高三物理一轮复习专题练习:双星及多星问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双星及多星问题
一、双星问题
1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角
速度、周期相同的匀速圆周运动的恒星称为双星。
2.模型条件: (1)两颗星彼此相距较近。
(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。
(3)两颗星绕同一圆心做圆周运动。
3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。
(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。
(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2
推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。
(4)巧妙求质量和:Gm1m2
L2
=m1ω2r1①
Gm1m2
L2
=m2ω2r2②由①+②得:
G m1+m2
L2
=ω2L ∴m1+m2=
ω2L3
G
4. 解答双星问题应注意“两等”“两不等”
(1)“两等”: ①它们的角速度相等。②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。
(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型
(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.
(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).
②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).
(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).
②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).
三、卫星的追及相遇问题
1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:
内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。
2、某星体的两颗卫星从相距最近到相距最远遵从的规律:
内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为π的奇数倍。
3、对于天体追及问题的处理思路:
(1)根据GMm
r2
=mrω2,可判断出谁的角速度大;
(2)根据两星追上或相距最近时满足两星运行的角度差等于2π的整数倍,相距最远时,两星运行的角度差等于π的奇数倍。在与地球上物体追及时,要根据地球上物体与同步卫星角速度相同的特点进行判断。
例题精讲
【例1】 (多选)(2017年昆明模拟)宇宙中两颗相距很近的恒星常常组成一个系统,它们以相互间的万有引力彼此提供向心力,从而使它们绕着某一共同的圆心做匀速圆周运动,若已知它们的运转周期为T ,两星到某一共同圆心的距离分别为R 1和R 2,那么,系统中两颗恒星的质量关系是( )
A .这两颗恒星的质量必定相等
B .这两颗恒星的质量之和为4π2R 1+R 23
GT 2
C .这两颗恒星的质量之比为m 1∶m 2=R 2∶R 1
D .其中必有一颗恒星的质量为4π2R 1+R 23
GT 2
【答案】 BC
【例2】:2016年2月11日,美国科学家宣布探测到引力波的存在,引力波的发现将为人类探索宇宙提供新视角,这是一个划时代的发现.在如图所示的双星系统中,A 、B 两个恒星靠着相互之间的引力正在做匀速圆周运动,已知恒星A 的质量为太阳质量的29倍,恒星B 的质量为太阳质量的36倍,两星之间的距离L =2×105 m ,太阳质量M =2×1030 kg ,引力常量G =6.67×10
-11
N·m 2/kg 2,π2=10.若两星在环绕过程中会辐射出引力波,该引力波的频率与
两星做圆周运动的频率具有相同的数量级,则根据题目所给信息估算该引力波频率的数量级是( )
A .102 Hz
B .104 Hz
C .106 Hz
D .108 Hz 【答案】 A
【例3】:.经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形式和分布情况有了较深刻的认识,双星系统由两个星体组成,其中每个星体的线度都远小于两星体之间的距离,一般双星系统距离其他星体很远,可以当成孤立系统来处理.现根据对某一双星系统的测量确定,该双星系统中每个星体的质量都是M ,两者相距L ,它们正围绕两者连线的中点做圆周运动.
(1)计算出该双星系统的运动周期T ;
(2)若该实验中观测到的运动周期为T 观测,且T 观测∶T =1∶N (N >1).为了理解T 观测与T 的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质.作为一种简化模型,我们假定在以这两个星体连线为直径的球体内均匀分布这种暗物质.若不考虑其他暗物质的影响,根据这一模型和上述观测结果确定该星系间这种暗物质的密度.
【答案】 (1)πL
2L
GM (2)3N -1M 2πL 3
【例4】:由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式,三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图为A 、B 、C 三颗星体质量不相同时的一般情况).若A 星体质量为2m 、B 、C 两星体的质量均为m ,三