中考数学类比探究型几何综合题专题训练(含答案与解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学类比探究型几何综合题专题训练
【类型1】通过位置变化(图形变换)进行类比探究
〖例1〗已知:如图,等边△AOB的边长为4,点C为OA中点.
(1)如图1,将OC绕点O顺时针旋转,使点C落到OB边的点D处,设旋转角为α(0°<α≤360°).则此时α=;此时△COD是三角形(填特殊三角形的名称).
(2)如图2,固定等边△AOB不动,将(1)中得到的△OCD绕点O逆时针旋转,连接AC,BD,设旋转角为β(0°<β≤360°).
①求证:AC=BD;
②当旋转角β为何值时,OC∥AB,并说明理由;
③当A、C、D三点共线时,直接写出线段BD的长.
〖例2〗现有与菱形有关的三幅图,如图:
(1)(感知)如图①,AC是菱形ABCD的对角线,∠B=60°,E、F分别是边BC、CD上的中点,连结AE、EF、AF.若AC=2,则CE+CF的长为.(2)(探究)如图②,在菱形ABCD中,∠B=60°.E是边BC上的点,连结AE,作∠EAF=60°,边AF交边CD于点F,连结EF.若BC=2,求CE+CF的长.
(3)(应用)在菱形ABCD中,∠B=60°.E是边BC延长线上的点,连结AE,作∠EAF=60°,边AF交边CD延长线于点F,连结EF.若BC=2,EF⊥BC时,借助图③求△AEF的周长.
〖尝试练习〗
1.如图1,等边△ABC与等边△BDE的顶点B重合,D、E分别在AB、BC上,AB=2√2,BD=2.现将等边△BDE从图1位置开始绕点B顺时针旋转,如图2,直线AD、CE相交于点P.
(1)在等边△BDE旋转的过程中,试判断线段AD与CE的数量关系,并说明理由;
(2)在等边△BDE顺时针旋转180°的过程中,当点B到直线AD的距离最大时,求PC的长;
(3)在等边△BDE旋转一周的过程中,当A、D、E三点共线时,求CE的长.
2.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.
(1)探究猜想
如图1,当点D在线段BC上时,
①BC与CF的位置关系为:;
②BC、CD、CF之间的数量关系为:;
(2)深入思考
如图2,当点D在线段CB的延长线上时,结论①、②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
(3)拓展延伸
如图3,当点D在线段BC的延长线上时,正方形ADEF对角线交于点O.若已知AB=2√2,CD =1
4
BC,请求出OC的长.
3.如图1,正方形ABCD与正方形AEFG有公共的顶点A,且正方形AEFG的边AE,AG分别在正方形ABCD的边AB,AD上,显然BE=DG,BE⊥DG.
(1)将图1的正方形AEFG绕点A转动一定的角度到图2的位置.
求证:①BE=DG;②BE⊥DG;
(2)如图3,若点D,G,E在同一条直线上,且正方形ABCD的边长是4√2,正方形AEFG的边长为3√2,求BE的长.
【类型2】通过形状变化进行类比探究
〖例3〗如图1,在△ABC中,AB=AC,∠BAC=α.D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转α,得到AE,连接DE,CE.
(1)求证:CE=BD;
(2)若α=60°,其他条件不变,如图2.请猜测线段AC,CD,CE之间的数量关系,并说明理由;(3)若α=90°,其他条件不变,如图3,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由.
〖例4〗如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且PC =PE,PF交CD于点F.
(1)求证:∠PCD=∠PED;
(2)连接EC,求证:EC=√2AP;
(3)如图2,把正方形ABCD改成菱形ABCD,其他条件不变,当∠DAB=60°时,请直接写出线段EC和AP的数量关系.
〖尝试练习〗
4.已知菱形ABCD和菱形DEFG有公共的顶点D,C点在DE上,且∠ADC=∠EDG,连接AE,CG,如图1.
(1)试猜想AE与CG有怎样的数量关系(直接写出关系,不用证明);
(2)将菱形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和CG.你认为(1)中的结论是否还成立?若成立,请给出证明;若不成立,请说明理由;
(3)在(2)的条件下,如果∠ADC=∠EDG=90°,如图3,你认为AE和CG是否垂直?若垂直,请给出证明;若不垂直,请说明理由.5.已知在平行四边形ABCD中,AB≠BC,将△ABC沿直线AC翻折,点B落在点E处,AD与CE相交于点O,联结DE.
(1)如图1,求证:AC∥DE;
(2)如图2,如果∠B=90°,AB=√3,BC=√6,求△OAC的面积;
(3)如果∠B=30°,AB=2√3,当△AED是直角三角形时,求BC的长.
6.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF 为邻边作平行四边形ECFG.
(1)求证:四边形ECFG是菱形;
(2)连结BD、CG,若∠ABC=120°,则△BDG是等边三角形吗?为什么?
(3)若∠ABC=90°,AB=10,AD=24,M是EF的中点,求DM的长.
【自主反馈】
7.如图1,△ABC是等边三角形,点D,E分别是BC,AB上的点,且BD=AE,AD与CE交于点F.
(1)求∠DFC的度数;
(2)将CE绕着点C逆时针旋转120°,得到CP,连接AP,交BC于点Q.
①补全图形(图2中完成);
②用等式表示线段BE与CQ的数量关系,并证明.
8.已知△ABC是等腰三角形.
(1)如图1,若△ABC,△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,求证:△ABD ≌△ACE;
(2)如图2,若△ABC为等边三角形,将线段AC绕点A逆时针旋转90°,得到AD,连接BD,∠BAC的平分线交BD于点E,连接CE.
①求∠AED的度数;
②试探究线段AE、CE、BD之间的数量关系,并证明.9.在Rt△ABC中,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转一定的角度α得到△AED,点B、C的对应点分别是E、D.
(1)如图1,当点E恰好在AC上时,求∠CDE的度数;
(2)如图2,若α=60°时,点F是边AC中点,求证:DF=BE;
(3)如图3,点B、C的坐标分别是(0,0),(0,2),点Q是线段AC上的一个动点,点M 是线段AO上的一个动点,是否存在这样的点Q、M使得△CQM为等腰三角形且△AQM为直角三角形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.
10.在等腰直角三角形纸片ABC中,点D是斜边AB的中点,AB=10,点E为BC上一点,将纸片沿DE折叠,点B的对应点为点B'.
(1)如图①,连接CD,则CD的长为;
(2)如图②,B'E与AC交于点F,DB'∥BC.
①求证:四边形BDB'E为菱形;②连接B'C,则△B'FC的形状为;
(3)如图③,则△CEF的周长为.