07假设检验基础解析
卫生统计学 第七章 假设检验基础 ppt课件

若 P ,按所取检验水准 ,拒绝 H0 ,接受
H1 ,差别有统计学意义。其统计学依据是,在 H0 成
立的条件下,得到现有检验结果的概率小于 ,因为
小概率事件不可能在一次试验中发生,所以怀疑 H0
的真实性,从而做出拒绝 H0 的决策。
若 P > ,按所取检验水准 ,不拒绝 H0 ,差
7
统计上的假设检验
首先假设样本对应的总体参数与某个 已知总体参数相同,然后根据某样本统 计量的抽样分布规律,分析样本数据, 判断样本信息是否支持这种假设,并对 假设作出取舍抉择。
8
二、假设检验的基本思想与原理
例 通过以往大量调查,已知某地一般新生 儿的头围均数为4.5cm,标准差为1.99cm。 为研究某矿区新生儿的发育情况,现从该地 某矿区随机抽取新生儿55人,测得其头围均 数为33.89cm,问该矿区新生儿的头围总体均 数与一般新生儿头围总体均数是否不同?
17
第一步 建立假设,确定检验水准
H0:原假设(无效假设、零假设)是对总体参数或 总体分布作出的假设,通常假设总体参数相等或 观察数据服从某一分布(如正态分布等).
H1:对立假设(备择假设),与H0相对立又相联系
下一页
:检验水准,上述两种假设中,要作出抉择,
即是拒绝H0,还是不拒绝H0,需根据概率的大
小作出判断. 就是对H0假设作出抉择的一 个判定标准,通常 =0.05
前进
18
单、双侧检验
若H1为0,则此检验为双侧检验 若H1只是 0或0,则此检验为单侧检
单双侧检验的确定
首先根据专业知识 其次根据研究者的目的
注意:一般认为双侧检验较保守和稳妥!
返回
19
本例
H0:0(该1县.41儿童前囟门闭合月龄的平均水
教育统计学第七章 假设检验

例1 某地区的教育卫生部门多年积累的资料表 明,15岁儿童的平均身高为165 cm,标准差为10 cm, 今随机抽取120名15岁儿童测得平均身高为168 cm。 试问该地区全体15岁儿童的平均身高是否发生了变 化?
假设检验原理示意图
二、假设检验中的两类错误
统计学中将H0真实而拒绝H0时所犯的错误称做 Ⅰ型错误(弃真错误),由于这类错误的概率为 故称为 型错误 统计学中将H0假而接受H0时所犯的错误称做 Ⅱ开型错误(取伪错误),这类错误的概率以 表示,因而又叫做 型错误。
z 2.58
例2 某市小学五年级语文统考历年来平均分为85,标 准差为10,从今年小学五年级语文统考成绩中随机抽取80 个考分,算得平均分为87,请在=0.05水平上检验一下今 年该市小学五年级语文统考成绩是否高于往年。
Z 与临界值比较
P值范围
检验结果 保留H0,拒绝H1
显著性 不显著 显著 (*) 极其显 著 (**)
检验统计量:
t
X
X
X
X
n 1
(1)小样本的情况
例3 某市初三英语毕业考试平均为65分,现 从该市某校抽取20份初三英语毕业考试试卷,算 得平均分69.8,标准差为9.234。问该校初三英 语平均分数与全区是否一样?
t检验决断规则
t
与临界值的比较
P值范围 P>0.05 0.01< P≤0.05 P≤0.01
第七章 显著性检验
在处理调查或实验数据时,经常要讨论统计 值之间差异的问题。对于这些差异的讨论一般分 为两种情况: • (1) 样本统计量与相应总体参数的差异; • (2) 两个样本统计量之间的差异。
假设检验:从样本统计值推论总体参数
第7章 假设检验基础PPT课件

S d 2 (d)2 / n 84.2747
d
n 1
t | d | 475.66 19.532, n 1 12 1 11
S / n 84.2747 / 12 d 3.查相应界值表,确定 P 值。
查表 t0.05/ 2,11
2.201,tt ,P 0.05/ 2,11
<0.05,拒绝 H0,差别有统计学意
第一节 假设检验的概念与原理
一、假设检验的思维逻辑 二、假设检验的基本步骤
2020/11/15
青岛大学医学院公共卫生系流行病与 卫生统计学教研室 周晓彬制作
一、假设检验的思维逻辑
样本统计量与总体参数间(或统计量与统计 量间的)的差异产生的原因:
1. 个体变异所导致的抽样误差所引起; 2. 总体间确实有差异
1728.03
622.51
12
757.43
1398.86
641.44
2020/11/15
青岛大学医学院公共卫生系流行病与 卫生统计学教研室 周晓彬制作
1.建立假设、确定检验水准α
H0: d 0 H1: d 0 (双侧检验)α=0.05
2.计算检验统计量
d 5707.95 12 475.66 , d 5707.95, d 2 2793182.166,
2020/11/15
青岛大学医学院公共卫生系流行病与 卫生统计学教研室 周晓彬制作
实例
用药前后患儿血清中免疫球蛋白IgG(mg/dl)含量
序号
用药前
用药后 差值(后-前)
1
1206.44
1678.44
472.00
2
921.69
1293.36
371.67
3
1294.08
假设检验基础知识

6.检验方法 p值法:计算检验统计量以及p值 当p值≤α,拒绝H 当p值>α,不能拒绝H0 临界值法:计算检验统计量以及临界值 当检验统计量在临界阈中时,拒绝H 当检验统计量不在临界阈中时,不能拒绝H0
7.非技术用于的总结:使用非技术用语对原命题进行总结 第一类错误和第二类错误
第一类错误:当原假设为真时,拒绝原假设的错误 第二类错误:当原假设为假时,没有拒绝原假设的错误 统计功效 统计功效是当原假设为假时,正确拒绝原假设的概率,即1-β
总体均值的假设检验
t分布 正态性或者n>30的条件 大样本的样本均值的分布趋于正态分布 小样本的正态性条件 样本数据的分布应该接近于轴对称 样本数据的分布应该有一个众数 样本数据不应包括任何异常值 t分布重要性质 t分布随着样本量的不同而不同 与正态分布具有相同的钟形曲线,但因样本小而具有更大的变异性 t分布的均值为0 t分布的标准差随着样本量的变化而变化,但肯定大于1 随着样本量n的增大,t分布越来越接近于正态分布
总体标准差或方差的假设检验
卡方分布的性质 卡方分布为非负数,且分布不具有对称性 卡方分布随着自由度的不同而不同
显著性水平α 总体参数的估计值,该值不能等于原假设中的总体参数值
总体比例的假设检验
正态近似法 等价法:使用p值法或临界值法来进行假设检验,而使置信区间来估计总体比例 样本为简单随机样本 满足二项分布的所有条件 有固定的实验次数 试验之间相互独立 结果有且仅有两种可能 每次试验概率不变
精确法 假设已知样本量n、成功次数x,以及原假设中的总体比例p 左侧检验:p值=P(在n次实验中,x或更少的成功次数) 右侧检验:p值=P(在n次实验中,x或更多的成功次数) 双侧检验:p值=2*min(左侧值,右侧值)
《概率论与数理统计》第七章_假设检验

第七章 假设检验学习目标知识目标:理解假设检验的基本概念小概率原理;掌握假设检验的方法和步骤。
能力目标:能够作正态总体均值、比例的假设检验和两个正态总体的均值、比例之差的假设检验。
参数估计和假设检验是统计推断的两种形式,它们都是利用样本对总体进行某种推断,然而推断的角度不同。
参数估计是通过样本统计量来推断总体未知参数的取值范围,以及作出结论的可靠程度,总体参数在估计前是未知的。
而在假设检验中,则是预先对总体参数的取值提出一个假设,然后利用样本数据检验这个假设是否成立,如果成立,我们就接受这个假设,如果不成立就拒绝原假设。
当然由于样本的随机性,这种推断只能具有一定的可靠性。
本章介绍假设检验的基本概念,以及假设检验的一般步骤,然后重点介绍常用的参数检验方法。
由于篇幅的限制,非参数假设检验在这里就不作介绍了。
第一节 假设检验的一般问题关键词:参数假设;检验统计量;接受域与拒绝域;假设检验的两类错误一、假设检验的基本概念(一)原假设和备择假设为了对假设检验的基本概念有一个直观的认识,不妨先看下面的例子。
例7.1 某厂生产一种日光灯管,其寿命X 服从正态分布)200 ,(2μN ,从过去的生产经验看,灯管的平均寿命为1550=μ小时,。
现在采用新工艺后,在所生产的新灯管中抽取25只,测其平均寿命为1650小时。
问采用新工艺后,灯管的寿命是否有显著提高?这是一个均值的检验问题。
灯管的寿命有没有显著变化呢?这有两种可能:一种是没有什么变化。
即新工艺对均值没有影响,采用新工艺后,X 仍然服从)200 ,1550(2N 。
另一种情况可能是,新工艺的确使均值发生了显著性变化。
这样,1650=X 和15500=μ之间的差异就只能认为是采用新工艺的关系。
究竟是哪种情况与实际情况相符合,这需要作检验。
假如给定显著性水平05.0=α。
在上面的例子中,我们可以把涉及到的两种情况用统计假设的形式表示出来。
第一个统计假设1550=μ表示采用新工艺后灯管的平均寿命没有显著性提高。
数理统计之假设检验ppt课件

z2 z0.025 1.96;
x0
575.2570
5.2 102.0551.96
n 8 10
8
这说明小概率事件竟在一次试验中发生了,
故拒绝H0,可以接受H1。 即认为折断力大小有差别
完整版PPT课件
15
已知 X~N(,2), 2 已知,检验假设
H 0: 0 H 1: 0的过程分为六个步骤:
由样本算得 x543.5, s27.582 查表 t2(n1)t0.02 (4 5)2.776 这里 |t||543549|1.77t0.02(54)2.776
7.58/ 5 接受H0。新罐的平均爆破压力与过去无显著差别。
完整版PPT课件
31
例6 某工厂生产一种螺钉,标准要求是长度是32.5毫米,
假设的决定。 ❖ 基本思想(规则或前提)
小概率事件在一次试验中几乎不会发生。
完整版PPT课件
4
带概率性质的反证法 通常的反证法设定一个假设以后,如果出现的 事实与之矛盾,(即如果这个假设是正确的话,出现 一个概率等于0的事件)则绝对地否定假设.
带概率性质的反证法的逻辑是: 如果假设H0是正确的话,一次试验出现一个 概率很小的事件,则以很大的把握否定假设H0.
❖ 2 在H0成立的前提下,选择合适的统计量,这个统 计量要包含待检的参数,并求得其分布;
❖ 3 给定显著性水平 ,按分布写出小概率事件及其
概率表达式;
❖ 4 由样本计算出需要的数值;
❖ 5 判断小概率事件是否发生,是则拒绝,否接受
完整版PPT课件
9
二 单个正态总体参数的假设检验
一、总体均值 的假设检验
2
z x
2
完整版PPT课件
第七章假设检验《统计学基础》教案

第七章假设检验教学要求知识目标:了解假设检验的含义和基本任务;掌握假设检验的基本原理和步骤;掌握单总体均值、成数和方差的假设检验;了解假设检验中需要注意的问题。
能力目标:锻炼运用Excel进行Z检验和t检验的方法;学会在统计实践工作中使用假设检验进行统计推断。
教学重点假设检验的基本原理、单总体参数的假设检验。
教学难点单总体均值μ的假设检验、单总体成数P的假设检验、单总体方差σ2的假设检验。
课时安排本章安排5课时。
教学内容第一节假设检验的一般问题一、假设检验的含义和基本任务统计假设是成对出现的,即一个原假设和一个备择假设,两个假设应当是对立的,并且覆盖研究中所有可能的结果。
通常将原假设记为0H 或n H ,将备择假设记为1H 或a H 。
原假设一般是一个明确的语句,从数学运算关系来说,原假设的阐述中包含等号,如未知的总体参数θ等于,或大于等于,或小于等于某个特定的常数0θ;备择假设是关于未知的总体参数的不同于0H 的假设,从数学运算关系来说,备择假设的阐述中不包含等号,如未知的总体参数θ不等于,或大于,或小于某个特定的常数0θ。
1常见的形式有:0010:,:H H θθθθ=≠ (7-1) 或:0010:,:H H θθθθ≥< (7-2) 或:0010:,:H H θθθθ≤> (7-3)其中,对式(7-1)的检验称为双侧检验,对式(7-2)的检验称为左侧检验,对式(7-3)的检验称为右侧检验。
二、假设检验的基本原理如果怀疑原假设是错误的,那么只要有可能,就可以收集样本数据去检验这个假设。
这里应注意,样本是客观存在的,是不容置疑的;而原假设是主观设定的,可能对也可能错。
假如样本数据与原假设一致,那么就没有充分理由推翻原假设;反之,如果样本数据与原假设矛盾,那么就可以推翻原假设。
这就是假设检验的基本原理。
1下文如果不加说明的话,下标为零的参数水平都表示原假设中假设的参数水平,如0μ、0p 和20σ等。
07假设检验基础

第三十八页,编辑于星期二:八点 十一分。
❖ 某单位研究饮食中缺乏维生素E与肝中维生素A含 量的关系,将同种属的大白鼠按性别相同,年龄、 体重相近配成8对,并将每对中的两只大白鼠随机 分到正常饲料组和维生素E缺乏组,然后定期将大 白鼠杀死,测得其肝中维生素A的含量如表。问 不同饲料组的大白鼠肝中维生素A含量有无差别?
t|dd||d0| |d|
S d
Sd n Sd n
例题 设有12名志愿受试者服用某减肥药,服药前和服
药后一个疗程各测量一次体重(kg),数据如表所示。问 此减肥药是否有效?
35
第三十五页,编辑于星期二:八点 十一分。
某减肥药研究的体重(kg)观察值
个体号 1 2 3 4 5 6 7 8 9 10 11 12
0.005>P>0.002。按水准,拒绝H0, 接受H1, 差异有统计学意义。可认 为不同饲料的大白鼠肝中维生素A含量有差别,正常饲料的较高。
41
第四十一页,编辑于星期二:八点 十一分。
两独立样本资料的t检验
independent samples t-test
❖ 适用于比较按完全随机设计而得到的两组资料,比较的目 的是推断它们各自所代表的总体均数和是否相等。
710
36
第三十六页,编辑于星期二:八点 十一分。
❖ (1)建立检验假设
❖ H0:μd=0, 即该减肥药无效;
❖ H1:μd≠0 ,即该减肥药有效。
❖
α=0.05
❖ (2)计算t值
❖ 本例n = 12, Σd = -16,Σd2 = 710, ❖ 差值的均数=Σd /n = -16/12 = -1.33(kg )
第二十八页,编辑于星期二:八点 十一分。
第七章 假设检验基础()精品PPT课件

差值
1 1206.44
1678.44
472.00
2
921.69
1293.36
Hale Waihona Puke 371.673 1294.08
1711.66
417.58
4
945.36
1416.70
471.34
5
721.36
1204.55
483.19
6
692.32
1147.30
454.97
7
980.01
1379.59
399.58
➢ 买小米手机吗? 对手机评价:适合(买)、不适合(不买)
➢ 国庆节去八里沟怎样吗? 对景区的评价:好玩(去)、不好玩(不去)
所有的决策都遵循相同的基本模式
陈述多种可供选择的方案(假设) 收集支持这些方案的证据 根据证据的强弱做出决策 根据决定执行某种行为
统计学中的假设检验也是一种决策过程,同样遵循 这一基本模式。
研究结果可供选择的结论(目前的假设)有哪些?
1.该县儿童总体平均闭合月龄与一般儿童没有差异 2.该县儿童总体平均闭合月龄迟于一般儿童
两种假设在统计上的含义
抽样研究存在抽样误差!!
样本1
总体 均数=14.1
样本2
X1 14.3 X2 14.0
从总体1中抽样
样本1 X1 14.3
µ1=14.1
样本2 X2 14.0
s/ n 5.08/ 36
自由度:
n 1 3 6 1 35
3.确定P值
P值的定义 如果H0成立的条件下,出现统计量目
前值及更不利于H0的数值的概率。
直观地看:就是统计量对应分布曲线下 的尾部面积。
通过查表可以得到 对应统计量的尾部 面积,即P值
第六章--假设检验基础课件

H 0 : 1 2H 1 :1 2 ( 单 1 2 或 侧 1 2 )
当H0成立时,检验统计量:
t X1X2 ~t, n1n22
Sc2n 11n12
第六章 假设检验基础
Sc2
n1
1S12 n2 1S22
n1 n2 2
X1 X1 2 X2 X2 2 n1 n2 2
第六章 假设检验基础
55、作出推断结论:当P≤时,结论为 按所取检验水准α拒绝H0,接受H1,差异有 统计学显著性意义。如果P> ,结论为按 所取检验水准α不拒绝H0,差异无统计学显 著性意义。其间的差异是由抽样误差引起
的。
第六章 假设检验基础
1.建立检验假设
原 假 设 H0:0 14.1 备 择 假H设1 :0(单 侧 ) 检 验 水 准: 0.05
第六章 假设检验基础
检验假设为:
H 0 : d 0H 1 :d 0 ( 单 d 0 或 侧 d 0 )
当H0成立时,检验统计量:
td0 ~t, n1
Sd n
第六章 假设检验基础
表6第-1二用节药前t后检患儿验血清中免疫球蛋白IgG(mg/dl)含量
二、序号配对设计资用料药前的t 检验 用药后
n1 20, X1 17.15,S1 1.59,n1 34, X2 16.92,S2 1.42
Sc2
n1
1S12 n2 1S22
n1 n2 2
2011.592 3411.422
20342
2.2 0
t X1 X2 17.1516.92 0.550
Sc2
1 n1
1 n2
2.20 1 1 20 34
得治疗前后舒张压(mmHg)的差值(前–后)如下表。问新药和标准药的疗效
假设检验详细知识PPT课件

解: 用t检验法.
检验假设 H0:112.6(0) H1:112.6(0) Q0.05,n7
t(n1)t0.025(6)2.4469
2
23
返回
第八章 假设检验
概率统计
Q x 1 1 2 .8 ,s7 27 1 1i 7 1(x i 1 1 2 .8 )2 (1 .1 3 6 )2
t x112.6 0.4659 s7 / 7
0.511 0.520 0.515 0.512
问机器是否正常?
7
返回
第八章 假设检验
概率统计
分析:用 和 分别表示这一天袋装糖重总体 X
的均值和标准差.则 X~N (,0.01 2)其 5 , 中 未.知
问题:根据样本值判断 0还 .5 是 0..5
提出两个对立假设 H 0 : 0 0 . 5 和 H 1 : 0 .
返回
第八章 假设检验
(2)检验假设 H 0:0,H 1:0
概率统计
选择统 U计 X/n量 ~N(0,1)
当H
成立时,
0
P( X u0
/ n
u )
P(Xuuu0
/ n
u)
P(X/unu0/unu)
Xu P(
/ n
u)
对于给定的检验水平 01
得拒绝域为 (3)检验假设
W{uu}
其中u X 0 / n
不拒绝H0同样要承担风险,这时,可能将错误的 假设误认为是正确的,这种“以假为真”的错误称 为第二类错误(取伪), 犯第二类错误的概率是:
β=P{当H0不真时 , 不拒绝H0}.
13
返回
第八章 假设检验
概率统计
三、假设检验的基本步骤
《假设检验基础》课件

2
通过选择适当的显著性水平,我们可以
控制犯错误的概率,确定接受或拒绝原
假设的标准。
3
4. 计算统计量
4
根据样本数据和假设检验方法,计算出
相应的统计量。
5
6. 分析检验结果
6
通过分析检验结果,我们可以对总体进
行推断,了解样本数据是否支持或拒绝
原假设。
7
1. 确定假设
我们首先需要明确研究问题并建立相应 的假设,包括原假设和备择假设。
课程总结
在本课程中,我们学习了假设检验的基础知识和常见方法。掌握假设检验可 以提升我们在数据分析领域的能力,帮助我们做出准确的统计推断。
问答环节
如果您对假设检验还有任何疑问,请在问答环节向我们提问。我们将尽力解 答您的问题。
《假设检验基础》课件
本课程将介绍假设检验的基础知识。掌握假设检验的作用、步骤和常见方法, 提升在数据分析中的能力。让我们一起开始这个精彩的学习之旅吧!
பைடு நூலகம்
什么是假设检验
假设检验是一种统计推断方法,用于验证关于总体特征或参数的假设。通过 收集样本数据进行分析,我们可以得出对总体的合理推断。
假设检验的作用
卡方检验
用于检验分类变量之间的关联性和独立性。
双样本t检验
用于比较两个独立样本的均值是否有显著差异。
方差分析
用于比较多个样本的均值是否有显著差异。
实战演练
让我们通过一个实际案例来应用假设检验的方法:
1. 确定问题和目标 2. 收集数据 3. 建立假设和设置显著性水平 4. 进行假设检验 5. 分析检验结果 6. 得出结论和建议
3. 收集样本数据
根据研究设计,我们收集样本数据并进 行必要的数据处理。
7假设检验基础

欲考察某药物A预防孕妇早产的效果,某医院妇 科进行一项临床试验,入选30例孕妇,随机分配到 处理组(服用A药)和对照组(服用安慰剂),每组 15例,处理组出生婴儿体重(Kg)测量值: 6.9,7.6„,8.6;对照组出生婴儿体重(Kg)测量 值:6.4,6.7,„,6.8。处理组均数位7.1 (Kg), 对照组为6.3 (Kg)。
假设检验中的数学思想:
1.反证法思想:基于原假设成立的前提下计算统 计量。 2.小概率事件的性质:小概率事件在一次实验中 不可能发生。 检验水准α 即为指定的小概率事件的概率。
第二节
用途:
t 检验
1.一个未知总体均数与已知总体均数比较。 2.两个未知总体均数的比较。 *均为小样本
条件:
1.随机样本; 1.样本来自正态分布的总体; 2.两总体方差相等--齐(两样本均数比较时)。
1、建立假设,确定检验水准 H0:检验假设 H1 :备择假设
检验水准:α
2、选择检验方法,并计算检验统计量 3、根据统计量确定P值,做出推断结论 P≤α,则拒绝H0 ,接受H1,差异有统计学意义。 P>α,则不拒绝H0, 差异无统计学意义。
假设:
假设有两种:零假设(H0)备择假设(H1)。
H0与H1都是根据统计推断的目的而提出的针对
二项分布与poisson分布资料的z检验
一、二项分布资料的z检验 如果二项分布的π 或1-π 不太小,则当n足 够大时,即阳性数(nπ)与阴性数[n(1-π)]都大于 等于5时,近似地有
检验假设为:
当H0成立时,检验统计量为:
当n不太大时,需作连续性校正:
例6-7 新生儿染色体异常率为0.01,2010年某医院 出生的400名新生儿,发现1名染色体异常,请问当地新 生儿染色体异常率是否低于一般水平?
第7章 假设检验基础

statistics
而统计学工具中的假设检验,能够很好的解决这 个问题: 它的原理:先对总体参数进行假设,比如两总体 均数相等,然后看,在这样的假设下,出现本次 试验的结果的可能性有多大,如果概率很小,那 就认为假设不对(依据小概率事件原理),只能 接受与原假设对立的假设,即两总体均数不等。 假设检验:反证法+小概率事件
statistics
第二节 t检验
第6章已经介绍了t分布。t分布的发现使得 小样本统计推断成为可能。因而,它被认为 是统计学发展历史中的里程碑之一。以t分 布为基础的检验称为t检验。在医学统计学 中,t检验是非常活跃的一类假设检验方法。
statistics
一、一组样本资料的t检验
现有取自正态总体N(μ,σ2)的、容量为n的一 份完全随机样本。如果要根据样本信息推断其总 体均数μ是否与某已知数值μ0相等。 检验假设 H 0 : μ = μ 0, H1 :μ≠μ0(单侧检验μ>μ0或μ<μ0) 统计量: X 0 n 1
statistics
P值
0.236
二、假设检验的基本步骤
3.确定P值,作出推断结论 P值可以通过统计软件直接得到,也可以 通过查表,来确定P值的范围。 比如 自由度为35 ,查附表2,得到 单侧 t0.25( 35) 0.682 。0.236<0.682 得知P>0.25。
statistics
n 1
d为差值的均数, S d为差值的样本标准差, n是对
子数。
二、配对设计资料的t检验
例7-2 某儿科采用静脉注射人血丙种球蛋白治 疗小儿急性毛细支气管炎。用药前后患儿血清中 免疫球蛋白IgG(mg/dl)含量如表6-1所示。试 问用药前后IgG有无变化?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
值来判断。
1、若p为小概率,则认为假设不成立; 2、若非小概率,则还不能认为假设不成立。 该结论的正确性是冒着5%的错误风险。 假设检验有自己独特的逻辑和统计学思维方式。
12/114
μ=173.2 173.83
176.5
13/114
假设检验的基本步骤
统计推断 (statistical inference)
1、参数估计estimation of parameter 2、假设检验 hypothesis testing
3/114
根据大量调查,已知健康成年男子脉搏均数为72次/分钟 某医生在一山区随机测量了25名健康成年男子脉搏数, 求得其均数为74.2次/分钟,标准差为6.5次/分钟, 能否认为该山区成年男子的脉搏数与一般健康成年男子
H1的内容直接反映了检验的单、双侧。
17/114
设定检验水准(size of test ) α常为0.05
第二步:选定统计方法,计算出统计量的大小。
根据资料的类型和特点,可分别选用 t检验,则计算 t值,
z检验则计算z值,或其他检验方法:秩和检验和卡方检验等。
x 0 t sx
18/114
14/114
某医生测量了36名男性铅作业工人的血红蛋白含
量,均数为130.8g/L,标准差为25.74g/L, 正常男性血红蛋白含量一般为140g/L,铅作业工 人的血红蛋白含量与正常人有无不同?
15/114
假设检验分为单、双侧检验
H0:μ=μ0;H1:μ≠μ0(双侧检验) 或者:
H0:μ=μ0;H1:μ>μ0 ;(单侧检验)
或者 H0:μ=μ0;H1:μ<μ0 (单侧检验)
16/114
对于假设检验,需注意:
检验假设是针对总体而言,而不是针对样本;
H0与H1是相互对立、相互联系的,最后的结论 是根据H0与H1做出的,两者缺一不可;
Ho是无效假设,假设常常是两个或多个总体参数 相等、或之差为0、或….无效、或某资料服从某 一特定分布;
2、如果差别较大,则有可能不是抽样误差,而是来自的总体不
同。
10/114
假设检验是用来判断样本与样本,样本
与总体的差异是由抽样误差引起还是本
质差别造成的统计推断方法
11/114
假设检验理论基础
假设检验理论基础---利用小概率反证法思想,从问题的
对立面(H0)出发,间接判断要解决的问题(H1)是否
的脉搏数不同?
4/114
某医生测量了36名男性铅作业工人的血红蛋白含
量,均数为130.8g/L,标准差为25.74g/L, 正常男性血红蛋白含量一般为140g/L, 铅作业工人的血红蛋白含量与正常人有无不同?
5/114
根据以往的资料得知A、B两校男生50米跑成 绩的标准差分别为0.4秒和0.2秒。今从两校中分 别抽测了25名和28名男生,其50米跑平均成绩分 别为8.1秒和7.9秒。问两校男生50米跑水平是否 相同?
即差异无统计意义,,还不能认为…不等或不同。
注意:
1、不拒绝H0不等于接受H0;
2 、对 H0 只能说拒绝不拒绝 Ho; 对 H1 只能说接受 H1 。
25/114
t检验
t检验的应用条件:
σ未知,且 n较小
样本来自正态总体
两样本均数比较时还要求两个总体方差相等 (σ已知或σ未知但n足够大应用z检验)
26/114
单样本资料的t检验
单样本资料的t检验(样本均数与总体均数比较的t 检验)实际上是推断该样本来自的总体均数 µ 与已 知的某一总体均数µ 0(常为理论值或标准值) 有 无差别。 在进行样本均数与总体均数比较中,需要建立一 个统计量,根据样本所属不同总体,该统计量的 分布也不同,由此作出相应的统计推断。
若P≤α ,表示在H0成立的条件下,出现等于及大于 现有统计量的概率是小概率,根据小概率事件原理, 现有样本信息不支持H0,因而拒绝H0,接受H1,有 统计学意义,可以认为…….不等或不同。
24/114
若P>α ,表示在H0成立的条件下,出现等于及大 于现有统计量的概率不是小概率,现有样本信息还 不能拒绝 H0 ,结论为按所取检验水准不拒绝 H0 ,
19/114
20/114
第三步:根据统计量的大小及其分布确定检验假设成立的
可能性P的大小并判断结果。
拒绝域
拒绝域
( t,z,F,x2 )
21/114
( t,z,F,x2 )
22/114
23/114
t / 2,
P值是指在H0成立的条件下,获得等于及大于(或 小于)现有统计量的概率。当求得统计量后,一般 可根据有关统计用表查得P值。例如t检验中, │t│≥ t / 2,则 P≤α;│t│< 则P > α 。 t, , / 2,
第一步:提出一对检验假设, (1)无效假设null hypothesis, H0,又称零假设、原假设 (2)备择假设 alternative hypothesis, H1 。
H0:假设两总体均数相等。(即样本与总体或样本与样本间 的差异是由抽样误差引起的) H1:假设两总体均数不相等。(即两总体间存在本质差异)
假设检验基础
学习要点
为什么要进行假设检验?
假设检验的基本步骤
假设检验中的两类错误
假设检验与置信区间的关系
配对t检验与成组t检验对资料的要求
二项分布近似服从正态分布条件与分析方法
正态近似法分析泊松分布问题
2/114
统计资料处理 统计描述(statistical description)
6/114
例:中国男篮进攻成功率为46.3﹪,第12届世
锦赛与西班牙队的比赛中发动93次进攻,成功率
为53.8﹪。
是否可以认为该场比赛的进攻成功率高于以往?
7/114
假设检验
随机抽样
样本
x 173 .83 s 5.74
? 总 体 μ
抽样误差
总体 μ =173.2
0
8/114
假设检验(hypothesis testing)
样本均数与总体均数不等,有两种可114
本例目的是判断是否μ≠μ0,但直接判断很困难。但可以利用
反证法思想,从μ=μ0出发,间接的判断是否μ≠μ0. 假设μ=μ0 ,判断由于抽样误差造成 x 与μ0差别可能性有多 大? 1、如果 x 与μ0接近,其差别是抽样造成的可能性就很大;