Logistic人口阻滞增长模型

合集下载

(完整版)Logistic人口阻滞增长模型

(完整版)Logistic人口阻滞增长模型

Logistic 人口阻滞增长模型一、模型的准备阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。

阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。

若将r 表示为x 的函数)(x r 。

则它应是减函数。

于是有:0)0(,)(x x x x r dtdx== (1)对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 )0,0()(>>-=s r sxr x r (2)设自然资源和环境条件所能容纳的最大人口数量m x ,当m x x =时人口不再增长,即增长率0)(=m x r ,代入(2)式得mx rs =,于是(2)式为)1()(mx x r x r -= (3)将(3)代入方程(1)得:⎪⎩⎪⎨⎧=-=0)0()1(x x x x rx dtdxm (4)解方程(4)可得:rtm me x xx t x --+=)1(1)(0(5)二、模型的建立我国从1954年到2005年全国总人口的数据如表1总人口 100.1 101.654 103.008 104.357 105.851 107.5 109.3 111.026 112.704年份 1990 1991 1992 1993 1994 1995 1996 1997 1998 总人口 114.333 115.823 117.171 118.517 119.850 121.121 122.389 123.626 124.761 年份 1999 2000 2001 2002 2003 2004 2005 总人口 125.786 126.743 127.627 128.453 129.227 129.988 130.7561、将1954年看成初始时刻即0=t ,则1955为1=t ,以次类推,以2005年为51=t 作为终时刻。

(完整版)数学建模logistic人口增长模型

(完整版)数学建模logistic人口增长模型

Logistic 人口发展模型一、题目描述建立Logistic 人口阻滞增长模型 ,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进行分析比较。

分析那个时间段数据预测的效果好?并结合中国实情分析原因。

表1 各年份全国总人口数(单位:千万)二、建立模型阻滞增长模型(Logistic 模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。

阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。

若将r 表示为x 的函数)(x r 。

则它应是减函数。

于是有:0)0(,)(x x x x r dt dx== (1)对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 )0,0()(>>-=s r sxr x r (2) 设自然资源和环境条件所能容纳的最大人口数量mx ,当mx x =时人口不再增长,即增长率)(=m x r ,代入(2)式得m x rs =,于是(2)式为)1()(mx x r x r -= (3)将(3)代入方程(1)得:⎪⎩⎪⎨⎧=-=0)0()1(x x x x rx dtdxm (4)解得:rt mme x x x t x --+=)1(1)(0(5)三、模型求解用Matlab 求解,程序如下: t=1954:1:2005;x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988];x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];dx=(x2-x1)./x2; a=polyfit(x2,dx,1);r=a(2),xm=-r/a(1)%求出xm 和rx0=61.5;f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954)))','t','xm','r','x0');%定义函数 plot(t,f(t,xm,r,x0),'-r',t,x,'+b');title('1954-2005年实际人口与理论值的比较') x2010=f(2010,xm,r,x0) x2020=f(2020,xm,r,x0) x2033=f(2033,xm,r,x0)解得:x(m)= 180.9516(千万),r= 0.0327/(年),x(0)=61.5得到1954-2005实际人口与理论值的结果:根据《国家人口发展战略研究报告》我国人口在未来30年还将净增2亿人左右。

阻滞模型资料

阻滞模型资料

- 当前位置:代数与分析专题研究>>专题五>>学习内容>>logistic 模型(阻滞增长模型)§5 logistic 模型(阻滞增长模型)前面我们主要讨论的是一阶线性差分方程模型,本章将通过几个具体的实际问题,例如人口问题、传染病问题等,介绍一阶非线性差分方程模型。

进一步体会数学建模的思想。

这些模型是解决日常生活和生产实践中最基本的模型。

由于有了计算机技术,使得非线性方程理论和应用得到了飞跃的发展。

1人口模型1.1马尔萨斯人口模型情景描述人口问题是人类一个很重要的研究课题。

对人口数量的估计和发展趋势的预测是各国制定一系列相关政策的基础。

建立模型 1模型假设英国人口学家马尔萨斯根据百余年的人口统计资料,做了一个基本假设:人口的相对增长率是常数。

在这个基本假设下,于1798年提出了著名的人口指数增长模型。

2模型建立 设xn 表示第n 年的人口数量,因为人口的相对增长率是常数,记此常数为,则有:=,即:xn+1 =(1+)xn 。

设k=1+,我们通常把:xn+1 =kxn 称作人口指数增长模型。

模型分析用上述人口模型计算出来的结果,与19世纪以前欧洲一些地区的人口统计数据相吻合。

但是由于指数增长很快,当人们用19世纪以后许多国家的人口统计资料与指数增长模型比较时,发现存在相当大的差异。

1.2 模型修正―logistic模型情景描述用上述模型计算出来的人口数据和实际人口数据有差异,其主要原因是,随着人口的增加,自然资源、环境条件等因素对人口继续增长的阻滞作用越来越显著。

如果当人口较少时(相对于资源而言),人口的相对增长率还可以看作常数的话,那么当人口增加到一定数量时,相对增长率就会随着人口的继续增加而逐渐减少了。

模型修正为了使人口预报特别是长期预报更符合实际情况,我们需要修正一下指数增长模型。

建立模型1 模型假设在实际环境中,人口数{xn}会有一个最大值,假设最大值为M。

基于改进的Logistic阻滞增长模型的人口预测研究

基于改进的Logistic阻滞增长模型的人口预测研究

x
r(
x)=r 1xm
即建立 Log
i
s
t
i
c阻滞增长模型为:



x
dx
=rx 1xm
dt
(
7)
(
8)
滞作用。随着 x 的增 大,关 于 人 口 数 量 的 固 有 增 长
趋势越大,同时自然 资 源 与 环 境 条 件 的 阻 滞 作 用 越
明显,二者共同作用于人口增长。
得:
应用分离变量法求解 Log
2.
1 向后差分线性最小二乘参数估计
根据国家统计局 官 网 统 计 数 据,取 1953—2020
2024 年第 2 期
均相对误差 De
l
t
a=0.
016,拟合效果较好。Log
i
s
t
i
c
阻滞增长模型的向后差分线性最小二乘参数估计如
图 1 所示,预测 2030 年人口总数为 148969 万人。
基于向后差分的 线 性 最 小 二 乘 估 计 对 Log
年份
年末总
人口/万
年份
年末总
人口/万
年份
年末总
人口/万
年份
年末总
人口/万
1953 58796 1970 82992 1987 109300 2004 129988
1954 60266 1971 85229 1988 111026 2005 130756
1955 61465 1972 87177 1989 112704 2006 131448
人口预计将达到 145353 万人。根据中国人口预测数据,建议政府在未来的经济和能源规划中,加快推
进能源结构转型,促进经济可持续发展。

最新人口指数增长模型和logistic模型教学文案

最新人口指数增长模型和logistic模型教学文案

根据美国人口从1790年到1990年间的人口数据(如下表),确定人口指数增长模型和Logistic 模型中的待定参数,估计出美国2010年的人口,同时画出拟合效果的图形。

表1 美国人口统计数据指数增长模型:rt e x t x 0)(=Logistic 模型:()011mrtm x x t x e x -=⎛⎫+- ⎪⎝⎭解:模型一:指数增长模型。

Malthus 模型的基本假设下,人口的增长率为常数,记为r ,记时刻t 的人口为 )(t x ,(即)(t x 为模型的状态变量)且初始时刻的人口为0x ,因为⎪⎩⎪⎨⎧==0)0(x x rxdt dx由假设可知0()rt x t x e = 经拟合得到:}2120010120()ln ()ln ,ln (),,ln rt a y a t a x t x e x t x rt r a x ey x t a r a x =+=⇒=+⇒=====程序:t=1790:10:1980;x(t)=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92.0 106.5123.2 131.7 150.7 179.3 204.0 226.5 ];y=log(x(t));a=polyfit(t,y,1) r=a(1),x0=exp(a(2)) x1=x0.*exp(r.*t); plot(t,x(t),'r',t,x1,'b') 结果:a = 0.0214 -36.6198r= 0.0214 x0= 1.2480e-016所以得到人口关于时间的函数为:0.02140()t x t x e =,其中x0 = 1.2480e-016, 输入:t=2010;x0 = 1.2480e-016; x(t)=x0*exp(0.0214*t)得到x(t)= 598.3529。

即在此模型下到2010年人口大约为598.3529 610⨯。

leslie人口增长模型

leslie人口增长模型

人口增长预测模型摘要本文建立了我国人口增长的预测模型,对各年份全国人口总量增长的中短期和长期趋势作出了预测,并对人口老龄化、人口抚养比等一系列评价指标进行了预测。

最后提出了有关人口控制与管理的措施。

模型Ⅰ:建立了Logistic人口阻滞增长模型,利用附件2中数据,结合网上查找补充的数据,分别根据从1963年、1980年、2005年到2012年四组总人口数据建立模型,进行预测,把预测结果与附件1《国家人口发展战略研究报告》中提供的预测值进行分析比较。

得出运用1980年到2005年的总人口数建立模型预测效果好,拟合的曲线的可决系数为0.9987。

运用1980年到2005年总人口数据预测得到2010年、2020年、2033年我国的总人口数分别为13.55357亿、14.18440亿、14.70172亿。

模型Ⅱ:考虑到人口年龄结构对人口增长的影响,建立了按年龄分布的女性模型(Leslie模型):以附件2中提供的2001年的有关数据,构造Leslie矩阵,建立相应Leslie模型;然后,根据中外专家给出的人口更替率1.8,构造Leslie矩阵,建立相应的Leslie模型。

首先,分别预测2002年到2050年我国总人口数、劳动年龄人口数、老年人口数(见附录8),然后再用预测求得的数据分别对全国总人口数、劳动年龄人口数的发展情况进行分析,得出:我国总人口在2010年达到14.2609亿人,在2020年达到14.9513亿人,在2023年达到峰值14.985亿人;预测我国在短期内劳动力不缺,但须加强劳动力结构方面的调整。

其次,对人口老龄化问题、人口抚养比进行分析。

得到我国老龄化在加速,预计本世纪40年代中后期形成老龄人口高峰平台,60岁以上老年人口达4.45亿人,比重达33.277%;65岁以上老年人口达3.51亿人,比重达25.53%;人口抚养呈现增加的趋势。

再次,讨论我国人口的控制,预测出将来我国育龄妇女人数与生育旺盛期育龄妇女人数,得到育龄妇女人数在短期内将达到高峰,随后又下降的趋势的结论。

阻滞增长模型研究

阻滞增长模型研究

3
模型的推导
阻滞增长模型是对指数增长模型的基本假设进行修改后得到的。阻滞作用体现在对人口 增长率r的影响上,使得r随着人口数量x的增加而下降。若将r
表示为x的函数r(x),则它应是减函数。于是方程写作
dx r ( x) x, x(0) x0 …… (1) dt
对r(x)的一个最简单的假定是,设r(x)为x的线性函数,即r(x)=r-sx(r,s>0),s为常系数 ……(2),这里r称固有增长率,表示人口很少时(理论上是x=0)的增长率。为了确定系 数s的意义,引入自然资源和环境条件所能容纳的最大人口数量 xm,称人口容量。 x r ,于是 r ( x) r (1 ) 当 x xm 时人口不再增长,即增长率 r ( xm ) 0 代入(2)式得 s xm xm dx x rx(1 ), x(0) x0 ……(3)。 将r(x)代入方程(1),得 dt xm x 方程(3)右端的因子体现人口自身的增长趋势,因子 (1 ) xm 则体现了环境和资源对人口增长的阻滞作用。显然,x越大,前一因子越大,后一 因子越小,人口增长是两个因子共同作用的结果,(3)式称为阻滞增长模型。
阻滞增长模型的研究
统计1302 周晨
2016/1/5
模型简介
1
2
3
模型的推导
目录
问题背景
模型的参数估计、检验
作图分析 4
5
1
问题背景
由于人口数量的迅速膨胀和环境质量的急剧恶化,人们开
始研究人口数量的变化规律和如何进行人口控制等问题。 其中最基本的两个人口模型为指数增长模型和阻滞增长模 型。由于人口不能无限增长,指数增长模型不能描述、也 不能预测较长时期的人口演变过程。而阻滞增长模型是对

人口增长模型

人口增长模型

一、 人口增长模型: 1. 问题下表列出了中国1982—1998年的人口统计数据,取1982年为起始年(t=0),…人口自然增长率14%,以36亿作为我国的人口容纳量,是建立一个较好的数学模型并给出相从图中我们可以看到人口数在1982—1998年是呈增长趋势的,而且我们很容易发现上述图像和我们学过指数函数的图像有很大的相似性,所以我们很自然想到建立指数模型,但是指数模型有个不妥之处就是没有考虑社会因素的,即资源的有限性,也就是人口不可能无限制的增长,所以有必要改进模型,这里我们假设人口增长率随人口增加而呈线性递减,从而建立起比较优越阻滞增长模型 模型一:指数增长模型(马尔萨斯模型)1.假设:人口增长率r 是常数.2.建立模型:记时刻t=0时人口数为0X ,时刻t 的人口为X (t ),由于量大,X (t )可以视为连续、可微函数,t 到t+t ∆时间段人口的增量为:)()()(t rX tt X t t X =∆-∆+于是X (t )满足微分方程:)1()0(0⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==X X rX dt dx3.模型求解:解得微分方程(1)得: X (t )=0X )(0t t r e- (2)表明:t ∞−→−时,t X )0.(>∞−→−r . 4.模型的参数估计要用模型2对人口进行预报,必须对其中的参数r 进行估计,这可以用表1通过Matlab 拟合: 程序:x=[1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 19971998]';X=[ones(17,1),x]Y=[101654 103008 104357 105851 107507 109300 111026 112704 114333 115823 117171 118517 119850 121121 122389 123626 124810]';[b,bint,r,rint,stats]=regress(Y,X); %回归分析b,bint,stats%输出这些值rcoplot(r,rint);%画出残差及其置信区间z=b(1)+b(2)*x;plot(x,Y,'k+',x,z,'r'),%预测及作图运行结果:b =1.0e+006 *-2.84470.0015bint =1.0e+006 *-2.9381 -2.75130.0014 0.0015stats =1.0e+005 *0.0000 0.0455 0 1.9800图1各数据点及回归方程的图形 即回归模型为:y=-2844700+1500x从上图可用看出拟和得效果比较好。

我国人口数的逻辑斯蒂增长模型

我国人口数的逻辑斯蒂增长模型

我国人口数的逻辑斯蒂增长模型
逻辑斯蒂增长模型是一种常用的人口增长模型,它可以描述人口数量随时间变化的曲线。

在我国,人口数量的增长受到多种因素的影响,包括出生率、死亡率、迁移率等。


面是一份描述我国人口数的逻辑斯蒂增长模型:
假设当前时间为t,人口数量为P(t)。

根据逻辑斯蒂增长模型的表达式,人口增长速率可以表示为:
dP(t)/dt = r * P(t) * (1 - P(t)/K)
r表示人口的增长率,K为人口数量的饱和值。

根据我国的具体情况,人口增长率r可能随时间发生变化。

在我国近几十年的数据中,人口增长率呈现出微弱下降的趋势。

这可能是由于人口政策的调整以及社会经济发展的影响。

而人口数量的饱和值K取决于我国的资源状况、经济水平、人口政策等因素。

在实际
应用中,我们可以结合历史数据进行估计并进行调整。

通过利用逻辑斯蒂增长模型,我们可以对未来的人口变化进行预测。

通过设定不同的
参数值、观察历史数据的趋势,我们可以对我国人口未来的增长进行合理的预测和估计。

需要注意的是,以上仅为一份模型描述,实际的人口增长模型需要根据大量的数据和
严格的实证分析进行构建和验证。

Logistic模型人口增长到一定数量后-Read

Logistic模型人口增长到一定数量后-Read

tr
N (t) rm p(s, t)ds 0
0
f (t)
t
生育率的分解
k(r, t) ~ (女性)性别比函数
b(r, t ) ~ (女性)生育数
[r1 , r2 ] ~ 育龄区间
f (t ) r2b(r, t )k(r, t ) p(r, t )dr r1
h(r,t) h(r)
1
,
s1 s2
12
,
,
s1
s2 sn1
n1 1

T
• 若L矩阵存在bi, bi+1>0, 则 k 1, k 2,3, , n

lim
k
x(k )
1k

cx*
,
c是由bi,
si,
x(0)决定的常数
解 释
x(k) Lk x(0) L对角化 L P[diag(1 , n )]P 1
2、阻滞增长模型(Logistic模型)
此模型最初由19世纪比利时社会学家P.F.Verhulst提出的 人口增长到一定数量后,增长率下降的原因: 资源、环境等因素对人口增长的阻滞作用 且阻滞作用随人口数量增加而变大
模型假设
1、地球上的资源有限,不妨设为1;
2、一个人的正常生存需要占用资源(这里事 实上也内在的假定了地球的极限承载人口 数有限);
~ 各年龄组种群 数量不变
=1时 Lx* x* x* 1, s1, s1s2, s1s2 sn1 T
b1

s1

L



0
b2 0
s2

bn1 0
0
sn1

【logistic人口阻滞增长模型】-与数共舞:数学建模与实验系列07

【logistic人口阻滞增长模型】-与数共舞:数学建模与实验系列07

【logistic人口阻滞增长模型】-与数共舞:数学建模与实验系列07
我们将在下一篇的微文中继续探索 Logistic 人口模型的一种简化模型, 从而了解混沌以及特点.
上面就是利用 Mathematica (Wolfram语言) 创造出来动手中学习人口论模型的例子.
好了, 现在让我们在下一篇的数学实验与建模课堂再见. 这里感谢各位每一位看到这里的老师和
朋友!
Thanks! Happy Weekend!
相关文章:
【马尔萨斯人口模型】- 与数共舞: 06
【人口模型中的两种级数】- 与数共舞: 05
【线性规划】-与数共舞: 04
【神秘数字π的计算】-与数共舞: 03
【购房贷款的选择】-与数共舞: 02
【购房贷款的选择】-与数共舞: 01
【挥舞翅膀的函数】- 数学函数可视化之魅 I。

人口指数增长模型和Logistic模型学习资料

人口指数增长模型和Logistic模型学习资料

根据美国人口从1790年到1990年间的人口数据(如下表),确定人口指数增长模型和Logistic 模型中的待定参数,估计出美国2010年的人口,同时画出拟合效果的图形。

表1 美国人口统计数据1860 1870 1880 1890 1900 1910 指数增长模型:rt e x t x 0)(=Logistic 模型:()011mrtm x x t x e x -=⎛⎫+- ⎪⎝⎭解:模型一:指数增长模型。

Malthus 模型的基本假设下,人口的增长率为常数,记为r ,记时刻t 的人口为 )(t x ,(即)(t x 为模型的状态变量)且初始时刻的人口为0x ,因为⎪⎩⎪⎨⎧==0)0(x x rxdt dx由假设可知0()rt x t x e = 经拟合得到:}2120010120()ln ()ln ,ln (),,ln rt a y a t a x t x e x t x rt r a x e y x t a r a x =+=⇒=+⇒=====程序:t=1790:10:1980;x(t)=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92.0 106.5123.2 131.7 150.7 179.3 204.0 226.5 ];y=log(x(t));a=polyfit(t,y,1) r=a(1),x0=exp(a(2)) x1=x0.*exp(r.*t); plot(t,x(t),'r',t,x1,'b') 结果:a = 0.0214 -36.6198r= 0.0214 x0= 1.2480e-016所以得到人口关于时间的函数为:0.02140()t x t x e =,其中x0 = 1.2480e-016, 输入:t=2010;x0 = 1.2480e-016; x(t)=x0*exp(0.0214*t)得到x(t)= 598.3529。

人口增长模型的确定

人口增长模型的确定

题目:人口增长模型的确定摘要人口问题已成为当前世界上最普遍关注的问题之一,人口增长规律的发现以及人口增长的预测问题对一个国家制定长远的发展规划有着非常重要的意义。

本文分别使用了马尔萨斯人口指数增长模型和阻滞增长模型,以美国1790-1980年间每隔10年的人口数量为依据,对接下来的每隔十年进行了预测五次人口数量。

通过对比我们可以发现阻滞增长模型在预测准确度方面要明显优于原始的马尔萨斯人口指数增长模型。

关键词:人口增长;马尔萨斯人口指数增长模型;阻滞增长模型;人口预测一、问题重述1.1 问题背景1790-1980年间美国每隔10年的人口记录如下表所示。

表1 人口记录表1.2 问题提出我们需要解决以下问题:1.试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。

2.如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测,并对两次预测结果进行对比分析。

3.查阅资料找出中国人口与表1同时期的人口数量,用以上建立的两个模型进行人口预测与分析。

二、问题分析首先,我们运用Matlab 软件绘制出1790到1980年的美国人口数据图,如图1。

1780180018201840186018801900192019401960198050100150200250图1 1790到1980年的美国人口数据图从图表中我们可以清晰地看到人口数在1790—1980年是呈增长趋势的,而且我们很容易发现上述图表和我们学过指数函数的图表有很大的相似性,所以我们很自然想到建立指数模型。

因此我们首先建立马尔萨斯模型,马尔萨斯生物总数增长定律指出:在孤立的生物群体中,生物总数N的变化率与生物总数成正比。

三、问题假设为简化问题,我们做出如下假设:(1)在模型中预期的时间内,人口不会因发生大的自然灾害,突发事件或战争而受到大的影响;(2)所给出的数据具有代表性,能够反映普遍情况;(3)一段时间内我国人口死亡率不发生大的波动;(4)在查阅的资料与文献中,所得数据可信;(5)假设人口净增长率为常数。

《人口增长模型》课件

《人口增长模型》课件

周期性
人口增长呈现一定的周期 性,受经济、社会和政策 等因素影响。
人口增长的影响因素
自然增长率
出生率和死亡率的变化对 人口增长有直接影响。
迁入率和迁出率
迁入和迁出人口的数量对 地区人口增长有重要影响 。
政策因素
政府政策对生育、移民和 人口控制等方面具有重要 影响。
人口增长模型的分类
指数增长模型
01
通过模型模拟不同的人口政策效果, 为政府制定计划生育、移民政策等提 供科学依据。
分析人口变化原因
模型可以帮助我们了解影响人口增长 的各种因素,如生育率、死亡率、移 民等。
02
人口增长模型的基本概念
人口增长的特性
01
02
03
连续性
人口增长是连续的过程, 随着时间的推移不断变化 。
不确定性
人口增长受到多种因素的 影响,具有不确定性。
假设人口数量与时间 呈线性关系,即人口 数量随时间增长而呈 等比增加。
假设人口增长率是常 数,即不受时间、环 境等因素的影响。
模型建立
指数增长模型的一般形式为 (N(t) = N_0 e^{rt}),其中 (N(t)) 表示在时 间 (t) 的人口数量,(N_0) 表示初始人口数量,(r) 表示人口增长率。
05
阻滞增长模型(Logistic模型 )
模型假设
假设种群增长存在环境最大容 量,即当种群数量达到环境最 大容量时,种群增长速度将减 缓。
假设种群增长受环境阻力影响 ,种群增长率随种群数量增加 而降低。
假设种群增长是连续的过程, 不受时间步长限制。
模型建立
01
(N)((t)):种群数量
02
(K):环境最大容量

matlab阻滞增长模型

matlab阻滞增长模型

阻滞增长模型(Logistic Growth Model)是一种描述种群增长的理论模型,其中种群的增长速度会随着种群数量的增加而降低。

在 MATLAB 中,可以使用以下代码实现阻滞增长模型的模拟:
matlab复制代码
% 定义参数
r = 0.03; % 增长率
K = 100; % 环境容量
N0 = 10; % 初始种群数量
% 定义时间向量
tspan = [0100];
% 创建种群数量向量
N = zeros(size(tspan));
N(1) = N0;
% 模拟种群数量随时间的变化
for i = 2:length(tspan)
N(i) = N(i-1) + r*N(i-1)*(1 - N(i-1)/K);
end
% 绘制种群数量随时间变化的图像
plot(tspan, N);
xlabel('Time');
ylabel('Population Size');
title('Logistic Growth Model Simulation');
在这个例子中,我们使用 r 表示种群的增长率,K 表示环境容量,N0 表示初始种群数量。

首先,我们定义了时间向量 tspan,并创建一个与时间向量相同大小的种群数量向量 N,并将第一个元素设置为初始种群数量 N0。

然后,我们使用一个 for 循环来模拟种群数量的变化,其中每个时间步的种群数量是根据阻滞增长模型的公式计算得出的。

最后,我们使用 plot 函数绘制种群数量随时间变化的图像。

Logistic模型人口增长到一定数量后-Read

Logistic模型人口增长到一定数量后-Read
x xm xm/2 x0
0
xm/2
xm x
0
x (t )
xm xm 1 ( 1)e rx增加先快后慢
图形分析
人口总数尽管一直是增长的,但有极限值制而 不会无限增长下去,到了自然资源与环境条件 等因素所能容纳的最大人口数时便会停止增长, 这是合乎人类发展常识的。 人口总数达到极限值一半以前是加速增长时期, 此后的增长率会逐渐变小,最终达到零增长。
指数增长模型的应用及局限性
• 与19世纪以前欧洲一些地区人口统计数据吻合 • 适用于19世纪后迁往加拿大的欧洲移民后代
• 可用于短期人口增长预测
• 不符合19世纪后多数地区人口增长规律 • 不能预测较长期的人口增长过程 19世纪后人口数据 人口增长率r不是常数(逐渐下降)
2、阻滞增长模型(Logistic模型)
3、宋健的人口模型
背景:年龄分布对于人口预测的重要性,只 考虑自然出生与死亡,不计迁移。
模型假设: 1、把研究的社会人口当成一个整体系统; 2、把表征和影响人口变化的因素都是在整个 社会人口平均意义下确定的; 3、把时间的流逝、婴儿的出生、人口的死亡 (和人口的迁移)看成人口状态变化的全部因 素。
加入2000年人口数据后重新估计模型参数 r=0.2490, xm=434.0 x(2010)=306.0
Logistic 模型在经济领域中的应用(如耐用消费品的售量)
模型讨论

阻滞增长模型从一定程度上克服了指数增长模型的不足, 可以被用来做相对较长时期的人口预测,而指数增长模 型在做人口的短期预测时因为其形式的相对简单性也常 被采用. 不论是指数增长模型曲线,还是阻滞增长模型曲线,它们 有一个共同的特点,即均为单调曲线. 而从我国人口预测的资料发现这样的预测结果:在直到 2030年这一段时期内,我国的人口一直将保持增加的势 头,到2030年前后我国人口将达到最大峰值16亿,之后, 将进入缓慢减少的过程——这是一条非单调的曲线,即 说明其预测方法不是本节提到的两种方法的任何一种. 还有比指数增长模型,阻滞增长模型更好的人口预测方 法吗 ?

阻滞增长模型

阻滞增长模型

阻滞增长模型(Logistic 模型) [1]假设:(a )人口增长率r 为人口()t x的函数()x r (减函数),最简单假定()0, ,>-=s r sx r x r (线性函数),r 叫做固有增长率.(b )自然资源和环境条件所能容纳的最大人口容量m x . [2]建立模型: 当m x x=时,增长率应为0,即()m x r =0,于是mxrs =,代入()sx r x r -=得:()⎪⎪⎭⎫ ⎝⎛-=m x x r x r 1 (3) 将(3)式代入(1)得:模型为: ()⎪⎩⎪⎨⎧=⎪⎪⎭⎫⎝⎛-=001xx x x x r dt dx m (4)[3] 模型的求解: 解方程组(4)得()rtm me x x x t x -⎪⎪⎭⎫ ⎝⎛-+=110 (5)根据方程(4)作出x dtdx~ 曲线图,见图1-1,由该图可看出人口增长率随人口数的变化规律.根据结果(5)作出x~t 曲线,见图1-2,由该图可看出人口数随时间的变化规律.利用表1中1790-1980的数据对r 和x m 拟合得:r=0.2072, x m =464. [4] 模型检验:将r=0.2072, x m =464代入公式(5),求出用指数增长模型预测的1800-1990的人口数,见表3第3、4列. 也可将方程(4)离散化,得)())(1()()()1(t x x t x r t x x t x t x m-+=∆+=+t=0,1,2, (6)用公式(6)预测1800-1990的人口数,结果见表3第图1-2 x~t 曲线5、6列.表3 美国实际人口与按阻滞增长模型计算的人口比较[5] 模型应用:现应用该模型预测人口.用表1中1790-1990年的全部数据重新估计参数,可得r=0.2083, x m=457.6. 用公式(6)作预测得:x(2000)=275; 实际为281.4 (百万).x(2010)=297.9;实际为310.2 (百万).也可用公式(5)进行预测.Logistic 模型在经济领域中的应用(如耐用消费品的售量).。

阻滞增长模型实验报告(3篇)

阻滞增长模型实验报告(3篇)

第1篇一、实验目的1. 理解阻滞增长模型的基本原理和数学表达式。

2. 通过实验验证阻滞增长模型在不同参数设置下的动态变化。

3. 探讨阻滞增长模型在实际问题中的应用,如人口增长、生物种群数量变化等。

二、实验原理阻滞增长模型,也称为逻辑斯蒂增长模型,是一种描述系统增长受资源限制和内在增长速度影响的理论模型。

该模型的基本假设是,系统的增长速度随着系统规模的增加而逐渐降低,最终趋于稳定。

数学表达式如下:\[ \frac{dx}{dt} = r \cdot x \cdot (1 - \frac{x}{K}) \]其中:- \( x \) 为系统规模或数量;- \( t \) 为时间;- \( r \) 为固有增长率,表示系统在没有限制时的增长速度;- \( K \) 为环境容纳量,即系统可以达到的最大规模。

三、实验材料与工具1. 实验材料:计算机、绘图软件(如MATLAB、Python等)。

2. 实验工具:阻滞增长模型数学模型、实验数据。

四、实验步骤1. 参数设置:根据实验目的,设置不同的初始条件(如初始规模 \( x_0 \))和参数值(如 \( r \)、\( K \))。

2. 模型构建:使用计算机软件建立阻滞增长模型,输入参数和初始条件。

3. 模型运行:运行模型,观察并记录系统规模随时间的变化情况。

4. 数据分析:对实验数据进行处理和分析,绘制系统规模随时间变化的曲线图。

5. 结果讨论:根据实验结果,讨论阻滞增长模型在不同参数设置下的动态变化特点。

五、实验结果与分析1. 实验结果:通过实验,我们得到了不同参数设置下系统规模随时间的变化曲线。

结果表明,随着时间推移,系统规模逐渐增长,但增长速度逐渐降低,最终趋于稳定。

2. 结果分析:- 当 \( r \) 值较大时,系统规模增长速度较快,但最终仍会趋于稳定。

- 当 \( K \) 值较大时,系统规模增长速度较慢,但最终仍会达到稳定状态。

- 初始条件 \( x_0 \) 也会对系统规模的增长速度和最终稳定状态产生影响。

人口增长的Logistic模型分析及其应用

人口增长的Logistic模型分析及其应用

人口增长的Logistic模型分析及其应用本文运用迭代的方法计算出人口极限值xm和人口增长率r,用Logistic模型预测了我国人口未来的发展趋势,并根据预测的结果提出了相应的对策与建议。

关键词:人口Logistic模型迭代人口增长问题相关研究最早注意人口问题的是英国经济学家马尔萨斯,他在1798 年提出了人口指数增长模型。

这个模型的基本假设是:人口的增长率是一个常数。

记t时刻的人口总数为x(t)。

初始时刻t=0时的人口为x0。

人口增长率为r,r表示单位时间内x(t)的增量与x(t)的比例系数。

那么,时刻t到时刻t+Δt内人口的增量为x(t+Δt)-x(t)=rx(t)Δt。

于是x(t)满足下列微分方程的初值问题,他的解为x(t)=x0ert。

在r>0时,人口将按指数规律增长。

但是不管生物是按算术级数、几何级数还是按指数曲线变化,随着时间增长生物数量将趋于无穷大。

然而,实际情况却不然,实验指出在有限的空间内,一开始生物以较快速度增长,到一定时期生物增长量就会减缓,生物数量趋于稳定。

历史上的人口统计数据也表明,当一个国家的社会稳定时,一定时期内马尔萨斯模型是符合实际的,但是如果时间比较长或社会发生动荡时,马尔萨斯模型就不能令人满意了。

原因是随着人口的增加,自然资源、环境条件等因素对人口增长开始起阻滞作用,因而人口增长率不断下降。

基于以上考虑荷兰生物学家Verhaust对原人口发展模型进行了改造,于1838 年提出了以昆虫数量为基础的Logistic 人口增长模型。

这个模型假设增长率r是人口的函数,它随着x的增加而减少。

最简单的假定是r是x的线性函数,其中r称为固有增长率,表示x→0时的增长率。

由r(x)的表达式可知,x=xm时r=0。

xm表示自然资源条件能容纳的最大人口数。

因此就有,这个模型就是Logistic 模型。

为表达方便,Logistic方程常被改写成:由于Logistic模型综合考虑了环境等因素对人口增长产生的影响,因此是一种被广泛应用的比较好的模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Logistic 人口阻滞增长模型
一、模型的准备
阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。

阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。

若将r 表示为x 的函数)(x r 。

则它应是减函数。

于是有:
0)0(,)(x x x x r dt
dx
== (1)
对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 )
0,0()(>>-=s r sx
r x r (2)
设自然资源和环境条件所能容纳的最大人口数量m x ,当m x x =时人口不再增长,即
增长率0)(=m x r ,代入(2)式得m
x r
s =,于是(2)式为
)1()(m
x x r x r -
= (3)
将(3)代入方程(1)得:
⎪⎩⎪⎨⎧=-=0
)0()
1(x x x x rx dt
dx
m (4)
解方程(4)可得:
rt
m m
e x x
x t x --+=
)1(1)(0
(5)
二、模型的建立
我国从1954年到2005年全国总人口的数据如表1
总人口 100.1 101.654 103.008 104.357 105.851 107.5 109.3 111.026 112.704
年份 1990 1991 1992 1993 1994 1995 1996 1997 1998 总人口 114.333 115.823 117.171 118.517 119.850 121.121 122.389 123.626 124.761 年份 1999 2000 2001 2002 2003 2004 2005 总人口 125.786 126.743 127.627 128.453 129.227 129.988 130.756
1、将1954年看成初始时刻即0=t ,则1955为1=t ,以次类推,以2005年为51=t 作为终时刻。

用函数(5)对表1中的数据进行非线性拟合,运用Matlab 编程得到相关的参数-0.0336,180.9871 ==r x m ,可以算出可决系数(可决系数是判别曲线拟合效果的一个指标):
9959.0)y y
()y ˆy (1R 51
i 2
i
5
1
i 2
i i 2=---
=∑∑==
由可决系数来看拟合的效果比较理想。

所以得到中国各年份人口变化趋势的拟合曲线:
t e
t x 0336.0.0)12
.609871.180(19871
.180)(--+=
(6)
根据曲线(6)我们可以对2010年(56=t )、2020年(66=t )、及2033年(79=t ) 进行预测得(单位:千万):
6028.158)79(,5400.148)66(,6161.138)56(===x x x
结果分析:从所给信息可知从1951年至1958年为我国第一次出生人口高峰,形成了中国人口规模“由缓到快”的增长基础;因此这段时期人口波动较大,可能影响模型结果的准确性。

1959、1960、1961年为三年自然灾害时期,这段时期人口的增长受到很大影响,1962年处于这种影响的滞后期,人口的增长也受到很大影响。

总的来说1951-1962年的人口增长的随机误差不是服从正态分布,
程序:
结果:
2、 将1963年看成初始时刻即0=t ,以2005年为32=t 作为终时刻。

运用Matlab 编程得到相关的参数0.0484 ,151.4513 ==r x m ,可以算出可决系数9994.02=R 得到中国各年份人口变化趋势的另一拟合曲线:
t
e t x 0484.0)11
.694513.151(14513
.151)(--+=
(7)
根据曲线(7)我们可以对2010年(47=t )、2020年(57=t )、及2033年(70=t ) 进行预测得(单位:千万):
145.5908 )70(,140.8168)57(,134.9190 )47(===x x x
结果分析:1963年-1979年其间,人口的增长基本上是按照自然的规律增长,特别是在农村是这样,城市受到收入的影响,生育率较低,但都有规律可寻。

总的来说,人口增长的外界大的干扰因素基本上没有,可以认为这一阶段随机误差服从正态分布;1980-2005年这一时间段,虽然人口的增长受到国家计划生育政策的控制,但计划生育的政策是基本稳定的,这一阶段随机误差也应服从正态分布,因此用最小二乘法拟合所得到的结果应有较大的可信度。

程序:
结果:
3、从1980-2005年,国家计划生育政策逐渐得到完善及贯彻落实,这个时期的人口增长受到国家计划生育政策的控制,人口的增长方式与上述的两个阶段都不同。

因此我们进一步选择1980年作为初始年份2005年作为终时刻进行拟合。

运用Matlab 编程得到相关的参数0.0477 ,153.5351 ==r x m ,可以算出可决系数9987.02=R 得到中国各年份人口变化趋势的第三条拟合曲线:
t
e t x 0477.0)1705
.985351.153(15351
.153)(--+=
(8)
根据曲线(7)我们可以对2010年(30=t )、2020年(40=t )、及2033年(53=t ) 进行预测得(单位:千万):147.0172 )53(,141.8440 )40(,135.5357 )30(===x x x
结果分析:这一时期,国家虽然对人口大增长进行了干预,但国家的计划生育的政策是基本稳定的,在此其间没有其他大的干扰,所以人口增长的随机误差应服从正态分布。

所以结果应是比较可信的。

程序:
结果:
分别根据拟合曲线⑹⑺⑻对各年份中国总人口进行预测得到结果如表2:
由上表可以看出:用拟合曲线(6)预测得到的数据比较大,在2024年总人口就已经超过了151.9662千万,而且一直以比较快的速度增长到2048年达到了166.7683千万。

用拟合曲线(7)预测得到的数据偏小,到2048年人口只有148.558千万。

相比较而言用拟合曲线(8)预测的数据比较接近《国家人口发展战略研究报告》中的预测。

相关文档
最新文档