矿热炉设计方案.doc

合集下载

最新矿热炉设计方案

最新矿热炉设计方案

(1)电耗值随原料成分,制成品成分,电炉容量等的不同而有很大差异。

这里是约值。

二结构特点矿热炉是一种耗电量巨大的工业电炉。

主要由炉壳,烟罩、炉衬、短网,水冷系统,排烟系统,除尘系统,电极壳,电极压放及升降系统,上下料系统,把持器,烧穿器,液压系统,矿热炉变压器及各种电器设备等组成。

矿热炉设备共分三层布置第一层为炉体(包括炉底支撑、炉壳、炉衬),出铁系统(包括包或锅及包车等),烧穿器等组成。

第二层(1)烟罩。

矿热炉目前大多数采用密闭式、或半密闭式矮烟罩结构,具有环保和便于维修,改善操作环境的特点。

采用密闭式结构还可把生产中产生的废气(主要成分是一氧化碳)收集起来综合利用,并可减少电路的热损失,降低电极上部的温度,改善操作条件。

(2)电极把持器。

大多数矿热炉都由三相供电,电极按正三角形或倒三角形,对称位置布置在炉膛中间。

大型矿热炉一般采用无烟煤,四、矿热炉主要设备1.主要设备:本设计选用矮烟罩半封闭固定式矿热炉,主要设备选择如下:1.1炉体炉体是由炉壳、炉衬、炉底支撐等构成,炉壳采用14~18mm厚钢板焊接而成的圆筒体,外部焊接有加强筋,以保证炉体具有足够的强度。

炉底采用18~20㎜厚钢板,炉体采用25~30#工字钢支撑,自然通风冷却炉底,炉壳设有1~2个出料口,炉衬采用高铝耐火砖和自焙碳砖无缝砌筑新工艺,炉墙厚度为460~690㎜,外敷20㎜厚硅酸铝纤维板。

炉底碳砖厚度为800~1200㎜。

炉口采用碳化硅刚玉砖,流料槽采用水冷结构。

根据需要也可增加水冷炉门。

1.2矮烟罩采用全水冷结构或水冷骨架和耐热混凝土的复合结构。

其高度以满足设备维修的需要,全水冷结构采用水冷骨架、水冷盖板和水冷壁及水冷围板。

水冷骨架采用16~20#槽钢制成,三相电极周围内盖板采用无磁不锈钢板制成,外盖板及围板采用Q-235钢板制作,并设有极心圆调整装置和三相电极水冷保护套和绝缘密封装置。

水冷骨架和耐热混凝土复合结构采用烟罩侧壁由金属构件立柱支撑并通水冷却,四周用耐火砖砌筑而成,侧壁上设有三个操作门,在炉内大面上,开启方向是横向旋转式,上部有二个排烟口,与其相联的是二个立冷弯管烟道,直通烟囱或除尘装置。

33000矿热炉技术方案

33000矿热炉技术方案

33000KVA硅铁炉电力变压器(11)33000KV A矿热炉变压器报价目录1. SF11-85000/132-35-10台数:2台油重:20980KG器身重:45900KG总重:82100KG长×宽×高:6990×5389×6360(增加有载调压开关/每台)2.S11-12500/10-0.4台数:2台总重:5690KG器身吊重:3720KG油重:1680KG长×宽×高:2540×1600×27803.S11-1000/10-0.4台数:1台总重:2680KG器身吊重:1360KG油重:960KG长×宽×高:1770×1040×15404.HKDSPZ-11000/35台数:6台总重:30300KG器身吊重:17500KG油重:7060KG外型尺器重:1380KG备用油重:210KG配件及包装重:230KG长×宽×高:2540×2600×43802.1 设备需求表2.1绕组电阻(,75℃)SF11-85000/132-35电力变压器参数一、型号:SF11-85000/35一次电压:132KV(+2.5%X2 -2.5%X2)二次电压:35KV二、重量油重:20980KG器身重:45900KG总重:82100KG三、外形尺寸长×宽×高:6990×5389×6360 电力变压器技术参数设计依据:设计方案依据国家标准而定使用的环境条件1.1、安装地点:室外1.2、海拔高度:1000 米以内1.3、年平均气温值:-20℃<42℃1.4、相对湿度:<95%变压器主要技术参数:(括弧内是 1000KVA 的参数)3.1型号:S11-2500/10-0.4(S11-1000/10-0.4)3.2额定容量:2500KVA(1000KVA)3.3额定电压:10000/4003.4额定频率:50Hz3.5额定电流:144/3609(58/1443)3.6联结组别:Yyn03.7阻抗电压:4.5%3.8冷却方式:油浸自冷3.11调压方式:手动3.12变压器重量及外型参数:变压器总重:5690KG(2680KG) 器身吊重:3720KG(1360KG) 变压器油重:1680KG(960 KG)外型尺寸:2540(长)×1600(宽)×2780(高) mm(2500KVA) 1770(长)×1040(宽)×1540(高) mm(1000KVA)HKDSPZ-11000/35电炉变压器技术方案及报价1 设计依据本技术方案依据需方11000×3kVA铁合金炉变压器和埋弧炉变压器技术要求要求而确定。

矿热炉设计方案

矿热炉设计方案

矿热炉设计方案-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII(1)电耗值随原料成分,制成品成分,电炉容量等的不同而有很大差异。

这里是约值。

二结构特点矿热炉是一种耗电量巨大的工业电炉。

主要由炉壳,烟罩、炉衬、短网,水冷系统,排烟系统,除尘系统,电极壳,电极压放及升降系统,上下料系统,把持器,烧穿器,液压系统,矿热炉变压器及各种电器设备等组成。

矿热炉设备共分三层布置第一层为炉体(包括炉底支撑、炉壳、炉衬),出铁系统(包括包或锅及包车等),烧穿器等组成。

第二层(1)烟罩。

矿热炉目前大多数采用密闭式、或半密闭式矮烟罩结构,具有环保和便于维修,改善操作环境的特点。

采用密闭式结构还可把生产中产生的废气(主要成分是一氧化碳)收集起来综合利用,并可减少电路的热损失,降低电极上部的温度,改善操作条件。

(2)电极把持器。

大多数矿热炉都由三相供电,电极按正三角形或倒三角形,对称位置布置在炉膛中间。

大型矿热炉一般采用无烟煤,焦碳和煤沥青拌合成的电极料,在电炉冶炼过程中自己培烧成的电极。

(3)短网(4)铜瓦(5)电极壳(6)下料系统(7)倒炉机四、矿热炉主要设备1.主要设备:本设计选用矮烟罩半封闭固定式矿热炉,主要设备选择如下:炉体炉体是由炉壳、炉衬、炉底支撐等构成,炉壳采用14~18mm厚钢板焊接而成的圆筒体,外部焊接有加强筋,以保证炉体具有足够的强度。

炉底采用18~20㎜厚钢板,炉体采用25~30#工字钢支撑,自然通风冷却炉底,炉壳设有1~2个出料口,炉衬采用高铝耐火砖和自焙碳砖无缝砌筑新工艺,炉墙厚度为460~690㎜,外敷20㎜厚硅酸铝纤维板。

炉底碳砖厚度为800~1200㎜。

炉口采用碳化硅刚玉砖,流料槽采用水冷结构。

根据需要也可增加水冷炉门。

矮烟罩采用全水冷结构或水冷骨架和耐热混凝土的复合结构。

其高度以满足设备维修的需要,全水冷结构采用水冷骨架、水冷盖板和水冷壁及水冷围板。

矿热炉施工方案

矿热炉施工方案

矿热炉施工方案引言矿热炉是一种用于加热矿石的设备,广泛应用于冶金、矿山和建材等行业。

本文将介绍矿热炉的施工方案,包括选址、基础施工、炉体安装、热工系统及控制系统的搭建等方面。

选址选址是矿热炉施工的第一步,选址的合理与否直接影响到炉体的稳定运行。

在选择选址时,需要考虑以下几个因素:1.供应电源:矿热炉需要大量的电能供给,所以选址要考虑到附近是否有稳定的电力供应。

2.原材料供应:矿热炉需要矿石等原材料进行加热,选址时要考虑到附近是否有足够的原材料供应。

3.环境要求:矿热炉产生的废气要达到环境排放标准,选址时要考虑到附近是否有合适的废气排放场所。

4.地质条件:选址时要考虑到地质条件,避免选址在地质灾害风险区域。

基础施工基础施工是矿热炉施工的关键环节,它直接关系到炉体的稳定性和安全性。

基础施工包括以下几个步骤:1.地面整平:在选址确定后,首先需要将选址上的地面进行整平,确保基础施工的稳定性。

2.基础测量:在地面整平后,需要进行基础的测量,确定基础的尺寸和形状。

3.筏基施工:筏基是矿热炉的基础,它可以分为浅基础和深基础两种类型。

具体的施工方式根据炉体的尺寸和形状来确定。

4.地基处理:在筏基施工完成后,需要对地基进行处理,确保地基的承载能力和稳定性。

5.基础验收:基础施工完成后,需要进行基础的验收,确保基础质量符合要求。

炉体安装炉体安装是矿热炉施工的核心环节,它直接关系到炉体的运行效果和使用寿命。

炉体安装包括以下几个步骤:1.炉体制作:在进行炉体安装前,需要根据设计图纸进行炉体的制作。

炉体的制作需要遵循相关的制造标准和工艺要求。

2.炉体运输:炉体制作完成后,需要进行炉体的运输。

炉体运输时需要注意保护炉体,并采取合适的运输方式。

3.炉体安装:炉体安装时需要根据设计图纸进行,确保炉体的安装位置和姿态正确,连接紧固可靠。

4.炉体测试:炉体安装完成后,需要进行炉体的测试。

测试包括炉体的密封性测试、抗压性能测试、热工性能测试等。

矿热炉设计方案教学提纲

矿热炉设计方案教学提纲

(1)电耗值随原料成分,制成品成分,电炉容量等的不同而有很大差异。

这里是约值。

二结构特点矿热炉是一种耗电量巨大的工业电炉。

主要由炉壳,烟罩、炉衬、短网,水冷系统,排烟系统,除尘系统,电极壳,电极压放及升降系统,上下料系统,把持器,烧穿器,液压系统,矿热炉变压器及各种电器设备等组成。

矿热炉设备共分三层布置第一层为炉体(包括炉底支撑、炉壳、炉衬),出铁系统(包括包或锅及包车等),烧穿器等组成。

第二层(1)烟罩。

矿热炉目前大多数采用密闭式、或半密闭式矮烟罩结构,具有环保和便于维修,改善操作环境的特点。

采用密闭式结构还可把生产中产生的废气(主要成分是一氧化碳)收集起来综合利用,并可减少电路的热损失,降低电极上部的温度,改善操作条件。

(2)电极把持器。

大多数矿热炉都由三相供电,电极按正三角形或倒三角形,对称位置布置在炉膛中间。

大型矿热炉一般采用无烟煤,四、矿热炉主要设备1.主要设备:本设计选用矮烟罩半封闭固定式矿热炉,主要设备选择如下:1.1炉体炉体是由炉壳、炉衬、炉底支撐等构成,炉壳采用14~18mm厚钢板焊接而成的圆筒体,外部焊接有加强筋,以保证炉体具有足够的强度。

炉底采用18~20㎜厚钢板,炉体采用25~30#工字钢支撑,自然通风冷却炉底,炉壳设有1~2个出料口,炉衬采用高铝耐火砖和自焙碳砖无缝砌筑新工艺,炉墙厚度为460~690㎜,外敷20㎜厚硅酸铝纤维板。

炉底碳砖厚度为800~1200㎜。

炉口采用碳化硅刚玉砖,流料槽采用水冷结构。

根据需要也可增加水冷炉门。

1.2矮烟罩采用全水冷结构或水冷骨架和耐热混凝土的复合结构。

其高度以满足设备维修的需要,全水冷结构采用水冷骨架、水冷盖板和水冷壁及水冷围板。

水冷骨架采用16~20#槽钢制成,三相电极周围内盖板采用无磁不锈钢板制成,外盖板及围板采用Q-235钢板制作,并设有极心圆调整装置和三相电极水冷保护套和绝缘密封装置。

水冷骨架和耐热混凝土复合结构采用烟罩侧壁由金属构件立柱支撑并通水冷却,四周用耐火砖砌筑而成,侧壁上设有三个操作门,在炉内大面上,开启方向是横向旋转式,上部有二个排烟口,与其相联的是二个立冷弯管烟道,直通烟囱或除尘装置。

(冶金行业)半封闭式工业硅矿热炉主要技术方案

(冶金行业)半封闭式工业硅矿热炉主要技术方案

(冶金行业)半封闭式工业硅矿热炉主要技术方案宜兴市中宇电冶设备有限X公司33000KVA半封闭式工业硅矿热炉技术方案1电炉设备1.133000KVA半封闭式工业硅矿热炉主要技术参数1.2电炉设备设计1.2.1矿热炉设备设计要求矿热电炉采用半封闭型式,采用铜瓦压力环式电极把持器,电炉炉底通风冷却,炉体采用旋转炉体,炉体测温,变压器长期具备20%的长期超负荷能力。

短网系统、铜瓦、进线电缆都长期具备20%之上的超负荷能力。

烟道和炉盖之间设置了可靠绝缘。

液压系统采用组合阀,且设置储能器。

电极升降油缸上、下俩端均设绝缘加以保护。

高压油管俩端全部带绝缘。

为防止电极偏斜,设计时在炉盖、平台及电极导向装置,电极导向装置设绝缘。

所有管道均设管道沟,便于检修。

闸阀采用不锈钢丝杆,以增加其使用寿命。

每组分水器设3路备用水路,分水器阀门采用不锈钢或铜球阀,分水器给、回水路布局合理。

炉盖采用框架式水冷结构,中心区采用不导磁材料制作。

电炉烟道在二、三楼之间设水冷段,以降低烟气温度。

1.2.2工艺设计要求电炉厂房柱子跨距按6m、7.5m布置。

电炉车间分设四个跨区,分别是变压器跨(偏跨)7.5m、电炉跨18m、浇注跨24m、成品跨18m。

电炉跨初定为五层平台分别为:a)+0.0m出渣铁轨道平台包括铁道、出铁车和铁包、出渣车和渣包等。

其中+2.4m平台为局部出铁操作平台:该平台正对出铁口,包括烧穿器、出铁挡板等出炉工具等。

b)+7.0m电炉炉口操作平台电炉控制室计算机室布置在此平台上,冷却水系统的分水器和回水槽布置在该平台上、炉口操作工具等。

C)+11.8变压器放置平台电炉设有三台单相变压器,放置在此平台上成三角形布置,为方便变压器安装、检修、更换设有变压器吊装孔。

d)+18.3m电极升降机构平台平台空间内安装有电极升降、压放装置及电炉料管插板阀。

液压站也布置在此平台上。

e)+24.8m电炉电极支承及接长电极壳、加入电极糊及加料平台炉顶料仓座在此平台上。

矿热炉开炉方案

矿热炉开炉方案

矿热炉开炉方案现矿热炉已检修改造结束,经公司和厂部讨论,决定6月9日08:00时点火柴烘,6月12日00:00时通电电烘,6月13日08:00时投料生产,具体方案如下。

一、成立组织机构组长: XXX副组长:XXX组员: XXXXXX:负责开炉前的准备工作、方案落实、技术、现场的安全工作。

XXX:负责开炉过程中协调工作。

XXX:负责对配料系统的检查、调试和原料准备。

XXX:负责与配料车间沟通准备好原料。

XXX:负责对绝缘系统、电极壳、电器仪表、液压系统、出铁口、铁水包等设备的检查调试和准备工作,确保正常运行。

XXX:负责对炉盖、水冷系统检查调试和冶炼岗位所用工器具准备的工作。

XXX:负责炉前设备的检查调试和出铁岗位所用的工器具准备的工作。

XXX:负责开炉过程的检查、协调工作。

二、安全及确认准备工作2.1人员已通过培训符合岗位能力要求。

2.2开透气孔(在炉壳距炉底板200mm处钻10mm孔,沿炉壳均匀分部)。

2.3用配好的泥球堵眼(中部冲焦粉,两头用泥球堵实)。

2.4所属区域清扫干净。

2.5压放电极并控制为2000mm,并在电极壳距底部环100mm以下开透气孔,孔距为200mm交错开孔。

2.6凿岩机一台,钻头60mm。

2.7劳动防护用品发放到所有员工。

2.8、准备好拉电极所有器材。

2.9、所属工作区域干燥。

2.10、吊钩吊具齐全完好。

2.11、防护设施齐全可靠。

2.12、消防器材按规定配置。

2.13、6月9日16:00前在炉膛内铺好木柴,同时在每相电极下放置一个高1米,直径为1.4米的钢桶,用于装米焦, 17:50开始适量浇上柴油或其它易燃液体(汽油除外),2.14、烘炉期间电极糊糊柱高度控制在2800-3400mm,并每小时对糊柱高度进行测量一次。

(更换电极糊厂家)2.15、以上准备工作于6月9日17:00前完成。

三、柴烘3.1期间分段为:小火段(6月9日18:00— 6月10日16:00,炉底柴均匀燃烧且火苗尽可能小);中火段(6月10日16:00—6月11日8:00,火苗高度达炉墙垂直中央);大火段(6月10日08:00— 23:59,火苗高度超过炉墙垂直中央,但不超炉口)。

半密闭式12500KVA工业硅矿热炉的设计

半密闭式12500KVA工业硅矿热炉的设计

一、半密闭式12500KVA工业硅矿热炉的设计正确设计矿热炉的结构是保障矿热炉工作性能的先决条件,是设计工作者面临的最大困难。

好的矿热炉结构设计不仅有利于炉子保障高产、优质、低能耗、少故障的生产,而且有利于节约建设成本、方便其它设备布置、保证操作顺畅。

高效、节能、先进工业硅冶炼技术工艺,是衡量一个企业是否具有先进性,是否具备市场竞争力,是否能不断领先于竞争者的重要指标依据。

我国工业硅生产能源消耗高,主要是因为设计上不合理、控制水平与管理水平不高。

设计上不合理体现在我国普遍使用的是6300KVA左右的小炉型(散热大、产量低)、炉型设计上为隔热措施不严密、电路设计不合理、极心圆尺寸大小不合理等许多细节方面。

控制水平不高体现在人工操作范围大、炉况稳定性差、造成因调整炉况波动费时较长而使得非生产性能耗损失大。

管理水平不高体现在管理上不严、制度不健全、操作细节缺乏,造成物资或能源上的消耗浪费。

一)、工业硅矿热电炉特点:炉型大型化则单位热容率增大,能量供应集中,通过外围表面单位面积散热小、炉子热稳定增强,有利于降低热损失,提高冶炼效率。

冶炼工业硅采用先进技术和设备,炉变选用低阻抗电压的恒功率电炉变压器,功率因素高,超负荷能力强;短网采用通水式铜管,电极三角全补偿式外短网,短网软缆采用水冷电缆,阻抗损失小;科学选用石墨电极;有利于高产降耗,电炉炉型采用矮烟罩半密闭式,有利于收尘,工人操作环境好;电极把持器的铜瓦采用液压波纹管压紧式;电极升降采用液压,捣炉机选用半液压式大功率捣炉机。

二)、矿热电炉结构选型技术参数:在工业硅冶炼过程中矿热炉的状态与电气参数的变化密切相关,控制最佳的供电制度对保证取得好的经济技术指标十分重要。

12500KVA工业硅矿热电炉冶炼(工业硅)的日产22—25吨。

电耗11800-12800kw/吨。

1、变压器容量:12500KVA壳式强油水冷矿热炉变压器;2、一次侧电压:35KV3、二次侧电压:140~175(V)4、二次侧电压级数:17级,级差:3V5、常用电压:151(V)6、二次电流:49154(A)7、电极直径:Φ780mm(石墨)8、电极极心圆直径:Φ2350mm±100mm9、炉膛直径:Φ5700(mm)10、炉壳直径:Φ7200mm11、炉膛深度:2200mm12、炉壳高度:4300mm13、矮烟罩高度:2400mm14、电极行程:1600mm15、电极升降速度:0.5m/min16、冷却水用量:340t/h三)、电炉结构选型设计依据12500KVA交流还原电炉机械设备包括炉体、电极系统、烟罩、变压器和输电短网、液压系统和水冷系统等。

(冶金行业)半封闭式工业硅矿热炉主要技术方案

(冶金行业)半封闭式工业硅矿热炉主要技术方案

(冶金行业)半封闭式工业硅矿热炉主要技术方案(冶金行业)半封闭式工业硅矿热炉主要技术方案宜兴市中宇电冶设备有限X公司33000KVA半封闭式工业硅矿热炉技术方案1电炉设备1.133000KVA半封闭式工业硅矿热炉主要技术参数1.2电炉设备设计1.2.1矿热炉设备设计要求矿热电炉采用半封闭型式,采用铜瓦压力环式电极把持器,电炉炉底通风冷却,炉体采用旋转炉体,炉体测温,变压器长期具备20%的长期超负荷能力。

短网系统、铜瓦、进线电缆都长期具备20%之上的超负荷能力。

烟道和炉盖之间设置了可靠绝缘。

液压系统采用组合阀,且设置储能器。

电极升降油缸上、下俩端均设绝缘加以保护。

高压油管俩端全部带绝缘。

为防止电极偏斜,设计时在炉盖、平台及电极导向装置,电极导向装置设绝缘。

所有管道均设管道沟,便于检修。

闸阀采用不锈钢丝杆,以增加其使用寿命。

每组分水器设3路备用水路,分水器阀门采用不锈钢或铜球阀,分水器给、回水路布局合理。

炉盖采用框架式水冷结构,中心区采用不导磁材料制作。

电炉烟道在二、三楼之间设水冷段,以降低烟气温度。

1.2.2工艺设计要求电炉厂房柱子跨距按6m、7.5m布置。

电炉车间分设四个跨区,分别是变压器跨(偏跨)7.5m、电炉跨18m、浇注跨24m、成品跨18m。

电炉跨初定为五层平台分别为:a)+0.0m出渣铁轨道平台包括铁道、出铁车和铁包、出渣车和渣包等。

其中+2.4m平台为局部出铁操作平台:该平台正对出铁口,包括烧穿器、出铁挡板等出炉工具等。

b)+7.0m电炉炉口操作平台电炉控制室计算机室布置在此平台上,冷却水系统的分水器和回水槽布置在该平台上、炉口操作工具等。

C)+11.8变压器放置平台电炉设有三台单相变压器,放置在此平台上成三角形布置,为方便变压器安装、检修、更换设有变压器吊装孔。

d)+18.3m电极升降机构平台平台空间内安装有电极升降、压放装置及电炉料管插板阀。

液压站也布置在此平台上。

e)+24.8m电炉电极支承及接长电极壳、加入电极糊及加料平台炉顶料仓座在此平台上。

密闭矿热炉技术方案

密闭矿热炉技术方案

密闭矿热炉技术方案生石灰和含碳原料(焦炭、无烟煤或石油焦)在矿热炉内,依靠电弧高温熔化反应而生成电石。

主要生产过程是:原料加工;配料;通过电炉上端的入口或管道将混合料加入电炉内,密闭的电炉中加热至2000℃左右,依下式反应生成电石:GaO+3C→CaC2+CO熔化了的碳化钙从炉底取出后,经冷却、破碎后作为成品包装。

反应中生成的一氧化碳则全部被抽出。

一、工艺流程简介1.生石灰工艺石灰石经加热达900O C便会发生分解,放出CO2,生成石灰。

CaCO3——→ CaO + CO2 – 422 kcal/kg生产冶金活性石灰时,分解温度控制为1050O C~1100O C,煅烧效果恰到好处才能获得最佳的优质软烧(轻烧)石灰。

A石灰石煅烧流程料场石灰石经振动筛筛去≥80mm的大石块和≤40mm的小石料入窑后,自上而下缓慢下移,连续经过预热带、煅烧带、后置煅烧带和冷却带,最后被煅烧成石灰。

B石灰流程成品石灰经窑底部四个小料仓,按预定的间隔时间由四个电磁振动给料机将石灰排入对应石灰称中至给定重量,然后进入窑下部的储灰仓中,保证窑内物料的均匀下落防止发生偏窑。

储灰仓内石灰至一定量时,再由振动给料机排出,经过平皮带和大倾角皮带运输机送入振动筛。

块度≥5mm石灰放至可逆皮带输送至各成品仓,≤5mm石灰粉直接放入粉灰仓。

2、电石工序全密闭电石生产工艺流程电石生产将分为原料贮运、炭材干燥、电石生产、固态电石冷却、破碎、储存及电极壳制造几个工序。

(1)原料贮运电石生产主要原料焦炭、石灰、电极糊控制生石灰过烧率小于2%,石灰氧化镁含量小于1%,石灰粒度5-40毫米,焦碳含水小于2%,操作电流小于75-80KA,焦炭干燥时由装载机送到受料斗中,经带式输送机及斗式提升机送到破碎筛分楼筛分5-25mm通过带式输送机送至炭材干燥中间料仓。

0-5mm用小车送至电厂、空心电极或炭材干燥焦粉仓供热风炉使用;石灰需要时经带式输送机送至石灰破碎筛分楼进行破碎筛分。

半封闭式工业硅矿热炉主要技术方案

半封闭式工业硅矿热炉主要技术方案

半封闭式工业硅矿热炉主要技术方案33000KVA半封闭式工业硅矿热炉技术方案1电炉设备1.2 电炉设备设计1.2.1矿热炉设备设计要求矿热电炉采纳半封闭型式,采纳铜瓦压力环式电极把持器,电炉炉底通风冷却,炉体采纳旋转炉体,炉体测温,变压器长期具备20%的长期超负荷能力。

短网系统、铜瓦、进线电缆都长期具备20%以上的超负荷能力。

烟道与炉盖之间设置了可靠绝缘。

液压系统采纳组合阀,并设置储能器。

电极升降油缸上、下两端均设绝缘加以爱护。

高压油管两端全部带绝缘。

为防止电极偏斜,设计时在炉盖、平台及电极导向装置,电极导向装置设绝缘。

所有管道均设管道沟,便于检修。

闸阀采纳不锈钢丝杆,以增加其使用寿命。

每组分水器设3路备用水路,分水器阀门采纳不锈钢或铜球阀,分水器给、回水路布局合理。

炉盖采纳框架式水冷结构,中心区采纳不导磁材料制作。

电炉烟道在二、三楼之间设水冷段,以降低烟气温度。

1.2.2工艺设计要求电炉厂房柱子跨距按6m、7.5m布置。

电炉车间分设四个跨区,分不是变压器跨(偏跨)7.5m、电炉跨18m、浇注跨24m、成品跨18m。

电炉跨初定为五层平台分不为:a)+0.0m出渣铁轨道平台包括铁道、出铁车和铁包、出渣车和渣包等。

其中+2.4m平台为局部出铁操作平台:该平台正对出铁口,包括烧穿器、出铁挡板等出炉工具等。

b)+7.0m电炉炉口操作平台电炉操纵室运算机室布置在此平台上,冷却水系统的分水器和回水槽布置在该平台上、炉口操作工具等。

C)+11.8变压器放置平台电炉设有三台单相变压器,放置在此平台上成三角形布置,为方便变压器安装、检修、更换设有变压器吊装孔。

d)+18.3m电极升降机构平台平台空间内安装有电极升降、压放装置及电炉料管插板阀。

液压站也布置在此平台上。

e)+24.8m电炉电极支承及接长电极壳、加入电极糊及加料平台炉顶料仓座在此平台上。

环形加料机及布料皮带均布置在该平台上,此层平台布置有可储存5~8批混合料的中间过度料仓。

12500KVA工业硅矿热炉的设计

12500KVA工业硅矿热炉的设计

第五章工业硅冶炼能源节约技术的研究5.1概述能源安全已构成我国整体战略安全的一个极大隐患,成为经济社会发展的瓶颈。

我国人均煤炭、石油、天然气资源量仅为世界平均水平的60%、10%和5%。

目前,我国已成为世界第二大能源消费国和第二大石油消费国,能源供应紧张局面日趋严重[81]。

与此同时,我国也存在严重能源利用效率低的问题。

近年来的快速增长在很大程度上是靠消耗大量物质资源实现的。

我国单位产出的能耗和资源消耗水平明显高于国际先进水平,如火电供煤消耗高达22.5%,吨钢可比能耗高21%,水泥综合能耗高达45%。

据测算,我国每创造一美元GDP所消耗的能源是美国的4.3倍,是日本的11.5倍。

能源利用率仅为美国的26.9%,日本的11.5%[82]。

因此,提高能源使用效率是在能源总量不变条件成为中国发展中的刻不容缓的任务。

工业硅生产是高能耗行业,平均每吨工业硅需要消耗13000KWh电以上,全国年产100万吨工业硅需要13亿KWh以上。

而国外先进水平吨硅消耗量为11000KWh,我国工业硅电耗比国外先进水平高10—20%,能源节约潜力仍很大(预计年节约0.2亿KWh,相当0.1亿元)。

另外,国外先进水平也不是最理想的能耗水平,我国如能在国外先进水平基础上再配以精工细作,吨硅消耗量应该在10000—11000KWh间。

我国工业硅生产能源消耗高主要是因为设计上不合理、控制水平与管理水平不高。

设计上不合理体现在我国普遍使用的是6300KV A左右的小炉型(散热大、产量低)、炉型设计上为隔热措施不严密、电路设计不合理、极心圆尺寸大小不合理等许多细节方面。

控制水平不高体现在人工操作范围大、炉况稳定性差、造成因调整炉况波动费时较长而使得非生产性能耗损失大。

管理水平不高体现在管理上不严、制度不健全、操作细节缺乏,造成物资或能源上的消耗浪费。

目前工业硅生产中能源节约途径主要有:1)炉型的大型化方向;2)炉型的密闭化方向;3)余热利用化方向;4)提高炉子电效率措施如改进短网结构设计、改善变压器性能、改善电参数、采用低频电源等;5)提高炉子热效率;6)改变炉内反应机制;7)改变原料性能方向;8)采用自动控制方向;9)管理制度建设方向。

3.3万硅锰矿热炉技术条件.doc

3.3万硅锰矿热炉技术条件.doc

33000KVA矿热电炉厂设计思路及主体设备框架简述一.产品品种标准及原材料技术条件: 1.1、产品品种、标准设计主要考虑生产锰系铁合金。

以锰硅合金,高碳锰铁为主,将来兼具中低碳锰铁生产。

1.2、产品标准为:锰硅合金 GB/T4008——1996 具体例表略二.生产工艺过程及生产技术指标:2.1、生产能力:以生产锰硅合金Mn68Si18牌号为例: 单台电炉日产量为132t 具体计算略。

单台电炉年产以330天计,年产量为:43560t2.2、工艺流程2.2.1、锰硅合金锰矿硅石英自动称量配料炉顶料仓入炉冶炼焦炭出铁扒渣浇注脱模精整入库白云石(取样分析)2.2.2、物流描述将原料堆场的合格原料,如锰矿、焦炭、辅料等根据生产的品种由原料场的低位料仓经皮带输送系统按要求驳至配料区编号的高位料仓。

由配料操作人员按技术指令和规定的配料程序,将高位料仓的料经自动配料系统下放配料,再将配好的料批经皮带输送至电炉上料系统的料斗内,启动上料系统的料斗。

经斜桥输送至炉顶料仓平台,将配好的料倒入炉顶料仓平台设置的中间料斗。

上料系统的料斗返回,启动与中间料斗相衔接的输送系统,将中间料斗的料批驳至炉顶布料小车内,由炉顶布料小车沿环形道轨将料批卸至炉顶料仓内。

炉顶料仓内的炉料经料管进入炉内冶炼。

依据冶炼技术制订的出铁制度,经过规定的冶炼时间,由炉前操作人员启动开堵眼机开眼,将炉内铁水及液渣从炉眼放出。

炉眼流槽下沿的铁水包、渣罐,按炉前工艺布置呈阶梯式排列。

铁水、液渣经炉眼流槽进入铁水包,随着液面的上升,铁水将比重轻的浮在铁水液面上的液渣顶入渣罐,直至出铁完成。

将安置在出铁小车上的铁水包、渣罐用立式卷扬系统,通过道轨拉出。

用行车将铁水包吊至扒渣区扒渣,随后将扒完渣的铁水包吊至浇注区的锭模处进行浇注操作。

边浇注边取样,取样按取样规则执行。

浇注完毕,将空包吊至清渣区待冷却清渣。

用行车将渣罐吊至冲渣区进行冲水渣操作,冲渣完毕,将渣罐经清渣后,再置于炉前小车上,进入下一次出铁程序。

硅锰矿热炉

硅锰矿热炉

矿热电炉烟气净化系统一、概述武钢冶金有限责任公司现有两台9300KVA硅铁电炉、四台6300KVA 锰铁电炉,现需对其进行治理。

我公司有关人员在认真听取贵公司有关专家、技术人员及现场操作人员的意见,结合现场实践勘测,对运行数据认真采集分析,听取业主方对硅铁电炉除尘设计的要求和意见,结合我公司多年来在铁合金烟气治理工程方面的丰富经验,特对贵公司两台电炉烟气特作出如下治理方案以供选定。

二、基本技术参数1)炉形:9300KVA矮烟罩半封闭硅铁电炉烟气量:130000m3/h(单台)2)炉形:6300KVA矮烟罩半封闭锰铁电炉烟气量:95000m3/h(单台)三、设计原则1)坚持先进、适用、可靠、经济的原则,使之达到国内目前先进2)环保标准高于国家规定的标准。

3)所有设备均立足于国内加工制作。

4)整个除尘系统的安装、运行不影响原有生产设施结构和工艺操作。

5)除尘系统运行时其主要噪声源符合国家标准。

6)对捕集到的烟尘具有比较合理的处置或运输的工艺措施。

7)所采用的除尘技术先进,系统工艺配置完整合理,符合国家有关安全规范,运行安全可靠,维护简便,运行费用低,与电炉连接部分合理可靠,且能快速的投入和切换。

四、电炉净化系统设计1.除尘系统特点鉴于矿热电炉的烟气特性,为了将电炉冶炼过程中产生的含尘烟气有效地收集起来进行净化处理,在烟囱上设置一个放散阀,使用除尘器时关闭放散阀以达到尽量减少混入空气的目的,将含尘烟气引入除尘系统进行净化。

如不使用除尘器或检修时则打开放散阀而不影响生产。

本方案的主要特点是两台硅铁矿热电炉共用一台除尘器、两台锰铁矿热电炉共用一台除尘器,共3套除尘系统,但考虑到每台电炉有不同时工作的可能,因此每台电炉分别设计独立引风机,以确保电炉在一台停产检修或由于其它原因临时停炉时,而不影响另一座电炉除尘系统的正常工作,这样做的合理和灵活性,在于第一减少设备的总投资,第二减少设备的占地面积,第三由于除尘设备集中,便于统一管理和维护。

硅铁矿热炉余热发电系统设计方案

硅铁矿热炉余热发电系统设计方案

硅铁矿热炉余热发电系统设计方案2019年10月3日矿热炉生产中烟气温度约400℃左右,烟气带走的热量约为输入总热量的40%~50%。

因此,充分利用余热资源实现节能减排、保护环境具有重要的现实意义。

硅铁矿热炉生产运行特点:(1)热负荷不稳定。

在连续稳定的生产工艺中,加料、熔化、出料时,烟气温度变化较大,难以人工控制;(2)硅石和煤炭是硅铁冶炼的原料,烟尘中含SiO2和SO2。

SiO2具有较强的粘附性,粒径极小,比表面积大,绝热性能强。

其粘附在换热管束上致使换热效果恶化。

除灰技术研究的主要问题即如何更有效的去除粘附在换热管上的SiO2粉尘。

烟道中的部分SO2转化成SO3,与水蒸汽接触产生硫酸蒸汽。

当锅炉受热面温度低于硫酸蒸汽露点时,则其在管壁凝结造成低温腐蚀。

目前在硅铁矿热炉上实施余热发电项目的单位分别采用不同的除灰方式,不同的余热锅炉型式、不同的蒸汽参数、不同的余热发电方案,在硅铁行业节能降耗、减少污染排放方面取得初步成效。

但都不同程度地存在某些问题。

发展、完善低温低压余热锅炉的研究与设计方案亟待解决的关键问题:首先研制高效吹灰技术,取代结构复杂、笨重、多发故障的机械除灰方式;其次是采用强化换热技术,取代目前体积庞大、耗用钢材较多的光管结构余热锅炉;第三,选择适当的蒸汽参数,选择最佳的系统配置。

余热资源某冶炼公司现有4台25.5MVA硅铁矿热炉,实测每台硅铁矿热炉产生的烟气温度约350〜550℃左右,流量102000Nm3/h(正常工况),出料时流量97500Nm3/h。

运行工况具有一定波动性,依据测量参数,结合行业经验数据,取设计方案烟气参数,烟尘成分及粒度。

硅微粉呈灰白色,质轻粒细,容重约为200kg/m3,安息角约为48度,吸湿差。

硅铁烟尘的主要成分以SiO2为主,占90%以上;比电阻高,在225℃时,比电阻不低于1.0x10的11次方W.cm。

高电绝缘性:比电阻通常在10的11次方~10的13次Ω.cm,具有极强隔热性,热传导率≤0.05W/mK(由于多孔性),粉尘以小粒径为主,小于5微米的硅微粉占93%以上。

3第三章矿热炉

3第三章矿热炉

T = 1637 ℃ ∆H = 24637kJ/kg (Si)
48
冶炼温度和入炉功率
冶炼温度
电弧热— 热等离子体 3×103~4×104 K (属低温等离子体;核聚变、激光聚 变,属高温等离子体,106 ~108K)
电阻热— 焦炭层、熔体<3×103 K
功率密度—维持反应温度的电能输入要求
c-z
b-y
a-x
23
二次短网设计与经济运行的关系
短网截面选择的原则:
(1)用安全运行电流密度选择导体截面积 (2)用经济运行电流密度选择导体截面积 (3)克服集肤效应影响选择几何形状
24
矿热炉节电的技术措施之一 短网布置与导电体截面积选取
焦耳-楞次定律: Q=0.239I2Rt
工频电流中的导体集肤效应
6.0
挥发分/% 12.0~15.5 12.0~15.5
耐压强度 /MPa≥
17.0
15.7
电阻率
/μΩ·m≤
68
75
体积密度
/g·cm-3 ≥
1.36
1.36
THD-3
7.0 9.5~13.5
19.6
80
1.36
THD-4
THD-5
9.0
11.0
11.5~15.5 11.5~15.5
19.6
19.6
3
矿热炉参数
设备参数
熔炼特性参数
电气参数
变压器容量 电极电流 二次侧电压
炉型参数 电气特性
炉膛直径 炉膛深度 电极直径 极心圆大小
功率因素 相平衡 操作电阻
操作制度
电极插入深度 化料速度 炉料透气性
4
矿热炉主要设备组成

矿热炉开炉方案

矿热炉开炉方案

矿热炉开炉方案1. 引言矿热炉是一种广泛用于冶金、化工和环保等领域的设备,用于加热和熔炼矿石、金属和化学物质。

它的开炉是炉子正常运行的重要步骤,开炉的合理方案能够确保炉子的安全运行和高效工作。

本文将介绍一种矿热炉开炉方案,并提供相应的操作步骤和注意事项。

2. 方案概述矿热炉开炉方案主要包括以下几个步骤: 1. 检查设备和工具; 2. 准备燃料和矿石; 3. 打开燃气和氧气阀门; 4. 点火和预热; 5. 加入矿石; 6. 控制温度和熔化过程; 7. 关闭炉子。

3. 操作步骤3.1 检查设备和工具在开炉前,要检查矿热炉的各项设备和工具是否完好,如燃气和氧气阀门、点火装置、温度计等。

确保设备正常运行,工具齐全,以便顺利进行开炉操作。

3.2 准备燃料和矿石根据炉子的需求,准备好所需的燃料和矿石。

燃料可以是天然气、液化气或煤炭等,矿石可以是金属矿石或化学物质。

确保燃料和矿石的质量符合要求,并放置在易于投放的地方。

3.3 打开燃气和氧气阀门在开炉前,需确保矿热炉的燃气和氧气阀门处于关闭状态。

根据设备的标识和指示,逐步打开燃气和氧气阀门,平衡两者的供应量,为点火和加热做好准备。

3.4 点火和预热在燃气和氧气供应恢复正常后,使用点火装置点燃燃气,确保火焰稳定。

同时,打开矿热炉的预热装置,使火焰温度逐渐上升,预热炉膛,为加热和熔炼做好准备。

3.5 加入矿石当预热完成后,根据炉子的设计和操作要求,逐步加入矿石。

在加入矿石时,要确保投放均匀,并避免矿石溅出炉膛。

根据炉子的规格和材质,确定合适的矿石投放速度和数量。

3.6 控制温度和熔化过程在加入矿石后,根据炉子的要求,控制燃气和氧气的供应量,调整火焰的大小和温度。

同时,根据矿石的特性和熔化曲线,控制炉膛的温度和熔化过程,确保矿石能够顺利熔化和熔炼。

3.7 关闭炉子当矿石熔炼完成或炉子需要关闭时,根据操作步骤逐步关闭燃气和氧气阀门。

在关闭炉子前,要确保炉膛内的温度降至安全水平,并对炉子进行清理和维护。

电石矿热炉产能及产量提升设计方案与电极入炉插入深度控制措施及方法

电石矿热炉产能及产量提升设计方案与电极入炉插入深度控制措施及方法

电石矿热炉产能提升设计方案与电极入炉深度控制措施及方法一、电石矿热炉产能提升:XXX电石厂有12台电石炉,每台电石炉用三台单相变压器供电,单台变压器容量为9000KVA,共9000×3=27000KVA;总负荷为27000KVA×12=324000KVA。

电石炉用电由220KV两台主变供电,每台变压器接带6台电石炉负荷,每台主变压器额定38.5KV电压时负荷为180000KVA,两台变压器38.5KV电压时总负荷为360000KVA,35KV电压时为163800×2=327600KVA, 12台电石炉额定总需求负荷为27000KVA×12=324000KVA。

按照表1设计要求电石炉变压器制造时可超额定负荷20%长期运行,但是实际运行时,电石炉总负荷324000KVA超20%为388800KVA,已经超过变压器的额定负荷,显然主变压器设计时未考虑电石炉变压器设计负荷要求,在原设计中,电石炉总负荷限制在额定负荷324000KVA以下。

表1、主变分支回路的实际参数和目前的运行参数单台变压器额定负荷9000KVA(超额定负荷20%能长期运行),一次电流257A(相电流),角接运行时额定线电流为257×1.732=445A,三台电石炉满负荷电流为445×3=1335A,从上表中可以看出,分支电流报警值为1300A,额定电流为1350A。

三台电石炉满负荷运行时电流1335A大于供电分支设定报警值1300A,小于设计电流值1350A。

受供电设备额定负荷的影响,实际运行中,每台电石炉只能运行在27000KVA以下,考虑到电石炉操作电流引起的三相不平衡,电石炉负荷实际达不到额定的27000KVA。

主变的限制,已成为电石炉负荷提升的一个制约点;另外一点,电石炉变压器运行时功率因数0.95,档位达到3档甚至2档运行,变压器在负荷不超27000KVA,有功功率最高可提高到25650KW,这时,变压器已基本达到上限,这是制约电石炉负荷提升的另一个原因,两方面制约了电石炉负荷的进一步提升。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿热炉简介一原理用途矿热炉它主要用于还原冶炼矿石,碳质还原剂及溶剂等原料。

主要生产硅铁,锰铁,铬铁、钨铁、硅锰合金等铁合金,是冶金工业中重要工业原料及电石等化工原料。

其工作特点是采用碳质或镁质耐火材料作炉衬,使用自培电极。

电极插入炉料进行埋弧操作,利用电弧的能量及电流通过炉料的,因炉料的电阻而产生能量来熔炼金属,陆续加料,间歇式出铁渣,连续作业的一种工业电炉。

矿热炉主要类别、用途反映温度电耗类别主要原料制成品0℃KW*h/t(45%)硅2100-5500 铁硅铁炉硅铁、废铁、焦碳硅铁1550-1770(75%)硅铁8000-11000铁合锰铁炉锰矿石、废铁、焦碳、石锰铁1500-1400 2400-4000 灰金炉铬铁炉铬矿石、硅石、焦碳铬铁1600-1750 3200-6000 钨铁炉钨晶矿石、焦碳钨铁2400-2900 3000-5000硅铬炉铬铁、硅石、焦碳硅铬合金 1600-1750 3500-6500硅锰炉锰矿石、硅石、废铁、焦硅锰合金 1350-1400 3500-4000碳炼钢电炉铁矿石、焦碳生铁1500-1600 1800-2500 电石炉石灰石、焦碳电石1900-2000 2900-3200 碳化硼炉氧化硼、焦碳碳化硼1800-2500 约 20000 (1)电耗值随原料成分,制成品成分,电炉容量等的不同而有很大差异。

这里是约值。

二结构特点矿热炉是一种耗电量巨大的工业电炉。

主要由炉壳,烟罩、炉衬、短网,水冷系统,排烟系统,除尘系统,电极壳,电极压放及升降系统,上下料系统,把持器,烧穿器,液压系统,矿热炉变压器及各种电器设备等组成。

矿热炉设备共分三层布置第一层为炉体(包括炉底支撑、炉壳、炉衬),出铁系统(包括包或锅及包车等),烧穿器等组成。

第二层(1)烟罩。

矿热炉目前大多数采用密闭式、或半密闭式矮烟罩结构,具有环保和便于维修,改善操作环境的特点。

采用密闭式结构还可把生产中产生的废气(主要成分是一氧化碳)收集起来综合利用,并可减少电路的热损失,降低电极上部的温度,改善操作条件。

(2)电极把持器。

大多数矿热炉都由三相供电,电极按正三角形或倒三角形,对称位置布置在炉膛中间。

大型矿热炉一般采用无烟煤,焦碳和煤沥青拌合成的电极料,在电炉冶炼过程中自己培烧成的电极。

(3)短网(4)铜瓦(5)电极壳(6)下料系统(7)倒炉机(8)排烟系统(9)水冷系统(10)矿热炉变压器(11)操作系统第三层(1)液压系统(2)电极压放装置(3)电极升降系统(4)钢平台(5)料斗及环行布料车其他附属;斜桥上料系统,电子配料系统等三、矿热炉主要配置方案6300KVA9000KVA12500KVA16500KVA25000KVA矮烟罩半密炉型矮烟罩半密闭矮烟罩半密闭矮烟罩半密闭密闭炉闭压力环/锥型压力环/压力环/压力环/压力环/把持器环锥型环锥型环锥型环锥型环铜瓦锻造锻造锻造锻造锻造电极升降液压/卷扬液压/卷扬液压/卷扬液压液压块式/电极压放气囊/块式气囊/块式气囊/块式块式/带式带式管式水冷电管式水冷短网管式水冷电缆管式水冷电缆管式水冷电缆缆电缆四、矿热炉主要设备1.主要设备:本设计选用矮烟罩半封闭固定式矿热炉,主要设备选择如下:炉体炉体是由炉壳、炉衬、炉底支撐等构成,炉壳采用 14~18mm厚钢板焊接而成的圆筒体,外部焊接有加强筋,以保证炉体具有足够的强度。

炉底采用 18~20 ㎜厚钢板,炉体采用 25~30#工字钢支撑,自然通风冷却炉底,炉壳设有 1~2 个出料口,炉衬采用高铝耐火砖和自焙碳砖无缝砌筑新工艺,炉墙厚度为 460~690 ㎜,外敷 20 ㎜厚硅酸铝纤维板。

炉底碳砖厚度为 800~1200 ㎜。

炉口采用碳化硅刚玉砖,流料槽采用水冷结构。

根据需要也可增加水冷炉门。

矮烟罩采用全水冷结构或水冷骨架和耐热混凝土的复合结构。

其高度以满足设备维修的需要,全水冷结构采用水冷骨架、水冷盖板和水冷壁及水冷围板。

水冷骨架采用16~20#槽钢制成,三相电极周围内盖板采用无磁不锈钢板制成,外盖板及围板采用Q-235 钢板制作,并设有极心圆调整装置和三相电极水冷保护套和绝缘密封装置。

水冷骨架和耐热混凝土复合结构采用烟罩侧壁由金属构件立柱支撑并通水冷却,四周用耐火砖砌筑而成,侧壁上设有三个操作门,在炉内大面上,开启方向是横向旋转式,上部有二个排烟口,与其相联的是二个立冷弯管烟道,直通烟囱或除尘装置。

短网短网包括变压器端的水冷补偿器、水冷铜管、水冷电缆、导电铜管、铜瓦及其吊挂、固定联接等装置。

其布置型式可分为正三角或倒三角。

不论那种布置,均要求在满足操作空间的前提下,尽可能地缩短短网的距离降低短网阻抗,以保正获得最大的有功功率。

水冷铜管、导电铜管均采用厚壁铜管,各相均采用同向逆并联,使短网往返电流双线制布置,互感补偿磁感抵消。

中间铜管用水冷电缆相连,冷却水直接从水冷铜管经水冷电缆、导电铜管流入铜瓦,冷却铜瓦后经返回的导电铜管、水冷电缆、水冷铜管流出炉外。

运行温度低,减少短网导电时产生的热量损失,能有效提高短网的有功功率,同时铜管重量轻,易加工安装,大大减少短网的投资。

电极系统:电极系统由把持器筒体、铜瓦吊挂、压力环、水冷大套、电极升降装置、电极压放装置等。

在电极系统上我们采用了国际先进的德马克,南非PYROMET等技术,如采用悬挂油缸式的电极升降装置,能灵活、可靠、准确地调节电极的上、下位置。

上下抱闸和压放油缸组成电极带电自动压放装置。

电极系统共三套,每套包括电极筒 1 个、把持筒 1 个、保护套 1 个、压力环 1 个、铜瓦 6~ 8 块。

把持器的作用把持住自焙电极,保护大套、压力环、铜瓦依顺序都吊挂固定在其上面,每根电极上设6~8 块铜瓦,是通过压力环上的油缸和顶紧装置,形成一对一顶紧铜瓦,压力均匀,可保证铜瓦对电极的抱紧力均衡,铜瓦与电极的接触导电良好。

把持器上部由台架与二个升降油缸联接,油缸的支座是固定在三层平台的钢平台上,在钢平台上一定的范围内根据需要可调整极心圆。

每根电极上设有单独电极自动压放装置,由气囊抱闸(或液压抱闸)抱紧电极,充气气囊抱紧电极,放气气囊松开电极;上、下气囊抱闸由导向柱和压放油缸相联接,下气囊抱闸与把持筒相联接,冶炼时下气囊始终抱紧电极,只在压放时才与上气囊配合交替松开夹紧电极,完成压放动作。

冷却水系统冷却水冷系统是对处于高温条件下工作的构件(包括短网、压力环、保护大套、炉壳、烟罩、烟囱)进行冷却的装置,它由分水器、集水箱、压力表、阀门、管道及胶管、接头等组成。

短网(包括水冷铜管、水冷电缆、铜瓦)压力环的水路专门设有放水装置用于检修、抢修时可快速排水。

水冷短网及压力环、保护套的冷却水要求:软水,进水温度≤ 30℃,出水温度≤ 50℃。

2.主要电气设备矿热炉变压器采用低损耗节能型壳式矿热变压器,有载电动调压,强循环,油水冷却器,阻抗电压 4~6%,一次侧电压可为 35~ 110KV,二次侧电压分为 5~27 级(不同容量变压器和不同冶炼品种采用不同的二次电压级),前几档为恒功率,后几档为恒电流,并要求超负载能力> 25%,采用侧出线管式联接方式。

高压供电系统高压供电系统由 35KV(或 110KV)馈电经变压器隔离开关,真空断器送至电炉变压器,同时可以根据用户要求设计谐波吸收装置和一次补偿。

压供电系统设动力变压器,动力电源送至主室动力柜,送至水泵、变压器、调压装置、控电电源、 PLC电源、液压站及空压机室,低压可以增加二次补偿。

3.主要辅助设备可根据用户需要自备或用我公司设计、制造的设备或图纸。

上料、加料系统设备上料设备可选用皮带上料,单斗提升机上料,斗式提升机、料斗、料罐和单梁电动葫芦上料。

加料设备可选用布料小车。

钢料仓→下料管→电磁振动给料机→自动插板阀→下料管。

出炉设备:铁水包、铁水包龙门吊钩、运包车、地卷扬机。

浇铸设备:锭模捣炉机、加料机、烧穿器。

除尘设备高压补偿,二次低压补偿。

(选择使用)五、矿热炉硅锰合金冶炼生产工艺流程六、安全操作规程1、作业前,必须按规定穿戴好劳动防护用品,检查所用工具,设备是否完好,各种安全防护保险装置,必须齐全有效。

2、操作的各种开关、阀门、信号等装置必须设有醒目的安全标示,严防操作失误。

3、电炉在投入或者停止生产前,必须与生产调度及相关单位(岗位)取得联系。

停、送电时,必须先将电极提升至上限。

送电时先合高压隔离开关,后合油开关及操作开关,停电时反之、严禁带负荷拉合隔离开关。

4、冶炼过程中不准停止可控硅控制系统运行和切换电压。

5、推捣炉膛料面前,必须先活动电极消除悬挂,在进行推捣料操作。

操作时不得敞开炉门,严防塌料喷火伤害。

6、经常进行设备运行检查,发现问题及时处理和报告,做好设备运行记录。

7、设备运行时,不得维护、调试、清扫设备带电、旋转、高压等危险部位,进行机械电气设备维护检修时,必须停机拉闸挂检修安全警示牌。

8、操作本岗位配套设备时(如空气压缩机、电动葫芦)等,必须严格遵守其安全操作规程,采用电动葫芦吊运台下物料时,必须上下有人监护。

上料时料斗装料不得过满和从人体上方吊运。

9、用氧气烧铁口时,要有专人指挥,胶管与铁管连要牢固,操作时不得将手抓在接头处,严防氧气回火和渣铁喷溅烫伤。

严格遵守氧气瓶使用管理规定。

10、填充铁水包沙眼的沙子必须精选,不得带有石子和杂质,铁水沟、铁水包、铁模及出铁场地,必须保持干燥。

接触铁水的工具必须烘干烤热,严防铁水爆炸事故。

11、配合行车工吊装渣铁时,要站在吊物摆动不被挤压的安全位置挂钩,手不能抓在钩链活动部位和将脚伸入被吊物下指挥起吊,严防吊物伤害。

12、不准在炉基周围取暖休息和烘烤衣物。

13、严格执行定置管理规定,保持作业场所清洁,道路畅通。

相关文档
最新文档