 2.给出如下定义:在图形W 1上存在两点A ,B (点A ,B 可以重合),在图形W 2上存在两点M ,N ,(点M 于点N 可以重合)使得AM=2BN ,则称图形W 1和图形W 2满足限距关系(1)如图1,点C(1,0),D(-1,0),E(0,3),点P 在线段DE 上运动(点P 可以与点D ,E 重合),连接OP ,CP .①线段OP 的最小值为_______,最大值为_______;线段CP 的取值范直范围是_____; ②在点O ,点C 中,点____________与线段DE 满足限距关系;(2)如图2,⊙O 的半径为1,直线3y x b =+(b>0)与x 轴、y 轴分别交于点F ,G .若线段FG 与⊙O 满足限距关系,求b 的取值范围;(3)⊙O 的半径为r(r>0),点H ,K 是⊙O 上的两个点,分别以H ,K 为圆心,1为半径作圆得到⊙H 和 K ,若对于任意点H ,K ,⊙H 和⊙K 都满足限距关系,直接写出r 的取值范围.11.∠MON=90°,点A ,B 分别在OM 、ON 上运动(不与点O 重合).(1)如图①,AE 、BE 分别是∠BAO 和∠ABO 的平分线,随着点A 、点B 的运动,∠AEB= °(2)如图②,若BC 是∠ABN 的平分线,BC 的反向延长线与∠OAB 的平分线交于点D ①若∠BAO=60°,则∠D= °.②随着点A ,B 的运动,∠D 的大小会变吗?如果不会,求∠D 的度数;如果会,请说明理由.(3)如图③,延长MO 至Q ,延长BA 至G ,已知∠BAO ,∠OAG 的平分线与∠BOQ 的平分线及其延长线相交于点E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,求∠ABO 的度数.12.在平面直角坐标系中,抛物线24y mx mx n =-+(m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且:3:4∆∆=ABC BCE S S .(1)求点A ,点B 的坐标;(2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上, ①求直线CE 的解析式;②求抛物线的解析式.13.(1)如图①,在Rt ABC 中,90C ∠=︒,13AB =,5BC =,则tan A 的值是_______.(2)如图②,在正方形ABCD 中,5AB =,点E 是平面上一动点,且2BE =,连接CE ,在CE 上方作正方形EFGC ,求线段CF 的最大值.问题解决:(3)如图③,O 半径为6,在Rt ABC 中,90B ∠=︒,点, A B 在O上,点C 在O 内,且3tan 4A =.当点A 在圆上运动时,求线段OC 的最小值.14.如图①,在△ABC 中,∠ACB =90°,∠B =30°,AC =1,D 为AB 的中点,EF 为△ACD 的中位线,四边形EFGH 为△ACD 的内接矩形(矩形的四个顶点均在△ACD 的边上). (1)计算矩形EFGH 的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 重叠部分的面积为3时,求矩形平移的距离; (3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E F G H ,将矩形1111E F G H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为α,求cos α的值.15.如图,等腰△ABC ,AB =CB ,边AC 落在x 轴上,点B 落在y 轴上,将△ABC 沿y 轴翻折,得到△ADC(1)直接写出四边形ABCD 的形状:______;(2)在x 轴上取一点E ,使OE =OB ,连结BE ,作AF ⊥BC 交BE 于点F .①直接写出AF 与AD 的关系:____(如果后面的问题需要,可以直接使用,不需要再证明);②取BF 的中点G ,连接OG ,判断OG 与AD 的数量关系,并说明理由;(3)若四边形ABCD 的周长为8,直接写出GE 2+GF 2=____.16.AB 是O 直径,,C D 分别是上下半圆上一点,且弧BC =弧BD ,连接,AC BC ,连接CD 交AB 于E ,(1)如图(1)求证:90AEC ∠=︒;(2)如图(2)F 是弧AD 一点,点,M N 分别是弧AC 和弧FD 的中点,连接FD ,连接MN 分别交AC ,FD 于,P Q 两点,求证:MPC NQD ∠=∠(3)如图(3)在(2)问条件下,MN 交AB 于G ,交BF 于L ,过点G 作GH MN ⊥交AF 于H ,连接BH ,若,6,BG HF AG ABH ==∆的面积等于8,求线段MN 的长度17.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积; (2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与A B D '''△重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x ,使得AA B ''△成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.18.在菱形ABCD 中,P 为直线DA 上的点,Q 为直线CD 上的点,分别连接PC ,PQ ,且PC PQ =.(1)若60B ∠=︒,点P 在线段DA 上,点Q 在线段CD 的延长线上,如图①,易证:DQ PD AB +=(不需证明);(2)如图②,若∠B =120°,点P 在线段DA 上,点Q 在线段CD 的延长线上,如图③,猜想线段DQ ,PD 和AB 之间有怎样的数量关系?请直接写出对图②,图③的猜想,并选择其中一种情况给予证明.19.如图,在平面直角坐标系中,Rt ABC △的斜边在AB 在x 轴上,点C 在y 轴上90ACB ∠=︒,OC 、OB 的长分别是一元二次方程2680x x -+=的两个根,且OC OB <.(1)求点A 的坐标;(2)D 是线段AB 上的一个动点(点D 不与点A ,B 重合),过点D 的直线l 与y 轴平行,直线l 交边AC 或边BC 于点P ,设点D 的横坐标为t ,线段DP 的长为d ,求d 关于t 的函数解析式;(3)在(2)的条件下,当12d =时,请你直接写出点P 的坐标.20. 在平面直角坐标系中,点O 为坐标原点,直线y =﹣x+4与x 轴交于点A ,过点A 的抛物线y =ax 2+bx 与直线y =﹣x+4交于另一点B ,且点B 的横坐标为1.(1)该抛物线的解析式为;(2)如图1,Q为抛物线上位于直线AB上方的一动点(不与B、A重合),过Q作QP⊥x 轴,交x轴于P,连接AQ,M为AQ中点,连接PM,过M作MN⊥PM交直线AB于N,若点P的横坐标为t,点N的横坐标为n,求n与t的函数关系式;在此条件下,如图2,连接QN并延长,交y轴于E,连接AE,求t为何值时,MN∥AE.(3)如图3,将直线AB绕点A顺时针旋转15度交抛物线对称轴于点C,点T为线段OA 上的一动点(不与O、A重合),以点O为圆心、以OT为半径的圆弧与线段OC交于点D,以点A为圆心、以AT为半径的圆弧与线段AC交于点F,连接DF.在点T运动的过程中,四边形ODFA的面积有最大值还是有最小值?请求出该值.21.如图,四边形AOBC是正方形,点C的坐标是(82,0).(1)正方形AOBC的边长为,点A的坐标是;(2)将正方形AOBC绕点O顺时针旋转45︒,点A,B,C旋转后的对应点为A',B',C',求点A'的坐标及旋转后的正方形与原正方形的重叠部分的面积;(3)动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时同时停止运动,当OPQ△为等腰三角形时,求出t的值(直接写出结果即可).22.如图,在⊙O中,直径AB=10,tanA3(1)求弦AC的长;(2)D是AB延长线上一点,且AB=kBD,连接CD,若CD与⊙O相切,求k的值;(3)若动点P以3cm/s的速度从A点出发,沿AB方向运动,同时动点Q以32cm/s的速度从B 点出发沿BC 方向运动,设运动时间为t (0<t <103),连结PQ .当t 为何值时,△BPQ 为Rt △?23.如图1,在平面直角坐标系中,O 是坐标原点,矩形OACB 的顶点A 、B 分别在x 轴和y 轴上,已知OA=5,OB=3,点D 的坐标是(0,1),点P 从点B 出发以每秒1个单位的速度沿折线BCA 的方向运动,当点P 与点A 重合时,运动停止,设运动的时间为t 秒.(1)点P 运动到与点C 重合时,求直线DP 的函数解析式;(2)求△OPD 的面积S 关于t 的函数解析式,并写出对应t 的取值范围;(3)点P 在运动过程中,是否存在某些位置使△ADP 是不以DP 为底边的等腰三角形,若存在,请求出点P 的坐标;若不存在,请说明理由.24.(问题探究)课堂上老师提出了这样的问题:“如图①,在ABC 中,108BAC ∠=︒,点D 是BC 边上的一点,7224BAD BD CD AD ∠=︒==,,,求AC 的长”.某同学做了如下的思考:如图②,过点C 作CE AB ∥,交AD 的延长线于点E ,进而求解,请回答下列问题:(1)ACE ∠=___________度;(2)求AC 的长.(拓展应用)如图③,在四边形ABCD 中,12075BAD ADC ∠=︒∠=︒,,对角线AC BD 、相交于点E ,且AC AB ⊥,22EB ED AE ==,,则BC 的长为_____________.25.如图,在平面直角坐标系xoy 中,直线122y x =-+与x 轴交于点B ,与y 轴交于点,C 抛物线2y ax bx c =++的对称轴是直线3,2x =与x 轴的交点为点,A 且经过点B C 、两点.(1)求抛物线的解析式;(2)点M 为抛物线对称轴上一动点,当BM CM -的值最小时,请你求出点M 的坐标;(3)抛物线上是否存在点N ,过点N 作NH x ⊥轴于点,H 使得以点、、B N H 为顶点的三角形与ABC 相似?若存在,请直接写出点N 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.E解析:(1)①详见解析;②8;(2)(2)四边形PEFD 是菱形,证明详见解析【解析】【分析】(1)①根据四边形ABCD 为正方形得AD=CD ,然后证明△ADF ≌△CDP ,则DF=DP ,得到DF=PG ;②先判断四边形PEFD 是菱形,然后求出223110+=P 作PM ⊥AD 于点M ,则四边形CDMP 是矩形,则△DHG ∽△PMG ,根据相似三角形的性质,即可求出答案;(2)根据四边形ABCD为正方形得AD=AB,由四边形ABPM为矩形得AB=PM,则AD=PM,再利用等角的余角相等得到∠GDH=∠MPG,于是可根据“ASA”证明△ADF≌△MPG,得到DF=PG,加上PD=PG,得到DF=PD,然后利用旋转的性质得∠EPG=90°,PE=PG,所以PE=PD=DF,再利用DF⊥PG得到DF∥PE,于是可判断四边形PEFD为平行四边形,加上DF=PD,则可判断四边形PEFD为菱形.【详解】解:(1)①证明∵四边形ABCD是正方形,∴AD=CD ,∠A= ∠C=∠ADC=90°,∵DF⊥PG,∴∠DHG=90°,∴∠HGD+∠ADF=90°,∠CDP+∠PDG=90°,∵ PD=PG ,∴∠PGD=∠PDG,∴∠ADF=∠CDP,∴△ADF≌△CDP(ASA),∴DF=DP,∵ PD=PG,∴DF=PG;②∵线段PG绕点P逆时针旋转90°得到线段PE∴∠GPE=∠DHG=90°, PG=PE=DF= PD∴PE∥DF∴四边形PEFD是菱形在Rt△DCP中,AD=AB=3,PC=1,PG=DP=223110+=过点P作PM⊥AD于点M,则四边形CDMP是矩形∴DM=MG=PC=1,DG=2DM=2,∠PMG=∠DHG=90°,∠DGH=∠PGM∴△DHG∽△PMG∴DG GHPG MG=110GH∴GH=105, PH=PG-GH=105由(1)DF=DP=10∴四边形PEFD的面积是DF PH⋅=10×4105=8 ;(2)四边形PEFD是菱形;作PM⊥DG于M,如图2,∵四边形ABCD为正方形,∴AD=AB,∵四边形ABPM为矩形,∴AB=PM,∴AD=PM,∵DF⊥PG,∴∠DHG=90°,∴∠GDH+∠DGH=90°,∵∠MGP+∠MPG=90°,∴∠GDH=∠MPG,在△ADF和△MPG中FAD PMGAD MPADF MPG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADF≌△MPG(ASA),∴DF=PG,而PD=PG,∴DF=PD,∵线段PG绕点P逆时针旋转90°得到线段PE,∴∠EPG=90°,PE=PG,∴PE=PD=DF而DF⊥PG,∴DF∥PE,且DF =PE,∴四边形PEFD为平行四边形,∵DF=PD,∴四边形PEFD为菱形.【点睛】本题考查了四边形的综合题:熟练掌握平行四边形、矩形、菱形和正方形的判定与性质是解题的关键;同时会运用等腰三角形的性质和旋转的性质;会利用三角形全等解决线段相等的问题.2.B解析:(1)①(2,0),(1,2),(﹣1,2);②y=2x;③y=﹣22x+2;(2)①半径为2,M(4323,33);②2<r<4【解析】【分析】(1)①如图2−1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2−2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;③如图3−3中,作QM∥OA交OD于M.利用平行线分线段成比例定理即可解决问题;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M的半径即可解决问题;【详解】解:(1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F.由题意OC=CD=1,OA=BC=2,∴BD=OE=1,OD=CF=BE=2,∴A(2,0),B(1,2),C(﹣1,2),故答案为:A(2,0),B(1,2),C(﹣1,2).②如图2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M.∵OD∥BE,OD∥PM,∴BE∥PM,∴BE OEPM OM=,∴21y x=,∴y=2x.故答案为:y=2x.③如图2﹣3中,作QM∥OA交OD于M.222MQ DMOA DOx y∴=-∴=∴222y x=-+故答案为:y=﹣2x+2.(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.∵ω=120°,OM⊥y轴,∴∠MOA=30°,∵MF⊥OA,OA=3∴OF=FA3∴FM=1,OM=2FM=2,∴圆M的半径为2∵MN∥y轴,∴MN⊥OM,∴MN=233,ON=2MN=433,∴M4323,⎛⎫⎪ ⎪⎝⎭.②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.∵MK∥x轴,ω=120°,∴∠MKO=60°,∵MK=OK=3∴△MKO是等边三角形,∴MN=3,当FN=1时,MF=3﹣1=2,当EN=1时,ME=3+1=4,观察图象可知当⊙M的半径r的取值范围为2<r<4.故答案为:2<r<4.【点睛】本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面斜坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.3.A解析:(1)12;(2)5s或373s;(3)163s或685s或72s【解析】【分析】(1)AD与BC之间的距离即AB的长,如下图,过点D作BC的垂线,交BC于点E,在RtDEC中可求得DE的长,即AB的长,即AD与BC间的距离;(2)四边形QDCP为平行四边形,只需QD=CP即可;(3)存在3大类情况,情况一:QP=PD,情况二:PD=QD,情况三:QP=QD,而每大类中,点P存在2种情况,一种为点P还未到达点C,另一种为点P从点C处返回.【详解】(1)如下图,过点D作BC的垂线,交BC于点E∵∠B=90°,AD ∥BC∴AB ⊥BC ,AB ⊥AD∴AB 的长即为AD 与BC 之间的距离∵AD=16,BC=21,∴EC=5∵DC=13∴在Rt DEC 中,DE=12同理,DE 的长也是AD 与BC 之间的距离∴AD 与BC 之间的距离为12(2)∵AD ∥BC∴只需QD=PC ,则四边形QDCP 是平行四边形QD=16-t ,PC=21-2t 或PC=2t -21∴16-t=21-2t 或16-t=2t -21解得:t=5s 或t=373s (3)情况一:QP=PD图形如下,过点P 作AD 的垂线,交AD 于点F∵PQ=PD ,PF ⊥QD ,∴QF=FD∵AF ∥BP ,AB ∥FP ,∠B=90°∴四边形ABPF 是矩形,∴AF=BP由题意得:AQ=t ,则QD=16-t ,QF=8-2t ,AF=8+2t BP=2t 或BP=21-(2t -21)=42-2t∵AF=BP∴8+2t =2t 或8+2t =42-2t解得:t=163或t=685情况二:PD=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F同理QD=16-t ,PF=AB=12BP=2t 或21-(2t -21)=42-2t则FD=AD -AF=AD -BP=16-2t 或FD=16-(42-2t)=2t -26∴在Rt PFD 中,()22212162PD t =+-或()22212226PD t =+-∵PD=QD ,∴22PD QD =∴()()22216t 12162t =+--或()()22216t 12226t =+--解得:2个方程都无解情况三:QP=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F同理:QD=16-t ,FP=12BP=2t 或BP=42-2tQF=AF -AQ=BP -AQ=2t -t=t 或QF=42-2t -t=42-3t在Rt QFP 中,22212PQ t =+或()22212423PQ t =+- ∵PQ=QD ,∴22PQ QD =∴()22216t 12t =+-或()()22216t 12423t =+--第一个方程解得:t=72,第二个方程解得:无解 综上得:t=163或685或72 【点睛】本题考查四边形中的动点问题,用到了勾股定理、平行四边形的性质、矩形的性质,解题关键是根据点Q运动的轨迹,得出BP的长度.4.D解析:(1)6;(2)y=-3x+10(1≤x<103);(2)1769或32【解析】【分析】(1)如下图,利用等腰直角三角形DHC可得到HC的长度,从而得出HB的长,进而得出AD的长;(2)如下图,利用等腰直角三角形的性质,可得PQ、PR的长,然后利用EB=PQ+PR得去x、y的函数关系,最后根据图形特点得出取值范围;(3)存在2种情况,一种是点P在梯形内,一种是在梯形外,分别根y的值求出x的值,然后根据梯形面积求解即可.【详解】(1)如下图,过点D作BC的垂线,交BC于点H∵∠C=45°,DH⊥BC∴△DHC是等腰直角三角形∵四边形ABCD是梯形,∠B=90°∴四边形ABHD是矩形,∴DH=AB=8∴HC=8∴BH=BC-HC=6∴AD=6(2)如下图,过点P作EF的垂线,交EF于点Q,反向延长交BC于点R,DH与EF交于点G∵EF ∥AD,∴EF ∥BC ∴∠EFP=∠C=45° ∵EP ⊥PF∴△EPF 是等腰直角三角形同理,还可得△NPM 和△DGF 也是等腰直角三角形 ∵AE=x∴DG=x=GF,∴EF=AD+GF=6+x ∵PQ ⊥EF,∴PQ=QE=QF ∴PQ=()162x + 同理,PR=12y ∵AB=8,∴EB=8-x ∵EB=QR ∴8-x=()11622x y ++ 化简得:y=-3x+10 ∵y >0,∴x <103当点N 与点B 重合时,x 可取得最小值则BC=NM+MC=NM+EF=-3x+10+614x +=,解得x=1 ∴1≤x <103(3)情况一:点P 在梯形ABCD 内,即(2)中的图形 ∵MN=2,即y=2,代入(2)中的关系式可得:x=83=AE ∴188176662339ABCD S ⎛⎫=⨯++⨯= ⎪⎝⎭梯形 情况二:点P 在梯形ABCD 外,图形如下:与(2)相同,可得y=3x -10 则当y=2时,x=4,即AE=4 ∴()16644322ABCD S =⨯++⨯=梯形 【点睛】本题考查了等腰直角三角形、矩形的性质,难点在于第(2)问中确定x 的取值范围,需要一定的空间想象能力.5.B解析:(1)93CE =-2)详见解析;(3)6132BD DE EF =- 【解析】 【分析】(1)过点B 作BH AC ⊥于点H ,分别求出BH ,BE ,根据勾股定理问题得解; (2)如图在FE 上取一点G ,使FG AC =,连接DG ,先证明()ACD GFD SAS ∆∆≌,再证明()ECB DGE AAS ∆∆≌,问题得证;(3)过点D 作AE 的垂线,构造出一个30,60︒,90︒的三角形和一个等腰直角三角形,借助(2)的结论,设222EF AB AC x ===,2ED =,通过解两个直角三角形,代换x 和y 的关系,得出结论. 【详解】解:(1)如图,过点B 作BH AC ⊥于点H , 在等边ABC ∆中∵23BC =∴3AH HC ==223BH BC CH =-=,∵点E 在BD 的垂直平分线上,∴310BE DE ==,在Rt BHE ∆中229EH BE BH =-=∴93CE EH HC =-=-(2)如图在FE 上取一点G ,使FG AC =,连接DG ∵DF CD = ∴FCD CFD ∠=∠ ∴ACD EFD ∠=∠ 在ACD ∆和GFD ∆中,DF CD ACD EFD FG AC =⎧⎪∠=∠⎨⎪=⎩∴()ACD GFD SAS ∆∆≌ ∴AD DG = ∴60A DGA ∠=∠=︒ ∴60A DGA ADG ∠=∠=∠=︒ 设EBD EDB α∠=∠= ∴120CBE α∠=︒- 在ADE ∆中∴18060120AED αα∠=︒-︒-=︒- ∴120AED CBE α∠=∠=︒- 在ECB ∆和DGE ∆中120AED CBE ECB ECD EB DE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()ECB DGE AAS ∆∆≌ ∴BC GE =∴AB AC BC GE FG ====12AB EF =(3)如图,设222EF AB AC x ===,DP=y , 过点DP ⊥AE ,垂足为P , ∵∠AED=45°, ∠A=60°, ∴2sin sin 45DP y ED y AED ===∠︒,23sin sin 60DP y yAD A ===∠︒, ∴2=2y DE , ∴BD=AD-AB =23232161222y x DE EF DE EF -=-=-, 故答案为:612BD DE EF =-. 【点睛】本题涉及知识点较多,设计新颖,综合性强,难度较大,根据题意添加适当辅助线,构造直角三角形或构造全等是解题关键.6.(1)①不是;②0;(2)若点(,)p q 在反比例函数8y x=的图象上,则关于x 的方程260px x q -+=是半等分根方程,理由详见解析;(3)详见解析【解析】 【分析】(1)①解方程2280x x --=,根据“半等分根方程”定义作出判断即可;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2nm-=,即:n =-2m 或m =-2n ,分别代入代数式2252m mn n ++=结果均为0 (2)根据点(,)p q 在反比例函数8y x=的图象上,得到8q p =,代入260px x q -+=,得到关于x 的方程2860px x p-+=,解方程,用含p 的式子表示x ,根据“半等分根方程”定义判断即可;(3)根据两点(1,)M t s +,(4,)N t s -都在抛物线上,且纵坐标相等,可以求出对称轴为52x =,根据方程20ax bx c ++=是半等分根方程,得到两根关系,根据抛物线对称轴为 12522x x +=,即可求出两个根,问题得证. 【详解】解:(1)①解方程2280x x --=得124,2x x ==-,不符合“半等分根方程”定义, 故答案为:不是;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2nm-=,即:n =-2m 或m =-2n ,当n =-2m 时,()()22225522022m mn n m m n m ++=+-+-=; 当m =-2n 时,()()22225522022m mn n n n n n ++=-+-+=;故答案为:0;(2)若点(,)p q 在反比例函数8y x=的图象上,则关于x 的方程260px x q -+=是半等分根方程理由:∵点(,)p q 在反比例函数8y x=的图象上∴8q p=代入方程260px x q -+=得:2860px x p-+= 解得:12x p=,24x p =∵1212x x =∴方程260px x q -+=是半等分根方程(3)∵相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上, ∴抛物线的对称轴为:(1)(4)522t t x ++-==又∵方程20ax bx c ++=是半等分根方程 ∴设20ax bx c ++=的两个根分别为1x 和2x 令1212x x =则有:12522x x += 所以153x =,2103x =所以方程20ax bx c ++=的一个根为53得证. 【点睛】本题为“新定义问题”,考查了学生自主学习的能力,解决此题关键是理解新定义概念,并结合所学数学知识进行解答.7.A解析:(1)A (0,4),C (3,0);(2)S=()()51004251042t t t t ⎧-+<<⎪⎪⎨⎪->⎪⎩;(3)存在,满足条件的t 的值为3617或36,点Q 的坐标为162,17⎛⎫- ⎪⎝⎭或()2,16--.【解析】 【分析】(1)解方程组求出m ,n 即可解决问题.(2)分两种情形:如图1中,当0<t <4时,如图2中,当t >4时,根据S=12•BC•OP 求解即可.(3)分两种情形分别构建方程求解即可. 【详解】解:(1)由725m n m n +=⎧⎨-=⎩,解得:43m n =⎧⎨=⎩,∴A (0,4),C (3,0); (2)如图1中,当0<t <4时,S=1 2•BC•OP=12×5×(4-t)=-52t+10.如图2中,当t>4时,S=12•BC•OP=12×5×(t-4)=52t-10.综上所述,S=()()51004251042t tt t⎧-+<<⎪⎪⎨⎪->⎪⎩,(3)当04t<<时,由题意,1314(4)3222t t⨯⨯=⨯⨯-⨯,解得3617t=,此时,363241717OP=-=,32(0,)17P∴,(4,0)B-,BQ∴的中点Q的坐标为162,17⎛⎫- ⎪⎝⎭,当4t>时,由题意,1314(4)3222t t⨯⨯=⨯⨯-⨯,解得36t=,此时36432OP=-=,(0,32)P∴-,(4,0)B -,BP ∴的中点Q 的坐标为(2,16)--.综上所述,满足条件的t 的值为3617或36.点Q 的坐标为16(2,)17-或(2,16)--.【点睛】本题属于三角形综合题,考查了解方程组,三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.8.D解析:(1)D 点坐标为()2,3,矩形MONC 的最小值为645;(2)交点坐标为(3+13,﹣9313+),(3﹣13,﹣9313-),(1﹣5,15-),(1+5,15+). 【解析】 【分析】(1)当△DEB 的面积最大时,直线DN 与抛物线相切,可求出直线DN 的解析式和点D 的坐标,当矩形面积最小时,MG 最小,求出MG 的最小值即可.(2)分两种情况讨论,以DB 为边和以DB 为对角线,分别求出此时ON 的解析式,联立求出交点坐标即可. 【详解】解:(1)如图1所示,过点D 作y 轴的平行线交MB 于点H ,过点O 作OQ 垂直MB 于点Q ,令y =0,解得x 1=﹣1,x 2=4, ∴A (﹣1,0),B (4,0), 令x =0,y =2, ∴E (0,2),设直线BE的解析式为y=kx+b,则2, 40,bk b=⎧⎨+=⎩解得122kb⎧=-⎪⎨⎪=⎩,∴直线BE的解析式为y=﹣12x+2,∵DN∥BE,∴设直线DN的解析式为y=﹣12x+b1,S△DEB=DH12⨯•(x B﹣x E),∴当△DEB面积最大时,即是DH最大的时候,∴﹣12x+b1=﹣12x2+32x+2,△=b2﹣4ac=0,即16﹣4(2b1﹣4)=0,解得b1=4,点D(2,3),S矩=2S△MOG+S平形四边形,∴矩形面积最小时就是MG最小,设QG=m,MQ=n,∴MG=m+n,∵m+n≥∵△QOG∽△MQO,∴OQ2=m•n,∵△OEQ∽△EOB,∴OQ∴m•n=165,∴m+n.∴MG,∴S矩=2S△MOG+S平形四边形=645.(2)分两种情况讨论,情况一:当GN∥DB时,直线DB的解析式为:y=﹣32x+6,则直线NG 的解析式为y =﹣32x , ∴﹣32x =﹣12x 2+32x +2,解得x 1=x 2=3∴交点坐标为(),(3), 情况二:DB 为对角线时,此时NG 必过DB 的中点(3,32), 设直线ON 的解析式为y =k 1x , 则k 1=12, ∴直线OD 的解析式为y =12x , 12=﹣12x 2+32x +2,解得x 1=1x 2=∴交点坐标为(1),(),综上所述:交点坐标为(92+),(392-),(1﹣),(). 【点睛】此题考查了二次函数的性质以及二次函数与几何相结合的问题,转化矩形面积最小和三角形面积最大为某条线段的最值为解题关键.9.A解析:(1)()1,1E -;(2)12m -≤≤-或01m ≤≤3)9t ≤≤. 【解析】 【分析】(1)首先要理解点A 是图形M 的“倍增点”的定义,将三个点逐一代入验证即可; (2)分两种情况:①点"倍增点”在O 的外部,分别求得“倍增点”横坐标的最大值和最小值,②点"倍增点"在O 的内部,依次求得“倍增点"横坐标的最大值和最小值,即可确定“倍增点”横坐标的范围;(3)分别求得线段GH 两端点为T "倍增点”时横坐标的最大值和最小值即可. 【详解】(1)()1,2D -到线段BC 的距离为2,22(12)(20)1332DC =--+-=<⨯∴()1,2D -不是线段BC 的倍增点;()1,1E -到线段BC 的距离为1,22(12)(10)103EC =--+-=>,∴在线段BC 上必存在一点P 使EP=3,∴()1,1E -是线段BC 的倍增点;()0,2F 到线段BC 的距离为2,22(02)(20)2232FC =-+-=<⨯∴()0,2F 不是线段BC 的倍增点;综上,()1,1E -是线段BC 的倍增点;(2)设直线l 上“倍增点”的横坐标为m ,当点在O 外时,222(2)8,m m +-+≤解方程222(2)8m m +-+=,得1131m =+,2131m =-当点在O 内部时,22224(2)3(44(2))m m m m ++-+≥--+-+解得:m≥0或m≤-2∴直线l 上“倍增点”的橫坐标的取值范围为1312m -≤≤-或0131m ≤≤+;(3)如图所示,当点G(1,0)为T "倍增点"时,T(9,0),此时T 的横坐标为最大值,当点H(0,1)为T “倍增点”时,则T(63,此时T 的横坐标为最小值;∴圆心T(t, 0)的横坐标的取值范围为:639t -≤≤.【点睛】在正确理解点A 是图形M 的“倍增点”定义的基础上,利用(1)判断是否是倍增点的不等关系式,即可列不等式组求解范围.10.C解析:(1)①3,3,32CP ≤≤,②O;(2)13b ≥;(3)0<r≤3. 【解析】【分析】(1)①根据垂线段最短以及已知条件,确定OP ,CP 的最大值,最小值即可解决问题.②根据限距关系的定义判断即可.(2)直线3y x b =+与x 轴、y 轴分别交于点F ,G (0,b ),分三种情形:①线段FG 在⊙O 内部,②线段FG 与⊙O 有交点,③线段FG 与⊙O 没有交点,分别构建不等式求解即可.(3)如图3中,不妨设⊙K ,⊙H 的圆心在x 轴上位于y 轴的两侧,根据⊙H 和⊙K 都满足限距关系,构建不等式求解即可.【详解】(1)①如图1中,∵D (-1,0),E(03,∴OD=1,3OE =∴3OE tan EDO OD∠== ∴∠EDO=60°,当OP ⊥DE 时,3•60OP OD sin =︒=,此时OP 的值最小, 当点P 与E 重合时,OP 3当CP ⊥DE 时,CP 的值最小,最小值•603CD cos =︒=当点P 与D 或E 重合时,PC 的值最大,最大值为2,故答案为:32332CP ≤. ②根据限距关系的定义可知,线段DE 上存在两点M ,N ,满足OM=2ON ,故点O 与线段DE 满足限距关系.故答案为O .(2)直线3y x b =+与x 轴、y 轴分别交于点F ,G (0,b ),当0<b <1时,线段FG 在⊙O 内部,与⊙O 无公共点,此时⊙O 上的点到线段FG 的最小距离为1-b ,最大距离为1+b ,∵线段FG 与⊙O 满足限距关系,∴1+b ≥2(1-b ),解得13b ≥, ∴b 的取值范围为131b ≤<. 当1≤b ≤2时,线段FG 与⊙O 有公共点,线段FG 与⊙O 满足限距关系,当b >2时,线段FG 在⊙O 的外部,与⊙O 没有公共点,此时⊙O 上的点到线段FG 的最小距离为121b -,最大距离为b+1, ∵线段FG 与⊙O 满足限距关系, ∴11212b b ⎛⎫+≥- ⎪⎝⎭, 而11212b b ⎛⎫+≥- ⎪⎝⎭总成立, ∴b >2时,线段FG 与⊙O 满足限距关系,综上所述,b 的取值范围为13b ≥. (3)如图3中,不妨设⊙K ,⊙H 的圆心在x 轴上位于y 轴的两侧,两圆的距离的最小值为2r-2,最大值为2r+2,∵⊙H 和⊙K 都满足限距关系,∴2r+2≥2(2r-2),解得r ≤3,故r 的取值范围为0<r ≤3.【点睛】本题属于圆综合题,考查了解直角三角形,垂线段最短,直线与圆的位置关系,限距关系的定义等知识,解题的关键是理解题意,学会利用参数构建不等式解决问题,属于中考创新题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、中考数学压轴题1.如图①,△ABC 是等腰直角三角形,在两腰AB 、AC 外侧作两个等边三角形ABD 和ACE ,AM 和AN 分别是等边三角形ABD 和ACE 的角平分线,连接CM 、BN ,CM 与AB 交于点P .(1)求证:CM =BN ;(2)如图②,点F 为角平分线AN 上一点,且∠CPF =30°,求证:△APF ∽△AMC ; (3)在(2)的条件下,求PF BN 的值. 2.已知:如图,AB 为O 的直径,弦CD AB ⊥垂足为E ,点H 为弧AC 上一点.连接DH 交AB 于点F ,连接HA 、BD ,点G 为DH 上一点,连接AG ,HAG BDC ∠=∠. (1)如图1,求证:AG HD ⊥;(2)如图2,连接HC ,若HC HF =,求证:HC HA =;(3)如图3,连接HO 交AG 于点K ,若点F 为DG 的中点,HC 2HG =,求KG AK的值.3.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,第一颗弹珠弹出后其速度1y (米/分钟)与时间x (分钟)前2分钟满足二次函数21y ax =,后3分钟满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分钟.(1)求第一颗弹珠的速度1y (米/分钟)与时间x (分钟)之间的函数关系式;(2)第一颗弹珠弹出1分钟后,弹出第二颗弹珠,第二颗弹珠的运行情况与第一颗相同,直接写出第二颗弹珠的速度2y (米/分钟)与弹出第一颗弹珠后的时间x (分钟)之间的函数关系式;(3)当两颗弹珠同时在轨道上时,第____分钟末两颗弹珠的速度相差最大,最大相差______;(4)判断当两颗弹珠同时在轨道上时,是否存在某时刻速度相同?请说明理由,并指出可以通过解哪个方程求出这一时刻.4.(1)阅读理解:如图①,在ABC 中,若8AB =,5AC =,求BC 边上的中线AD 的取值范围. 可以用如下方法:将ACD 绕着点D 逆时针旋转180︒得到EBD △,在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是______;(2)问题解决:如图②,在ABC 中,D 是BC 边上的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE CF EF +>;(3)问题拓展:如图③,在四边形ABCD 中,180B D ∠+∠=︒,CB CD =,100BCD ∠=︒,以C 为顶点作一个50︒的角,角的两边分别交AB 、AD 于E 、F 两点,连接EF ,探索线段BE ,DF ,EF 之间的数量关系,并说明理由.5.在平面直角坐标系xOy 中,对于点A 和图形M ,若图形M 上存在两点P ,Q ,使得3AP AQ =,则称点A 是图形M 的“倍增点”.(1)若图形M 为线段BC ,其中点()2,0B -,点()2,0C ,则下列三个点()1,2D -,()1,1E -,()0,2F 是线段BC 的倍增点的是_____________;(2)若O 的半径为4,直线l :2y x =-+,求直线l 上O 倍增点的横坐标的取值范围;(3)设直线1y x =-+与两坐标轴分别交于G ,H ,OT 的半径为4,圆心T 是x 轴上的动点,若线段GH 上存在T 的倍增点,直接写出圆心T 的横坐标的取值范围.6.如图,平面上存在点P 、点M 与线段AB .若线段AB 上存在一点Q ,使得点M 在以PQ 为直径的圆上,则称点M 为点P 与线段AB 的共圆点.已知点P (0,1),点A (﹣2,﹣1),点B (2,﹣1).(1)在点O (0,0),C (﹣2,1),D (3,0)中,可以成为点P 与线段AB 的共圆点的是 ;(2)点K 为x 轴上一点,若点K 为点P 与线段AB 的共圆点,请求出点K 横坐标x K 的取值范围;(3)已知点M (m ,﹣1),若直线y =12x +3上存在点P 与线段AM 的共圆点,请直接写出m 的取值范围.7.如图,射线AM 上有一点B ,AB =6.点C 是射线AM 上异于B 的一点,过C 作CD ⊥AM ,且CD =43AC .过D 点作DE ⊥AD ,交射线AM 于E . 在射线CD 取点F ,使得CF =CB ,连接AF 并延长,交DE 于点G .设AC =3x .(1) 当C 在B 点右侧时,求AD 、DF 的长.(用关于x 的代数式表示)(2)当x 为何值时,△AFD 是等腰三角形.(3)若将△DFG 沿FG 翻折,恰使点D 对应点'D 落在射线AM 上,连接'FD ,'GD .此时x 的值为 (直接写出答案)8.小明研究了这样一道几何题:如图1,在ABC 中,把AB 绕点A 顺时针旋转()0180a a ︒<<︒得到AB ',把AC 绕点A 逆时针旋转β得到AC ',连接B C ''.当180a β+=︒时,请问AB C ''△边B C ''上的中线AD 与BC 的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当ABC 为等边三角形时,猜想AD 与BC 的数量关系为AD =_______BC ;②如图3,当90BAC ∠=︒,8BC =时,则AD 长为________. 猜想论证:(2)在图1中,当ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.拓展应用:(3)如图4,在四边形ABCD ,90C ∠=︒,120A B ∠+∠=︒,3BC =6CD =,3DA =P ,使PDC △与PAB △之间满足小明探究的问题中的边角关系?若存在,请画出点P 的位置(保留作图痕迹,不需要说明)并直接写出PDC △的边DC 上的中线PQ 的长度;若不存在,说明理由.9.已知:如图,四边形ABCD ,AB DC ,CB AB ⊥,16AB cm =,6BC cm =,8CD cm =,动点Q 从点D 开始沿DA 边匀速运动,运动速度为1/cm s ,动点P 从点A 开始沿AB 边匀速运动,运动速度为2/cm s .点P 和点Q 同时出发,O 为四边形ABCD 的对角线的交点,连接 PO 并延长交CD 于M ,连接QM .设运动的时间为()t s ,08t <<.(1)当t 为何值时,PQ BD ?(2)设五边形QPBCM 的面积为()2S cm ,求S 与t 之间的函数关系式;(3)在运动过程中,是否存在某一时刻t,使PQM的面积等于五边形面积的1115?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使点Q在MP的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.10.如图,在等边△ABC中,AB=BC=AC=6cm,点P从点B出发,沿B→C方向以1.5cm/s 的速度运动到点C停止,同时点Q从点A出发,沿A→B方向以1cm/s的速度运动,当点P停止运动时,点Q也随之停止运动,连接PQ,过点P作BC的垂线,过点Q作BC的平行线,两直线相交于点M.设点P的运动时间为x(s),△MPQ与△ABC重叠部分的面积为y(cm2)(规定:线段是面积为0的图形).(1)当x= (s)时,PQ⊥BC;(2)当点M落在AC边上时,x= (s);(3)求y关于x的函数解析式,并写出自变量x的取值范围.11.(1)如图1,A是⊙O上一动点,P是⊙O外一点,在图中作出PA最小时的点A.(2)如图2,Rt△ABC中,∠C=90°,AC=8,BC=6,以点C为圆心的⊙C的半径是3.6,Q是⊙C上一动点,在线段AB上确定点P的位置,使PQ的长最小,并求出其最小值.(3)如图3,矩形ABCD中,AB=6,BC=9,以D为圆心,3为半径作⊙D,E为⊙D上一动点,连接AE,以AE为直角边作Rt△AEF,∠EAF=90°,tan∠AEF=13,试探究四边形ADCF的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.12.如图1,在O中,弦AB⊥弦CD,垂足为点E,连接AD、BC、AO,AD AB=.(1)求证:2CAO CDB ∠=∠(2)如图2,过点O 作OH AD ⊥,垂足为点H ,求证:2OH CE DE +=(3)如图3,在(2)的条件下,延长DB 、AC 交于点F ,过点D 作DM AC ⊥,垂足为M ,交AB 于N ,若12BC =,3AF BF =,求MN 的长.13.ABC 内接于O ,AB BC =,连接BO ;(1)如图1,连接CO 并延长交O 于点M ,连接AM ,求证://AM BO ;(2)如图2,延长BO 交AC 于点H ,点F 为BH 上一点,连接AF ,若AH HF AB BF =,求证:BAF HAF ∠=∠;(3)在(2)的条件下,如图3,点E 为AB 上一点,点D 为O 上一点,连接ED 、OE ,若CBD 3ABH 90∠+∠=︒,若OF 3=,FH 4=,13623EBD S ∆=,连接OE ,求线段OE 的长.14.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________.15.如图,在长方形ABCD中,AB=4cm,BE=5cm,点E是AD边上的一点,AE、DE分别长acm.bcm,满足(a-3)2+|2a+b-9|=0.动点P从B点出发,以2cm/s的速度沿B→C→D运动,最终到达点D,设运动时间为t s.(1)a=______cm,b=______cm;(2)t为何值时,EP把四边形BCDE的周长平分?(3)另有一点Q从点E出发,按照E→D→C的路径运动,且速度为1cm/s,若P、Q两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t为何值时,△BPQ的面积等于6cm2.16.如图,在▱ABCD中,对角线AC⊥BC,∠BAC=30°,BC=23,在AB边的下方作射线AG,使得∠BAG=30°,E为线段DC上一个动点,在射线AG上取一点P,连接BP,使得∠EBP=60°,连接EP交AC于点F,在点E的运动过程中,当∠BPE=60°时,则AF=_____.17.在△ABC中∠B=45°,∠C=30°,点D为BC边上任意一点,连接AD,将线段AD绕A顺时针旋转90°,得到线段AE,连接DE.(1)如图1,点E 落在BA 的延长线上时,∠EDC= (度)直接填空.(2)如图2,点D 在运动过程中,DE ⊥AC 时,AB=4 ,求DE 的值.(3)如图3,点F 为线段DE 中点,AB=2a ,求出动点D 从B 运动到C ,点F 经过的路径长度.18.如图,在平面直角坐标系xOy 中,已知Rt ABC 的直角顶点()0,12C ,斜边AB 在x 轴上,且点A 的坐标为()9,0-,点D 是AC 的中点,点E 是BC 边上的一个动点,抛物线212y ax bx =++过D ,C ,E 三点.(1)当//DE AB 时,①求抛物线的解析式;②平行于对称轴的直线x m =与x 轴,DE ,BC 分别交于点F ,H ,G ,若以点D ,H ,F 为顶点的三角形与GHE △相似,求点m 的值.(2)以E 为等腰三角形顶角顶点,ED 为腰构造等腰EDG △,且G 点落在x 轴上.若在x 轴上满足条件的G 点有且只有一个时,请直接写出....点E 的坐标. 19.如图1,Rt △ABC 中,点D ,E 分别为直角边AC ,BC 上的点,若满足AD 2+BE 2=DE 2,则称DE 为R △ABC 的“完美分割线”.显然,当DE 为△ABC 的中位线时,DE 是△ABC 的一条完美分割线.(1)如图1,AB =10,cos A =45,AD =3,若DE 为完美分割线,则BE 的长是 . (2)如图2,对AC 边上的点D ,在Rt △ABC 中的斜边AB 上取点P ,使得DP =DA ,过点P画PE ⊥PD 交BC 于点E ,连结DE ,求证:DE 是直角△ABC 的完美分割线.(3)如图3,在Rt △ABC 中,AC =10,BC =5,DE 是其完美分割线,点P 是斜边AB 的中点,连结PD 、PE ,求cos ∠PDE 的值.20.如图,二次函数23y x x m =-++的图象与x 轴的一个交点为(4,0)B ,另一个交点为A ,且与y 轴相交于C 点(1)则m =_________;C 点坐标为___________;(2)在直线BC 上方的抛物线上是否存在一点M ,使得它与B ,C 两点构成的三角形面积最大,若存在,求出此时M 点坐标;若不存在,请简要说明理由.(3)P 为抛物线上一点,它关于直线BC 的对称点为Q①当四边形PBQC 为菱形时,求点P 的坐标;②点P 的横坐标为(04)t t <<,当t =________时,四边形PBQC 的面积最大.21.已知,抛物线212y x bx c =++与y 轴交于点()0,4C -与x 轴交于点A ,B ,且B 点的坐标为()2,0.(1)求该抛物线的解析式.(2)如图1,若点P 是线段AB 上的一动点,过点P 作//PE AC ,交BC 于E ,连接CP ,求PCE ∆面积的最大值.=+与线段AC交于点M,与线段BC交于点N,是否存在(3)如图2,若直线y x m∆为直角三角形,若存在,请求出m的值;若不存在,请说明理M,N,使得OMN由.22.在综合与实践课上老师将直尺摆放在三角板上,使直尺与三角板的边分别交于点P、M、N、Q,(1)如图①所示.当∠CNG=42°,求∠HMC 的度数.(写出证明过程)(2)将直尺向下平移至图 2 位置,使直尺的边缘通过点 C,交 AB 于点 P,直尺另一侧与三角形交于 N、Q 两点。