热力学第一定律
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其实法国工程师萨迪·卡诺(Sadi Carnot,1796—1832)早在1830年就已确立了功热相当的思想,他在笔记中写道:“热不是别的什么东西,而是动力,或者可以说,它是改变了形式的运动,它是(物体中粒子的)一种运动(的形式)。当物体的粒子的动力消失时,必定同时有热产生,其量与粒子消失的动力精确地成正比。相反地,如果热损失了,必定有动力产生。”
J=A/(Qp-Qv) =3.78×10-5/1.03×10-7=367千克·米/千卡。
或3597焦耳/千卡,21世纪初的精确值为4187焦耳/千卡。
迈尔还具体地考察了另外几种不同形式的力。他以起电机为例说明了“机械效应向电的转化。”他认为:“下落的力”(即重力势能)可以用“重量和(下落)高度的乘积来量度。”“与下落的力转变为运动或者运动转变为下落的力无关,这个力或机械效应始终是不变的常量。”
于1840年3月27日在一次科学院演讲中提出了一个普遍的表述:“当组成任何一种化学化合物时,往往会同时放出热量,这热量不取决于化合是直接进行还是经过几道反应间接进行。”以后他把这条定律广泛应用于他的热化学研究中。
赫斯的这一发现第一次反映了热力学第一定律的基本原理;热和功的总量与过程途径无关,只决定于体系的始末状态。体现了系统的内能的基本性质——与过程无关。赫斯的定律不仅反映守恒的思想,也包括了“力”的转变思想。至此,能量转化与守恒定律已初步形成。
关键词:热力学第一定律;内能定理;焦耳定律;热机;热机效率;能量守恒定律,热机循环。
The first law of thermodynamics
Abstract:The first law of thermodynamics is an expression of the principle of conservation of energy, and it is also a special form of the law of conservation of energy and the law of transformation in the field of thermal phenomena. The first law of thermodynamics is an important law of biology, physics, chemistry and other disciplines. In this paper, the first law of thermodynamics is reviewed, including its accurate expression and accurate mathematical expressions, and the influence of the first law of thermodynamics on people's life and social development.
引言:早在19世纪,热力学发展初期,热和机械能的相互转化是人们研究的主题。在工业革命的推动下,工业上和运输上都相当广泛地使用蒸汽机。人们研究怎样消耗最少的燃料而获得尽可能多的机械能。甚至幻想制造一种机器,不需要外界提供能量,却能不断地对外做功,为了解决这个问题,促使人们都去研究热和机械能之间的关系问题。在迈尔(J.R.Mayer)提出了能量守恒定律,焦耳(J.P.Joule)的实验工作发表后,此定律得到了物理学界的确认,对制造永动机的幻想作了最后的判决:“不可能制造出第一类永动机”。
接着迈尔又根据狄拉洛希(Delaroche)和贝拉尔德(Berard)以及杜隆(Dulong)气体比热的实验数据Cp=0.267卡/克·度、 Cv=0.188卡/克·度计算出热功。
计算过程如下:
在定压下使1厘米3空气加热温升1度所需的热量为:Qp=mcpΔt=0.000347卡(取空气密度ρ=0.0013克/厘米3)。相应地,在定容下加热同量空气温升 1度消耗的热Qv=0.000244卡。二者的热量差Qp-Qv=0.000103卡。另一方面,温度升高1度等压膨胀时体积增大为原体积的1/274倍;气体对外作的功,可以使1.033千克的水银柱升高1/274厘米。即功=1.033×1/27400 =3.78×10-5千克·米。于是迈尔得出热功当量为
迈尔的结论是:“因此力(即能量)是不灭的、可转化的、不可秤量的客体。”
迈尔这种推论方法显然过于笼统,难以令人信服,但他关于能量转化与守恒的叙述是最早的完整表达。
迈尔在1845年发表了第二篇论文: 《有机运动及其与新陈代谢的联系》,该文更系统地阐明能量的转化与守恒的思想。他明确指出:“无不能生有,有不能变无”,“在死的和活的自然界中,这个力(按:即能量)永远处于循环转化的过程之中。任何地方,没有一个过程不是力的形式变化!”他主张:“热是一种力,它可以转变为机械效应。”论文中还具体地论述了热和功的联系,推出了气体定压比热和定容比热之差Cp-Cv等于定压膨胀功R的关系式。现在我们称Cp-Cv=R为迈尔公式。
“因此人们可以得出一个普遍命题:在自然界中存在的动力,在量上是不变的。准确地说,它既不会创生也不会消灭;实际上,它只改变了它的形式。”
卡诺未作推导而基本上正确地给出了热功当量的数值:370千克米/千卡。由于卡诺过早地死去,他的弟弟虽看过他的遗稿,却不理解这一原理的意义,直到1878年,才公开发表了这部遗稿。这时,热力学第一定律早已建立了。
热力学第一定律
The first law of thermodynamics
专业:矿物加工工程
班级:1401班
姓名:****
学号:*********0
热力学第一定律
摘要:热力学第一定律是能量守恒原理的一种表达方式,也是能量守恒与转化定律在热现象领域内所具有的特殊形式。热力学第一定律是生物、物理、化学等学科的重要定律。本文主要回顾热力学第一定律的提出与产生,包括其准确的文字表达和精确地数学表达式,以及热力学第一定律对人们生活和社会发展的影响。
“力是原因:因此,我们可以全面运用这样一条原则来看待它们,即‘因等于果’。设因c有果e,则c=e;反之,设e为另一果f之因,则有e=f等等,c=e=f=…=c在一串因果之中,某一项或某一项的某一部分绝不会化为乌有,这从方程式的性质就可明显看出。这是所有原因的第一个特性,我们称之为不灭性。”
接着迈尔用反证法,证明守恒性(不灭性):
对能量转化与守恒定律作出明确叙述的,首先要提到三位科学家。他们是德国的迈尔(RobertMayer,1814—1878)、赫姆霍兹(Hermann von Helmholtz,1821—1894)和英国的焦耳。
1.2
1.21
迈尔是一位医生。在一次驶往印度尼西亚的航行中 ,迈尔作为随船医生,在给生病的船员放血时,得到了重要启示,发现静脉血不像生活在温带国家中的人那样颜色暗淡,而是像动脉血那样新鲜。当地医生告诉他,这种现象在辽阔的热带地区是到处可见的。他还听到海员们说,暴风雨时海水比较热。这些现象引起了迈尔的沉思。他想到,食物中含有化学能,它像机械能一样可以转化为热。在热带高温情况下,机体只需要吸收食物中较少的热量,所以机体中食物的燃烧过程减弱了,因此静脉血中留下了较多的氧。他已认识到生物体内能量的输入和输出是平衡的。迈尔在1842年发表的题为《热的力学的几点说明》中,宣布了热和机械能的相当性和可转换性,他的推理如下 :
Key words:Thermodynamics the first laws; Internal energy theorem;
The joule laws; The engine; Heat efficiency;Law of conservation of energy;Engine cycle.
“如果给定的原因c产生了等于其自身的结果e,则此行为必将停止;c变为e;若在产生e后,c仍保留全部或一部分,则必有进一步的结果,相当于留下的原因c的全部结果将>e,于是就将与前提c=e矛盾。”“相应的,由于c变为e,e变为f等等,我们必须把这些不同的值看成是同一客体出现时所呈的不同形式。这种呈现不同形式的能力是所有原因的第二种基本特性。把这两种特性放在一起我们可以说,原因(在量上)是不灭的,而(在质上)是可转化的客体。”
俄国的赫斯(G.H.Hess,1802—1850)在更早就从化学的研究得到了能量转化与守恒的思想。他原是瑞士人,3岁时到俄国,当过医生,在彼得堡执教,他以热化学研究著称。
1836年赫斯向彼得堡科学院报告:“经过连续的研究,我确信,不管用什么方式完成化合,由此发出的热总是恒定的,这个原理是如此之明显,以至于如果我不认为已经被证明,也可以不加思索就认为它是一条公理。”
在他的论述中有一明显的趋向,就是企图把一切自然过程都归结于中心力的作用。我们都知道,在只有中心力的作用下,能量守恒是正确的,但是这只是能量守恒原理的一个特例,把中心力看成是普遍能量守恒的条件就不正确了。
他的论文共分六节,前两节主要是回顾力学的发展,强调了活力守恒(即动能守恒),进而分析了“力”的守恒原理(即机械能守恒原理);第三节涉及守恒Байду номын сангаас理的各种应用;第四节题为“热的力当量性,”他明确地摒弃了热质说,把热看成粒子(分子或原子)运动能量的一种形式。第五节“电过程的力相当性”和第六节“磁和电磁现象的力相当性”讨论各种电磁现象和电化学过程,特别是电池中的热现象对能量转化关系进行了详细研究。文章最后提到能量概念也有可能应用于有机体的生命过程,他的论点和迈尔接近。不过,看来他当时并不知道迈尔的工作。
1.22
从多方面论证能量转化与守恒定律的是德国的海曼·赫姆霍兹。他曾在著名的生理学家缪勒(Johannes Müller)的实验室里工作过多年,研究过“动物热。”他深信所有的生命现象都必得服从物理与化学规律。他早年在数学上有过良好的训练,同时又很熟悉力学的成就,读过牛顿、达朗贝尔、拉格朗日等人的著作,对拉格朗日的分析力学有深刻印象。他的父亲是一位哲学教授,和著名哲学家费赫特(Fichte)是好朋友。海曼·赫姆霍兹接受了前辈的影响,成了康德哲学的信徒,把自然界大统一当作自己的信条。他认为如果自然界的“力”(即能量)是守恒的,则所有的 “力” 都应和机械 “力” 具有相同的量纲, 并可还原为机械 “力”。1847年,26岁的赫姆霍兹写成了著名论文《力的守恒》,充分论述了这一命题 。这篇论文是1847年7月23日在柏林物理学会会议上的报告,由于被认为是思辨性、缺乏实验研究成果的一般论文,没有在当时有国际声望的《物理学年鉴》上发表,而是以小册子的形式单独印行的。
但是历史证明,这篇论文在热力学的发展中占有重要地位,因为赫姆霍兹总结了许多人的工作,一举把能量概念从机械运动推广到了所有变化过程,并证明了普遍的能量守恒原理。这是一个十分有力的理论武器,从而可以更深入地理解自然界的统一性。
赫姆霍兹在这篇论文一开头就声称,他的“论文的主要内容是面对物理学家,”他的目的是“建立基本原理,并由基本原理出发引出各种推论,再与物理学不同分支的各种经验进行比较。”
1
1.1
19世纪初,由于蒸汽机的进一步发展,迫切需要研究热和功的关系,对蒸汽机“出力”作出理论上的分析。所以热与机械功的相互转化得到了广泛的研究。
埃瓦特(Peter Ewart,1767—1842)对煤的燃烧所产生的热量和由此提供的“机械动力”之间的关系作了研究,建立了定量联系。
丹麦工程师和物理学家柯尔丁(L.Colding,1815—1888)对热、功之间的关系也作过研究。他从事过摩擦生热的实验,1843年丹麦皇家科学院对他的论文签署了如下的批语 “柯尔丁的这篇论文的主要思想是由于摩擦、阻力、压力等造成的机械作用的损失,引起了物体内部的如热、电以及类似的动作,它们皆与损失的力成正比。”
迈尔第一个在科学史中将热力学观点用于研究有机世界中的现象,他考察了有机物的生命活动过程中的物理化学转变,确信“生命力”理论是荒诞无稽的。他证明生命过程无所谓“生命力”,而是一种化学过程,是由于吸收了氧和食物,转化为热。这样迈尔就将植物和动物的生命活动,从唯物主义的立场,看成是能的各种形式的转变。
1848年迈尔发表了《天体力学》一书,书中解释陨石的发光是由于在大气中损失了动能。他还应用能量守恒原理解释了潮汐的涨落。迈尔虽然第一个完整地提出了能量转化与守恒原理,但是在他的著作发表的几年内,不仅没有得到人们的重视,反而受到了一些著名物理学家的反对。由于他的思想不合当时流行的观念,还受到人们的诽谤和讥笑,使他在精神上受到很大刺激,曾一度关进精神病院,倍受折磨。
J=A/(Qp-Qv) =3.78×10-5/1.03×10-7=367千克·米/千卡。
或3597焦耳/千卡,21世纪初的精确值为4187焦耳/千卡。
迈尔还具体地考察了另外几种不同形式的力。他以起电机为例说明了“机械效应向电的转化。”他认为:“下落的力”(即重力势能)可以用“重量和(下落)高度的乘积来量度。”“与下落的力转变为运动或者运动转变为下落的力无关,这个力或机械效应始终是不变的常量。”
于1840年3月27日在一次科学院演讲中提出了一个普遍的表述:“当组成任何一种化学化合物时,往往会同时放出热量,这热量不取决于化合是直接进行还是经过几道反应间接进行。”以后他把这条定律广泛应用于他的热化学研究中。
赫斯的这一发现第一次反映了热力学第一定律的基本原理;热和功的总量与过程途径无关,只决定于体系的始末状态。体现了系统的内能的基本性质——与过程无关。赫斯的定律不仅反映守恒的思想,也包括了“力”的转变思想。至此,能量转化与守恒定律已初步形成。
关键词:热力学第一定律;内能定理;焦耳定律;热机;热机效率;能量守恒定律,热机循环。
The first law of thermodynamics
Abstract:The first law of thermodynamics is an expression of the principle of conservation of energy, and it is also a special form of the law of conservation of energy and the law of transformation in the field of thermal phenomena. The first law of thermodynamics is an important law of biology, physics, chemistry and other disciplines. In this paper, the first law of thermodynamics is reviewed, including its accurate expression and accurate mathematical expressions, and the influence of the first law of thermodynamics on people's life and social development.
引言:早在19世纪,热力学发展初期,热和机械能的相互转化是人们研究的主题。在工业革命的推动下,工业上和运输上都相当广泛地使用蒸汽机。人们研究怎样消耗最少的燃料而获得尽可能多的机械能。甚至幻想制造一种机器,不需要外界提供能量,却能不断地对外做功,为了解决这个问题,促使人们都去研究热和机械能之间的关系问题。在迈尔(J.R.Mayer)提出了能量守恒定律,焦耳(J.P.Joule)的实验工作发表后,此定律得到了物理学界的确认,对制造永动机的幻想作了最后的判决:“不可能制造出第一类永动机”。
接着迈尔又根据狄拉洛希(Delaroche)和贝拉尔德(Berard)以及杜隆(Dulong)气体比热的实验数据Cp=0.267卡/克·度、 Cv=0.188卡/克·度计算出热功。
计算过程如下:
在定压下使1厘米3空气加热温升1度所需的热量为:Qp=mcpΔt=0.000347卡(取空气密度ρ=0.0013克/厘米3)。相应地,在定容下加热同量空气温升 1度消耗的热Qv=0.000244卡。二者的热量差Qp-Qv=0.000103卡。另一方面,温度升高1度等压膨胀时体积增大为原体积的1/274倍;气体对外作的功,可以使1.033千克的水银柱升高1/274厘米。即功=1.033×1/27400 =3.78×10-5千克·米。于是迈尔得出热功当量为
迈尔的结论是:“因此力(即能量)是不灭的、可转化的、不可秤量的客体。”
迈尔这种推论方法显然过于笼统,难以令人信服,但他关于能量转化与守恒的叙述是最早的完整表达。
迈尔在1845年发表了第二篇论文: 《有机运动及其与新陈代谢的联系》,该文更系统地阐明能量的转化与守恒的思想。他明确指出:“无不能生有,有不能变无”,“在死的和活的自然界中,这个力(按:即能量)永远处于循环转化的过程之中。任何地方,没有一个过程不是力的形式变化!”他主张:“热是一种力,它可以转变为机械效应。”论文中还具体地论述了热和功的联系,推出了气体定压比热和定容比热之差Cp-Cv等于定压膨胀功R的关系式。现在我们称Cp-Cv=R为迈尔公式。
“因此人们可以得出一个普遍命题:在自然界中存在的动力,在量上是不变的。准确地说,它既不会创生也不会消灭;实际上,它只改变了它的形式。”
卡诺未作推导而基本上正确地给出了热功当量的数值:370千克米/千卡。由于卡诺过早地死去,他的弟弟虽看过他的遗稿,却不理解这一原理的意义,直到1878年,才公开发表了这部遗稿。这时,热力学第一定律早已建立了。
热力学第一定律
The first law of thermodynamics
专业:矿物加工工程
班级:1401班
姓名:****
学号:*********0
热力学第一定律
摘要:热力学第一定律是能量守恒原理的一种表达方式,也是能量守恒与转化定律在热现象领域内所具有的特殊形式。热力学第一定律是生物、物理、化学等学科的重要定律。本文主要回顾热力学第一定律的提出与产生,包括其准确的文字表达和精确地数学表达式,以及热力学第一定律对人们生活和社会发展的影响。
“力是原因:因此,我们可以全面运用这样一条原则来看待它们,即‘因等于果’。设因c有果e,则c=e;反之,设e为另一果f之因,则有e=f等等,c=e=f=…=c在一串因果之中,某一项或某一项的某一部分绝不会化为乌有,这从方程式的性质就可明显看出。这是所有原因的第一个特性,我们称之为不灭性。”
接着迈尔用反证法,证明守恒性(不灭性):
对能量转化与守恒定律作出明确叙述的,首先要提到三位科学家。他们是德国的迈尔(RobertMayer,1814—1878)、赫姆霍兹(Hermann von Helmholtz,1821—1894)和英国的焦耳。
1.2
1.21
迈尔是一位医生。在一次驶往印度尼西亚的航行中 ,迈尔作为随船医生,在给生病的船员放血时,得到了重要启示,发现静脉血不像生活在温带国家中的人那样颜色暗淡,而是像动脉血那样新鲜。当地医生告诉他,这种现象在辽阔的热带地区是到处可见的。他还听到海员们说,暴风雨时海水比较热。这些现象引起了迈尔的沉思。他想到,食物中含有化学能,它像机械能一样可以转化为热。在热带高温情况下,机体只需要吸收食物中较少的热量,所以机体中食物的燃烧过程减弱了,因此静脉血中留下了较多的氧。他已认识到生物体内能量的输入和输出是平衡的。迈尔在1842年发表的题为《热的力学的几点说明》中,宣布了热和机械能的相当性和可转换性,他的推理如下 :
Key words:Thermodynamics the first laws; Internal energy theorem;
The joule laws; The engine; Heat efficiency;Law of conservation of energy;Engine cycle.
“如果给定的原因c产生了等于其自身的结果e,则此行为必将停止;c变为e;若在产生e后,c仍保留全部或一部分,则必有进一步的结果,相当于留下的原因c的全部结果将>e,于是就将与前提c=e矛盾。”“相应的,由于c变为e,e变为f等等,我们必须把这些不同的值看成是同一客体出现时所呈的不同形式。这种呈现不同形式的能力是所有原因的第二种基本特性。把这两种特性放在一起我们可以说,原因(在量上)是不灭的,而(在质上)是可转化的客体。”
俄国的赫斯(G.H.Hess,1802—1850)在更早就从化学的研究得到了能量转化与守恒的思想。他原是瑞士人,3岁时到俄国,当过医生,在彼得堡执教,他以热化学研究著称。
1836年赫斯向彼得堡科学院报告:“经过连续的研究,我确信,不管用什么方式完成化合,由此发出的热总是恒定的,这个原理是如此之明显,以至于如果我不认为已经被证明,也可以不加思索就认为它是一条公理。”
在他的论述中有一明显的趋向,就是企图把一切自然过程都归结于中心力的作用。我们都知道,在只有中心力的作用下,能量守恒是正确的,但是这只是能量守恒原理的一个特例,把中心力看成是普遍能量守恒的条件就不正确了。
他的论文共分六节,前两节主要是回顾力学的发展,强调了活力守恒(即动能守恒),进而分析了“力”的守恒原理(即机械能守恒原理);第三节涉及守恒Байду номын сангаас理的各种应用;第四节题为“热的力当量性,”他明确地摒弃了热质说,把热看成粒子(分子或原子)运动能量的一种形式。第五节“电过程的力相当性”和第六节“磁和电磁现象的力相当性”讨论各种电磁现象和电化学过程,特别是电池中的热现象对能量转化关系进行了详细研究。文章最后提到能量概念也有可能应用于有机体的生命过程,他的论点和迈尔接近。不过,看来他当时并不知道迈尔的工作。
1.22
从多方面论证能量转化与守恒定律的是德国的海曼·赫姆霍兹。他曾在著名的生理学家缪勒(Johannes Müller)的实验室里工作过多年,研究过“动物热。”他深信所有的生命现象都必得服从物理与化学规律。他早年在数学上有过良好的训练,同时又很熟悉力学的成就,读过牛顿、达朗贝尔、拉格朗日等人的著作,对拉格朗日的分析力学有深刻印象。他的父亲是一位哲学教授,和著名哲学家费赫特(Fichte)是好朋友。海曼·赫姆霍兹接受了前辈的影响,成了康德哲学的信徒,把自然界大统一当作自己的信条。他认为如果自然界的“力”(即能量)是守恒的,则所有的 “力” 都应和机械 “力” 具有相同的量纲, 并可还原为机械 “力”。1847年,26岁的赫姆霍兹写成了著名论文《力的守恒》,充分论述了这一命题 。这篇论文是1847年7月23日在柏林物理学会会议上的报告,由于被认为是思辨性、缺乏实验研究成果的一般论文,没有在当时有国际声望的《物理学年鉴》上发表,而是以小册子的形式单独印行的。
但是历史证明,这篇论文在热力学的发展中占有重要地位,因为赫姆霍兹总结了许多人的工作,一举把能量概念从机械运动推广到了所有变化过程,并证明了普遍的能量守恒原理。这是一个十分有力的理论武器,从而可以更深入地理解自然界的统一性。
赫姆霍兹在这篇论文一开头就声称,他的“论文的主要内容是面对物理学家,”他的目的是“建立基本原理,并由基本原理出发引出各种推论,再与物理学不同分支的各种经验进行比较。”
1
1.1
19世纪初,由于蒸汽机的进一步发展,迫切需要研究热和功的关系,对蒸汽机“出力”作出理论上的分析。所以热与机械功的相互转化得到了广泛的研究。
埃瓦特(Peter Ewart,1767—1842)对煤的燃烧所产生的热量和由此提供的“机械动力”之间的关系作了研究,建立了定量联系。
丹麦工程师和物理学家柯尔丁(L.Colding,1815—1888)对热、功之间的关系也作过研究。他从事过摩擦生热的实验,1843年丹麦皇家科学院对他的论文签署了如下的批语 “柯尔丁的这篇论文的主要思想是由于摩擦、阻力、压力等造成的机械作用的损失,引起了物体内部的如热、电以及类似的动作,它们皆与损失的力成正比。”
迈尔第一个在科学史中将热力学观点用于研究有机世界中的现象,他考察了有机物的生命活动过程中的物理化学转变,确信“生命力”理论是荒诞无稽的。他证明生命过程无所谓“生命力”,而是一种化学过程,是由于吸收了氧和食物,转化为热。这样迈尔就将植物和动物的生命活动,从唯物主义的立场,看成是能的各种形式的转变。
1848年迈尔发表了《天体力学》一书,书中解释陨石的发光是由于在大气中损失了动能。他还应用能量守恒原理解释了潮汐的涨落。迈尔虽然第一个完整地提出了能量转化与守恒原理,但是在他的著作发表的几年内,不仅没有得到人们的重视,反而受到了一些著名物理学家的反对。由于他的思想不合当时流行的观念,还受到人们的诽谤和讥笑,使他在精神上受到很大刺激,曾一度关进精神病院,倍受折磨。