高中物理重要二级结论(全)(可编辑修改word版)
(完整word版)高中物理二级结论
速度反向延长交水平位移中点处, x2=2x1 ;
切总等于
x1 x2 β s
x
即
α
v
速度偏角的正切值等于 2 倍的位移偏角正切值。
③两个分运动与合运动具有等时性,且 t= 2 y ,由下降的高度决定,与初速 g
度 v0 无关;
④任何两个时刻间的速度变化量 v=g t ,且方向恒为竖直向下。 ⑤斜面上起落的平抛速度方向与斜面的夹角是定值。此夹角正切为斜面倾角正 切的 2 倍。 12、绳端物体速度分解(1)连接物体的初末位置,找到合速度方向。(2)分解: 分解成沿绳和垂直于绳两方向
a g sin g cos 物体在倾斜的皮带上上滑,物体无初速度或初速度小于皮带速度,一定有
a g cos g sin , 物 体 初 速 度 大 于 皮 带 速 度 , 则 物 体 加 速 度 一 定 为
a g sin g cos 5.两个原来一起运动的物体“刚好脱离”瞬间:
力学条件:貌合神离,相互作用的弹力为零。 运动学条件:此时两物体的速度、加速度相等,此后不等。
一无个,一定是弹力 二个(最多),弹力和摩擦力 12.在平面上运动的物体,无论其它受力情况如何,所受平面支持力和滑动
摩擦力的合力方向总与平面成= tan FN = tan 1 。
Ff
二、运动学
1、 在纯运动学问题中,可以任意选取参照物;在处理动力学问题时,只能以
地为参照物。
用平均速度思考匀变速直线运动问题,总是带来方便:思路是:位移→时间→
船与上游河岸夹角为 ,航程 s 最短 s=d (d 为河宽)此时时间不短
t d ( cos v水 )
v船 sin
v船
⑵当船速小于水速时 ①船头的方向垂直于水流的方向(河岸)时,所用
[全]高中高考物理必考“二级结论”总结
[全]高中高考物理必考“二级结论”总结
一、力学
1. 平衡定律:物体在平面上平衡,则由一组互斥且合力为零的作用在物体身上。
2. 动量守恒定律:物体在受力过程中,它的动量总和保持不变(动量守恒定律)。
3. 能量守恒定律:物体在受力过程中,它的总能量总和保持不变(能量守恒定律)。
4. 运动定律:牛顿定律,重力作用时,物体受到的力与它的质量成正比,而且方向
和物体运动方向相反。
阻力守恒定律,只要恒定速度直线运动,则运动阻力与小量球的
质量} 运动量成正比,而且方向与小量球运动方向相同。
二、电学
1. 电荷守恒定律:任何系统中的电荷总和不变。
2. 欧拉定律:任何电路中,电位差的积分是电功的积分,而且绕线把开关改变电势
的变化,则欧拉定律的等号成立。
3. 高斯定律:当物体由完全不导体到完全导体时,电场强度在分隔处有跳变;当电
荷分布较为集中时,电场强度满足高斯定律。
三、热学
1. 热力学定律:能量守恒(热力学定律),任何物理系统的总的能量只是发生转换
不可消失。
2. 热放大定律:正温差扩大效应(热放大效应),表明热物质力学运动的正温差它
在高温处存在更强的力学运动速度。
3. 定压定容放热定律:恒定容狭放出的热量与容积有关,与压强无关。
4. 根-思定律:恒定压强放出的热量与压强有关,与容积无关。
高中物理二级结论(超全)
高中物理二级结论集温馨提示1、“二级结论”是常见知识和经验的总结,都是可以推导的。
2、先想前提,后记结论,切勿盲目照搬、套用。
3、常用于解选择题,可以提高解题速度。
一般不要用于计算题中。
一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。
2.两个力的合力:F 大+F 小F 合F 大-F 小。
三个大小相等的共面共点力平衡,力之间的夹角为1200。
3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。
4.三力共点且平衡,则(拉密定理)。
5.物体沿斜面匀速下滑,则。
6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。
此时速度、加速度相等,此后不等。
7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。
因其形变被忽略,其拉力可以发生突变,“没有记忆力”。
8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。
9.轻杆能承受纵向拉力、压力,还能承受横向力。
力可以发生突变,“没有记忆力”。
10、轻杆一端连绞链,另一端受合力方向:沿杆方向。
10、若三个非平行的力作用在一个物体并使该物体保持平衡,则这三个力必相交于一点。
它们按比例可平移为一个封闭的矢量三角形。
(如图3所示)11、若F 1、F 2、F 3的合力为零,且夹角分别为θ1、θ2、θ3;则有F 1/sin θ1=F 2/sin θ2=F 3/sin θ3,如图4所示。
12、已知合力F 、分力F 1的大小,分力F 2于F 的夹角θ,则F 1>Fsin θ时,F 2有两个解:;F 1=Fsin θ时,有一个解,F 2=Fcos θ;F 1<Fsin θ没有解,如图6所示。
13、在不同的三角形中,如果两个角的两条边互相垂直,则这两个角必相等。
14、如图所示,在系于高低不同的两杆之间且长L 大于两杆间隔d 的绳上用光滑钩挂衣物时,衣物离低杆近,且AC 、BC 与杆的夹角相等,sin θ=d/L ,分别以A 、B 为圆心,以绳长为半径画圆且交对面杆上、两点,则与的交点C 为平衡悬点。
高中物理重要二级结论
高中物理二级结论 2013-4-1第1页 共16页 第2页 共16页物理重要二级结论(全)一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。
三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。
2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。
5.物体沿倾角为α的斜面匀速下滑时, μ= tan α 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。
7.绳上的张力一定沿着绳子指向绳子收缩的方向。
8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。
9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。
用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T ): ① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:3② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =② 经过1S 0时、2 S 0时、3 S 0时···时间比:③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。
高中物理重要二级结论(全)-推荐下载
一、静力学 1.几个力平衡,则任一力是与其他所有力的合力平衡的力。
三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。
2.两个力的合பைடு நூலகம்: F1 F2 F F1 F2 方向与大力相同
3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每 一个力必和其它两力间夹角之正弦成正比,即
3.沿粗糙斜面下滑的物体
4.沿如图光滑斜面下滑的物体:
当 α=45°时所用时间最 短
α 增大, 时间变短
5.
a=g(sinα-μcosα)
沿角平分线滑下最快
小球下落时间相等
一起加速运动的物体系,若力是作用于 m1 上,则 m1 和 m2 的相互作用力为 N
与有无摩擦无关,平面,斜面,竖直方向都一样
F1 F2 F3 sin sin sin
4.两个分力 F1 和 F2 的合力为 F,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力) 的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。
F2的最小值
F1已知方向 F
F2的最小值
5.物体沿倾角为 α 的斜面匀速下滑时, μ= tanα 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。
V0=0 的匀加速追匀速:V 匀=V 匀加 时,两物体的间距最大 Smax=
同时同地出发两物体相遇:位移相等,时间相等。
小于
t0
时
s
v0
第 2 页 共 12 页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
(完整版)高中物理二级结论模型归纳
先想前提,后记结论力学 一.静力学:1.几个力平衡,则一个力是与其它力合力 平衡的力。
2.两个力的合力:F +F ≥F ≥F -F 。
三个大小相等的力平衡,力之间的夹大小合大小角为120度。
3.物体沿斜面匀速下滑,则μ=tanα。
4.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。
此时速度 加速度相等,此后不等。
二.运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物;在处理动力学问题时,只能以地为参照物。
2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便:=V ==-V 2/t 221V V +TS S 221+3.匀变速直线运动:当时间等分时:S n -Sn-1=aT .2位移中点的即时速度:V s/2= ,V s/2>V t/222221V V +纸带点迹求速度加速度:V t/2=, a=, a=T S S 212+212TSS -21)1(T n S S n--4.自由落体:V t (m/s): 10 20 30 40 50 = gtH 总(m ):5 20 45 80 125 = gt 2/2H 分(m):5 15 25 35 45 = gt 22/2 – gt 12 /2g=10m/s 25.上抛运动:对称性:t 上= t 下 V 上= -V下6.相对运动:相同的分速度不产生相对位移。
7.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。
先求滑行时间,确定了滑行时间小于给出的时间时,用V 2=2aS 求滑行距离。
8."S=3t+2t 2”:a=4m/s 2,V 0=3m/s 。
(s = v 0t+ at 2/2)9.绳端物体速度分解:对地速度是合速度,分解为沿绳的分速度合垂直绳的分速度。
三.运动定律:1.水平面上滑行:a=-µg2.系统法:动力-阻力=m总g绳牵连系统3.沿光滑斜面下滑:a=gSinα时间相等: 450时时间最短: 无极值:4.一起加速运动的物体:N=F,(N为物体间相互作用力),与有无摩212mmm+擦(μ相同)无关,平面斜面竖直都一样。
高中物理重要二级结论(全)
物理重要二级结论一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。
三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。
2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。
5.物体沿倾角为α的斜面匀速下滑时, μ= tan α 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。
7.绳上的张力一定沿着绳子指向绳子收缩的方向。
8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。
9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。
用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分(T ): ① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )2 位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···② 经过1S 0时、2 S 0时、3 S 0时···时间比: :3:2:1:3:2:1ΛF已知方向F 2的最小值F 2的最小值F 2的最小值F 2③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。
高中物理二级结论(超全)
高中物理二级结论集温馨提示 1、“二级结论〞是常见知识和经验的总结,都是可以推导的。
2、先想前提,后记结论,切勿盲目照搬、套用。
3、常用于解选择题,可以提高解题速度。
一般不要用于计算题中。
一、静力学:1.几个力平衡,如此一个力是与其它力合力平衡的力。
2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。
三个大小相等的共面共点力平衡,力之间的夹角为1200。
3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。
4.三力共点且平衡,如此312123sin sin sin F F F ααα==〔拉密定理〕。
5.物体沿斜面匀速下滑,如此tan μα=。
6.两个一起运动的物体“刚好脱离〞时:貌合神离,弹力为零。
此时速度、加速度相等,此后不等。
7.轻绳不可伸长,其两端拉力大小相等,线上各点力大小相等。
因其形变被忽略,其拉力可以发生突变,“没有记忆力〞。
8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。
9.轻杆能承受纵向拉力、压力,还能承受横向力。
力可以发生突变,“没有记忆力〞。
10、轻杆一端连绞链,另一端受合力方向:沿杆方向。
10、假如三个非平行的力作用在一个物体并使该物体保持平衡,如此这三个力必相交于一点。
它们按比例可平移为一个封闭的矢量三角形。
〔如图3所示〕11、假如F 1、F 2、F 3的合力为零,且夹角分别为θ1、θ2、θ3;如此有F 1/sin θ1=F 2/sin θ2=F 3/sin θ3,如图4所示。
12、合力F 、分力F 1的大小,分力F 2于F 的夹角θ,如此F 1>Fsin θ时,F 2有两个解:θθ22212sin cos F F F F -±=;F 1=Fsin θ时,有一个解,F 2=Fcos θ;F 1<Fsin θ没有解,如图6所示。
13、在不同的三角形中,如果两个角的两条边互相垂直,如此这两个角必相等。
高中物理二级结论小结(可编辑修改word版)
3 3 S - S = aT 22 2高考物理 “二级结论”集一、静力学:1. 几个力平衡,则一个力是与其它力合力平衡的力。
2. 两个力的合力:F 大+F 小≥ F 合≥ F 大-F 小。
三个大小相等的共点力平衡,力之间的夹角为 1200。
3. 力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。
F 1 4.三力共点且平衡,则sin 1 = F 2 sin 2= F 3 sin 3 (拉密定理)。
5. 物体沿斜面匀速下滑,则= tan。
6. 两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。
此时速度、加速度相等,此后不等。
7. 轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。
因其形变被忽略,其拉力可以发生突变,“没有记忆力”。
8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。
9.轻杆能承受纵向拉力、压力,还能承受横向力。
力可以发生突变,“没有记忆力”。
二、运动学:1. 在描述运动时,在纯运动学问题中,可以任意选取参照物; 在处理动力学问题时,只能以地为参照物。
2. 匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便:V = V = V 1 + V 2 S 1 + S 2t 2T 3. 匀变速直线运动:2时间等分时,n n -1 ,V S =位移中点的即时速度 2V S > V t2 2V S 1 + S 2 a = S 2 - S 1a = S n - S 1纸带点痕求速度、加速度:t 2T ,T 2 , (n - 1)T 24.匀变速直线运动,v0 = 0 时:时间等分点:各时刻速度比:1:2:3:4:5各时刻总位移比:1:4:9:16:25 各段时间内位移比:1:3:5:7:9位移等分点:各时刻速度比:1∶ ∶ ∶……到达各分点时间比 1∶ ∶ ∶……通过各段时间比 1∶ (- 1)∶(- 2 )∶……V 2 + V 21 222 2 2 3.上抛运动:对称性: 上 上 5. 自由落体:n 秒末速度(m/s ): 10,20,30,40,50 n 秒末下落高度(m):5、20、45、80、125 第 n 秒内下落高度(m):5、15、25、35、45v 26t =t v = v h = 0 m2g7. 相对运动:共同的分运动不产生相对位移。
高中物理常用二级结论汇总.docx
一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。
2.两个力的合力:三个大小相等的共点力平衡,力之间的夹角为120°。
3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。
4.三力共点且平衡,则有5.物体沿斜面匀速下滑,则6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。
此时速度、加速度相等,此后不等。
7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。
因其形变被忽略,其拉力可以发生突变,“没有记忆力”。
8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。
9.轻杆能承受纵向拉力、压力,还能承受横向力。
力可以发生突变,“没有记忆力”。
二、运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物;在处理动力学问题时,只能以地为参照物。
2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便:3.匀变速直线运动:4.匀变速直线运动,v0 = 0时:时间等分点:各时刻速度比:1:2:3:4:5各时刻总位移比:1:4:9:16:25各段时间内位移比:1:3:5:7:95.自由落体:n秒末速度(m/s):10,20,30,40,50n秒末下落高度(m):5、20、45、80、125第n秒内下落高度(m):5、15、25、35、456.上抛运动:有对称性:7.相对运动:共同的分运动不产生相对位移。
8.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。
先求滑行时间,确定了滑行时间小于给出的时间时,用求滑行距离。
9.绳端物体速度分解:对地速度是合速度,分解为沿绳的分速度和垂直绳的分速度。
10.两个物体刚好不相撞的临界条件是:接触时速度相等或者匀速运动的速度相等。
11.物体刚好滑到小车(木板)一端的临界条件是:物体滑到小车(木板)一端时与小车速度相等。
12.在同一直线上运动的两个物体距离最大(小)的临界条件是:速度相等。
高中物理重要二级结论(全)
物理重要二级结论之袁州冬雪创作一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力.三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反.2方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每个力必和其它两力间夹角之正弦成正比,即4.两个分力F1和F2的合力为F,若已知合力(或一个分力)的大小和方向,又知另外一个分力(或合力)的方向,则第三个力与已知方向不知大小的阿谁力垂直时有最小值.78.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N纷歧定等于重力G.9.已知合力不变,其中一分力F1大小不变,分析其大小,以及另外一分力F2.用“三角形”或“平行四边形”法则二、运动学1运动)F已知方向F2的最小值F2的最小值F2的最小值F2时间等分(T ):① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3③第一个T 内、第二个T 内、第三个T内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2S n -S n-k = k aT 2a=ΔS/T 2a=( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =② 颠末1S 0时、2 S 0时、3 S 0时···时间比:③ 颠末第一个1S 0、第二个 2 S 0、第三个 3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2.则全程的平均速度:前一半旅程v 1,后一半旅程v 2.则全程的平均速度: 5.自由落体 6.竖直上抛运动 同一位置 v 上=v 下)1(::)23(:)12(:1::::321----=n n t t t t n)::3:2:1n n ::3:2:1 221v v v +=-7.绳端物体速度分解,确S=v o t/2,求滑行间隔;若t 9.匀加速直线运动位移公式:S = A t + B t 2式中a=2B (m/s 2) V 0=A (m/s ) 10.追赶、相遇问题匀减速追匀速:恰能追上或恰好追不上 V 匀=V 匀减V 0=0的匀加速追匀速:V 匀=V 匀加时,两物体的间距最大S max = 同时同地出发两物体相遇:位移相等,时间相等.A 与B 相距△S,A 追上B :S A =S B +△S,相向运动相遇时:S A =S B +△S. 11.小船过河:⑴当船速大于水速时①船头的方向垂直于水流的方向时,所②合速度垂直于河岸时,航程s 最短 s=d d 为河宽⑵当船速小于水速时①船头的方向垂直于水流的方向时,所1 a=μg 2 a=gsinα3.沿粗糙斜面下滑的物体 a=g(si nα-μcosα)45.7在力F 作用下匀加速运动8.下列各模子中,速度最大时合力为零,速度为零时,加速度最大α增大,时间变短当α=45°时所用时间最短小球下落时间相等αα9.超重:a 方向竖直向上;(匀加速上升,匀减速下降) 失重:a 方向竖直向下;(匀减速上升,匀加速下降) 四、圆周运动,万有引力:1.水平面内的圆周运动:F=mg tg α方向水平,指向圆心2 要通过最高点,小球最小下滑高度为2.5R . 3)竖直轨道圆运动的两种基本模子绳端系小球,从水平位置无初速度释放下摆到最低点:T=3mg ,a =2g ,与绳长无关.“杆”最高点v min =0,v 临 = v > v 临v = v 临v < v 临,杆对小球为支持力4)重力加速度, 某星球概况处(即距球心R ):g=GM/R 2间隔该星球概况h 处(即距球心R+h 处) gR5推导卫星的线速度 ;卫星的运行周期 .卫星由近地点到远地点,万有引力做负功.第一宇宙速度 V Ⅰ= = =地表附近的人造卫星:r = R = m ,V 运 = V Ⅰ 6)同步卫星T=24小时,h=5.6R=36000km ,7)重要变换式:GM = GR 2(R 为地球半径)8)行星密度:ρ = 3 /GT 2 式中T 为绕行星运转的卫星的周期,即可测. 三、机械能1.断定某力是否作功,做正功还是负功 ① F 与S 的夹角(恒力)② F 与V 的夹角(曲线运动的情况)③ 能质变更(两个相接洽的物体作曲线运动的情况) 2.求功的六种方法①W = F S cosa (恒力) 定义式 ② W = P t (变力,恒力) ③ W = △E K (变力,恒力)④ W = △E (除重力做功的变力,恒力) 功能原理 ⑤ 图象法 (变力,恒力)⑥ 气体做功: W = P △V (P ——气体的压强;△V ——气体的体积变更)61046⨯⋅gR R GM /skm /97⋅gR /2ππr GMv =GM r T 324π=3.恒力做功的大小与路面粗糙程度无关,与物体的运动状态无关.4.磨擦生热:Q = f·S相对 .Q常不等于功的大小(功能关系)µ mg S1.反弹:△p = m(v1+v2)2.弹开:速度,动能都与质量成反比.3.一维弹性碰撞: V1'= [(m1—m2)V1 + 2 m2V2]/(m1 + m2) V2'= [(m2—m1)V2 + 2 m1V2]/(m1 + m2)当V2 = 0时, V1'= (m1—m2)V1 /(m1 + m2)V2'= 2 m1V1/(m1 + m2)特点:大碰小,一起跑;小碰大,向后转;质量相等,速度交换.4.1球(V1)追2球(V2)相碰,能够发生的情况:① P1 + P2 = P'1 + P'2 ;m1V1'+ m2 V2'= m1V1 + m2V2动量守恒.② E'K1 +E'K2≤ E K1 +E K2动能不增加③ V1'≤ V2' 1球不穿过2球④当V2 = 0时,( m1V1)2/ 2(m1 + m2)≤ E'K ≤( m1V1)2/2m1E K=( mV)2/ 2m= P2 / 2m = I2 / 2m5.三把力学金钥匙五、振动和波1.平衡位置:振动物体运动时,∑F外=0 ;振动过程中沿振动方向∑F=0.2.由波的图象讨论波的传播间隔、时间和波速:注意“双向”和“多解”.3.振动图上,振动质点的运动方向:看下一时刻,“上坡上”,“下坡下”.4.振动图上,介质质点的运动方向:看前一质点,“在上则上”,“在下则下”.5.波由一种介质进入另外一种介质时,频率不变,波长和波速改变(由介质决议)6.已知某时刻的波形图象,要画颠末一段位移S或一段时间t 的波形图:“去整存零,平行移动”.7.双重系列答案:S =(λ-△X)(K=0、1、2、3…) 六、热和功 分子运动论∶1.求气体压强的途径∶①固体封闭∶《活塞》或《缸体》《整体》列力平衡方程 ;②液体封闭:《某液面》列压强平衡方程 ;③系统运动:《液柱》《活塞》《整体》列牛顿第二定律方程.由几何关系确定气体的体积.2.1 atm=76 cmHg = 10.3 m H 2O ≈ 10 m H 2O 3.等容变更:△p =P ·△T/ T 4.等压变更:△V =V ·△T/ T 七、静电场:1.粒子沿中心线垂直电场线飞入匀强电场,飞出时速度的反向延长线通过电场中心. 2.d3.匀强电场中,等势线是相互平行等间隔的直线,与电场线垂直.4. 5.LC振荡电路中两组互余的物理量:此长彼消.1)电容器带电量q,极板间电压u,电场强度E及电场能E c等量为一组;(变大都变大)2)自感线圈里的电流I,磁感应强度B及磁场能E B等量为一组;(变小都变小)电量大小变更趋势一致:同增同减同为最大或零值,异组量大小变更趋势相反,此增彼减,若q,u,E及E c等量按正弦规律变更,则I,B,E B等量必按余弦规律变更.电容器充电时电流减小,流出负极,流入正极;磁场能转化为电场能;放电时电流增大,流出正极,流入负极,电场能转化为磁场能.八、恒定电流1.串连电路:总电阻大于任一分电阻;2.并联电路:总电阻小于任一分电阻;3.和为定值的两个电阻,阻值相等时并联值最大.4.估算原则:串联时,大为主;并联时,小为主.5. 6.并联电路中的一个电阻发生变更,电路有消长关系,某个电阻增大,它自己的电流小,与它并联的电阻上电流变大.7.外电路中任一电阻增大,总电阻增大,总电流减小,路端电压增大.8.画等效电路:始于一点,电流表等效短路;电压表,电容器等效电路;等势点合并.9.R=r101112.含电容器的电路中,电容器是断路,其电压值等于与它并联的电阻上的电压,稳定时,与它串联的电阻是虚设.电路发生变更时,有充放电电流.13九、直流电实验1.思索电表内阻影响时,电压表是可读出电压值的电阻;电流表是可读出电流值的电阻.2.电表选用丈量值不准超出量程;丈量值越接近满偏值(表针的偏转角度尽能够大)误差越小,一般大于1/3满偏值的.3程大的指针摆角小.指针摆角小.4.电压丈量值偏大,给电压表串联一比电压表内阻小得多的电阻;电流丈量值偏大,给电流表并联一比电流表内阻大得多的电阻;5.分压电路:一般选择电阻较小而额定电流较大的电阻1)若采取限流电路,电路中的最小电流仍超出用电器的额定电流时;2)当用电器电阻远大于滑动变阻器的全值电阻,且实验要求的电压变更范围大(或要求多组实验数据)时;3)电压,电流要求从“零”开端可持续变更时,分流电路:变阻器的阻值应与电路中其它电阻的阻值比较接近;分压和限流都可以用时,限流优先,能耗小.6.变阻器:并联时,小阻值的用来粗调,大阻值的用来细调;串联时,大阻值的用来粗调,小阻值的用来细调.712)如R x.3)如R A、R V均不知的情况时,用试触法断定:电流表变更大内接,电压表变更大外接.8.欧姆表:123)选档,换档后均必须调“零”才可丈量,丈量完毕,旋钮置OFF或交流电压最高档.9.故障分析:串联电路中断路点两头有电压,通路两头无电压(电压表并联丈量).断开电源,用欧姆表测:断路点两头电阻无穷大,短路处电阻为零.10.描点后画线的原则:1)已知规律(表达式):通过尽能够多的点,欠亨过的点应接近直线,并平均分布在线的两侧,舍弃个别远离的点.2)未知规律:依点顺序用平滑曲线连点.11r:成果的误差.成果的误差..十、磁场1.安培力方向一定垂直电流与磁场方向决议的平面,即同时有F A⊥I,F A⊥B.2.期与速度无关).3.在有界磁场中,粒子通过一段圆弧,则圆心一定在这段弧两头点连线的中垂线上.4.半径垂直速度方向,即可找到圆心,半径大小由几何关系来求.5.与粒子的带电性质和带电量多少无关,与进入的方向有关.6.7.B的夹角,S线圈的面积)8.当线圈平面平行于磁场方向,即,磁力矩最大,十一、电磁感应1.楞次定律:(阻碍原因)表里环电流方向:“增反减同”自感电流的方向:“增反减同”磁铁相对线圈运动:“你追我退,你退我追”通电导线或线圈旁的线框:线框运动时:“你来我推,你走我拉”电流变更时:“你增我远离,你减我接近”2力.3.楞次定律的抗命题:双解,加速向左=减速向右4.两次感应问题:先因后果,或先果后因,连系安培定则和楞次定律依次断定.567图1时发生的焦耳热.图2中:两线框下落过程:重力做功相等甲落地时的速度大于乙落地时的速度.十二、交流电1e 为互余关系,此消彼长. 2.线圈从中性面开端转动:线圈从平行磁场方向开端转动:. 变压器原线圈:相当于电动机;副线圈相当于发电机.6. 抱负变压器原、副线圈相同的量:7. 输电计算的基本形式:十三、 光的反射和折射 1. 光过玻璃砖,向与界面夹锐角的一侧平移;光过棱镜,向底边偏折.2. 光射到球面、柱面上时,半径是法线. 十四、光的赋性1. 隔的明暗相间的条纹;白光的干涉条纹中间为白色,两侧为黑色发电机P 输U 输U 用U 线条纹.2. 单色光的衍射条纹中间最宽,两侧逐渐变窄;白光衍射时,中间条纹为白色,两侧为黑色条纹.3. 增透膜的最小厚度为绿光在膜中波长的1/4.4. 用尺度样板检查工件概况的情况:条纹向窄处弯是凹;向宽处弯是凸.5. 电磁波穿过介质概况时,频率(和光的颜色)不变.光入介6电磁波谱频率υ 波长λ 小 无线电波 小 长 折 红外线 β 射线临界角C 大 小 可见光能量 E 小 大 紫外线 γ 射线 大 小干涉条纹 宽 窄 X 射线绕射本领 强 弱 γ射线 大 短附录1贯穿本领电离本领SI基本单位物理量称号单位称号单位符号长度米m质量千克kg时间秒s电流安[培] A热力学温度开[尔文] K物质的量摩[尔] mol发光强度坎[德拉] cd附录2。
(完整word版)高中物理重要二级结论(全)
物理重要二级结论一、静力学1.几个力均衡,则任一力是与其余全部力的协力均衡的力。
三个共点力均衡,随意两个力的协力与第三个力大小相等,方向相反。
2.两个力的协力:F1F2 F F1F2方向与鼎力同样3.拉密定理:三个力作用于物体上达到均衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其余两力间夹角之正弦成正比,即F1F2F3sin sin sin4.两个分力F1和 F2的协力为F,若已知协力(或一个分力)的大小和方向,又知另一个分力(或协力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。
F1已知方向F1F2的最小值F1F FF2的最小值F2的最小值5.物体沿倾角为α的斜面匀速下滑时,μ= tanαmg6.“二力杆”(轻质硬杆)均衡时二力必沿杆方向。
7.绳上的张力必定沿着绳索指向绳索缩短的方向。
8.支持力(压力)必定垂直支持面指向被支持(被压)的物体,压力N 不必定等于重力 G。
9.已知协力不变,此中一分力F1大小不变,剖析其大小,以及另一分力F2。
用“三角形”或“平行四边形”法例F1二、运动学F2 1.初速度为零的匀加快直线运动(或末速度为零的匀减速直线运动)F 时间均分( T):① 1T 内、 2T 内、 3T内····位移比: S1: S2:S3=12: 22: 32② 1T 末、 2T 末、 3T末····速度比: V 1:V 2: V 3=1: 2: 3③第一个 T 内、第二个 T 内、第三个 T 内··的位移之比:SⅠ:SⅡ: SⅢ =1:3: 52222④ΔS=aT S n-S n-k = k aT a= S/T a =( S n-S n-k) /k T位移均分( S0):① 1S0处、 2 S0处、 3 S0处·速度比: V 1: V 2: V 3:··V n =1: 2 : 3 ::n②经过 1S时、 2 S时、 3 S时··时间比:1:③ 经过第一个 1S 0、第二个 2 S 0、第三个3 S 0 ·时间比t 1 : t 2 : t 3 :: t n 1 : ( 21) : ( 3 2) : : ( nn 1)v 0 v tS 1 S 2vvt / 22T2.匀变速直线运动中的均匀速度2vvt / 2v 0 v t3.匀变速直线运动中的中间时辰的速度2v 02 v t 2v t / 22中间地点的速度4.变速直线运动中的均匀速度v 1v 2前一半时间 v 1,后一半时间 v 2。
高中物理重要二级结论(全)
t1 : t2 : t3 :: tn 1: ( 2 1) : ( 3 2) :: ( n n 1)
2.匀变速直线运动中的平均速度
v vt / 2
v0 vt 2
S1 S2 2T
3.匀变速直线运动中的中间时刻的速度
v
vt / 2
或向波传的方向看“上波下,下波上”。 4.振动图上,介质质点的运动方向:向右看前一质点,“在上则上”,“在下则下”。 5.波由一种介质进入另一种介质时,频率不变,波长和波速改变(由介质决定) 6.已知某时刻的波形图象,要画经过一段位移 S 或一段时间 t 的波形图:“去整存零,平行移动”。 7.双重系列答案:
之后隔离分析
g
a
a
简谐振动至最高点
在力 F 作用下匀加速运动
F 在力 F 作用下匀加速运动
8.下列各模型中,速度最大时合力为零,速度为零时,加速度最大
F F
B B
9.超重:a 方向竖直向上;(匀加速上升,匀减速下降) 失重:a 方向竖直向下;(匀减速上升,匀加速下降)
四、圆周运动,万有引力
1.水平面内的圆周运动:F=mg tgα方向水平,指向圆心 N N
研究对象 研究角度
物理概念
物理规律
适用条件
质点 质点 系统
质点
力的瞬时作用效果 F、m、a
F=m·a
力作用一段位移(空 W = F S cosa
间累积)的效果
P = W/ t
W =EK2 — EK1
P =FV cosa EK = mv2/2
E1 = E2
EP = mgh
力作用一段时间(时 P = mv
高中物理二级结论(超全)
高中物理二级结论集温馨提示 1、“二级结论”是常见知识和经验的总结,都是可以推导的。
2、先想前提,后记结论,切勿盲目照搬、套用。
3、常用于解选择题,可以提高解题速度。
一般不要用于计算题中。
一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。
2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。
三个大小相等的共面共点力平衡,力之间的夹角为1200。
3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。
4.三力共点且平衡,则312123sin sin sin F F F ααα==(拉密定理)。
5.物体沿斜面匀速下滑,则tan μα=。
6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。
此时速度、加速度相等,此后不等。
7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。
因其形变被忽略,其拉力可以发生突变,“没有记忆力”。
8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。
9.轻杆能承受纵向拉力、压力,还能承受横向力。
力可以发生突变,“没有记忆力”。
10、轻杆一端连绞链,另一端受合力方向:沿杆方向。
10、若三个非平行的力作用在一个物体并使该物体保持平衡,则这三个力必相交于一点。
它们按比例可平移为一个封闭的矢量三角形。
(如图3所示)11、若F 1、F 2、F3的合力为零,且夹角分别为θ1、θ2、θ3;则有F 1/sin θ1=F 2/sin θ2=F 3/sin θ3,如图4所示。
12、已知合力F 、分力F 1的大小,分力F 2于F 的夹角θ,则F 1>Fsin θ时,F 2有两个解:θθ22212sin cos F F F F -±=;F 1=Fsin θ时,有一个解,F 2=Fcos θ;F 1<Fsin θ没有解,如图6所示。
13、在不同的三角形中,如果两个角的两条边互相垂直,则这两个角必相等。
高中物理重要二级结论(全)
物理重要二级结论一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。
三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。
2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。
5.物体沿倾角为α的斜面匀速下滑时, μ= tan α 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。
7.绳上的张力一定沿着绳子指向绳子收缩的方向。
8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。
9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。
用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分(T ): ① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =② 经过1S 0时、2 S 0时、3 S 0时···时间比: )::3:2:1n Λn::3:2:1ΛF已知方向2F 2的最小值F 2的最小值F 2③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。
高中物理重要二级结论(全)
高中物理重要二级结论(全)1.力学原理:(1) 首先,运动定律,它指出了物体的外力关于物体的运动的总的反作用关系,既包括平衡态及非平衡态下物体的做功量,其中,动量定理、速率定理和能量定理是非常重要的原理;(2) 其次,万有引力定律,它指出了物体之间引力的规律,其中,万有引力定律由施特劳斯提出,随后被贝瑟尔用数学公式描述出来;(3) 最后,粒子的相对论,它指出了物体所产生的力是由粒子之间的相互作用来决定的,它为物理学提供了一种新的、深刻的思路。
2.物质质量与能量关系:(1) 物质质量与能量关系,它可以用泰勒-弗拉克定律来描述,即E=mc2,其中E表示能量,m表示物质的质量,c表示光速;(2) 此外,物质质量与能量关系还可以通过伦理考证电磁力学思想来解释,即物质能够从一种形式转换到另一种形式,物质的质量可以转换成能量,能量可以转化成物质;(3) 最后,物质与能量关系也可以从热力学角度理解,比如热能可以转化成动能,电能可以转换为化学能,而化学能又可以转换成电能,这就是典型的物质与能量的相互转换。
3.光的电磁理论:(1) 在光的电磁理论方面,先由Maxwell提出电磁场的旋转性质,即无穷小的电磁场可以相互展开,变换,并以一个正弦波的方式传播,这就是光的电磁理论;(2) 其次,光的电磁理论还包括光的真空中传播及物质间的传播,其中真空中传播通过电場、场强及波长等概念来描述,而物质间传播则包含反射、折射、衍射等性质;(3) 最后,光的传播可以经由干涉和衍射来描述,其中衍射是一种特殊的干涉效应,它的特征在于小的粒子可以产生明显的衍射现象。
4.电磁场原理:(1) 首先,山斯坦·佩尔定律,它指出了电场与磁场之间存在着对应关系,即当电场发生变化,就会对磁场产生影响,反之,当磁场发生变化,就会对电场产生影响;(2) 其次,电场电位定律,又称梅森·纳什现象,它指出了电位与电场之间存在着对应关系,即当电场发生变化时,电位也会发生变化;(3) 最后,电位及电场的相互作用,指的是在电位的剧烈变化处,极对对应的电场也会发生巨大的集中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 F 1F 1F物理重要二级结论一、静力学1. 几个力平衡,则任一力是与其他所有力的合力平衡的力。
三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。
2. 两个力的合力: F 1 - F 2≤ F ≤ F 1 + F 2方向与大力相同3. 拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点, 且每一个力必和其它两力间夹角之正弦成正比,即F 1 = sin F 2 =sin F 3sin4. 两个分力 F 1 和 F 2 的合力为 F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。
F 1已知方向FF 2的最小值F 2的最小值2mg5. 物体沿倾角为α的斜面匀速下滑时, μ= tan α6. “二力杆”(轻质硬杆)平衡时二力必沿杆方向。
7. 绳上的张力一定沿着绳子指向绳子收缩的方向。
8. 支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力 N 不一定等于重力 G 。
9. 已知合力不变,其中一分力 F 1 大小不变,分析其大小,以及另一分力 F 2。
用“三角形”或“平行四边形”法则 二、运动学21. 初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分(T ): ① 1T 内、2T 内、3T 内 ····· 位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末 ····· 速度比:V 1:V 2:V 3=1:2:3 ③ 第一个 T 内、第二个 T 内、第三个 T 内 ·· 的位移之比: S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0 处、2 S 0 处、3 S 0 处 ·· 速度比:V 1:V 2:V 3: ·· V n =② 经过 1S 0 时、2 S 0 时、3 S 0 时···时间比: 1 : 2 :1 : 3 : :: : : n )2 nF 1FFn t③ 经过第一个1S0、第二个2 S0、第三个3 S0···时间比t1: t2: t3: : tn= 1 : ( 2 - 1) : ( 3 -2) : : ( -n -1)2.匀变速直线运动中的平均速度-v =vt / 2=v+vt2=S1+S22T3.匀变速直线运动中的中间时刻的速度-v =vt / 2=v+vt2中间位置的速度vt / 2=4.变速直线运动中的平均速度前一半时间 v1,后一半时间 v2。
则全程的平均速度:-v +vv = 1 22-v =前一半路程 v1,后一半路程 v2。
则全程的平均速度:t =2v1v2v1+v25.自由落体6.竖直上抛运动t上=t下=vo =g同一位置v 上=v 下7.绳端物体速度分解vv点光源2θ平面镜ωθ8.“刹车陷阱”,应先求滑行至速度为零即停止的时间 t0,确定了滑行时间 t 大于t0时,用v 2= 2as或S=v o t/2,求滑行距离;若t 小于t0时s =v t +1at 20 29.匀加速直线运动位移公式:S = A t + B t2 式中a=2B(m/s2)V0=A(m/s)10.追赶、相遇问题匀减速追匀速:恰能追上或恰好追不上V 匀=V 匀减V0=0 的匀加速追匀速:V 匀=V 匀加时,两物体的间距最大S max=同时同地出发两物体相遇:位移相等,时间相等。
A 与B 相距△S,A 追上B:S A=S B+△S,相向运动相遇时:S A=S B+△S。
0 t2v2+v22hg2Hg11.小船过河:⑴ 当船速大于水速时①船头的方向垂直于水流的方向时,所用时间最短,t =d / v船②合速度垂直于河岸时,航程s 最短s=d d 为河宽⑵当船速小于水速时①船头的方向垂直于水流的方向时,所用时间最短,t =d / v船v水②合速度不可能垂直于河岸,最短航程s =d ⨯v船三、运动和力1.沿粗糙水平面滑行的物体:a=μg2.沿光滑斜面下滑的物体:a=gsinα3.沿粗糙斜面下滑的物体a=g(sinα-μcosα)4.沿如图光滑斜面下滑的物体:当α=45°时所用时间最短沿角平分线滑下最快α增大,时间变短小球下落时间相等小球下落时间相等5.一起加速运动的物体系,若力是作用于m 上,则m 和m的相互作用力为N = m2 ⋅F1 12 m1+m2与有无摩擦无关,平面,斜面,竖直方向都一样FαααFV dVmF1m2αm2m1F m1m2m2m1aαaagFaaaa a6.下面几种物理模型,在临界情况下,a=gtgα光滑,相对静止弹力为零相对静止光滑,弹力为零7.如图示物理模型,刚好脱离时。
弹力为零,此时速度相等,加速度相等,之前整体分析,之后隔离分析F简谐振动至最高点在力F 作用下匀加速运动在力F 作用下匀加速运动8.下列各模型中,速度最大时合力为零,速度为零时,加速度最大F9.超重:a 方向竖直向上;(匀加速上升,匀减速下降)失重:a 方向竖直向下;(匀减速上升,匀加速下降)四、圆周运动,万有引力:1.水平面内的圆周运动:F=mg tgα方向水平,指向圆心Nmg2.飞机在水平面内做匀速圆周盘旋飞车走壁aFBBNmgT θgRL绳.oGM r42r 3GM =3. 竖直面内的圆周运动:m vmv1) 绳,内轨,水流星最高点最小速度 ,最低点最小速度2) 离心轨道,小球在圆轨道过最高点 v min =要通过最高点,小球最小下滑高度为 2.5R 。
3) 竖直轨道圆运动的两种基本模型绳端系小球,从水平位置无初速度释放下摆到最低点:T=3mg ,a =2g ,与绳长无关。
gR“杆”最高点 v min =0,v 临= ,v > v 临,杆对小球为拉力v = v 临,杆对小球的作用力为零v < v 临,杆对小球为支持力4)重力加速度, 某星球表面处(即距球心 R ):g=GM/R 25gR ,上下两点拉压力之差 6mgHR距离该星球表面 h 处(即距球心 R+h 处) : g ' =GMr 2 = GM (R + h )25) 人造卫星: G Mmm v r 2r= m 2r = m 42T2 r = ma = mg '推导卫星的线速度 v = ;卫星的运行周期 T = 。
卫星由近地点到远地点,万有引力做负功。
gRGM / R7 ⋅ 9km / s第一宇宙速度 V Ⅰ===2R / g地表附近的人造卫星:r = R = 6 ⋅ 4 ⨯106m ,V 运 = V Ⅰ ,T==84.6 分钟6) 同步卫星T=24 小时,h=5.6R=36000km ,v = 3.1km/s7)重要变换式:GM = GR 2 (R 为地球半径) 8)行星密度:ρ = 3 /GT 2式中 T 为绕行星运转的卫星的周期,即可测。
火车R、V、mgR m vL.o2SS三、机械能1. 判断某力是否作功,做正功还是负功① F 与 S 的夹角(恒力)② F 与 V 的夹角(曲线运动的情况)③ 能量变化(两个相联系的物体作曲线运动的情况)2. 求功的六种方法功能原理 ⑤ 图象法 (变力,恒力)⑥ 气体做功: W = P △V (P ——气体的压强;△V——气体的体积变化)3. 恒力做功的大小与路面粗糙程度无关,与物体的运动状态无关。
4.摩擦生热:Q = f·S 相对 。
Q 常不等于功的大小(功能关系)动摩擦因数处处相同,克服摩擦力做功 W = µ mg S四、动量1.反弹:△p = m (v 1+v 2)2.弹开:速度,动能都与质量成反比。
3.一维弹性碰撞: V 1'= [(m 1—m 2)V 1 + 2 m 2V 2]/(m 1 + m 2)V 2'= [(m 2—m 1)V 2 + 2 m 1V 2]/(m 1 + m 2)当 V 2 = 0 时,V 1'= (m 1—m 2)V 1 /(m 1 + m 2) V 2'= 2 m 1V 1/(m 1 + m 2)特点:大碰小,一起跑;小碰大,向后转;质量相等,速度交换。
4.1 球(V 1)追 2 球(V 2)相碰,可能发生的情况:① P 1 + P 2 = P '1 + P '2 ;m 1V 1'+ m 2 V 2'= m 1V 1 + m 2V 2动量守恒。
② E 'K1 +E 'K2 ≤E K1 +E K2动能不增加③ V 1'≤V 2'1 球不穿过2 球④ 当 V 2 = 0 时, ( m 1V 1)2/ 2(m 1 + m 2)≤ E 'K ≤( m 1V 1)2/ 2m 1① W = F S cosa (恒力) 定义式 ② W = P t (变力,恒力) ③ W = △E K (变力,恒力)④ W = △E (除重力做功的变力,恒力)E K =( mV )2/ 2m = P 2 / 2m = I 2 / 2m5.三把力学金钥匙五、振动和波1. 平衡位置:振动物体静止时,∑F 外=0 ;振动过程中沿振动方向∑F=0。
2. 由波的图象讨论波的传播距离、时间和波速:注意“双向”和“多解”。
3. 振动图上,振动质点的运动方向:看下一时刻,“上坡上”,“下坡下”。
4. 振动图上,介质质点的运动方向:看前一质点,“在上则上”,“在下则下”。
5. 波由一种介质进入另一种介质时,频率不变,波长和波速改变(由介质决定)6. 已知某时刻的波形图象,要画经过一段位移 S 或一段时间 t 的波形图:“去整存零,平行移动”。
7. 双重系列答案:向右传:△t = (K+1/4)T (K=0、1、2、3…)S = Kλ+△X (K=0、1、2、3…)a b c+g E -ga +4g -gb cEa b c E b=0;E a>E b;E c>E d;方向如图示;abc 比较b 点电势最低,由b 到∞,场强先增大,后减小,电势减小。
E b=0,a,c 两点场强方向如图所示E a>E b;E c>E d;E b>E d向左传:△t = (K+3/4)T K=0、1、2、3…)S = Kλ+(λ-△X)(K=0、1、2、3…)六、热和功分子运动论∶1.求气体压强的途径∶①固体封闭∶《活塞》或《缸体》《整体》列力平衡方程;②液体封闭:《某液面》列压强平衡方程;③系统运动:《液柱》《活塞》《整体》列牛顿第二定律方程。