数学分析期末试卷及答案
北京交通大学第二学期工科数学分析Ⅱ期末考试试卷及其答案

解此方程组,得
10.设函数 f ( x ) =
∫
0
x
sin t dt .⑴ 试将 f ( x ) 展成 x 的幂级数,并指出其收敛域.⑵ 若在上式中 t
令 x = 1 ,并利用其展开式的前三项近似计算积分 解: ⑴ 由于
∫
1
sin x dx ,试判断其误差是否超过 0.0001 ? x 0
( t 2 t 4 t 6 t 8 t 10 − 1) t 2 n −2 = 1− + − + − +"+ +" (2n − 1)! 3! 5! 7! 9! 11! 所以,在区间 [0, x ]上逐项积分,得
y x+ y ∫∫ e dxdy ,其中积分区域 D 是由直线 x = 0 , y = 0 及 x + y = 1 所围成的闭区 D
6.计算二重积分 域.
解: 作极坐标变换 x = r cos θ ,
y = r sin θ ,则有
rdr
∫∫ e
D
y x+ y
π
dxdy = ∫ dθ
0
2
1 cos θ + sin θ
Σ
(
)
(
)
= ∫∫∫ z + x + y dV
2 2 2
(
)
Ω
= ∫ dθ ∫ sin ϕdϕ ∫ ρ 4 dρ
0 0 0
−2
2π
π
2 a
2 = πa 5 5
8.求解微分方程 x y ′′ + xy ′ − 4 y = 2 x . 解:
2
这是 Euler 方程,令 x = e ,或 t = ln x ,原方程化为
数学分析试题及答案

数学分析试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^3-3x+1在x=1处的导数是()。
A. 1B. 2C. 3D. 4答案:B2. 极限lim(x→0) (sin x)/x的值是()。
A. 0B. 1C. -1D. 2答案:B3. 函数f(x)=x^2-4x+4的最小值是()。
A. 0B. 1C. 4D. 8答案:A4. 定积分∫(0,1) x^2 dx的值是()。
A. 1/3B. 1/2C. 2/3D. 1答案:B二、填空题(每题5分,共20分)1. 函数f(x)=x^3+2x^2-5x+6的导数是________。
答案:3x^2+4x-52. 函数f(x)=ln(x)的原函数是________。
答案:xln(x)-x3. 函数f(x)=e^x的不定积分是________。
答案:e^x+C4. 函数f(x)=x^2-6x+8在x=3处的值是________。
答案:-1三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。
答案:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。
然后检查二阶导数f''(x)=6x-12,发现f''(1)=-6<0,所以x=1是极大值点;f''(11/3)=2>0,所以x=11/3是极小值点。
2. 求极限lim(x→∞) (x^2+3x+2)/(x^3-4x+1)。
答案:分子和分母同时除以x^3,得到lim(x→∞)(1+3/x+2/x^2)/(1-4/x^2+1/x^3),当x趋向于无穷大时,极限为1。
3. 求定积分∫(0,2) (2x-1) dx。
答案:首先求不定积分∫(2x-1) dx = x^2 - x + C,然后计算定积分∫(0,2) (2x-1) dx = (2^2 - 2) - (0^2 - 0) = 4 - 2 = 2。
数学分析试卷及答案6套

f ( x1 ) f ( x2 ) .
g ( x) ,x 0 九. (12 分)设 f ( x) x 且 g (0) g (0) 0 , g (0) 3 , 求 f (0) . 0, x 0
答案参见我的新浪博客:/s/blog_3fb788630100muda.html
lim
h 0
1 h
x
a
[ f (t h) f (t )] dt f ( x) f (a).
六 (10 分 ) 求椭圆区域 R : (a1 x b1 y c1 ) 2 (a2 x b2 y c2 ) 2 1 (a1b2 a2b1 0) 的 面积 A . 七 (10 分) 设 F (t ) f ( x 2 y 2 z 2 ) dx dy dz ,其中 V : x 2 y 2 z 2 t 2 (t 0) ,
四. (12 分)证明函数 f ( x)
五. (12 分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10 分)证明任一齐次多项式至少存在一个实数零点. 七. (12 分)确定 a, b 使 lim ( x 2 x 1 ax b) 0 .
x
1 5 八. (14 分)求函数 f ( x) 2 x 3 9 x 2 12 x 在 [ , ] 的最大值与最小值. 4 2
x x0
x x0
1 1 . f ( x) b
三. (10 分)设 an 0 ,且 lim
an l 1 , 证明 lim an 0 . n n a n 1
四. (10 分 ) 证 明 函 数 f ( x) 在 开 区 间 ( a, b) 一 致 连 续 f ( x) 在 ( a, b) 连 续 , 且
数学分析3-期末考试真题

3 数学分析试卷
11sin sin 01(),
0 0x y xy y x f x xy ⎧+≠⎪=⎨⎪=⎩
当、已知当()()
000000lim (,),lim lim (,)lim lim (,),x y x x y y f x y f x y f x y →→→→→→判断及是否存在,并说明理由。
2222
2,()1z z z x y x y h z x y ∂++=∂∂、已知=()是由确定的。
试求的值。
222
22231 x y z a b c
++=、求椭球体上任一点的切平面于坐标轴所围四面体体积的最大值。
22
22223/222 0()4(,)(,) 0 0x y x y x y f x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩
当、已知,判断的连续性及可微性。
当22265,0
x y z x y z ⎧++=⎨++=⎩、已知曲线方程为求在点(1,-2,1)处的切线方程和法平面方程。
23D 36,D x dxdy y xy
+⎰⎰、求二重积分已知为如图的区域。
7I ().1x y z dxdydz x y z Ω=++Ω++=⎰⎰⎰、计算三重积分其中为平面,
与三个坐标平面围城的空间区域。
2228I cos .1
xdydz ydzdx dxdy x y z ∑++∑++=⎰⎰、求曲面积分=其中为所谓区域的外侧。
L
9I sin . L Pdx x ydy =+⎰、求曲线积分已知如图所示。
S 22I (). S 2xy yz zx dS z x y ax ++=+=⎰⎰10、求曲面积分=已知为柱面所截的曲面。
大学数学分析试题及答案

大学数学分析试题及答案一、选择题(每题5分,共20分)1. 若函数f(x)在区间(a, b)内连续,则下列说法正确的是:A. f(x)在区间(a, b)内一定有最大值和最小值B. f(x)在区间(a, b)内一定有界C. f(x)在区间(a, b)内不一定有界D. f(x)在区间(a, b)内一定单调答案:B2. 极限lim(x→0) (sin x)/x的值是:A. 0B. 1C. -1D. ∞答案:B3. 设函数f(x)=x^3-3x+1,则f'(x)等于:A. 3x^2-3B. x^2-3x+1C. 3x^2+3D. -3x^2+3答案:A4. 函数y=e^x的导数是:A. e^xB. e^(-x)C. -e^xD. 1/e^x答案:A二、填空题(每题5分,共20分)1. 若函数f(x)在点x=a处可导,则f'(a)表示______。
答案:函数f(x)在点x=a处的导数2. 设函数f(x)=x^2+2x+1,则f(2)的值为______。
答案:93. 若序列{a_n}满足a_1=1,a_{n+1}=2a_n+1,则a_5的值为______。
答案:334. 函数y=ln(x)的定义域是______。
答案:(0, +∞)三、解答题(每题15分,共60分)1. 求函数f(x)=x^2-4x+3在区间[1, 4]上的最大值和最小值。
答案:函数f(x)=x^2-4x+3的导数为f'(x)=2x-4。
令f'(x)=0,解得x=2。
在区间[1, 2)上,f'(x)<0,函数单调递减;在区间(2, 4]上,f'(x)>0,函数单调递增。
因此,最小值为f(2)=-1,最大值为f(1)=0或f(4)=3。
2. 计算极限lim(x→0) (x^2+3x+2)/(x^2-x+1)。
答案:lim(x→0) (x^2+3x+2)/(x^2-x+1) = (0+0+2)/(0-0+1) = 2。
北京大学《数学分析(Ⅲ)》2020-2021学年第一学期期末试卷 (2)

北京大学《数学分析(Ⅲ)》2020-2021学年第一学期期末试卷《数学分析(Ⅲ)》院/系——年纪——专业——姓名——学号——一、选择题(每题2分,共20分)1. 设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f'(x) > 0,则下列结论正确的是( )A. f(x)在[a,b]上单调递增B. f(x)在(a,b)上单调递增C. f(x)在[a,b]上单调递减D. f(x)在(a,b)上单调递减2. 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a) = f(b) = 0,则在(a,b)内至少存在一点ξ,使得( )A. f'(ξ) = 0B. f'(ξ) > 0C. f'(ξ) < 0D. 以上都不一定3. 关于函数极限的ε-δ定义,以下说法正确的是( )A. 对任意ε>0,总存在δ>0,使得当|x-x0|<δ时,有|f(x)-A|<εB. 对任意δ>0,总存在ε>0,使得当|x-x0|<δ时,有|f(x)-A|<εC. 对任意ε,δ>0,当|x-x0|<δ时,有|f(x)-A|<εD. 以上都不对4. 设z = f(x,y)在点(x0, y0)处可微,则( )A. dz在(x0, y0)处连续B. dz在(x0, y0)处有界C. dz在(x0, y0)处可导D. dz在(x0, y0)处存在偏导数5. 设u = u(x,y,z)有连续的二阶偏导数,则( )A. u关于x的二阶偏导数与关于y的二阶偏导数一定相等B. u关于x的二阶偏导数与关于y的二阶偏导数一定不相等C. u关于x,y的二阶混合偏导数与关于y,x的二阶混合偏导数一定相等D. 以上都不一定6. 设函数$f(x)$在$[a, b]$上连续,在$(a, b)$内可导,若$f'(x) > 0$对所有$x \in (a, b)$成立,则$f(x)$在$[a, b]$上( )A. 单调递增B. 单调递减C. 可能递增也可能递减D. 为常数7. 设$f(x)$在$x = x_0$处可导,且$f'(x_0) > 0$,则对于充分小的$\Delta x > 0$,有( )A. $f(x_0 + \Delta x) < f(x_0)$B. $f(x_0 + \Delta x) > f(x_0)$C. $f(x_0 + \Delta x) = f(x_0)$D. 无法确定8. 若$\lim_{{x \to \infty}} f(x) = L$,则下列说法正确的是( )A. $f(x)$在$x \to \infty$时单调B. $\lim_{{x \to -\infty}} f(x) = L$C. $f(x)$在$x \to \infty$时一定有界D. $\lim_{{x \to x_0}} f(x)$不一定存在9. 设函数$z = f(x, y)$在点$(x_0, y_0)$处可微,则$f$在$(x_0, y_0)$处的全微分$dz$可以表示为( )A. $dz = f_x(x_0, y_0) dx + f_y(x_0, y_0) dy$B. $dz = f_x(x_0, y_0) + f_y(x_0, y_0)$C. $dz = f_x(x_0, y_0) dy + f_y(x_0, y_0) dx$D. $dz = \frac{\partial f}{\partial x}(x_0, y_0) + \frac{\partial f}{\partial y}(x_0, y_0)$10.设$f(x)$在$[a,b]$上连续,在$(a,b)$内可导,且对任意$x \in (a,b)$,有$f(x) \geq 0$和$f'(x) \leq 0$,则:A. $f(x)$在$[a,b]$上单调递增B. $f(x)$在$[a,b]$上单调递减C. $f(x)$在$[a,b]$上恒为常数D. $f(x)$在$[a,b]$上无单调性二、填空题(每题3分,共15分)1. 设f(x)在[a,b]上连续,在(a,b)内可导,且f'(x) < 0,则f(x)在[a,b]上的最小值为_______。
数学分析期末试题A答案doc

数学分析期末试题A答案doc2024年数学分析期末试题A及答案一、选择题1、以下哪个函数在 x = 0 处连续? A. $f(x) = x^2$ B. $f(x) = \frac{1}{x}$ C. $f(x) = sin x$ D. $f(x) = e^x$ 答案:D解析:在 x = 0 处,只有选项 D 中的函数 e^x 是连续的。
因此,答案为 D。
2、设 $f(x) = x^2$,则 $f(3x - 2) =$ __________。
A. $x^2$ B. $(3x - 2)^2$ C. $(3x - 2)^3$ D. $(3x - 2)^2 + 1$ 答案:B解析:将 $x$ 替换为 $3x - 2$,得 $f(3x - 2) = (3x - 2)^2$。
因此,答案为 B。
3、下列等式中,错误的是: A. $\int_{0}^{1}x^2dx =\frac{1}{3}x^3|{0}^{1}$ B. $\int{0}^{\pi}\sin xdx = \cosx|{0}^{\pi}$ C. $\int{0}^{2\pi}\sin xdx = 0$ D.$\int_{0}^{1}(2x + 1)dx = (x^2 + x)|_{0}^{1}$ 答案:A解析:等式两边取极限,只有 A 选项等式两边不相等,因此 A 选项是错误的。
4、下列哪个导数是常数函数? A. $y = x^3$ B. $y = \sin x$ C. $y = e^x$ D. $y = log_a(x)$ 答案:C解析:常数函数的导数为零。
在选项中,只有 C 中的函数 e^x 的导数为常数函数,其导数为 $e^x$。
因此,答案为 C。
高一生物期末考试试题及答案doc高一生物期末考试试题及答案doc高一生物期末考试是一次重要的学业水平测试,旨在考察学生在本学期学习生物课程的效果。
以下是本次考试的部分试题及其答案,供大家参考。
一、选择题1、下列哪一种生物不是由细胞构成的? A. 细菌 B. 植物 C. 动物D. 病毒答案:D2、哪一个器官属于消化系统? A. 口腔 B. 食道 C. 胃 D. 大肠答案:C3、在光合作用中,哪一个物质是植物从空气中吸收的? A. 氧气 B. 二氧化碳 C. 葡萄糖 D. 水答案:B二、填空题1、病毒是一种生物,但它不能 _______ 和保持生命活动,必须_______ 在细胞内。
数学分析期末考试试卷及答案

数学分析期末考试试卷及答案一、选择题(每题5分,共25分)1. 设函数f(x) = x^3 - 3x,则f(x)在区间()内单调递增。
A. (-∞, 0)B. (0, +∞)C. (-∞, -1) ∪ (1, +∞)D. (-1, 1)答案:C2. 函数y = x^3 - 3x + 1在x = 0处的极值是()A. 1B. 0C. -1D. 无极值答案:C3. 设函数f(x)在区间[a, b]上连续,且f(a) = f(b) = 0,则在区间(a, b)内至少存在一点ξ,使得f'(ξ) = 0,这个结论是()A. 罗尔定理B. 拉格朗日中值定理C. 柯西中值定理D. 洛必达法则答案:A4. 设函数f(x) = e^x,则f'(x) = ()A. e^xB. ln(x)C. e^x + 1D. e^x - 1答案:A5. 以下哪个数列收敛?()A. a_n = n^2B. a_n = 1/nC. a_n = sin(n)D. a_n = (-1)^n答案:B二、填空题(每题5分,共25分)6. 函数y = 2x^3 - 3x^2 + 1在x = 1处的导数为______。
答案:37. 设函数f(x) = x^2 - 2x + 3,求f'(x) =_______。
答案:2x - 28. 函数y = x^3 - 3x + 1在x = 0处的极大值为______。
答案:19. 设函数f(x) = sin(x),求f''(x) = _______。
答案:-sin(x)10. 数列a_n = 1/n的极限为______。
答案:0三、计算题(每题10分,共30分)11. 设函数f(x) = x^2 + 3x + 2,求f'(x)和f''(x)。
答案:f'(x) = 2x + 3,f''(x) = 212. 设函数f(x) = e^x sin(x),求f'(x)。
数学分析(2)期末试题参考答案

∑ A′
∑ ℓα (
)
µ(Iα) µ Jβxα,γ
≥
ε0 m
>
ε.
α=1 γ=1
α=1
γ=1
另 一 方 面, 对 于 每 个 xα, 存 在 一 个 Kk, 使 得 xα ∈ Kk。 因 为 P 是 利 用 K1, . . . , Kκ 的边界构造的网格分划,所以相应的 Iα × Jβxα,γ 一定包含在这个
恰好覆盖
Em,于是
∑A′
α=1
µ(Iα)
≥
ε0。对于每个
Iα (1 于是
≤ α ≤ A′),取一个
∑ℓα
γ=1
µ(Jβxα ,γ
)
≥
1 m
xα ∈ Iα ∩ Em,设 ,所以我们有
Jβxα,1 , . . . , Jβxα,ℓα
恰好覆盖
Kxα ,
∑ A′ ∑ ℓα ( µ Iα
) × Jβxα,γ
=
i) 求证:
∫
∫
∫
ωi = ωi + ωi, i = 1, 2.
γ3
γ1
γ2
ii) 求证:
∫
lim
ωi = 0, i = 1, 2.
R→+∞ γ2
iii) 计算广义积分:
C = ∫ +∞ cos (x2) dx, S = ∫ +∞ sin (x2) dx
0
0
() 解答: i) 因为 ωi ∈ Ω1 R2 、dωi = 0 (i = 1, 2),所以由 Green 公式可知结论
解答:(证法一)因为
K
紧且
Lebesgue ∫
零测,所以
Jordan
零测,于是
数学分析期末复习题答案

数学分析期末复习题答案一、选择题1. 函数f(x)=x^2在区间[-1,1]上是()A. 增函数B. 减函数C. 偶函数D. 奇函数答案:C2. 极限lim(x→0) (sin(x)/x)的值是()A. 0B. 1C. -1D. 2答案:B3. 以下哪个级数是收敛的()A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 + 1/2 + 1/3 + 1/4 + ...C. 1 - 1/2 + 1/3 - 1/4 + ...D. 1 + 2 + 3 + 4 + ...答案:C二、填空题1. 函数f(x)=x^3-3x+2的导数是________。
答案:3x^2-32. 函数f(x)=e^x的不定积分是________。
答案:e^x + C3. 极限lim(x→∞) (1/x)的值是________。
答案:0三、解答题1. 求函数f(x)=x^2-4x+3的极值点。
解:首先求导数f'(x)=2x-4,令f'(x)=0,解得x=2。
检查二阶导数f''(x)=2,因为f''(2)>0,所以x=2是极小值点,极小值为f(2)=-1。
2. 证明函数f(x)=x^3在R上是单调递增的。
证明:对于任意x1, x2∈R,且x1<x2,我们有f(x1)-f(x2)=x1^3-x2^3=(x1-x2)(x1^2+x1x2+x2^2)。
由于x1<x2,所以x1-x2<0,且x1^2+x1x2+x2^2>0,因此f(x1)-f(x2)<0,即f(x1)<f(x2),所以f(x)=x^3在R上是单调递增的。
3. 计算定积分∫[0,1] (x^2-2x+1)dx。
解:首先求不定积分∫(x^2-2x+1)dx=(1/3)x^3-x^2+x+C,然后计算定积分∫[0,1] (x^2-2x+1)dx=[(1/3)x^3-x^2+x]_0^1=(1/3-1+1)-(0)=1/3。
《数学分析II》期末试卷+参考答案

《数学分析(II )》试题2004.6一.计算下列各题:1.求定积分∫+e x x dx 12)ln 2(;2.求定积分; ∫−222),1max(dx x3.求反常积分dx x x ∫∞++021ln ;4.求幂级数()∑∞=−+1221n n n x n n 的收敛域;5.设,求du 。
yz x u =二.设变量代换可把方程⎩⎨⎧+=−=ay x v y x u ,20622222=∂∂−∂∂∂+∂∂y z y x z x z 简化为02=∂∂∂v u z ,求常数。
a三.平面点集(){}⎭⎬⎫⎩⎨⎧=⎟⎠⎞⎜⎝⎛L U ,2,11sin ,10,0n n n是否为紧集?请说明理由。
四.函数项级数n nn n x x n +⋅−∑∞=−1)1(11在上是否一致收敛?请说明理由。
]1,0[五.设函数在上连续,且满足)(x f ),(∞+−∞1)1(=f 和)arctan(21)2(20x dt t x tf x =−∫。
求。
∫21)(dx x f六.设函数在上具有连续导数,且满足)(x f ),1[∞+1)1(=f 和22)]([1)(x f x x f +=′,+∞<≤x 1。
证明:存在且小于)(lim x f x +∞→41π+。
七.设如下定义函数:dt t t x f x x t1sin 21)(2∫⎟⎠⎞⎜⎝⎛+=,。
1>x 判别级数∑∞=2)(1n n f 的敛散性。
八.设∫=40cos sin πxdx x I n n (L ,2,1,0=n )。
求级数的和。
∑∞=0n n I《数学分析(II )》试题(答案)2004.6一.1.421π⋅; 2.320; 3.; 4. 0)2/1,2/1(−; 5.⎟⎠⎞⎜⎝⎛++=xdz y xdy z dx x yz x dz yz ln ln 。
二.。
3=a 三. 是紧集。
四.一致收敛。
五.43。
六.因为,所以单调增加,因此0)(>′x f )(x f 1)1()(=>f x f 。
数学分析B1期末考试题及答案

数学分析B1期末考试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是实数集的子集?A. 有理数集B. 整数集C. 无理数集D. 复数集2. 若函数f(x)在点x=a处连续,则下列哪个选项不正确?A. 极限lim(x→a) f(x) = f(a)B. f(a)存在C. f(x)在x=a的邻域内不一定有界D. f(x)在x=a的邻域内不一定连续3. 函数f(x)=x^2在区间[-1,1]上的最大值是:A. 0B. 1C. 4D. 不存在4. 若f(x)=sin(x),x∈[0,2π],则f(x)的原函数F(x)是:A. -cos(x) + CB. cos(x) + CC. -sin(x) + CD. sin(x) + C5. 函数f(x)=ln(x)的导数是:A. 1/xB. xC. ln(x)D. 1/ln(x)答案:1.D 2.C 3.B 4.A 5.A二、填空题(每题2分,共10分)6. 若函数f(x)在[a,b]上连续,则______存在。
7. 函数f(x)=x^3-3x^2+2的一阶导数为______。
8. 函数f(x)=1/x在点x=1处的导数为______。
9. 若f(x)=x^2+2x+1,则f'(1)=______。
10. 函数f(x)=sin(x)+cos(x)的周期为______。
答案:6. 原函数 7. 3x^2-6x 8. -1 9. 5 10. 2π三、简答题(每题10分,共20分)11. 证明:若函数f(x)在区间[a,b]上连续,并且f(a)f(b)<0,则根据介值定理,f(x)在(a,b)内至少有一个零点。
12. 解释什么是泰勒公式,并给出e^x的泰勒公式展开。
答案:11. 证明:由于f(x)在[a,b]上连续,根据连续函数的性质,f(x)在[a,b]上是闭区间上的有界函数。
设M=f(a),m=f(b),因为Mm<0,根据介值定理,存在c∈(a,b)使得f(c)=0,即f(x)在(a,b)内至少有一个零点。
华东理工大学《数学分析(上)》期末考试试卷及答案

八、证明方程 x sin x = 2010 在(−∞, +∞)内有无穷多个解.(8分) 九、设 f ( x )在[0, +∞)连续, 且 lim [ f ( x ) − x −1] = 0, 证明 f ( x )在[0, +∞)一致连续.(本
x → +∞
题8分) 十 、 设 函 数 f ( x )在 [a, b] 连 续, 在(a, b)可 导, 求 证 在(a, b)内 存 在 相 异 两 点 ξ 和 η 使 2 f (b) − f (a) 得 f (ξ) f (η) = .(本题8分) b−a
√ n 一、用极限的定义证明 lim 2010 = 1. (本题7分)
n →∞
二、求极限(共14分, 每小题7分) 1. lim x − √ x
x→∞
1 e−1
2.
ห้องสมุดไป่ตู้
x → +∞
lim
√ 5
x5 + x4 −
√ 3
x3 − x2
三、求不定积分(共14分, 每小题7分) 1. e ax sin bx d x (其中a, b为常数) 2. cos x dx sin x + cos x
华东理 工大 学 2009 - 2010 学 年第 一学 期
《 数 学 分 析 (上 )》 课 程 期 末 考 试 标 准答 案 A 2010. 1. 13
√ n 一、用极限的定义证明 lim 2010 = 1. (本题7分)
n →∞
(注: 不等式放缩3分, 定义4分) ln 2010 证:∀ε > 0, 令N = log1+ ε 2010 , 则 ∀n > N 有n > , 因此 ln(1+ ε) √ √ 1 n n ln(1− ε) < 0 < ln 2010 < ln(1+ ε), 即1− ε < 2010 < 1+ ε, 故 lim 2010 = 1. n →∞ n 二、求极限(共14分, 每小题7分) √ √ 5 3 1 5 + x4 − 1. lim x − √ 2. lim x x3 − x2 x x→∞ x → +∞ e−1 1 1 et − t − 1 1. 解: 原式= lim − t (2分) = lim t→0 t t → 0 t(e t − 1) e −1 et − t − 1 et − 1 et 1 = lim (2 分 ) = lim (1 分 ) = lim (1分) = (1分) 2 t→0 t→0 t→0 2 t 2t 2 1 1 1 1 5 3 2. 解: 原式= lim x 1 + − 1− (2分) x → +∞ x x 1 11 8 11 + o( ) − 1 − + o( 1 (1分) ) (4分) = = lim x 1 + x x → +∞ 5x x 3x 15 三、求不定积分(共14分, 每小题7分) cos x 1. e ax sin bx d x (其中a, b为常数) dx 2. sin x + cos x 1. 解: 设 I = e ax sin bx d x (1)当a 0时, 由分部积分 b b 1 1 1 sin bx d (e ax )= e ax sin bx− e ax cos bx d x (2分)= e ax sin bx− 2 cos bx d (e ax ) I= a a a a a b ax b b2 b2 1 ax 1 = e sin bx− 2 e cos bx− 2 e ax sin bx d x (2分)= e ax sin bx− 2 e ax cos bx− 2 I +C1 a a a a a a (a sin bx − b cos bx )e ax 故I = (2分) + C (1分) a2 + b2 (2)当a = 0, b 0时, 上述结果仍成立; (3)当a = 0, b = 0时, I = C . cos x − sin x x d(sin x + cos x) 1 1+ d x (3分) = + (2分) 2.解法一: 原式= 2 sin x + cos x 2 sin x + cos x x 1 = + ln | sin x + cos x | (1分) + C (1分) 2 2 dt 解法二: 设 t = tan x, 则 x = arctan t, d x = . (2分) 1 + t2 dt 2 dx 1 1 1 t 原式= = 1+t = + − d t (2分) 2 1 + tan x 1+ t 2 1+t 1+t 1 + t2 1 d (1 + t) 1 dt 1 d (1 + t 2 ) = + − 2 1+t 2 1 + t2 4 1 + t2 1 1 1 = ln |1 + t | + arctan t − ln(1 + t 2 ) + C (2分) 2 2 4 i