高中物理磁场大题(超全)

合集下载

高中物理 磁场计算专题(附答案详解)

高中物理  磁场计算专题(附答案详解)

专题:磁场计算题(附答案详解)1、如图所示,从离子源产生的甲、乙两种离子,由静止经加速电压U加速后在纸面内水平向右运动,自M点垂直于磁场边界射入匀强磁场,磁场方向垂直于纸面向里,磁场左边界竖直.已知甲种离子射入磁场的速度大小为v1,并在磁场边界的N点射出;乙种离子在MN的中点射出;MN长为l.不计重力影响和离子间的相互作用.求:(1)磁场的磁感应强度大小;(2)甲、乙两种离子的比荷之比.2、如图所示,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E;在y<0的区域存在方向垂直于xOy平面向外的匀强磁场.一个氕核11H和一个氘21H先后从y轴上y=h点以相同的动能射出,速度方向沿x轴正方向.已知11H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁场.11H的质量为m,电荷量为q.不计重力.求:(1)11H第一次进入磁场的位置到原点O的距离;(2)磁场的磁感应强大小;(3)21H第一次离开磁场的位置到原点O的距离.3、一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l′,电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行.一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为π6,求该粒子的比荷及其从M点运动到N点的时间.4、如图所示,竖直放置的平行金属板板间电压为U,质量为m、电荷量为+q的带电粒子在靠近左板的P点,由静止开始经电场加速,从小孔Q射出,从a点进入磁场区域,abde是边长为2L的正方形区域,ab边与竖直方向夹角为45°,cf与ab平行且将正方形区域等分成两部分,abcf中有方向垂直纸面向外的匀强磁场B1,defc中有方向垂直纸面向里的匀强磁场B2,粒子进入磁场B1后又从cf 上的M点垂直cf射入磁场B2中(图中M点未画出),不计粒子重力,求:(1)粒子从小孔Q射出时的速度;(2)磁感应强度B1的大小;(3)磁感应强度B2的取值在什么范围内,粒子能从边界cd间射出.5、如图所示,在真空中xOy平面的第一象限内,分布有沿x轴负方向的匀强电场,场强E=4×104 N/C,第二、三象限内分布有垂直于纸面向里且磁感应强度为B2的匀强磁场,第四象限内分布有垂直纸面向里且磁感应强度为B1=0.2 T的匀强磁场.在x轴上有一个垂直于y轴的平板OM,平板上开有一个小孔P,在y轴负方向上距O点为 3 cm的粒子源S可以向第四象限平面内各个方向发射α粒子,且OS>OP.设发射的α粒子速度大小v均为2×105 m/s,除了垂直于x轴通过P点的α粒子可以进入电场,其余打到平板上的α粒子均被吸收.已知α粒子的比荷为qm=5×107 C/kg,重力不计,试问:(1)P点距O点的距离;(2)α粒子经过P点第一次进入电场,运动后到达y轴的位置与O点的距离;(3)要使离开电场的α粒子能回到粒子源S处,磁感应强度B2应为多大?6、如图25所示,在xOy平面的0≤x≤23a范围内有沿y轴正方向的匀强电场,在x>23a范围内某矩形区域内有一个垂直于xOy平面向里的匀强磁场,磁感应强度大小为B.一质量为m、电荷量为+q的粒子从坐标原点O以速度v0沿x轴正方向射入电场,从M点离开电场,M点坐标为(23a,a).再经时间t=3mqB进入匀强磁场,又从M点正上方的N点沿x轴负方向再次进入匀强电场.不计粒子重力,已知sin 15°=6-24,cos 15°=6+24.求:(1)匀强电场的电场强度;(2)N点的纵坐标;(3)矩形匀强磁场的最小面积.7、如图甲所示,竖直挡板MN左侧空间有方向竖直向上的匀强电场和垂直纸面的匀强磁场,电场和磁场的范围足够大,电场强度E=40 N/C,磁感应强度B随时间t变化的关系图象如图乙所示,选定磁场垂直于纸面向里为正方向.t=0时刻,一质量m=8×10-4 kg、电荷量q=+2×10-4 C的微粒在O点具有竖直向下的速度v=0.12 m/s,O′是挡板MN上一点,直线OO′与挡板MN垂直,g取10m/s2.求:(1)微粒再次经过直线OO′时与O点的距离;(2)微粒在运动过程中离开直线OO′的最大高度.(3)水平移动挡板,使微粒能垂直射到挡板上,挡板与O点间的距离应满足的条件.8、如图所示,在竖直平面内,水平x轴的上方和下方分别存在方向垂直纸面向外和方向垂直纸面向里的匀强磁场,其中x轴上方的匀强磁场磁感应强度大小为B1,并且在第一象限和第二象限有方向相反、强弱相同的平行于x轴的匀强电场,电场强度大小为E1,已知一质量为m的带电小球从y轴上的A(0,L)位置斜向下与y轴负半轴成60°角射入第一象限,恰能做匀速直线运动。

高中物理磁场习题200题(带答案)

高中物理磁场习题200题(带答案)

评卷人得分一、选择题1.如图所示,一电荷量为q的负电荷以速度v射入匀强磁场中.其中电荷不受洛仑兹力的是()A. B. C. D.【答案】C【解析】由图可知,ABD图中带电粒子运动的方向都与粗糙度方向垂直,所以受到的洛伦兹力都等于qvB,而图C中,带电粒子运动的方向与磁场的方向平行,所以带电粒子不受洛伦兹力的作用.故C正确,ABD错误.故选C.2.如图所示为电流产生磁场的分布图,其中正确的是()A. B. C. D.【答案】D【解析】A中电流方向向上,由右手螺旋定则可得磁场为逆时针(从上向下看),故A错误;B 图电流方向向下,由右手螺旋定则可得磁场为顺时针(从上向下看),故B错误;C图中电流为环形电流,由由右手螺旋定则可知,内部磁场应向右,故C错误;D图根据图示电流方向,由右手螺旋定则可知,内部磁感线方向向右,故D正确;故选D.点睛:因磁场一般为立体分布,故在判断时要注意区分是立体图还是平面图,并且要能根据立体图画出平面图,由平面图还原到立体图.3.下列图中分别标出了一根放置在匀强磁场中的通电直导线的电流I、磁场的磁感应强度B和所受磁场力F的方向,其中图示正确的是()A. B. C. D.【答案】C【解析】根据左手定则的内容:伸开左手,使大拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向,可得:A、电流与磁场方向平行,没有安培力,故A错误;B、安培力的方向是垂直导体棒向下的,故B错误;C、安培力的方向是垂直导体棒向上的,故C正确;D、电流方向与磁场方向在同一直线上,不受安培力作用,故D错误.故选C.点睛:根据左手定则直接判断即可,凡是判断力的方向都是用左手,要熟练掌握,是一道考查基础的好题目.4.如图所示,水平地面上固定着光滑平行导轨,导轨与电阻R连接,放在竖直向上的匀强磁场中,杆的初速度为v0,不计导轨及杆的电阻,则下列关于杆的速度与其运动位移之间的关系图像正确的是()A. B. C. D.【答案】C【解析】导体棒受重力、支持力和向后的安培力;感应电动势为:E=BLv感应电流为:安培力为:故:求和,有:故:故v与x是线性关系;故C正确,ABD错误;故选:C.5.如图所示,直角三角形ABC中存在一匀强磁场,比荷相同的两个粒子沿AB方向射入磁场,粒子仅受磁场力作用,分别从AC边上的P、Q两点射出,则()A. 从P射出的粒子速度大B. 从Q射出的粒子速度大C. 从P射出的粒子,在磁场中运动的时间长D. 两粒子在磁场中运动的时间一样长【答案】BD【解析】试题分析:粒子在磁场中做圆周运动,根据题设条件作出粒子在磁场中运动的轨迹,根据轨迹分析粒子运动半径和周期的关系,从而分析得出结论.粒子在磁场中做匀速圆周运动,根据几何关系(图示弦切角相等),粒子在磁场中偏转的圆心角相等,根据粒子在磁场中运动的时间:,又因为粒子在磁场中圆周运动的周期,可知粒子在磁场中运动的时间相等,故D正确,C错误;如图,粒子在磁场中做圆周运动,分别从P点和Q点射出,由图知,粒子运动的半径,又粒子在磁场中做圆周运动的半径知粒子运动速度,故A错误B正确;【点睛】带电粒子在匀强磁场中运动时,洛伦兹力充当向心力,从而得出半径公式,周期公式,运动时间公式,知道粒子在磁场中运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题,6.在等边三角形的三个顶点a、b、c处,各有一条长直导线垂直纸面放置,导线中通有大小相等的恒定电流,方向如图所示.过c点的导线所受安培力的方向()A. 与ab边平行,竖直向上B. 与ab边垂直,指向右边C. 与ab边平行,竖直向下D. 与ab边垂直,指向左边【答案】D【解析】试题分析:先根据右手定则判断各个导线在c点的磁场方向,然后根据平行四边形定则,判断和磁场方向,最后根据左手定则判断安培力方向导线a在c处的磁场方向垂直ac斜向下,b在c处的磁场方向垂直bc斜向上,两者的和磁场方向为竖直向下,根据左手定则可得c点所受安培力方向为与ab边垂直,指向左边,D正确;7.下列说法中正确的是()A. 电场线和磁感线都是一系列闭合曲线B. 在医疗手术中,为防止麻醉剂乙醚爆炸,医生和护士要穿由导电材料制成的鞋子和外套,这样做是为了消除静电C. 奥斯特提出了分子电流假说D. 首先发现通电导线周围存在磁场的科学家是安培【答案】B【解析】电场线是从正电荷开始,终止于负电荷,不是封闭曲线,A错误;麻醉剂为易挥发性物品,遇到火花或热源便会爆炸,良好接地,目的是为了消除静电,这些要求与消毒无关,B正确;安培发现了分子电流假说,奥斯特发现了电流的磁效应,CD错误;8.在如图所示的平行板电容器中,电场强度E和磁感应强度B相互垂直,一带正电的粒子q以速度v沿着图中所示的虚线穿过两板间的空间而不偏转(忽略重力影响)。

高中物理【磁场】专题分类典型题(带解析)

高中物理【磁场】专题分类典型题(带解析)

高中物理磁场专题分类题型一、【磁场的描述 磁场对电流的作用】典型题1.如图所示,带负电的金属环绕轴OO ′以角速度ω匀速旋转,在环左侧轴线上的小磁针最后平衡时的位置是( )A .N 极竖直向上B .N 极竖直向下C .N 极沿轴线向左D .N 极沿轴线向右解析:选C .负电荷匀速转动,会产生与旋转方向反向的环形电流,由安培定则知,在磁针处磁场的方向沿轴OO ′向左.由于磁针N 极指向为磁场方向,可知选项C 正确.2.磁场中某区域的磁感线如图所示,则( )A .a 、b 两处的磁感应强度的大小不等,B a >B bB .a 、b 两处的磁感应强度的大小不等,B a <B bC .同一通电导线放在a 处受力一定比放在b 处受力大D .同一通电导线放在a 处受力一定比放在b 处受力小解析:选A .磁感线的疏密程度表示磁感应强度的大小,由a 、b 两处磁感线的疏密程度可判断出B a >B b ,所以A 正确,B 错误;安培力的大小跟该处的磁感应强度的大小B 、电流大小I 、导线长度L 和导线放置的方向与磁感应强度的方向的夹角有关,故C 、D 错误.3.将长为L 的导线弯成六分之一圆弧,固定于垂直纸面向外、大小为B 的匀强磁场中,两端点A 、C 连线竖直,如图所示.若给导线通以由A 到C 、大小为I 的恒定电流,则导线所受安培力的大小和方向是( )A .ILB ,水平向左B .ILB ,水平向右C .3ILB π,水平向右D .3ILB π,水平向左解析:选D .弧长为L ,圆心角为60°,则弦长AC =3L π,导线受到的安培力F =BIl =3ILB π,由左手定则可知,导线受到的安培力方向水平向左.4.如图所示,M 、N 和P 是以MN 为直径的半圆弧上的三点,O 为半圆弧的圆心,∠MOP =60°,在M 、N 处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O 点的磁感应强度大小为B 1.若将M 处长直导线移至P 处,则O 点的磁感应强度大小为B 2,那么B 2与B 1之比为( )A .3∶1B .3∶2C .1∶1D .1∶2解析:选B .如图所示,当通有电流的长直导线在M 、N 两处时,根据安培定则可知:二者在圆心O 处产生的磁感应强度大小都为B 12;当将M 处长直导线移到P 处时,两直导线在圆心O 处产生的磁感应强度大小也为B 12,做平行四边形,由图中的几何关系,可得B 2B 1=B 22B 12=cos 30°=32,故选项B 正确.5.阿明有一个磁浮玩具,其原理是利用电磁铁产生磁性,让具有磁性的玩偶稳定地飘浮起来,其构造如图所示.若图中电源的电压固定,可变电阻为一可以随意改变电阻大小的装置,则下列叙述正确的是( )A .电路中的电源必须是交流电源B .电路中的a 端点须连接直流电源的负极C .若增加环绕软铁的线圈匝数,可增加玩偶飘浮的最大高度D .若将可变电阻的电阻值调大,可增加玩偶飘浮的最大高度解析:选C .电磁铁产生磁性,使玩偶稳定地飘浮起来,电路中的电源必须是直流电源,电路中的a 端点须连接直流电源的正极,选项A 、B 错误;若增加环绕软铁的线圈匝数,电磁铁产生的磁性更强,电磁铁对玩偶的磁力增强,可增加玩偶飘浮的最大高度,选项C 正确;若将可变电阻的电阻值调大,电磁铁中电流减小,产生的磁性变弱,则降低玩偶飘浮的最大高度,选项D 错误.6.一通电直导线与x 轴平行放置,匀强磁场的方向与xOy 坐标平面平行,导线受到的安培力为F .若将该导线做成34圆环,放置在xOy 坐标平面内,如图所示,并保持通电的电流不变,两端点ab 连线也与x 轴平行,则圆环受到的安培力大小为( )A .FB .23πFC .223πFD .32π3F 解析:选C .根据安培力公式,安培力F 与导线长度L 成正比;若将该导线做成34圆环,由L =34×2πR ,解得圆环的半径R =2L 3π,34圆环ab 两点之间的距离L ′=2R =22L 3π.由F L =F ′L ′解得:F ′=223πF ,选项C 正确. 7.在绝缘圆柱体上a 、b 两个位置固定有两个金属圆环,当两环通有如图所示电流时,b 处金属圆环受到的安培力为F 1;若将b 处金属圆环移动到位置c ,则通有电流为I 2的金属圆环受到的安培力为F 2.今保持b 处金属圆环原来位置不变,在位置c 再放置一个同样的金属圆环,并通有与a 处金属圆环同向、大小为I 2的电流,则在a 位置的金属圆环受到的安培力( )A .大小为|F 1-F 2|,方向向左B .大小为|F 1-F 2|,方向向右C .大小为|F 1+F 2|,方向向左D .大小为|F 1+F 2|,方向向右解析:选A .c 金属圆环对a 金属圆环的作用力大小为F 2,根据同方向的电流相互吸引,可知方向向右,b金属圆环对a金属圆环的作用力大小为F1,根据反方向的电流相互排斥,可知方向向左,所以a金属圆环所受的安培力大小|F1-F2|,由于a、b间的距离小于a、c 间距离,所以两合力的方向向左.8.如图,两根相互平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流.a、O、b在M、N的连线上,O为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到O点的距离均相等.关于以上几点处的磁场,下列说法正确的是()A.O点处的磁感应强度为零B.a、b两点处的磁感应强度大小相等,方向相反C.c、d两点处的磁感应强度大小相等,方向相同D.a、c两点处磁感应强度的方向不同解析:选C.由安培定则可知,两导线中的电流在O点产生的磁场均竖直向下,合磁感应强度一定不为零,选项A错;由安培定则知,两导线中的电流在a、b两点处产生的磁场的方向均竖直向下,由于对称性,M中电流在a处产生的磁场的磁感应强度等于N中电流在b处产生的磁场的磁感应强度,同时M中电流在b处产生的磁场的磁感应强度等于N 中电流在a处产生的磁场的磁感应强度,所以a、b两点处磁感应强度大小相等,方向相同,选项B错;根据安培定则,两导线中的电流在c、d两点处产生的磁场垂直c、d两点与导线的连线方向向下,且产生的磁场的磁感应强度大小相等,由平行四边形定则可知,c、d 两点处的磁感应强度大小相等,方向相同,选项C正确;a、c两点处磁感应强度的方向均竖直向下,选项D错.9. (多选)如图所示,金属细棒质量为m,用两根相同轻弹簧吊放在水平方向的匀强磁场中,弹簧的劲度系数为k,棒ab中通有恒定电流,棒处于平衡状态,并且弹簧的弹力恰好为零.若电流大小不变而方向反向,则()A .每根弹簧弹力的大小为mgB .每根弹簧弹力的大小为2mgC .弹簧形变量为mg kD .弹簧形变量为2mg k解析:选AC .电流方向改变前,对棒受力分析,根据平衡条件可知,棒受到的安培力竖直向上,大小等于mg ;电流方向改变后,棒受到的安培力竖直向下,大小等于mg ,对棒受力分析,根据平衡条件可知,每根弹簧弹力的大小为mg ,弹簧形变量为mg k,选项A 、C 正确.10.如图所示,两平行光滑金属导轨CD 、EF 间距为L ,与电动势为E 0的电源相连,质量为m 、电阻为R 的金属棒ab 垂直于导轨放置构成闭合回路,回路平面与水平面成θ角,回路其余电阻不计.为使ab 棒静止,需在空间施加的匀强磁场磁感应强度的最小值及其方向分别为( )A .mgR E 0L,水平向右 B .mgR cos θE 0L,垂直于回路平面向上 C .mgR tan θE 0L,竖直向下 D .mgR sin θE 0L,垂直于回路平面向下 解析:选D .对金属棒受力分析,受重力、支持力和安培力,如图所示;从图可以看出,当安培力沿斜面向上时,安培力最小,故安培力的最小值为:F A =mg sin θ,故磁感应强度的最小值为B =F A IL =mg sin θIL ,根据欧姆定律,有E 0=IR ,故B =mgR sin θE 0L,故D 正确.11.已知直线电流在其空间某点产生的磁场,其磁感应强度B 的大小与电流强度成正比,与点到通电导线的距离成反比.现有平行放置的三根长直通电导线,分别通过一个直角三角形△ABC的三个顶点且与三角形所在平面垂直,如图所示,∠ACB=60°,O为斜边的中点.已知I1=2I2=2I3,I2在O点产生的磁场磁感应强度大小为B,则关于O点的磁感应强度,下列说法正确的是()A.大小为2B,方向垂直AB向左B.大小为23B,方向垂直AB向左C.大小为2B,方向垂直AB向右D.大小为23B,方向垂直AB向右解析:选B.导线周围的磁场的磁感线,是围绕导线形成的同心圆,空间某点的磁场沿该点的切线方向,即与该点和导线的连线垂直,根据右手螺旋定则,可知三根导线在O点的磁感应强度的方向如图所示.已知直线电流在其空间某点产生的磁场,其磁感应强度B 的大小与电流强度成正比,与点到通电导线的距离成反比,已知I1=2I2=2I3,I2在O点产生的磁场磁感应强度大小为B,O点到三根导线的距离相等,可知B3=B2=B,B1=2B,由几何关系可知三根导线在平行于AB方向的合磁场为零,垂直于AB方向的合磁场为23B.综上可得,O点的磁感应强度大小为23B,方向垂直于AB向左.故B正确,A、C、D 错误.12.(多选)光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20 cm的两段光滑圆弧导轨相接,一根质量m=60 g、电阻R=1 Ω、长为L的导体棒ab,用长也为L的绝缘细线悬挂,如图所示,系统空间有竖直方向的匀强磁场,磁感应强度B=0.5 T,当闭合开关S后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成θ=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin 53°=0.8,g=10 m/s2,则()A.磁场方向一定竖直向下B.电源电动势E=3.0 VC.导体棒在摆动过程中所受安培力F=3 ND.导体棒在摆动过程中电源提供的电能为0.048 J解析:选AB.导体棒向右沿圆弧摆动,说明受到向右的安培力,由左手定则知该磁场方向一定竖直向下,A项正确;导体棒摆动过程中只有安培力和重力做功,由动能定理知BIL·L sin θ-mgL(1-cos θ)=0,代入数值得导体棒中的电流为I=3 A,由E=IR得电源电动势E=3.0 V,B项正确;由F=BIL得导体棒在摆动过程中所受安培力F=0.3 N,C项错误;由能量守恒定律知电源提供的电能W等于电路中产生的焦耳热Q和导体棒重力势能的增加量ΔE的和,即W=Q+ΔE,而ΔE=mgL(1-cos θ)=0.048 J,D项错误.13.(多选)某同学自制的简易电动机示意图如图所示.矩形线圈由一根漆包线绕制而成,漆包线的两端分别从线圈的一组对边的中间位置引出,并作为线圈的转轴.将线圈架在两个金属支架之间,线圈平面位于竖直面内,永磁铁置于线圈下方.为了使电池与两金属支架连接后线圈能连续转动起来,该同学应将()A.左、右转轴下侧的绝缘漆都刮掉B.左、右转轴上下两侧的绝缘漆都刮掉C.左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉D.左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉解析:选AD.若将左、右转轴下侧的绝缘漆都刮掉,这样当线圈在图示位置时,线圈的上下边受到水平方向的安培力而转动,转过一周后再次受到同样的安培力而使其连续转动,选项A正确;若将左、右转轴上下两侧的绝缘漆都刮掉,则当线圈在图示位置时,线圈的上下边受到安培力而转动,转过半周后再次受到相反方向的安培力而使其停止转动,选项B 错误;左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉,电路不能接通,故不能转起来,选项C 错误;若将左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉,这样当线圈在图示位置时,线圈的上下边受到安培力而转动,转过半周后电路不导通,转过一周后再次受到同样的安培力而使其连续转动,选项D 正确.14.光滑的金属轨道分水平段和圆弧段两部分,O 点为圆弧的圆心.两金属轨道之间的宽度为0.5 m ,匀强磁场方向如图所示,大小为0.5 T .质量为0.05 kg 、长为0.5 m 的金属细杆置于金属水平轨道上的M 点.当在金属细杆内通以电流强度为2 A 的恒定电流时,金属细杆可以沿轨道由静止开始向右运动.已知MN =OP =1 m ,则下列说法中正确的是( )A .金属细杆开始运动时的加速度大小为5 m/s 2B .金属细杆运动到P 点时的速度大小为5 m/sC .金属细杆运动到P 点时的向心加速度大小为10 m/s 2D .金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N解析:选D .金属细杆在水平方向受到安培力作用,安培力大小F 安=BIL =0.5×2×0.5 N =0.5 N ,金属细杆开始运动时的加速度大小为a =F 安m=10 m/s 2,选项A 错误;对金属细杆从M 点到P 点的运动过程,安培力做功W 安=F 安·(MN +OP )=1 J ,重力做功W G =-mg ·ON =-0.5 J ,由动能定理得W 安+W G =12m v 2,解得金属细杆运动到P 点时的速度大小为v =20 m/s ,选项B 错误;金属细杆运动到P 点时的向心加速度大小为a ′=v 2r=20 m/s 2,选项C 错误;在P 点金属细杆受到轨道水平向左的作用力F 和水平向右的安培力F 安,由牛顿第二定律得F -F 安=m v 2r,解得F =1.5 N ,每一条轨道对金属细杆的作用力大小为0.75 N ,由牛顿第三定律可知金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N ,选项D 正确.二、【磁场对运动电荷的作用】典型题1.如图所示,a 、b 、c 、d 为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示.一带正电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是( )A .向上B .向下C .向左D .向右解析:选B .根据安培定则及磁感应强度的矢量叠加,可得O 点处的磁场方向水平向左,再根据左手定则判断可知,带电粒子受到的洛伦兹力方向向下,B 正确.2.如图,半径为R 的圆形区域内有垂直于纸面的匀强磁场,半径OC 与OB 夹角为60°.甲电子以速率v 从A 点沿直径AB 方向射入磁场,从C 点射出.乙电子以速率v 3从B 点沿BA 方向射入磁场,从D 点(图中未画出)射出,则( )A .C 、D 两点间的距离为2RB .C 、D 两点间的距离为3RC .甲在磁场中运动的时间是乙的2倍D .甲在磁场中运动的时间是乙的3倍解析:选B .洛伦兹力提供向心力,q v B =m v 2r 得r =m v qB,由几何关系求得r 1=R tan 60°=3R ,由于质子乙的速度是v 3,其轨道半径r 2=r 13=33R ,它们在磁场中的偏转角分别为60°和120°,根据几何知识可得BC =R ,BD =2r 2tan 60°=R ,所以CD =2R sin 60°=3R ,故A 错误,B 正确;粒子在磁场中运动的时间为t =θ2πT =θ2π·2πm qB,所以两粒子的运动时间之比等于偏转角之比,即为1∶2,即甲在磁场中运动的时间是乙的12倍,故C 、D 错误. 3. (多选)如图所示,一轨道由两等长的光滑斜面AB 和BC 组成,两斜面在B 处用一光滑小圆弧相连接,P 是BC 的中点,竖直线BD 右侧存在垂直纸面向里的匀强磁场,B 处可认为处在磁场中,一带电小球从A 点由静止释放后能沿轨道来回运动,C 点为小球在BD 右侧运动的最高点,则下列说法正确的是( )A .C 点与A 点在同一水平线上B .小球向右或向左滑过B 点时,对轨道压力相等C .小球向上或向下滑过P 点时,其所受洛伦兹力相同D .小球从A 到B 的时间是从C 到P 时间的2倍解析:选AD .小球在运动过程中受重力、洛伦兹力和轨道支持力作用,因洛伦兹力永不做功,支持力始终与小球运动方向垂直,也不做功,即只有重力做功,满足机械能守恒,因此C 点与A 点等高,在同一水平线上,选项A 正确;小球向右或向左滑过B 点时速度等大反向,即洛伦兹力等大反向,小球对轨道的压力不等,选项B 错误;同理小球向上或向下滑过P 点时,洛伦兹力也等大反向,选项C 错误;因洛伦兹力始终垂直BC ,小球在AB 段和BC 段(设斜面倾角均为θ)的加速度均由重力沿斜面的分力产生,大小为g sin θ,由x =12at 2得小球从A 到B 的时间是从C 到P 的时间的2倍,选项D 正确. 4.如图甲所示有界匀强磁场Ⅰ的宽度与图乙所示圆形匀强磁场Ⅱ的半径相等,一不计重力的粒子从左边界的M 点以一定初速度水平向右垂直射入磁场Ⅰ,从右边界射出时速度方向偏转了θ角;该粒子以同样的初速度沿半径方向垂直射入磁场Ⅱ,射出磁场时速度方向偏转了2θ角.已知磁场Ⅰ、Ⅱ的磁感应强度大小分别为B 1、B 2,则B 1与B 2的比值为( )A .2cos θB .sin θC .cos θD .tan θ解析:选C .设有界磁场Ⅰ宽度为d ,则粒子在磁场Ⅰ和磁场Ⅱ中的运动轨迹分别如图1、图2所示,由洛伦兹力提供向心力知Bq v =m v 2r ,得B =m v rq,由几何关系知d =r 1sin θ,d =r 2tan θ,联立得B 1B 2=cos θ,选项C 正确.5.如图所示,正方形区域内存在垂直纸面的匀强磁场.一带电粒子垂直磁场边界从a 点射入,从b 点射出.下列说法正确的是( )A .粒子带正电B .粒子在b 点速率大于在a 点速率C .若仅减小磁感应强度,则粒子可能从b 点右侧射出D .若仅减小入射速率,则粒子在磁场中运动时间变短解析:选C .由左手定则知,粒子带负电,A 错.由于洛伦兹力不做功,粒子速率不变,B 错.由R =m vqB , 若仅减小磁感应强度B ,R 变大,则粒子可能从b 点右侧射出,C 对.由R =m v qB ,若仅减小入射速率v, 则R 变小,粒子在磁场中的偏转角θ变大.由t =θ2πT ,T =2πm qB 知,运动时间变长,D 错.6.如图所示,两个同心圆,半径分别为r 和2r ,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B .圆心O 处有一放射源,放出粒子的质量为m 、带电量为q ,假设粒子速度方向都和纸面平行.(1)图中箭头表示某一粒子初速度的方向,OA 与初速度方向夹角为60°,要想使该粒子经过磁场后第一次通过A 点,则初速度的大小是多少?(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?解析:(1)如图甲所示,设粒子在磁场中的轨道半径为R 1,则由几何关系得R 1=3r3又q v 1B =m v 21R 1得v 1=3Bqr3m.(2)如图乙所示,设粒子轨迹与磁场外边界相切时,粒子在磁场中的轨道半径为R 2,则由几何关系有(2r -R 2)2=R 22+r 2可得R 2=3r 4,又q v 2B =m v 22R 2,可得v 2=3Bqr 4m故要使粒子不穿出环形区域,粒子的初速度不能超过3Bqr4m. 答案:(1)3Bqr 3m (2)3Bqr4m7. (多选)如图所示为一个质量为m 、带电荷量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度大小为B 、方向垂直纸面向里的匀强磁场中.现给圆环向右初速度v 0,在以后的运动过程中,圆环运动的v -t 图象可能是下图中的( )解析:选BC .当q v B =mg 时,圆环做匀速直线运动,此时图象为B ,故B 正确;当q v B >mg 时,F N =q v B -mg ,此时:μF N =ma ,所以圆环做加速度逐渐减小的减速运动,直到q v B =mg 时,圆环开始做匀速运动,故C 正确;当q v B <mg 时,F N =mg -q v B ,此时:μF N =ma ,所以圆环做加速度逐渐增大的减速运动,直至停止,所以其v -t 图象的斜率应该逐渐增大,故A 、D 错误.8.如图所示,水平放置的平行板长度为L 、两板间距也为L ,两板之间存在垂直纸面向里、磁感应强度大小为B 的匀强磁场,在两板正中央P 点有一个不计重力的电子(质量为m 、电荷量为-e ),现在给电子一水平向右的瞬时初速度v 0,欲使电子不与平行板相碰撞,则( )A .v 0>eBL 2m 或v 0<eBL4mB .eBL 4m <v 0< eBL2mC .v 0>eBL2mD .v 0<eBL4m解析:选A .此题疑难点在于确定“不与平行板相碰撞”的临界条件.电子在磁场中做匀速圆周运动,半径为R =m v 0eB ,如图所示.当R 1=L 4时,电子恰好与下板相切;当R 2=L2时,电子恰好从下板边缘飞出两平行板(即飞出磁场).由R 1=m v 1eB ,解得v 1=eBL4m ,由R 2=m v 2eB ,解得v 2=eBL 2m ,所以欲使电子不与平行板相碰撞,电子初速度v 0应满足v 0>eBL 2m 或v 0<eBL4m ,故选项A 正确.9.如图所示,在x >0,y >0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy 平面向里,大小为B ,现有一质量为m 、电荷量为q 的带正电粒子,从x 轴上的某点P (不在原点)沿着与x 轴成30°角的方向射入磁场.不计重力的影响,则下列有关说法中正确的是( )A .只要粒子的速率合适,粒子就可能通过坐标原点B .粒子在磁场中运动所经历的时间一定为5 πm 3qBC .粒子在磁场中运动所经历的时间可能为πmqBD .粒子在磁场中运动所经历的时间可能为πm6qB解析:选C .利用“放缩圆法”:根据同一直线边界上粒子运动的对称性可知,粒子不可能通过坐标原点,A 项错误;粒子运动的情况有两种,一种是从y 轴边界射出,最短时间要大于2πm 3qB ,故D 项错误;对应轨迹①时,t 1=T 2=πm qB ,C 项正确,另一种是从x 轴边界飞出,如轨迹③,时间t 3=56T =5πm 3qB,此时粒子在磁场中运动时间最长,故B 项错误.10.如图所示,OM 的左侧存在范围足够大、磁感应强度大小为B 的匀强磁场,磁场方向垂直纸面向外,OM 左侧到OM 距离为L 的P 处有一个粒子源,可沿纸面向各个方向射出质量为m 、电荷量为q 的带正电粒子(重力不计),速率均为v =qBLm,则粒子在磁场中运动的最短时间为( )A .πm 2qBB .πm 3qBC .πm 4qBD .πm 6qB解析:选B .粒子进入磁场中做匀速圆周运动,洛伦兹力提供向心力,则有:q v B =m v 2r ,将题设的v 值代入得:r =L ,粒子在磁场中运动的时间最短,则粒子运动轨迹对应的弦最短,最短弦为L ,等于圆周运动的半径,根据几何关系,粒子转过的圆心角为60°,运动时间为T 6,故t min =T 6=16×2πm qB =πm 3qB,故B 正确,A 、C 、D 错误.11.(2019·高考全国卷Ⅲ)如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )A .5πm 6qBB .7πm6qBC .11πm 6qBD .13πm6qB解析:选B .带电粒子在不同磁场中做圆周运动,其速度大小不变,由r =m vqB 知,第一象限内的圆半径是第二象限内圆半径的2倍,如图所示.粒子在第二象限内运动的时间:t 1=T 14=2πm 4qB =πm 2qB ;粒子在第一象限内运动的时间:t 2=T 26=2πm ×26qB =2πm 3qB ,则粒子在磁场中运动的时间t =t 1+t 2=7πm 6qB,选项B 正确.12.如图,在直角三角形OPN 区域内存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外.一带正电的粒子从静止开始经电压U 加速后,沿平行于x 轴的方向射入磁场;一段时间后,该粒子在OP 边上某点以垂直于x 轴的方向射出.已知O 点为坐标原点,N 点在y 轴上,OP 与x 轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d ,不计重力.求:(1)带电粒子的比荷;(2)带电粒子从射入磁场到运动至x 轴的时间.解析: (1)设带电粒子的质量为m ,电荷量为q ,加速后的速度大小为v .由动能定理有qU =12m v 2①设粒子在磁场中做匀速圆周运动的半径为r ,由洛伦兹力公式和牛顿第二定律有 q v B =m v 2r②由几何关系知d =2r ③ 联立①②③式得q m =4UB 2d2.④(2)由几何关系知,带电粒子射入磁场后运动到x 轴所经过的路程为 s =πr2+r tan 30°⑤带电粒子从射入磁场到运动至x 轴的时间为t =sv ⑥联立②④⑤⑥式得t =Bd 24U ⎝⎛⎭⎫π2+33.⑦ 答案:(1)4U B 2d 2 (2)Bd 24U ⎝⎛⎭⎫π2+33三、【带电粒子在组合场中的运动】典型题1.(多选)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D 形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )A .增大匀强电场间的加速电压B .增大磁场的磁感应强度C .减小狭缝间的距离D .增大D 形金属盒的半径解析:选BD .回旋加速器利用电场加速和磁场偏转来加速粒子,粒子射出时的轨道半径恰好等于D 形盒的半径,根据q v B =m v 2R 可得,v =qBR m ,因此离开回旋加速器时的动能E k =12m v 2=q 2B 2R 22m 可知,与加速电压无关,与狭缝距离无关,A 、C 错误;磁感应强度越大,D 形盒的半径越大,动能越大,B 、D 正确.2.质谱仪是一种测定带电粒子质量和分析同位素的重要工具.图中的铅盒A 中的放射源放出大量的带正电粒子(可认为初速度为零),从狭缝S 1进入电压为U 的加速电场区加速后,再通过狭缝S 2从小孔G 垂直于MN 射入偏转磁场,该偏转磁场是以直线MN 为切线、磁感应强度为B ,方向垂直于纸面向外半径为R 的圆形匀强磁场.现在MN 上的F 点(图中未画出)接收到该粒子,且GF =3R .则该粒子的比荷为(粒子的重力忽略不计)( )。

高中物理精品试题: 磁场(原卷版)

高中物理精品试题: 磁场(原卷版)

5年高考1年模拟全国III卷物理试题分项解析专题11 磁场一、全国III卷:(2020年和2021年使用III卷的省份没有发生变化)2020届高考:云南、广西、贵州、四川、西藏2021届高考:云南、贵州、四川、广西、西藏二、2016-2020年全国III卷分布情况概况:考点年份题号题型分数磁场2020 18 选择题6分2019 18 选择题6分2018 24 计算题12分2017 18/24 选择题6分/12分2016 18 选择题6分三、2016-2020年全国III卷试题赏析:1、(2020·全国III卷·T18)真空中有一匀强磁场,磁场边界为两个半径分别为a和3a的同轴圆柱面,磁场的方向与圆柱轴线平行,其横截面如图所示。

一速率为v的电子从圆心沿半径方向进入磁场。

已知电子质量为m,电荷量为e,忽略重力。

为使该电子的运动被限制在图中实线圆围成的区域内,磁场的磁感应强度最小为()ŒA. 32mvaeB.mvaeC.34mvaeD.35mvae2、(2019·全国III 卷·T18).如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为A. 5π6m qBB. 7π6m qBC. 11π6m qBD.13π6mqB3、(2017·全国III 卷·T18)如图,在磁感应强度大小为B 0的匀强磁场中,两长直导线P 和Q 垂直于纸面固定放置,两者之间的距离为l 。

在两导线中均通有方向垂直于纸面向里的电流I 时,纸面内与两导线距离均为l 的a 点处的磁感应强度为零。

如果让P 中的电流反向、其他条件不变,则a 点处磁感应强度的大小为A .0B .033B C .0233B D .2B 0 4、(2016·全国III 卷·T18)平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外。

高中物理《磁场》典型题(经典推荐含答案)

高中物理《磁场》典型题(经典推荐含答案)

高中物理《磁场》典型题(经典推荐含答案)高中物理《磁场》典型题(经典推荐)一、单项选择题1.下列说法中正确的是:A。

在静电场中电场强度为零的位置,电势也一定为零。

B。

放在静电场中某点的检验电荷所带的电荷量 q 发生变化时,该检验电荷所受电场力 F 与其电荷量 q 的比值保持不变。

C。

在空间某位置放入一小段检验电流元,若这一小段检验电流元不受磁场力作用,则该位置的磁感应强度大小一定为零。

D。

磁场中某点磁感应强度的方向,由放在该点的一小段检验电流元所受磁场力方向决定。

2.物理关系式不仅反映了物理量之间的关系,也确定了单位间的关系。

如关系式 U=IR,既反映了电压、电流和电阻之间的关系,也确定了 V(伏)与 A(安)和Ω(欧)的乘积等效。

现有物理量单位:m(米)、s(秒)、N(牛)、J (焦)、W(瓦)、C(库)、F(法)、A(安)、Ω(欧)和 T(特),由他们组合成的单位都与电压单位 V(伏)等效的是:A。

J/C 和 N/CB。

C/F 和 T·m2/sC。

W/A 和 C·T·m/sD。

W·Ω 和 T·A·m3.如图所示,重力均为 G 的两条形磁铁分别用细线 A 和B 悬挂在水平的天花板上,静止时,A 线的张力为 F1,B 线的张力为 F2,则:A。

F1=2G,F2=GB。

F1=2G,F2>GC。

F1GD。

F1>2G,F2>G4.一矩形线框置于匀强磁场中,线框平面与磁场方向垂直,先保持线框的面积不变,将磁感应强度在 1s 时间内均匀地增大到原来的两倍,接着保持增大后的磁感应强度不变,在 1s时间内,再将线框的面积均匀地减小到原来的一半,先后两个过程中,线框中感应电动势的比值为:A。

1/2B。

1C。

2D。

45.如图所示,矩形 MNPQ 区域内有方向垂直于纸面的匀强磁场,有 5 个带电粒子从图中箭头所示位置垂直于磁场边界进入磁场,在纸面内做匀速圆周运动,运动轨迹为相应的圆弧,这些粒子的质量,电荷量以及速度大小如下表所示,由以上信息可知,从图中 a、b、c 处进入的粒子对应表中的编号分别为:A。

高中物理磁场练习题(含解析)

高中物理磁场练习题(含解析)
C.法拉第提出了“电场”的概念,并制造出第一台电动机
D.库仑通过与万有引力类比,在实验的基础上验证得出库仑定律
4.电磁炮是利用电磁系统中电磁场产生的安培力来对金属炮弹进行加速,使其达到打击目标所需的巨大动能,如图甲所示。原理图可简化为如图乙所示,其中金属杆表示炮弹,磁场方向垂直轨道平面向上,则当弹体中通过如图乙所示的电流时,炮弹加速度的方向为( )
高中物理磁场练习题
学校:___________姓名:___________班级:___________
一、单选题
1.假设一个力单独作用的效果跟某几个力共同作用的效果相同,这个力就叫作那几个力的合力,以下概念的建立方法与合力相同的是( )
A.瞬时速度B.交流电的有效值
C.电场强度D.磁通量
2.如图所示,匀强磁场方向垂直纸面向里,匀强电场方向竖直向下,有一正离子恰能沿直线从左向右水平飞越此区域。不计重力,则( )
16.“用霍尔元件测量磁场”的实验中,把载流子为带负电的电子e的霍尔元件接入电路如图,电流为I,方向向左,长方体霍尔元件长宽高分别为 、 、 ,处于竖直向上的恒定匀强磁场中。
(1)前后极板M、N,电势较高的是___________。(选填“M板”或“N板”)
(2)某同学在实验时,改变电流的大小,记录了不同电流下对应的 值,如下表
14.如图所示,面积为10m2的正方形导线框处于磁感应强度为 的匀强磁场中。在线框平面以ad边为轴转过180°的过程中,线圈中________感应电流产生(选填“有”或“无”),整个过程中,磁通量变化量为________Wb。
四、实验题
15.奥斯特研究电和磁的关系的实验中,通电导线附近的小磁针发生偏转的原因是______ 实验时为使小磁针发生明显偏转,通电前导线应放置在其上方,并与小磁针保持______ 选填“垂直”、“平行”、“任意角度” .元电荷的电量是______C.

高中物理:磁场练习及答案(解析版)

高中物理:磁场练习及答案(解析版)

高中物理:磁场练习及答案一、选择题1、如图所示,空间的某一区域存在着相互垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由A点进入这个区域沿直线运动,从C点离开区域;如果将磁场撤去,其他条件不变,则粒子从B点离开场区;如果将电场撤去,其他条件不变,则这个粒子从D点离开场区。

已知BC=CD,设粒子在上述三种情况下,从A到B、从A到C和从A到D所用的时间分别是t1,t2和t3,离开三点时的动能分别是Ek1、Ek2、Ek3,粒子重力忽略不计,以下关系式正确的是 ( )A.t1=t2<t3B.t1<t2=t3C.Ek1=Ek2<Ek3D.Ek1>Ek2=Ek32、(多选)下列说法正确的是()A.磁场中某点的磁感应强度可以这样测定:把一小段通电导线放在该点时,受到的磁场力F与该导线的长度L、通过的电流I的乘积的比值B=FIL,即磁场中某点的磁感应强度B.通电导线在某点不受磁场力的作用,则该点的磁感应强度一定为零C.磁感应强度B=FIL只是定义式,它的大小取决于场源及磁场中的位置,与F、I、L以及通电导线在磁场中的方向无关D.磁场是客观存在的3、如图所示,用三条细线悬挂的水平圆形线圈共有n匝,线圈由粗细均匀、单位长度质量为2.5 g的导线绕制而成,三条细线呈对称分布,稳定时线圈平面水平,在线圈正下方放有一个圆柱形条形磁铁,磁铁的中轴线OO′垂直于线圈平面且通过其圆心O,测得线圈的导线所在处磁感应强度大小为0.5 T,方向与竖直线成30°角,要使三条细线上的张力为零,线圈中通过的电流至少为(g取10 m/s2)()A.0.1 A B.0.2 A C.0.05 A D.0.01 A4、(多选)光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20 cm的两段光滑圆弧导轨相接,一根质量m=60 g、电阻R=1 Ω、长为L 的导体棒ab,用长也为L的绝缘细线悬挂,如图所示,系统空间有竖直方向的匀强磁场,磁感应强度B=0.5 T,当闭合开关S后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成θ=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin 53°=0.8,g取10 m/s2则()A.磁场方向一定竖直向下B.电源电动势E=3.0 VC.导体棒在摆动过程中所受安培力F=3 ND.导体棒在摆动过程中电源提供的电能为0.048 J5、(多选)一质量为m、电荷量为q的负电荷在磁感应强度为B的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是()A.4qBm B.3qBm C.2qBm D.qBm6、如图所示,正六边形abcdef区域内有垂直于纸面的匀强磁场.一带正电的粒子从f点沿fd 方向射入磁场区域,当速度大小为v b时,从b点离开磁场,在磁场中运动的时间为t b;当速度大小为v c时,从c点离开磁场,在磁场中运动的时间为t c.不计粒子重力.则()A.v b∶v c=1∶2,t b∶t c=2∶1B.v b∶v c=2∶1,t b∶t c=1∶2C.v b∶v c=2∶1,t b∶t c=2∶1D.v b∶v c=1∶2,t b∶t c=1∶27、速度相同的一束粒子由左端射入质谱仪后分成甲、乙两束,其运动轨迹如图所示,其中S0A=23S0C,则下列说法中正确的是()A.甲束粒子带正电,乙束粒子带负电B.甲束粒子的比荷大于乙束粒子的比荷C.能通过狭缝S0的带电粒子的速率等于E B2D.若甲、乙两束粒子的电荷量相等,则甲、乙两束粒子的质量比为3∶2*8、关于磁感线的描述,下列说法中正确的是()A.磁感线可以形象地描述各点磁场的强弱和方向,它每一点的切线方向都和小磁针放在该点静止时北极所指的方向一致B.磁感线可以用细铁屑来显示,因而是真实存在的C.两条磁感线的空隙处一定不存在磁场D.两个磁场叠加的区域,磁感线就可能相交*9、如图所示,在同一平面内互相绝缘的三根无限长直导线ab、cd、ef围成一个等边三角形,三根导线通过的电流大小相等,方向如图所示,O为等边三角形的中心,M、N分别为O关于导线ab、cd的对称点.已知三根导线中的电流形成的合磁场在O点的磁感应强度大小为B1,在M点的磁感应强度大小为B2,若撤去导线ef,而ab、cd中电流不变,则此时N点的磁感应强度大小为()A.B1+B2B.B1-B2C.B1+B22D.B1-B2210、在如图所示的平行板器件中,电场强度E和磁感应强度B相互垂直。

高二物理-磁场专题训练及答案(全套)

高二物理-磁场专题训练及答案(全套)

高中物理磁场专题训练一、磁场、安培力练习题一、选择题1.关于磁场和磁感线的描述,正确的说法有[]A.磁极之间的相互作用是通过磁场发生的,磁场和电场一样,也是一种物质B.磁感线可以形象地表现磁场的强弱与方向C.磁感线总是从磁铁的北极出发,到南极终止D.磁感线就是细铁屑在磁铁周围排列出的曲线,没有细铁屑的地方就没有磁感线2.一束带电粒子沿水平方向飞过小磁针上方,并与磁针指向平行,能使磁针的S极转向纸内,如图1所示,那么这束带电粒子可能是[]A.向右飞行的正离子束B.向左飞行的正离子束C.向右飞行的负离子束D.问左飞行的负离子束3.铁心上有两个线圈,把它们和一个干电池连接起来,已知线圈的电阻比电池的内阻大得多,如图2所示的图中,哪一种接法铁心的磁性最强[]4.关于磁场,以下说法正确的是[]A.电流在磁场中某点不受磁场力作用,则该点的磁感强度一定为零B.磁场中某点的磁感强度,根据公式B=F/I·l,它跟F,I,l都有关C.磁场中某点的磁感强度的方向垂直于该点的磁场方向D.磁场中任一点的磁感强度等于磁通密度,即垂直于磁感强度方向的单位面积的磁通量5.磁场中某点的磁感应强度的方向[]A.放在该点的通电直导线所受的磁场力的方向B.放在该点的正检验电荷所受的磁场力的方向C.放在该点的小磁针静止时N极所指的方向D.通过该点磁场线的切线方向6.下列有关磁通量的论述中正确的是[]A.磁感强度越大的地方,穿过线圈的磁通量也越大B.磁感强度越大的地方,线圈面积越大,则穿过线圈的磁通量越大C.穿过线圈的磁通量为零的地方,磁感强度一定为零D.匀强磁场中,穿过线圈的磁感线越多,则磁通量越大7.如图3所示,条形磁铁放在水平桌面上,其中央正上方固定一根直导线,导线与磁铁垂直,并通以垂直纸面向外的电流, []A.磁铁对桌面的压力减小、不受桌面摩擦力的作用B.磁铁对桌面的压力减小、受到桌面摩擦力的作用C.磁铁对桌面的压力增大,个受桌面摩擦力的作用D.磁铁对桌面的压力增大,受到桌面摩擦力的作用8.如图4所示,将通电线圈悬挂在磁铁N极附近:磁铁处于水平位置和线圈在同一平面内,且磁铁的轴线经过线圈圆心,线圈将[]A.转动同时靠近磁铁B.转动同时离开磁铁C.不转动,只靠近磁铁D.不转动,只离开磁铁9.通电矩形线圈平面垂直于匀强磁场的磁感线,则有[]A.线圈所受安培力的合力为零B.线圈所受安培力以任一边为轴的力矩为零C.线圈所受安培力以任一对角线为轴的力矩不为零D.线圈所受安培力必定使其四边有向外扩展形变的效果二、填空题10.匀强磁场中有一段长为0。

《1. 磁场 磁感线》(同步训练)高中物理必修第三册_教科版_2024-2025学年

《1. 磁场 磁感线》(同步训练)高中物理必修第三册_教科版_2024-2025学年

《1. 磁场磁感线》同步训练(答案在后面)一、单项选择题(本大题有7小题,每小题4分,共28分)1、1、下列关于磁场的描述中,正确的是:A、磁场的方向总是垂直于通电导线的方向B、磁场的方向与电流的方向垂直C、磁场的方向与磁感线的方向相同D、磁场的方向与通电导线的长度方向垂直2、2、在磁场中,一小段通电直导线垂直放置在磁场中,如果导线长度为L,电流为I,磁场强度为B,则导线所受的安培力F的大小为:A、F = BILB、F = BIL²C、F = B²ILD、F = BI²L3、关于磁感线的描述,下列说法正确的是:A. 磁感线是从N极出发,终止于S极。

B. 在磁场内部,磁感线可以相交。

C. 磁感线上任一点的切线方向表示该点磁场的方向。

D. 磁感线在空间中形成闭合曲线,但在磁体外部是从S极指向N极。

4、下列关于磁通量的说法中,哪一项是正确的?A. 穿过某一面积的磁通量与该面积的大小无关。

B. 当平面与磁场方向垂直时,穿过该平面的磁通量最大。

C. 如果一个闭合回路处于均匀磁场中,则通过此回路的磁通量为零。

D. 磁通量的单位是特斯拉(T)。

5、在磁场中,磁感线密集的地方表示磁场强度如何?A. 强B. 弱C. 不变D. 无法确定6、如果一个带电粒子垂直进入匀强磁场,它将沿什么路径运动?A. 直线B. 圆周C. 抛物线D. 螺旋线7、在匀强磁场中,一小段通电直导线垂直放置于磁场中,若要使导线受到的安培力最大,以下哪个条件是必要的?()A、导线长度最大B、导线电流最大C、导线与磁场的夹角为90°D、导线的横截面积最大二、多项选择题(本大题有3小题,每小题6分,共18分)1、下列关于磁场的描述正确的是:A、磁场是一种客观存在的物质形态,它看不见摸不着,但可以通过磁针的运动来感知。

B、磁场的方向可以用右手定则来确定,即握住磁针,拇指指向磁针的北极,四指所指的方向即为磁场的方向。

高中物理精品试题:考查点12磁场

高中物理精品试题:考查点12磁场

考查点3磁场考纲条目考纲解读——通电导线周围存在磁场.2.磁作用的本质——磁场间的相互作用.·题型示例1·下列选项中跟磁现象无关的是()A.指南针始终指向南北两个方向B.电流能使磁针发生偏转C.铁钉被磁铁吸住D.点电荷在匀强电场中的运动【试题分析】A、B、C选项均属于现实中的磁现象,D选项与磁场无关,不属于磁现象.【正确答案】D·变式训练1·关于磁场,下列说法正确的是()A.磁场和电场不一样,磁场是人们假想的物质B.无论在何处,小磁针的指向就是磁场的方向C.地球是一个大磁体,地磁场的N极在地理的北极附近D.磁极与磁极、磁极与电流之间的相互作用是通过磁场发生的考点2磁感应强度(c)考纲解读理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,用B表示,即B=FIL,在国际单位制中,磁感应强度的单位是特斯拉,简称特,符号是T,1 T=1NA·m.2.磁感应强度的方向——把小磁针静止时N极所指的方向规定为该点的磁感应强度的方向,也为该点的磁感线的切线方向.·题型示例2·磁感应强度是一个矢量.磁场中某点磁感应强度的方向是()A.正电荷在该点所受力方向B.沿磁感线由N极指向S极C.小磁针N极或S极在该点的受力方向D.在该点的小磁针静止时N极所指方向【试题分析】在电场中,正电荷在某点所受力方向,即为电场强度的方向,故A错误;磁体的外部磁感线由N极指向S,内部磁感线由S极到N极,正好构成闭合曲线.而磁感线的某点的切线方向为磁感应强度的方向,故B错误;小磁针N极在该点的受力方向,即为磁感应强度的方向,故C错误;在该点的小磁针静止时N极所指方向为磁感应强度的方向,故D正确,故选D.【正确答案】D·变式训练2·面积是0.50 m2的导线环放在某一匀强磁场中,环面与磁场方向垂直.已知穿过导线环的磁通量是2.0×10-2 Wb,则该磁场的磁感应强度B的大小等于()A.1.0×10-2 TB.2.0×10-2 TC.3.0×10-2 TD.4.0×10-2 T考点3 几种常见的磁场(b ) 考纲解读——如图所示(a)磁感线分布 (b)安培定则直线电流的磁感线分布(a)磁感线分布 (b)右手螺旋定则环形电流的磁感线分布通电螺线管周围的磁场分布2.安培定则、右手螺旋定则及应用——直线电流安培定则:右手握住导线,让伸直的拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向;环形电流右手螺旋定则:右手握住导线,让弯曲的四指所指的方向与电流方向一致,则大拇指所指的方向即为N 极方向.3.匀强磁场概念及磁感线分布特点——磁感应强度、方向处处相同的磁场为匀强磁场.匀强磁场的磁感线是一些间隔相同的平行直线.4.磁通量定义式、单位及计算——用Φ表示磁通量.则Φ=BS ,在国际单位制中,磁通量的单位是韦伯,简称韦,单位是Wb.1 Wb =1 T·m 2.从Φ=BS 可以得出B =ΦS.这表示磁感应强度等于单位面积的磁通量.·题型示例3· 如图所示,小磁针放置在螺线管轴线的左侧.闭合电路后,不计其他磁场的影响,小磁针静止时的指向是( )A.N 极指向螺线管B.S 极指向螺线管C.N 极垂直于纸面向里D.S极垂直纸面向里【试题分析】由电流方向及右手螺旋定则可判定螺线管右侧为N极,左侧为S极,因为小磁针静止时N极所指的方向就是磁场的方向;螺线管外面的磁场方向是从N极到S 极,故左边小磁针静止时的指向是N极指向螺线管.【正确答案】A·变式训练3·如图所示,通电直导线右边有一个矩形线框ABCD,线框平面与指导线共面,若使线框逐渐远离(平动)通电导线,则穿过线框的磁通量将()A.逐渐增大B.逐渐减小C.保持不变D.不能确定考点4通电导线在磁场中受到的力(c)考纲解读.2.左手定则及安培力方向的判断——左手定则:伸开左手,使拇指与其余四个手指垂直,并且都跟手掌在同一个平面内,让磁感线垂直穿入手心,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向.3.安培力公式F=BIL的适用条件及应用——适用条件:B与F的方向、I的方向两两相互垂直.如果空间存在几个磁场,空间的合磁场就是这几个磁场叠加而成的,其叠加满足矢量运算法则.·题型示例4·根据图示可判断安培力的方向为()A.竖直向上B.竖直向下C.水平向左D.水平向右【试题分析】根据左手定则,可知安培力方向竖直向下,故选B.【正确答案】B·变式训练4·如图所示,导线在磁场中受到的安培力竖直向上.则电流的方向为()A.垂直纸面向里B.垂直纸面向外C.与磁感应强度方向平行D.无法判断考点5运动电荷在磁场中受到的力(c)考纲解读——只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷在磁场中受到的磁场对电荷的作用力一定为零,当带电粒子的运动方向与磁场方向互相平行时,F=0.2.决定洛伦兹力方向的因素——决定洛伦兹力方向的有电荷正负和磁场的方向.3.用左手定则判断洛伦兹力的方向——伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线从掌心进入,并使四指指向正电荷运动的方向,这时大拇指所指的方向就是运动的正电荷在磁场中所受洛伦兹力的方向.·题型示例5·关于洛伦兹力,下列说法中正确的是()A.带电粒子在磁场中运动时,一定受到洛伦兹力的作用B.若带电粒子经过磁场中某点时所受的洛伦兹力为零,则该点的磁感应强度一定为零C.当运动电荷的速度方向与磁场平行时,电荷不受洛伦兹力D.当运动电荷的速度方向与磁场垂直时,电荷不受洛伦兹力【试题分析】当粒子平行磁场方向在磁场中运动时,粒子不受磁场力作用,选项C对.【正确答案】C·变式训练5·如图所示,带电粒子垂直进入匀强磁场.下列判断正确的是()A.粒子向左偏转B.粒子向右偏转C.粒子垂直纸面向里偏转D.粒子垂直纸面向外偏转考点专练1.以下物体放在磁场中会受到磁场力作用的是()A.一段导体B.一段通电导体C.矩形线圈D.静止的带电体2.一小磁针放置在某磁场(未标出方向)中,静止时的指向如图所示.下列分析正确的是()第2题图A.N极指向该点磁场方向B.S极指向该点磁场方向C.该磁场是匀强磁场D.a点的磁场方向水平向右3.如图所示,在同一平面内,同心的两个导体圆环中通以同向电流时()A.两环都有向内收缩的趋势B.两环都有向内扩张的趋势C.内环有收缩趋势,外环有扩张趋势D.内环有扩张趋势,外环有收缩趋势第3题图第4题图4.如图所示,通电导线MN在纸面内从实线位置绕其一端转至虚线位置时,通电导线所受安培力的大小变化情况是()A.变小B.不变C.变大D.不能确定5.(2014年浙江学业考)下面四幅图中,前两幅表示通电直导线所受安培力F、磁感应强度B和电流I三者方向之间的关系;后两幅表示运动电荷所受洛伦兹力F、磁感应强度B和电荷速度v三者方向之间的关系.其中正确的是()A B C D6.如图所示,正方形线圈abcd的一半处于匀强磁场中,线圈平面与磁场方向垂直.在线圈以ab为轴转动90°的过程中,穿过线圈的磁通量大小()A.一直减小B.先增大后减小C.先减小后增大D.先不变后减小第6题图第7题图7.如图所示,圆形区域内有垂直纸面向内的匀强磁场,三个质量和电荷量都相同的带电粒子a,b,c,以不同的速率对准圆心O沿着AO方向射入磁场,其运动轨迹如图.若带电粒子只受磁场力的作用,则下列说法错误的是()A.三个粒子都带正电荷B.c粒子速率最小C.c粒子在磁场中运动时间最短D.它们做圆周运动的周期8.关于磁感应强度,下列说法正确的是()A.由B=FIL可知,B与F成正比,与IL成反比B.由B=FIL可知,一小段通电导体在某处不受磁场力,说明此处一定无磁场C.通电导线在磁场中受力越大,说明磁场越强D.磁感应强度的方向与该处电流的受力方向垂直第9题图9.如图所示,在通电螺线管的管口、管内中央、外部中央的a、b、c三处放置三枚可以自由转动的小磁针,静止时N极的指向()A.都向右B.a向左,b、c向右C.a、c向右,b向左D.a、b向右,c向左10.在匀强磁场中某处P放一根长度为L=20 cm,通电电流I=0.5 A的直导线,测得它受到的磁场力的最大值为F=1.0 N,其方向竖直向上,现将该通电导线从磁场中搬走,则P处的磁感应强度()A.零B.10 T,方向竖直向上C.0.1 T,方向竖直向下D.10 T,方向无法确定11.(2014年浙江学业考)如图所示,甲、乙是分别用“阴极射线管”和“洛伦兹力演示仪”实验时的两幅图片.忽略地磁场的影响,下列说法正确的是()甲乙第11题图A.甲图中的电子束径迹是抛物线B.乙图中的电子束径迹是圆形C.甲图中的电子只受电场力作用D.乙图中的电子受到洛伦兹力是恒力12.(2014年浙江学业考)如图所示,两水平放置的光滑、长直金属导轨MN、PQ处于竖直向下、磁感应强度为B的匀强磁场中,两导轨间距为L,导轨左端M、P连接电阻R.金属杆ab在水平恒力F的作用下沿导轨自静止开始向右运动,不计金属导轨和金属杆的电阻,且接触良好.当金属杆ab做匀速直线运动时,下列判断正确的是()第12题图A.所受安培力方向向右B.金属杆ab的速度v=FRB2L2C.回路中电流的大小为I=BL FD.回路电流方向为M→P→b→a→M冲A演练1.(2015年浙江学业考)如图所示,一根质量为m,长度为L的金属细杆MN置于绝缘水平桌面上,并处在与其垂直的水平匀强磁场中。

高中物理:磁场 练习(含答案)

高中物理:磁场 练习(含答案)

高中物理:磁场 练习(含答案)磁场1、(双选)关于地球的磁场,下列说法正确的是( )A .在地面上放置一个小磁针,小磁针的南极指向地磁场的南极B .地磁场的南极在地理北极附近C .地球上任何地方的地磁场方向都是和地面平行的D .地球磁偏角的数值在地球上不同地点是不同的2、有四条垂直于纸面的长直固定导线.电流方向如图所示,其中a 、b 、c 三条导线到d 导线的距离相等,三条导线与d 的连线互成120度角.四条导线的电流大小为都为I,其中a 导线对d 导线的安培力为F.现突然把c 导线的电流方向改为垂直于纸面向外,电流大小不变.此时d 导线所受安培力的合力为( )A .0B .FC .3FD .2F3、(多选)如图所示,质量为m 、长为L 的直导线用两绝缘细线悬挂于O 、O′,并处于匀强磁场中.当导线中通以沿x 轴正方向的电流I,且导线保持静止时,悬线与竖直方向夹角为θ.则磁感应强度方向和大小可能为(重力加速度为g)( )A .z 轴正方向,mg IL tan θB .y 轴正方向,mg ILC .z 轴负方向,mg IL tan θD .沿悬线向下,mg ILsin θ 4、如图所示,a 为带正电的小物块,b 是一不带电的绝缘物块(设a 、b 间无电荷转移),a 、b 叠放于粗糙的水平地面上,地面上方有垂直于纸面向里的匀强磁场.现用水平恒力F 拉b 物块,使a 、b 一起无相对滑动地向左做加速运动,则在加速运动阶段( )A.a对b的压力不变B.a对b的压力变大C.a、b物块间的摩擦力变大D.a、b物块间的摩擦力不变5、如图为洛伦兹力演示仪的结构图.励磁线圈产生的匀强磁场方向垂直纸面向外,电子束由电子枪产生,其速度方向与磁场方向垂直.电子速度大小可通过电子枪的加速电压来控制,磁场强弱可通过励磁线圈的电流来调节.下列说法正确的是()A.仅增大励磁线圈的电流,电子束径迹的半径变大B.仅提高电子枪的加速电压,电子束径迹的半径变大C.仅增大励磁线圈的电流,电子做圆周运动的周期将变大D.仅提高电子枪的加速电压,电子做圆周运动的周期将变大6、关于磁感应强度B、电流强度I、导线长L和导线所受磁场力F的关系,下列说法中正确的是()A.在B=0的地方,F一定等于零B.在F=0的地方,B一定等于零C.若B=1 T,I=1 A,L=1 m,则F一定等于1 ND.若L=1 m,I=1 A,F=1 N,则B一定等于1 T7、如图所示,A、B、C三根平行通电直导线质量均为m,通入的电流大小均相等,其中C中的电流方向与A、B中的电流方向反向,A、B放置在粗糙的水平面上,C静止在空中,三根导线的截面处于一个等边三角形的三个顶点,且三根导线均保持静止,重力加速度为g,则A导线受到B导线的作用力大小和方向为()A.33mg,方向由A指向B B.33mg,方向由B指向AC.3mg,方向由A指向B D.3mg,方向由B指向A8、(多选)如图所示,在一绝缘、粗糙且足够长的水平管道中有一带正电荷的小球,管道半径略大于球体半径,整个管道处于方向与管道垂直的水平匀强磁场中;现给球施加一个水平向右的初速度v0,以后小球的速度随时间变化的图象可能正确的是()A BC D9、如图,半径为R的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向里.一电荷量为q(q>0)、质量为m的粒子(不计重力)沿平行于直径ab的方向射入磁场区域.若粒子射出磁场时与射入磁场时运动方向间的夹角为90°,则粒子入射的速度大小为()A.qBR2m B.qBRmC.2qBRm D.4qBRm10、关于通电直导线在磁场中所受的安培力,下列说法正确的是()A.磁感应强度跟导线所受的安培力成正比B.安培力的方向跟磁感应强度的方向垂直C.磁感应强度的方向跟安培力的方向相同D.通电直导线在磁场中某处受到的安培力为零,则该处的磁感应强度一定为零11、如图所示的天平可用来测定磁感应强度B.天平的右臂下面挂有一个矩形线圈,宽度为l,共N 匝,线圈下端悬在匀强磁场中,磁场方向垂直纸面.当线圈中通有电流I(方向如图)时,在天平左右两边加上质量各为m1、m2的砝码后,天平平衡,当电流反向(大小不变)时,右边再加上质量为m的砝码后,天平重新平衡,由此可知()A.磁感应强度方向垂直纸面向里,B=(m1-m2)gNIlB.磁感应强度方向垂直纸面向里,B=mg 2NIlC.磁感应强度方向垂直纸面向外,B=(m1-m2)gNIlD.磁感应强度方向垂直纸面向外,B=mg 2NIl12、如图所示,两光滑的平行金属轨道与水平面成θ角,两轨道间距为L,一金属棒垂直两轨道水平放置.金属棒质量为m,电阻为R,轨道上端的电源电动势为E,内阻为r.为使金属棒能静止在轨道上,可加一方向竖直向上的匀强磁场,则该磁场的磁感应强度B应是多大?13、如图所示,一个质量为m,电荷量为-q,不计重力的带电粒子从x轴上的P(a,0)点以速度v,沿与x轴正方向成60°角的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限,求:(1)匀强磁场的磁感应强度B;(2)穿过第一象限的时间.磁场1、(双选)关于地球的磁场,下列说法正确的是()A.在地面上放置一个小磁针,小磁针的南极指向地磁场的南极B.地磁场的南极在地理北极附近C.地球上任何地方的地磁场方向都是和地面平行的D.地球磁偏角的数值在地球上不同地点是不同的BD[在地面上放置一个小磁针,小磁针的南极指向地理南极,即地磁北极,故A错误;地磁场的南极在地理北极附近,地磁场的北极在地理南极附近,故B正确;地磁场不是匀强磁场,与地面不一定平行,如图所示,故C错误;地球的地理两极与地磁两极并不重合,因此,小磁针并非准确的指向南北,其间有一个夹角,这就是地磁偏角;地磁偏角的数值在地球上不同地点是不同的,故D正确.]2、有四条垂直于纸面的长直固定导线.电流方向如图所示,其中a 、b 、c 三条导线到d 导线的距离相等,三条导线与d 的连线互成120度角.四条导线的电流大小为都为I,其中a 导线对d 导线的安培力为F.现突然把c 导线的电流方向改为垂直于纸面向外,电流大小不变.此时d 导线所受安培力的合力为( )A .0B .FC .3FD .2FD [a 导线对d 导线的安培力为F,三条导线与d 的连线互成120°,因此在c 导线的电流方向改变之前,d 导线所受安培力的合力为零;当c 导线的电流方向改变之后,a 、b 导线对d 导线的安培力夹角为120°,大小为F,因此此两个安培力的合力为F,方向指向c 导线,而c 导线对d 导线的安培力大小为F,方向指向c 导线,那么此时三导线对d 导线所受安培力的合力为2F,故A 、B 、C 错误,D 正确.]3、(多选)如图所示,质量为m 、长为L 的直导线用两绝缘细线悬挂于O 、O′,并处于匀强磁场中.当导线中通以沿x 轴正方向的电流I,且导线保持静止时,悬线与竖直方向夹角为θ.则磁感应强度方向和大小可能为(重力加速度为g)( )A .z 轴正方向,mg IL tan θB .y 轴正方向,mg ILC .z 轴负方向,mg IL tan θD .沿悬线向下,mg IL sin θBCD [磁感应强度方向为z 轴正方向时,根据左手定则,直导线所受安培力方向沿y 轴负方向,直导线不能平衡,故A 错误;磁感应强度方向为y 轴正方向时,根据左手定则,直导线所受安培力方向沿z 轴正方向,根据平衡条件,当BIL 刚好等于mg 时,细线的拉力为零,B =mg IL ,故B 正确;磁感应强度方向为z 轴负方向时,根据左手定则,直导线所受安培力方向沿y 轴正方向,根据平衡条件BIL =mg tan θ,所以B =mg IL tan θ,故C 正确;磁感应强度方向沿悬线向下时,根据左手定则,直导线所受安培力方向垂直于细线斜向上,根据平衡条件:F =mg sin θ,得:B =mg sin θIL ,故D 正确.]4、如图所示,a为带正电的小物块,b是一不带电的绝缘物块(设a、b间无电荷转移),a、b叠放于粗糙的水平地面上,地面上方有垂直于纸面向里的匀强磁场.现用水平恒力F拉b物块,使a、b 一起无相对滑动地向左做加速运动,则在加速运动阶段()A.a对b的压力不变B.a对b的压力变大C.a、b物块间的摩擦力变大D.a、b物块间的摩擦力不变B[a、b整体受总重力、拉力F、向下的洛伦兹力q v B、地面的支持力F N和摩擦力f,竖直方向有F N=(m a+m b)g+q v B,水平方向有F-f=(m a+m b)a,f=μF N.在加速阶段,随着v增大,F N增大,f 增大,加速度a减小.对a受力分析,a受重力m a g、向下的洛伦兹力q v B、b对a向上的支持力F N′、b对a向左的静摩擦力f′,竖直方向有F N′=m a g+q v B,水平方向有f′=m a a.随着v的增大,F N′增大,选项A错误,B正确.加速度a在减小,所以a、b物块间的摩擦力变小,选项C、D 错误.]5、如图为洛伦兹力演示仪的结构图.励磁线圈产生的匀强磁场方向垂直纸面向外,电子束由电子枪产生,其速度方向与磁场方向垂直.电子速度大小可通过电子枪的加速电压来控制,磁场强弱可通过励磁线圈的电流来调节.下列说法正确的是()A.仅增大励磁线圈的电流,电子束径迹的半径变大B.仅提高电子枪的加速电压,电子束径迹的半径变大C.仅增大励磁线圈的电流,电子做圆周运动的周期将变大D.仅提高电子枪的加速电压,电子做圆周运动的周期将变大B[电子在加速电场中加速,由动能定理有eU=12m v2①电子在匀强磁场中做匀速圆周运动,洛伦兹力充当向心力,有eB v0=m v20r②解得r=m v0eB=1B2mUe③T=2πmeB④可见增大励磁线圈中的电流,电流产生的磁场增强,由③式可得,电子束的轨道半径变小.由④式知周期变小,故A、C错误;提高电子枪加速电压,电子束的轨道半径变大,周期不变,故B正确,D 错误.]6、关于磁感应强度B、电流强度I、导线长L和导线所受磁场力F的关系,下列说法中正确的是()A.在B=0的地方,F一定等于零B.在F=0的地方,B一定等于零C.若B=1 T,I=1 A,L=1 m,则F一定等于1 ND.若L=1 m,I=1 A,F=1 N,则B一定等于1 TA[当B=0时,导线一定不受磁场力,F一定为零.但是用B=FIL判断B或计算F时,B一定要和通电导线垂直,没有垂直这个条件,B=FIL不成立.故B、C、D错误,A正确.]7、如图所示,A、B、C三根平行通电直导线质量均为m,通入的电流大小均相等,其中C中的电流方向与A、B中的电流方向反向,A、B放置在粗糙的水平面上,C静止在空中,三根导线的截面处于一个等边三角形的三个顶点,且三根导线均保持静止,重力加速度为g,则A导线受到B导线的作用力大小和方向为()A.33mg,方向由A指向B B.33mg,方向由B指向AC.3mg,方向由A指向B D.3mg,方向由B指向A A[导线C受重力,A、B对C的作用力,如图所示:由题意可知F AC=F BC由几何关系得2F AC cos 30°=mg解得F AC=33mg由于三根通电导线电流相等,距离相等,所以各导线间安培力大小相等,所以F AB=F AC=33mg同向电流相吸异向电流相斥可判断A导线受到B导线的作用力方向由A指向B,故A正确,B、C、D错误.]8、(多选)如图所示,在一绝缘、粗糙且足够长的水平管道中有一带正电荷的小球,管道半径略大于球体半径,整个管道处于方向与管道垂直的水平匀强磁场中;现给球施加一个水平向右的初速度v0,以后小球的速度随时间变化的图象可能正确的是()A BC DACD[给小球施加一个水平向右的初速度,小球将受到向上的洛伦兹力,还受重力、可能有向后的滑动摩擦力;若重力小于洛伦兹力,小球受到向下的弹力,则受到摩擦力,做减速运动,洛伦兹力减小,当洛伦兹力等于重力时,做匀速运动,故C正确;若重力大于洛伦兹力,小球受到向上的弹力,则受到摩擦力,将做减速运动,随洛伦兹力的减小,支持力变大,摩擦力变大,加速度逐渐变大,最后速度为零,故D正确;若洛伦兹力等于小球的重力,小球将做匀速直线运动,故A正确.]9、如图,半径为R的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向里.一电荷量为q(q>0)、质量为m的粒子(不计重力)沿平行于直径ab的方向射入磁场区域.若粒子射出磁场时与射入磁场时运动方向间的夹角为90°,则粒子入射的速度大小为()A.qBR2m B.qBRmC.2qBRm D.4qBRmB[带电粒子在磁场中做匀速圆周运动,画出运动轨迹示意图,如图所示,根据几何关系知,粒子运动的轨迹圆的半径为r=R ①根据洛伦兹力提供向心力,有q v B=m v2 r得r=m vqB②联立①②得v=qBRm,故B正确,A、C、D错误.]10、关于通电直导线在磁场中所受的安培力,下列说法正确的是()A.磁感应强度跟导线所受的安培力成正比B.安培力的方向跟磁感应强度的方向垂直C.磁感应强度的方向跟安培力的方向相同D.通电直导线在磁场中某处受到的安培力为零,则该处的磁感应强度一定为零B[磁感应强度B的大小只决定于磁场本身的性质,跟导线所受的安培力及电流与导线长度均没有关系,故A错误;根据左手定则可知,安培力方向与磁场和电流组成的平面垂直,即与电流和磁场方向都垂直,故B正确,C错误;当电流方向与磁场的方向平行,所受安培力为0,而此时的磁感应强度不为零,故D错误.]11、如图所示的天平可用来测定磁感应强度B.天平的右臂下面挂有一个矩形线圈,宽度为l,共N 匝,线圈下端悬在匀强磁场中,磁场方向垂直纸面.当线圈中通有电流I(方向如图)时,在天平左右两边加上质量各为m1、m2的砝码后,天平平衡,当电流反向(大小不变)时,右边再加上质量为m的砝码后,天平重新平衡,由此可知()A.磁感应强度方向垂直纸面向里,B=(m1-m2)gNIlB.磁感应强度方向垂直纸面向里,B=mg 2NIlC.磁感应强度方向垂直纸面向外,B=(m1-m2)gNIlD.磁感应强度方向垂直纸面向外,B=mg 2NIlB[电流反向时,右边再加质量为m的砝码后,天平重新平衡,说明安培力的方向原来竖直向下,由左手定则,知磁感应强度方向垂直纸面向里,设线圈质量为m0,根据平衡条件有m1g=m2g+NBIl+m0g ①m1g=m2g+mg-NBIl+m0g ②由①②解得B=mg2NIl.]12、如图所示,两光滑的平行金属轨道与水平面成θ角,两轨道间距为L,一金属棒垂直两轨道水平放置.金属棒质量为m,电阻为R,轨道上端的电源电动势为E,内阻为r.为使金属棒能静止在轨道上,可加一方向竖直向上的匀强磁场,则该磁场的磁感应强度B应是多大?[解析]导体棒受力分析如图所示则I=ER+r①F安=BIL ②F安=mg tan θ③由①②③解得B=mg(R+r)tan θEL.[答案]mg(R+r)tan θEL13、如图所示,一个质量为m,电荷量为-q,不计重力的带电粒子从x轴上的P(a,0)点以速度v,沿与x轴正方向成60°角的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限,求:(1)匀强磁场的磁感应强度B;(2)穿过第一象限的时间.[解析](1)作出带电粒子做圆周运动的圆心和轨迹,由图中几何关系知:R cos 30°=a,得R=23a 3Bq v=m v2R,得B=m vqR=3m v2qa.(2)带电粒子在第一象限内运动时间t=120°360°·2πmqB=43πa9v.[答案](1)3m v2qa(2)43πa9v。

高中物理磁场经典习题(题型分类)含答案

高中物理磁场经典习题(题型分类)含答案

高中物理磁场经典习题(题型分类)含答案题组一1.在xOy平面内,y≥0的区域有垂直于平面向里的匀强磁场,磁感应强度为B。

一质量为m、带电量大小为q的粒子从原点O沿与x轴正方向成60°角方向以速度v射入。

粒子的重力不计。

求带电粒子在磁场中运动的时间和带电粒子离开磁场时的位置。

2.如图所示,abcd是一个正方形的盒子,在cd边的中点有一小孔e。

盒子中存有沿ad方向的匀强电场,场强大小为E。

一粒子源不断地从a处的小孔沿ab方向向盒内发射相同的带电粒子,粒子的初速度为v,经电场作用后恰好从e处的小孔射出。

现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B。

粒子仍恰好从e孔射出。

不考虑带电粒子的重力和粒子之间的相互作用。

1)所加的磁场的方向是什么?2)电场强度E与磁感应强度B的比值是多少?题组二4.如图所示的坐标平面内,在y轴的左侧存在垂直纸面向外、磁感应强度大小为B1 = 0.20 T的匀强磁场,在y轴的右侧存在垂直纸面向里、宽度d=0.125 m的匀强磁场B2.某时刻一质量为m=2.0×10^-8 kg、电量为q=+4.0×10^-4 C的带电微粒(重力可忽略不计),从x轴上坐标为(-0.25 m,0)的P点以速度v=2.0×10^3 m/s沿y轴正方向运动。

试求:1)微粒在y轴的左侧磁场中运动的轨道半径;2)微粒第一次经过y轴时速度方向与y轴正方向的夹角;3)要使微粒不能从右侧磁场边界飞出,B2应满足的条件。

5.图中左边有一对平行金属板,两板相距为d,电压为U;两板之间有匀强磁场,磁场应强度大小为B,方向平行于板面并垂直于纸面朝里。

图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。

假设一系列电荷量为q的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域。

高中物理带电粒子在磁场中的运动题20套(带答案)

高中物理带电粒子在磁场中的运动题20套(带答案)

高中物理带电粒子在磁场中的运动题20套(带答案)一、带电粒子在磁场中的运动专项训练1.如图所示,在两块水平金属极板间加有电 压U 构成偏转电场,一束比荷为510/qC kg m=的带正电的粒子流(重力不计),以速度v o =104m/s 沿 水平方向从金属极板正中间射入两板.粒子经电 场偏转后进入一具有理想边界的半圆形变化磁场 区域,O 为圆心,区域直径AB 长度为L =1m , AB 与水平方向成45°角.区域内有按如图所示规 律作周期性变化的磁场,已知B 0=0. 5T ,磁场方向 以垂直于纸面向外为正.粒子经偏转电场后,恰好从下极板边缘O 点与水平方向成45°斜向下射入磁场.求:(1)两金属极板间的电压U 是多大?(2)若T o =0.5s ,求t =0s 时刻射人磁场的带电粒子在磁场中运动的时间t 和离开磁场的位置.(3)要使所有带电粒子通过O 点后的运动过程中 不再从AB 两点间越过,求出磁场的变化周期B o ,T o 应满足的条件.【答案】(1)100V (2)t=5210s π-⨯,射出点在AB 间离O 点0.042m (3)5010s 3T π-<⨯【解析】试题分析:(1)粒子在电场中做类平抛运动,从O 点射出使速度代入数据得U=100V (2)粒子在磁场中经过半周从OB 中穿出,粒子在磁场中运动时间射出点在AB 间离O 点(3)粒子运动周期,粒子在t=0、….时刻射入时,粒子最可能从AB 间射出如图,由几何关系可得临界时 要不从AB 边界射出,应满足得考点:本题考查带电粒子在磁场中的运动2.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间. 【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBLv m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.如图3和如图4,由几何关系有:2223()(3)22L R R L =+-解得:58L R =或2LR = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m ⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k = A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=3.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ==22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos x v v α=1cos 2α=060α∴=4.正、负电子从静止开始分别经过同一回旋加速器加速后,从回旋加速器D 型盒的边缘引出后注入到正负电子对撞机中.正、负电子对撞机置于真空中.在对撞机中正、负电子对撞后湮灭成为两个同频率的光子.回旋加速器D 型盒中的匀强磁场的磁感应强度为0B ,回旋加速器的半径为R ,加速电压为U ;D 型盒缝隙间的距离很小,带电粒子穿过的时间可以忽略不计.电子的质量为m 、电量为e ,重力不计.真空中的光速为c ,普朗克常量为h .(1)求正、负电子进入对撞机时分别具有的能量E 及正、负电子对撞湮灭后产生的光子频率v(2)求从开始经回旋加速器加速到获得最大能量的过程中,D 型盒间的电场对电子做功的平均功率P(3)图甲为正负电子对撞机的最后部分的简化示意图.位于水平面的粗实线所示的圆环真空管道是正、负电子做圆周运动的“容器”,正、负电子沿管道向相反的方向运动,在管道内控制它们转变的是一系列圆形电磁铁.即图中的A 1、A 2、A 4……A n 共有n 个,均匀分布在整个圆环上.每个电磁铁内的磁场都是匀强磁场,并且磁感应强度都相同,方向竖直向下.磁场区域的直径为d .改变电磁铁内电流大小,就可以改变磁场的磁感应强度,从而改变电子偏转的角度.经过精确调整,首先实现电子在环形管道中沿图甲中粗虚线所示的轨道运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的同一直径的两端,如图乙所示.这就为进一步实现正、负电子的对撞做好了准备.求电磁铁内匀强磁场的磁感应强度B 大小【答案】(1) 222202e B R mc v mh h =+,22202e B R E m = ;(2) 20e B U mπ ;(3)02sin B R n dπ【解析】 【详解】解:(1)正、负电子在回旋加速器中磁场里则有:200mv evB R= 解得正、负电子离开回旋加速器时的速度为:00eB Rv m=正、负电子进入对撞机时分别具有的能量:222200122e B R E mv m==正、负电子对撞湮灭时动量守恒,能量守恒,则有:222E mc hv +=正、负电子对撞湮灭后产生的光子频率:222202e B R mc v mh h=+(2) 从开始经回旋加速器加速到获得最大能量的过程,设在电场中加速n 次,则有:2012neU mv =解得:2202eB R n mU=正、负电子在磁场中运动的周期为:02mT eB π=正、负电子在磁场中运动的时间为:2022B R nt T Uπ==D 型盒间的电场对电子做功的平均功率:20e B UW E P t t mπ===(3)设电子在匀强磁场中做圆周运动的半径为r ,由几何关系可得sin2dr nπ=解得:2sind r nπ=根据洛伦磁力提供向心力可得:200mv ev B r=电磁铁内匀强磁场的磁感应强度B 大小:02sinB R n B dπ=5.如图所示,同轴圆形区域内、外半径分别为R 1=1 m 、R 2=3m ,半径为R 1的圆内分布着B 1=2.0 T 的匀强磁场,方向垂直于纸面向外;外面环形磁场区域分布着B 2=0.5 T 的匀强磁场,方向垂直于纸面向内.一对平行极板竖直放置,极板间距d =3cm ,右极板与环形磁场外边界相切,一带正电的粒子从平行极板左板P 点由静止释放,经加速后通过右板小孔Q ,垂直进入环形磁场区域.已知点P 、Q 、O 在同一水平线上,粒子比荷4×107C /kg ,不计粒子的重力,且不考虑粒子的相对论效应.求:(1) 要使粒子不能进入中间的圆形磁场区域,粒子在磁场中的轨道半径满足什么条件? (2) 若改变加速电压大小,可使粒子进入圆形磁场区域,且能竖直通过圆心O ,则加速电压为多大?(3) 从P 点出发开始计时,在满足第(2)问的条件下,粒子到达O 点的时刻. 【答案】(1) r 1<1m . (2) U =3×107V . (3) t=(6.1×10-8+12.2×10-8k)s (k =0,1,2,3,…) 【解析】 【分析】(1)画出粒子恰好不进入中间磁场区的临界轨迹,先根据几何关系求出半径;(2)画出使粒子进入圆形磁场区域,且能竖直通过圆心O的轨迹,结合几何关系求解半径,然后根据洛伦兹力提供向心力列方程,再根据动能定理对直线加速过程列方程,最后联立方程组求解加速电压;(3)由几何关系,得到轨迹对应的圆心角,求解粒子从Q孔进入磁场到第一次到O点所用的时间,然后考虑周期性求解粒子到达O点的时刻.【详解】(1) 粒子刚好不进入中间磁场时轨迹如图所示,设此时粒子在磁场中运动的半径为r1,在Rt△QOO1中有r12+R22=(r1+R1)2代入数据解得r1=1m粒子不能进入中间磁场,所以轨道半径r1<1m.(2) 轨迹如图所示,由于O、O3、Q共线且水平,粒子在两磁场中的半径分别为r2、r3,洛伦兹力不做功,故粒子在内外磁场的速率不变,由qvB=m2 v r得r=mv qB易知r3=4r2且满足(r2+r3)2=(R2-r2)2+r32解得r2=34m,r3=3m又由动能定理有qU=12mv2代入数据解得U=3×107V.(3)带电粒子从P到Q的运动时间为t1,则t1满足12v t1=d得t1=10-9s令∠QO2O3=θ,所以cosθ=0.8,θ=37°(反三角函数表达亦可)圆周运动的周期T=2m qB π故粒子从Q孔进入磁场到第一次到O点所用的时间为8221372180532610360360m mt sqB qBππ-⨯⨯⨯-=+=考虑到周期性运动,t总=t1+t2+k(2t1+2t2)=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…).6.如图所示,在竖直面内半径为R的圆形区域内存在垂直于面向里的匀强磁场,其磁感应强度大小为B,在圆形磁场区域内水平直径上有一点P,P到圆心O的距离为2R,在P 点处有一个发射正离子的装置,能连续不断地向竖直平面内的各方向均匀地发射出速率不同的正离子. 已知离子的质量均为m,电荷量均为q,不计离子重力及离子间相互作用力,求:(1)若所有离子均不能射出圆形磁场区域,求离子的速率取值范围;(2)若离子速率大小02BqRvm=,则离子可以经过的磁场的区域的最高点与最低点的高度差是多少。

高中物理磁场大题超全

高中物理磁场大题超全

高中物理磁场大题一.解答题(共30小题)1.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连续发射质量为m、电量为+q、速度相同、重力不时间两板间加上如图乙所示的电压(不考虑极边缘的影计的带电粒子在0~3t响).已知t=0时刻进入两板间的带电粒子恰好在t时刻经极板边缘射入磁场.上、B为已知量.(不考虑粒子间相互影响及返回板间的情况)述m、q、l、t(1)求电压U的大小.时进入两板间的带电粒子在磁场中做圆周运动的半径.(2)求t(3)何时射入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.2.如图所示,在xOy平面,0<x<2L的区域有一方向竖直向上的匀强电场,2L <x<3L的区域有一方向竖直向下的匀强电场,两电场强度大小相等.x>3L的区域有一方向垂直于xOy平面向外的匀强磁场.某时刻,一带正电的粒子从坐标进入电场;之后的另一时刻,一带负电粒子以同原点以沿x轴正方向的初速度v样的初速度从坐标原点进入电场.正、负粒子从电场进入磁场时速度方向与电场和磁场边界的夹角分别为60°和30°,两粒子在磁场中分别运动半周后在某点相遇.已经两粒子的重力以及两粒子之间的相互作用都可忽略不计,两粒子带电量大小相等.求:(1)正、负粒子的质量之比m1:m2;(2)两粒子相遇的位置P点的坐标;(3)两粒子先后进入电场的时间差.3.如图所示,相距为R的两块平行金属板M、N正对着放置,s1、s2分别为M、N板上的小孔,s1、s2、O三点共线,它们的连线垂直M、N,且s2O=R.以O为圆心、R为半径的圆形区域存在磁感应强度为B、方向垂直纸面向外的匀强磁场.D为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板.质量为m、带电量为+q的粒子,经s1进入M、N间的电场后,通过s2进入磁场.粒子在s1处的速度和粒子所受的重力均不计.(1)当M、N间的电压为U时,求粒子进入磁场时速度的大小υ;(2)若粒子恰好打在收集板D的中点上,求M、N间的电压值U;(3)当M、N间的电压不同时,粒子从s1到打在D上经历的时间t会不同,求t 的最小值.4.如图所示,直角坐标系xoy位于竖直平面,在‑m≤x≤0的区域有磁感应强度大小B=4.0×10﹣4T、方向垂直于纸面向里的条形匀强磁场,其左边界与x轴交于P点;在x>0的区域有电场强度大小E=4N/C、方向沿y轴正方向的条形匀强电场,其宽度d=2m.一质量m=6.4×10﹣27kg、电荷量q=﹣3.2×10‑19C的带电粒子从P点以速度v=4×104m/s,沿与x轴正方向成α=60°角射入磁场,经电场偏转最终通过x轴上的Q点(图中未标出),不计粒子重力.求:(1)带电粒子在磁场中运动时间;(2)当电场左边界与y轴重合时Q点的横坐标;(3)若只改变上述电场强度的大小,要求带电粒子仍能通过Q点,讨论此电场左边界的横坐标x′与电场强度的大小E′的函数关系.5.如图所示,两平行金属板AB中间有互相垂直的匀强电场和匀强磁场.A板带正电荷,B板带等量负电荷,电场强度为E;磁场方向垂直纸面向里,磁感应强.平行金属板右侧有一挡板M,中间有小孔O′,OO′是平行于两金属度为B1板的中心线.挡板右侧有垂直纸面向外的匀强磁场,磁场应强度为B.CD为磁2边界上的一绝缘板,它与M板的夹角θ=45°,O′C=a,现有大量质量均为场B2m,含有各种不同电荷量、不同速度的带电粒子(不计重力),自O点沿OO′方向进入电磁场区域,其中有些粒子沿直线OO′方向运动,并进入匀强磁场B中,2求:(1)进入匀强磁场B的带电粒子的速度;2(2)能击中绝缘板CD的粒子中,所带电荷量的最大值;(3)绝缘板CD上被带电粒子击中区域的长度.6.在平面直角坐标系xoy中,第I象限存在沿y轴负方向的匀强电场,第IV象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m,电荷量垂直于y轴射入电场,经x 为q的带正电的粒子从y轴正半轴上的M点以速度v轴上的N点与x轴正方向成45°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计粒子重力,求:;(1)M、N两点间的电势差UMN(2)粒子在磁场中运动的轨道半径r;(3)粒子从M点运动到P点的总时间t.7.如图所示的平行板器件中,存在相互垂直的匀强磁场和匀强电场,磁场的磁=0.40T,方向垂直纸面向里,电场强度E=2.0×105V/m,PQ为板间中感应强度B1线.紧靠平行板右侧边缘xOy坐标系的第一象限,有垂直纸面向外的匀强磁场,=0.25T,磁场边界AO和y轴的夹角∠AOy=45°.一束带电量q=8.0磁感应强度B2×10﹣19C的正离子从P点射入平行板间,沿中线PQ做直线运动,穿出平行板后从y轴上坐标为(0,0.2m)的Q点垂直y轴射入磁场区,离子通过x轴时的速度方向与x轴正方向夹角在45°~90°之间.则:(1)离子运动的速度为多大?(2)离子的质量应在什么围?(3)现只改变AOy区域磁场的磁感应强度大小,使离子都不能打到x轴上,磁感应强度大小B应满足什么条件?28.如图所示,在空间中存在垂直纸面向里的匀强磁场,其竖直边界AB、CD的宽度为d,在边界AB左侧是竖直向下、场强为E的匀强电场.现有质量为m、的水平初速度射入电场,随带电量为+q的粒子(不计重力)从P点以大小为v后与边界AB成45°射入磁场.若粒子能垂直CD边界飞出磁场,穿过小孔进入如图所示两竖直平行金属板间的匀强电场中减速至零且不碰到正极板.(1)请画出粒子上述过程中的运动轨迹,并求出粒子进入磁场时的速度大小v;(2)求匀强磁场的磁感应强度B;(3)求金属板间的电压U的最小值.9.如图甲,真空中竖直放置两块相距为d的平行金属板P、Q,两板间加上如图的周期性变化的电压,在Q板右侧某个区域存在磁感应强度大小乙最大值为U为B、方向垂直于纸面向里的有界匀强磁场.在紧靠P板处有一粒子源A,自t=0开始连续释放初速不计的粒子,经一段时间从Q板小孔O射入磁场,然后射出磁场,射出时所有粒子的速度方向均竖直向上.已知电场变化周期T=,粒子质量为m,电荷量为+q,不计粒子重力及相互间的作用力.求:(1)t=0时刻释放的粒子在P、Q间运动的时间;(2)粒子射入磁场时的最大速率和最小速率;(3)有界磁场区域的最小面积.10.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的半径为L,电势为φ1,圆弧面CD的半径为,电势为φ2.足够长的收集板MN平行边界ACDB,O到MN板的距离OP=L.假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子引力的影响.(1)求粒子到达O点时速度的大小;(2)如图2所示,在边界ACDB和收集板MN之间加一个半圆形匀强磁场,圆心为O,半径为L,方向垂直纸面向,则发现从AB圆弧面收集到的粒子经O点进入磁场后有能打到MN板上(不考虑过边界ACDB的粒子再次返回),求所加磁感应强度的大小;(3)同上问,从AB圆弧面收集到的粒子经O点进入磁场后均不能到达收集板MN,求磁感应强度所满足的条件.试写出定量反映收集板MN上的收集效率η与磁感应强度B 的关系的相关式子.11.如图,静止于A 处的离子,经电压为U 的加速电场加速后沿图中圆弧虚线通过静电分析器,从P 点垂直CN 进入矩形区域的有界匀强电场,电场方向水平向左.静电分析器通道有均匀辐向分布的电场,已知圆弧所在处场强为E 0,方向如图所示;离子质量为m 、电荷量为q ;=2d 、=3d ,离子重力不计.(1)求圆弧虚线对应的半径R 的大小;(2)若离子恰好能打在NQ 的中点上,求矩形区域QNCD 匀强电场场强E 的值;(3)若撤去矩形区域QNCD 的匀强电场,换为垂直纸面向里的匀强磁场,要求离子能最终打在QN 上,求磁场磁感应强度B 的取值围.12.如图甲所示,一对平行金属板M 、N 长为L ,相距为d ,O 1O 为中轴线.当两板间加电压U MN =U 0时,两板间为匀强电场,忽略两极板外的电场.某种带负电的粒子从O 1点以速度v 0沿O 1O 方向射入电场,粒子恰好打在上极板M 的中点,粒子重力忽略不计.(1)求带电粒子的比荷;(2)若MN 间加如图乙所示的交变电压,其周期,从t=0开始,前U MN =2U ,后U MN =﹣U ,大量的上述粒子仍然以速度v 0沿O 1O 方向持续射入电场,最终所有粒子刚好能全部离开电场而不打在极板上,求U 的值;(3)紧贴板右侧建立xOy 坐标系,在xOy 坐标第I 、IV 象限某区域存在一个圆形的匀强磁场区域,磁场方向垂直于xOy 坐标平面,要使在(2)问情景下所有粒子经过磁场偏转后都会聚于坐标为(2d ,2d )的P 点,求磁感应强度B 的大小围.13.如图所示,在第一、二象限存在场强均为E 的匀强电场,其中第一象限的匀强电场的方向沿x 轴正方向,第二象限的电场方向沿x 轴负方向.在第三、四象限矩形区域ABCD 存在垂直于纸面向外的匀强磁场,矩形区域的AB 边与x 轴重合.M 点是第一象限中无限靠近y 轴的一点,在M 点有一质量为m 、电荷量为e 的质子,以初速度v 0沿y 轴负方向开始运动,恰好从N 点进入磁场,若OM=2ON ,不计质子的重力,试求:(1)N 点横坐标d ;(2)若质子经过磁场最后能无限靠近M 点,则矩形区域的最小面积是多少;(3)在(2)的前提下,该质子由M 点出发返回到无限靠近M 点所需的时间.14.如图所示,在xOy平面直角坐标系中,直线MN与y轴成30°角,P点的坐标为(,0),在y轴与直线MN之间的区域,存在垂直于xOy平面向外、磁感应强度为B的匀强磁场.在直角坐标系xOy的第Ⅳ象限区域存在沿y轴,正方向、大小为的匀强电场,在x=3a处垂直于x轴放置一平面荧光屏,与从y轴上0≤y≤2a的区间垂直于y轴和磁x轴交点为Q,电子束以相同的速度v场方向射入磁场.已知从y=2a点射入的电子在磁场中轨迹恰好经过O点,忽略电子间的相互作用,不计电子的重力.求:(1)电子的比荷;(2)电子离开磁场垂直y轴进入电场的位置的围;(3)从y轴哪个位置进入电场的电子打到荧光屏上距Q点的距离最远?最远距离为多少?15.如图(a)所示,水平放置的平行金属板A、B间加直流电压U,A板正上方有“V”字型足够长的绝缘弹性挡板.在挡板间加垂直纸面的交变磁场,磁感应强度随时间变化如图(b),垂直纸面向里为磁场正方向,其中B1=B,B2未知.现有一比荷为、不计重力的带正电粒子从C点静止释放,t=0时刻,粒子刚好从小孔O进入上方磁场中,在t1时刻粒子第一次撞到左挡板,紧接着在t1+t2时刻粒子撞到右挡板,然后粒子又从O点竖直向下返回平行金属板间.粒子与挡板碰撞前后电量不变,沿板的分速度不变,垂直板的分速度大小不变、方向相反,不计碰撞的时间及磁场变化产生的感应影响.求:(1)粒子第一次到达O点时的速率;(2)图中B2的大小;(3)金属板A和B间的距离d.16.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间两板间加上如图乙所示的电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t时,刻经极板边缘射入磁场.上述m、q、l、t、B为已知量.(不考虑粒子间相互影响及返回板间的情况)(1)求电压U的大小.(2)求t时刻进入两板间的带电粒子在磁场中做圆周运动的半径.(3)带电粒子在磁场中的运动时间.17.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场由加了电压的相距为d的两块水平平行放置的导体板形成,如图甲所示.大量电子(其重力不计)由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t,当在两板间加如图乙所示的周期为2t0、幅值恒为U的电压时,所有电子均从两板间通过,然后进入水平宽度为l,竖直宽度足够大的匀强磁场中,最后通过匀强磁场打在竖直放置的荧光屏上.问:(1)电子在刚穿出两板之间时的最大侧向位移与最小侧向位移之比为多少?(2)要使侧向位移最大的电子能垂直打在荧光屏上,匀强磁场的磁感应强度为多少?(3)在满足第(2)问的情况下,打在荧光屏上的电子束的宽度为多少?(已知电子的质量为m、电荷量为e)18.如图所示xOy平面,在x轴上从电离室产生的带正电的粒子,以几乎为零的初速度飘入电势差为U=200V的加速电场中,然后经过右侧极板上的小孔沿x轴进入到另一匀强电场区域,该电场区域围为﹣l≤x≤0(l=4cm),电场强度大小为E=×104V/m,方向沿y轴正方向.带电粒子经过y轴后,将进入一与y轴相切的圆形边界匀强磁场区域,磁场区域圆半径为r=2cm,圆心C到x轴的距离为d=4cm,磁场磁感应强度为B=8×10﹣2T,方向垂直xoy平面向外.带电粒子最终垂直打在与y轴平行、到y轴距离为L=6cm的接收屏上.求:(1)带电粒子通过y轴时离x轴的距离;(2)带电粒子的比荷;(3)若另一种带电粒子从电离室产生后,最终打在接收屏上y=cm处,则该粒子的比荷又是多少?19.如图所示,在竖直平面,虚线MO与水平线PQ相交于O,二者夹角θ=30°,在MOP围存在竖直向下的匀强电场,电场强度为E,MOQ上方的某个区域有垂直纸面向里的匀强磁场,磁感应强度为B,O点处在磁场的边界上,现有一群质量为m、电量为+q的带电粒子在纸面以速度v(0≤v≤)垂直于MO从O点射入磁场,所有粒子通过直线MO时,速度方向均平行于PQ向左,不计粒子的重力和粒子间的相互作用力.求:(1)速度最大的粒子在磁场中的运动时间;(2)速度最大的粒子打在水平线POQ上的位置离O点的距离;(3)磁场区域的最小面积.20.如图所示为某一仪器的部分原理示意图,虚线OA、OB关于y轴对称,∠AOB=90°,OA、OB将xOy平面分为Ⅰ、Ⅱ、Ⅲ三个区域,区域Ⅰ、Ⅲ存在水平方向的匀强电场,电场强度大小相等、方向相反.质量为m电荷量为q的带电粒子自x轴上的粒子源P处以速度v0沿y轴正方向射出,经时间t到达OA上的M点,且此时速度与OA垂直.已知M到原点O的距离OM=L,不计粒子的重力.求:(1)匀强电场的电场强度E的大小;(2)为使粒子能从M点经Ⅱ区域通过OB上的N点,M、N点关于y轴对称,可在区域Ⅱ加一垂直xOy平面的匀强磁场,求该磁场的磁感应强度的最小值和粒子经过区域Ⅲ到达x轴上Q点的横坐标;(3)当匀强磁场的磁感应强度取(2)问中的最小值时,且该磁场仅分布在一个圆形区域.由于某种原因的影响,粒子经过M点时的速度并不严格与OA垂直,成散射状,散射角为θ,但速度大小均相同,如图所示,求所有粒子经过OB时的区域长度.21.在xoy平面直角坐标系的第Ⅰ象限有射线OA,OA与x轴正方向夹角为30°,如图所示,OA与y轴所夹区域存在y轴负方向的匀强电场,其它区域存在垂直坐标平面向外的匀强磁场;有一带正电粒子质量m,电量q,从y轴上的P点沿着x轴正方向以大小为v的初速度射入电场,运动一段时间沿垂直于OA方向经过Q点进入磁场,经磁场偏转,过y轴正半轴上的M点再次垂直进入匀强电场.已知OP=h,不计粒子的重力.(1)求粒子垂直射线OA经过Q点的速度v;Q(2)求匀强电场的电场强度E与匀强磁场的磁感应强度B的比值;(3)粒子从M点垂直进入电场后,如果适当改变电场强度,可以使粒子再次垂直OA进入磁场,再适当改变磁场的强弱,可以使粒子再次从y轴正方向上某点垂直进入电场;如此不断改变电场和磁场,会使粒子每次都能从y轴正方向上某点垂直进入电场,再垂直OA方向进入磁场…,求粒子从P点开始经多长时间能够运动到O点?22.如图所示,图面有竖直线DD′,过DD′且垂直于图面的平面将空间分成Ⅰ、Ⅱ两区域.区域I有方向竖直向上的匀强电场和方向垂直图面的匀强磁场B(图中未画出);区域Ⅱ有固定在水平面上高h=2l、倾角α=的光滑绝缘斜面,斜面顶端与直线DD′距离s=4l,区域Ⅱ可加竖直方向的大小不同的匀强电场(图中未画出);C点在DD′上,距地面高H=3l.零时刻,质量为m、带电荷量为q=、方向与水平面夹角θ=的速度,在区域I做的小球P在K点具有大小v半径r=的匀速圆周运动,经CD水平进入区域Ⅱ.某时刻,不带电的绝缘小球A由斜面顶端静止释放,在某处与刚运动到斜面的小球P相遇.小球视为质点,不计空气阻力及小球P所带电量对空间电磁场的影响.l已知,g为重力加速度.(1)求匀强磁场的磁感应强度B的大小;;(2)若小球A、P在斜面底端相遇,求释放小球A的时刻tA(3)若小球A、P在时刻t=β(β为常数)相遇于斜面某处,求此情况下区域Ⅱ的匀强电场的场强E,并讨论场强E的极大值和极小值及相应的方向.23.如图,在x轴上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外;在x轴下方存在匀强电场,电场方向与xOy平面平行,且与x轴成45°夹从y轴上P点沿y轴正方角.一质量为m、电荷量为q(q>0)的粒子以速度v向射出,一段时间后进入电场,进入电场时的速度方向与电场方向相反;又经过,磁场方向变为垂直纸面向里,大小不变,不计重力.一段时间T(1)求粒子从P点出发至第一次到达x轴时所需的时间;(2)若要使粒子能够回到P点,求电场强度的最大值.24.一半径为R的薄圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的中心轴线平行,筒的横截面如图所示.图中直径MN的两端分别开有小孔,筒可绕其中心轴线转动,圆筒的转动方向和角速度大小可以通过控制装置改变.一不计重力的负电粒子从小孔M沿着MN方向射入磁场,当筒以大小为ω0的角速度转过90°时,该粒子恰好从某一小孔飞出圆筒.(1)若粒子在筒未与筒壁发生碰撞,求该粒子的荷质比和速率分别是多大?(2)若粒子速率不变,入射方向在该截面且与MN方向成30°角,则要让粒子与圆筒无碰撞地离开圆筒,圆筒角速度应为多大?25.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数μ=0.3,OB部分光滑.另一小物块a.放在车的最左端,和车一起以v=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度.a、b两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求:(1)物块a与b碰后的速度大小;(2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.26.如图所示,在光滑的水平面上有一长为L的木板B,上表面粗糙,在其左端有一光滑的圆弧槽C,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B、C静止在水平面上.现有滑块A以初速V0从右端滑上B,并以V滑离B,恰好能到达C的最高点.A、B、C的质量均为m,试求:(1)木板B上表面的动摩擦因素μ;(2)圆弧槽C的半径R;(3)当A滑离C时,C的速度.27.如图所示,一质量M=0.4kg的小物块B在足够长的光滑水平台面上静止不动,其右侧固定有一轻质水平弹簧(处于原长).台面的右边平滑对接有一等高的水平传送带,传送带始终以υ=1m/s的速率逆时针转动.另一质量m=0.1kg的小物块A以速度υ=4m/s水平滑上传送带的右端.已知物块A与传送带之间的动摩擦因数μ=0.1,传送带左右两端的距离l=3.5m,滑块A、B均视为质点,忽略空气阻力,取g=10m/s2.(1)求物块A第一次到达传送带左端时速度大小;(2)求物块A第一次压缩弹簧过程中弹簧的最大弹性势能E;pm(3)物块A会不会第二次压缩弹簧?28.历史上美国宇航局曾经完成了用“深度撞击”号探测器释放的撞击器“击中”坦普尔1号彗星的实验.探测器上所携带的重达370kg的彗星“撞击器”将以1.0×104m/s的速度径直撞向彗星的彗核部分,撞击彗星后“撞击器”融化消失,这次撞击使该彗星自身的运行速度出现1.0×10﹣7m/s的改变.已知普朗克常量h=6.6×10﹣34J•s.(计算结果保留两位有效数字).求:①撞击前彗星“撞击器”对应物质波波长;②根据题中相关信息数据估算出彗星的质量.29.如图,ABD 为竖直平面的轨道,其中AB 段是水平粗糙的、BD 段为半径R=0.4m 的半圆光滑轨道,两段轨道相切于B 点.小球甲从C 点以速度υ0沿水平轨道向右运动,与静止在B 点的小球乙发生弹性碰撞.已知甲、乙两球的质量均为m ,小球甲与AB 段的动摩擦因数为μ=0.5,C 、B 距离L=1.6m ,g 取10m/s 2.(水平轨道足够长,甲、乙两球可视为质点)(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D ,求乙在轨道上的首次落点到B 点的距离;(2)在满足(1)的条件下,求的甲的速度υ0;(3)若甲仍以速度υ0向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B 点的距离围.30.动量定理可以表示为△p=F △t ,其中动量p 和力F 都是矢量.在运用动量定理处理二维问题时,可以在相互垂直的x 、y 两个方向上分别研究.例如,质量为m 的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小都是υ,如图所示.碰撞过程中忽略小球所受重力.a .分别求出碰撞前后x 、y 方向小球的动量变化△p x 、△p y ;b .分析说明小球对木板的作用力的方向.参考答案与试题解析一.解答题(共30小题)1.(2017•模拟)如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy 平面向里.位于极板左侧的粒子源沿x轴间右连续发射质量为m、电量为+q、速时间两板间加上如图乙所示的电压(不考度相同、重力不计的带电粒子在0~3t时刻经极板边虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t、B为已知量.(不考虑粒子间相互影响及返回板缘射入磁场.上述m、q、l、t间的情况)(1)求电压U的大小.时进入两板间的带电粒子在磁场中做圆周运动的半径.(2)求t(3)何时射入两板间的带电粒子在磁场中的运动时间最短?求此最短时间. 【解答】解:(1)t=0时刻进入两极板的带电粒子在电场中做匀变速曲线运动,t 0时刻刚好从极板边缘射出, 则有 y=l ,x=l , 电场强度:E=…①,由牛顿第二定律得:Eq=ma …②, 偏移量:y=at 02…③ 由①②③解得:U 0=…④.(2)t 0时刻进入两极板的带电粒子,前t 0时间在电场中偏转,后t 0时间两极板没有电场,带电粒子做匀速直线运动. 带电粒子沿x 轴方向的分速度大小为:v x =v 0=…⑤带电粒子离开电场时沿y 轴负方向的分速度大小为:v y =a •t 0 …⑥ 带电粒子离开电场时的速度大小为:v=…⑦设带电粒子离开电场进入磁场做匀速圆周运动的半径为R , 由牛顿第二定律得:qvB=m …⑧, 由③⑤⑥⑦⑧解得:R=…⑨;(3)在t=2t 0时刻进入两极板的带电粒子,在电场中做类平抛运动的时间最长,飞出极板时速度方向与磁场边界的夹角最小,而根据轨迹几何知识可知,轨迹的圆心角等于粒子射入磁场时速度方向与边界夹角的2倍,所以在t=2t 0时刻进入两极板的带电粒子在磁场中运动时间最短.。

高中物理磁场专题

高中物理磁场专题

高中物理磁场专题(总5页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除七、带电粒子在复合场中的运动 测试题1.如图,在两个平行板间有正交的匀强电场和匀强磁场,一个带电粒子垂直于电磁场方向射入场中,射出时发现粒子的动能减少了。

为使粒子射出时动能有所增加,不计重力的情况下,可采取的办法是( )A .增大粒子射入时的速度B .减小磁场的磁感应强度C .增大电场的电场强度D .改变粒子的带电性质2.如图所示,质量为m 、带电量为+q 的三个相同的带电小球A 、B 、C ,从同一高度以初速度v 0水平抛出,B 球处于竖直向下的匀强磁场中,C 球处于垂直纸面向里的匀强电场中,它们落地的时间分别为t A 、t B 、t C ,落地时的速度大小分别为v A 、v B 、v C ,则以下判断正确的是( )A .t A =tB =tC B .t A =t C <t B C .v B <v A <v CD .v A =v B <v C3.如图所示,粗糙程度均匀的绝缘斜面下方O 点处有一正点电荷,带负电的小物体以初速度V 1从M 点沿斜面上滑,到达N 点时速度为零,然后下滑回到M 点,此时速度为V 2(V 2<V 1)。

若小物体电荷量保持不变,OM =ON ,则( )A .小物体上升的最大高度为22124V V gB .从N 到M 的过程中,小物体的电势能逐渐减小C .从M 到N 的过程中,电场力对小物体先做负功后做正功D .从N 到M 的过程中,小物体受到的摩擦力和电场力均是先增大后减小4.如图所示的虚线区域内,充满垂直于纸面向里的匀强磁场和竖直向下的匀强电场。

一带电粒子a (不计重力)以一定的初速度由左边界的O 点射入磁场、电场区域,恰好沿直线由区域右边界的O′点(图中未标出)穿出。

若撤去该区域内的磁场而保留电场不变,另一个同样的粒子b (不计重力)仍以相同 初速度由O 点射入,从区域右边界穿出,则粒子b ( )A .穿出位置一定在O′点下方B .穿出位置一定在O′点上方C .运动时,在电场中的电势能一定减小D .在电场中运动时,动能一定减小5.如图所示,在某一真空中,只有水平向右的匀强电场和竖直向下的重力场,在竖直平面内有初速度为v 0的带电微粒,恰能沿图示虚线由A 向B 做直线前进。

高中物理题型分类汇总含详细答案-磁场

高中物理题型分类汇总含详细答案-磁场

高中物理题型分类汇总含详细答案-磁场共:15题时间:50分钟一、单选题1.如图所示,M、N、P和Q是以MN为直径的半圆弧上的四点,O为半圆弧的圆心,∠MOQ =60°,∠NOP=60°,在N、Q处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O点的磁感应强度大小为B1,若将Q处长直导线移至P 处,则O点的磁感应强度大小为B2,那么B1与B2之比为()A.1:1B.1:2C.D.2.有一小段通电导线,长为1cm,电流强度为5A,把它置入某磁场中某点,受到的磁场力为0.05N,则该点的磁感应强度B一定是()A.B=1TB.B≥1TC.B≤1TD.以上情况都有可能3.如图,固定在光滑半圆轨道上的导体棒M通有垂直纸面向里的电流(较大),导体棒N通有垂直纸面向外的电流,M在N处产生的磁场磁感应强度为B1,N刚好静止,此时M、N关于过O点的竖直轴对称,且∠MON=60°;若调整M的电流大小和位置并固定,当N再次平衡时,∠MON=120°,且M、N仍关于过O点的竖直轴对称,则调整后M在N处产生的磁场磁感应强度B2与B1的比值为()A.0.5B.2C.3D.4.如图所示,在带负电荷的橡胶圆盘附近悬挂一个小磁针。

现驱动圆盘绕中心轴高速旋转,小磁针发生偏转。

下列说法正确的是()A.偏转原因是圆盘周围存在电场B.偏转原因是圆盘周围产生了磁场C.仅改变圆盘的转动方向,偏转方向不变D.仅改变圆盘所带电荷的电性,偏转方向不变5.如图甲所示,线圈abcd固定于匀强磁场中,磁场方向垂直纸面向外,磁感应强度随时间的变化情况如图乙所示。

下列所示关于ab边所受安培力随时间变化的F-t图象中(规定安培力方向向左为正),可能正确的是()A. B. C. D.6.如图甲所示,间距为L的光滑导轨水平放置在竖直向下的匀强磁场中,磁感应强度为B,轨道左侧连接一定值电阻R。

水平外力F平行于导轨,随时间t按图乙所示变化,导体棒在F作用下沿导轨运动,始终垂直于导轨,在0~t0时间内,从静止开始做匀加速直线运动。

高中物理-磁场 练习(含答案)

高中物理-磁场 练习(含答案)

高中物理-磁场 练习(含答案)磁场1、如图所示,弹簧测力计下挂一铁球,将弹簧测力计自左向右逐渐移动时,弹簧测力计的示数( )A .不变B .逐渐减小C .先减小后增大D .先增大后减小2、如图所示,一个边长L 、三边电阻相同的正三角形金属框放置在磁感应强度为B 的匀强磁场中,若通以图示方向的电流,电流强度为I,则金属框受到的磁场力为( )A .0B .ILBC .43ILBD .2ILB3、物理学中有许多物理量的定义,可用公式来表示,不同的概念定义的方法不一样,下列四个物理量中,定义法与其他物理量不同的一组是( )A .电场强度E =F qB .导体的电阻R =ρl SC .电容C =Q UD .磁感应强度B =F IL4、如图所示,有界匀强磁场边界线SP ∥MN,速度不同的同种带电粒子从Q 点沿SP 方向同时射入磁场,其中穿过a 点的粒子速度v 1与MN 垂直,穿过b 点的粒子,其速度方向与MN 成60°角,设两粒子从S 到a 、b 所需的时间分别为t 1、t 2,则t 1∶t 2为( )A .1∶3B .4∶3C.1∶1 D.3∶25、(双选)如图所示是磁流体发电机的原理示意图,金属板M、N正对平行放置,且板面垂直于纸面,在两极板之间接有电阻R.在极板间有垂直于纸面向里的匀强磁场.当等离子束(分别带有等量正、负电荷的离子束)从左向右进入极板时,下列说法中正确的是(不计粒子所受重力)()A.N板的电势高于M板的电势B.M板的电势高于N板的电势C.R中有由b向a方向的电流D.R中有由a向b方向的电流6、在如图所示的电路中,电池均相同,当开关S分别置于a、b两处时,导线MM′与NN′之间的安培力的大小分别为f a、f b,可判断这两段导线()A.相互吸引,f a>f b B.相互排斥,f a>f bC.相互吸引,f a<f b D.相互排斥,f a<f b7、(双选)如图所示,可自由转动的小磁针上方有一根长直导线,开始时二者在纸面内平行放置.当导线中通以如图所示电流I时,发现小磁针的N极向里,S极向外,停留在与纸面垂直的位置上.这一现象说明()A.小磁针感知到了电流的磁场B.小磁针处磁场方向垂直纸面向里C.小磁针处磁场方向垂直纸面向外D.若把小磁针移走,该处就没有磁场了8、(多选)一个带正电的小球沿光滑绝缘的水平桌面向右运动,小球离开桌面后进入一水平向里的匀强磁场,已知速度方向垂直于磁场方向,如图所示,小球飞离桌面后落到地板上,设飞行时间为t1,水平射程为x1,着地速度为v1.撤去磁场,其余的条件不变,小球飞行时间为t2,水平射程为x2,着地速度为v2.则下列论述正确的是()A.x1>x2B.t1>t2C.v1和v2大小相等D.v1和v2方向相同9、如图,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P为磁场边界上的一点.大量相同的带电粒子以相同的速率经过P点,在纸面内沿不同方向射入磁场.若粒子射入速率为v1,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子射入速率为v2,相应的出射点分布在三分之一圆周上.不计重力及带电粒子之间的相互作用.则v2∶v1为()A.3∶2B.2∶1C.3∶1D.3∶ 210、如图所示,条形磁铁放在光滑斜面上,用平行于斜面的轻弹簧拉住而平衡,A为水平放置的直导线的截面,导线中无电流时磁铁对斜面的压力为F N1;当导线中有垂直纸面向外的电流时,磁铁对斜面的压力为F N2,则下列关于磁铁对斜面的压力和弹簧的伸长量的说法中正确的是()A.F N1<F N2,弹簧的伸长量减小B.F N1=F N2,弹簧的伸长量减小C.F N1>F N2,弹簧的伸长量增大D.F N1>F N2,弹簧的伸长量减小11、对磁现象的研究中有一种“磁荷观点”.人们假定,在N极上聚集着正磁荷,在S极上聚集着负磁荷.由此可以将磁现象与电现象类比,引入相似的概念,得出一系列相似的定律.例如磁的库仑定律、磁场强度、磁偶极矩等.在磁荷观点中磁场强度定义为:磁场强度的大小等于点磁荷在该处所受磁场力与点磁荷所带磁荷量的比值,其方向与正磁荷在该处所受磁场力方向相同.若用H表示磁场强度,F表示点磁荷所受磁场力,q m表示磁荷量,则下列关系式正确的是()A.F=Hq m B.H=Fq mC.H=Fq m D.q m=HF12、如图所示,导体杆ab的质量为m,电阻为R,放置在与水平面夹角为θ的倾斜金属导轨上,导轨间距为d,电阻不计,系统处在竖直向上的匀强磁场中,磁感应强度为B,电池内阻不计,问:若导轨光滑,电源电动势E多大才能使导体杆静止在导轨上?13、如图所示,在0≤x≤a、0≤y≤a2范围内有垂直于xOy平面向外的匀强磁场,磁感应强度大小为B.坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xOy平面内,与y轴正方向的夹角分布在0°~90°范围内.已知粒子在磁场中做圆周运动的半径介于a2到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做匀速圆周运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时的:(1)速度的大小;(2)速度方向与y轴正方向夹角的正弦.磁场1、如图所示,弹簧测力计下挂一铁球,将弹簧测力计自左向右逐渐移动时,弹簧测力计的示数()A.不变B.逐渐减小C.先减小后增大D.先增大后减小C[磁体上磁极的磁性最强,对铁球的吸引力最大,所以铁球自左向右逐渐移动时,所受磁体的引力先减小后增大,弹簧测力计的示数也随之先减小后增大.]2、如图所示,一个边长L、三边电阻相同的正三角形金属框放置在磁感应强度为B的匀强磁场中,若通以图示方向的电流,电流强度为I,则金属框受到的磁场力为()A.0B.ILBC.43ILB D.2ILBA[安培力公式F=BILsin θ中,L是通电导线的有效长度,是导线在磁场中两端点间的距离.由题图可知,正三角形金属框的有效长度是0,所以导线框受到的安培力为零.故选A.]3、物理学中有许多物理量的定义,可用公式来表示,不同的概念定义的方法不一样,下列四个物理量中,定义法与其他物理量不同的一组是()A .电场强度E =F qB .导体的电阻R =ρl SC .电容C =Q UD .磁感应强度B =F ILB [R =ρl S 是电阻定律,电阻的决定式,其它三个式子都是各量的定义式,故本题选B.]4、如图所示,有界匀强磁场边界线SP ∥MN,速度不同的同种带电粒子从Q 点沿SP 方向同时射入磁场,其中穿过a 点的粒子速度v 1与MN 垂直,穿过b 点的粒子,其速度方向与MN 成60°角,设两粒子从S 到a 、b 所需的时间分别为t 1、t 2,则t 1∶t 2为( )A .1∶3B .4∶3C .1∶1D .3∶2D [画出运动轨迹,过a 点的粒子转过90°,过b 点的粒子转过60°,故选项D 正确.]5、(双选)如图所示是磁流体发电机的原理示意图,金属板M 、N 正对平行放置,且板面垂直于纸面,在两极板之间接有电阻R.在极板间有垂直于纸面向里的匀强磁场.当等离子束(分别带有等量正、负电荷的离子束)从左向右进入极板时,下列说法中正确的是(不计粒子所受重力)( )A .N 板的电势高于M 板的电势B .M 板的电势高于N 板的电势C .R 中有由b 向a 方向的电流D .R 中有由a 向b 方向的电流BD [根据左手定则可知带正电荷的离子向上极板偏转,带负电荷的离子向下极板偏转,则M 板的电势高于N 板的电势.M 板相当于电源的正极,那么R 中有由a 向b 方向的电流.故选BD.]6、在如图所示的电路中,电池均相同,当开关S 分别置于a 、b 两处时,导线MM ′与NN ′之间的安培力的大小分别为f a 、f b ,可判断这两段导线( )A.相互吸引,f a>f b B.相互排斥,f a>f bC.相互吸引,f a<f b D.相互排斥,f a<f bD[当S接a时,电路的电源只用了一节干电池,当S接b时,电路的电源用了两节干电池,此时电路中的电流比S接a时大,所以有f a<f b;两导线MM′、NN′中的电流方向相反,依据安培定则和左手定则可知两者相互排斥.故正确选项为D.]7、(双选)如图所示,可自由转动的小磁针上方有一根长直导线,开始时二者在纸面内平行放置.当导线中通以如图所示电流I时,发现小磁针的N极向里,S极向外,停留在与纸面垂直的位置上.这一现象说明()A.小磁针感知到了电流的磁场B.小磁针处磁场方向垂直纸面向里C.小磁针处磁场方向垂直纸面向外D.若把小磁针移走,该处就没有磁场了AB[电流在导线周围产生了磁场,小磁针N极的指向为磁场的方向,所以A、B正确,C错误;该处的磁场与通电电流有关,与小磁针无关,所以D错误.]8、(多选)一个带正电的小球沿光滑绝缘的水平桌面向右运动,小球离开桌面后进入一水平向里的匀强磁场,已知速度方向垂直于磁场方向,如图所示,小球飞离桌面后落到地板上,设飞行时间为t1,水平射程为x1,着地速度为v1.撤去磁场,其余的条件不变,小球飞行时间为t2,水平射程为x2,着地速度为v2.则下列论述正确的是()A.x1>x2B.t1>t2C.v1和v2大小相等D.v1和v2方向相同ABC [当桌面右边存在磁场时,在小球下落过程中由左手定则知,带电小球受到斜向右上方的洛伦兹力作用,此力在水平方向上的分量向右,竖直方向上的分量向上,因此小球水平方向上存在加速度,竖直方向上加速度a<g,所以t 1>t 2、x 1>x 2,A 、B 正确;洛伦兹力对小球不做功,故C 正确;两次小球着地时速度方向不同,故D 错误.]9、如图,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P 为磁场边界上的一点.大量相同的带电粒子以相同的速率经过P 点,在纸面内沿不同方向射入磁场.若粒子射入速率为v 1,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子射入速率为v 2,相应的出射点分布在三分之一圆周上.不计重力及带电粒子之间的相互作用.则v 2∶v 1为( )A .3∶2B .2∶1C .3∶1D .3∶ 2C [相同的带电粒子垂直匀强磁场入射均做匀速圆周运动.粒子以v 1入射,一端为入射点P,对应圆心角为60°(对应六分之一圆周)的弦PP ′必为垂直该弦入射粒子运动轨迹的直径2r 1,如图甲所示,设圆形区域的半径为R,由几何关系知r 1=12R.其他不同方向以v 1入射的粒子的出射点在PP ′对应的圆弧内.同理可知,粒子以v 2入射及出射情况,如图乙所示.由几何关系知r 2=R 2-⎝ ⎛⎭⎪⎫R 22=32R, 可得r 2∶r 1=3∶1.因为m 、q 、B 均相同,由公式r =m v qB 可得v ∝r,所以v 2∶v 1=3∶1.故选C.]10、如图所示,条形磁铁放在光滑斜面上,用平行于斜面的轻弹簧拉住而平衡,A 为水平放置的直导线的截面,导线中无电流时磁铁对斜面的压力为F N1;当导线中有垂直纸面向外的电流时,磁铁对斜面的压力为F N2,则下列关于磁铁对斜面的压力和弹簧的伸长量的说法中正确的是( )A.F N1<F N2,弹簧的伸长量减小B.F N1=F N2,弹簧的伸长量减小C.F N1>F N2,弹簧的伸长量增大D.F N1>F N2,弹簧的伸长量减小C[由于条形磁铁外部的磁感线是从N极出发到S极,所以导线A处的磁场方向是斜向左下方的,导线A中的电流垂直于纸面向外时,由左手定则可判断导线A必受斜向右下方的安培力F,由牛顿第三定律可知磁铁所受作用力F′的方向是斜向左上方的,所以磁铁对斜面的压力减小,即F N1>F N2.同时,F′有沿斜面向下的分力,使得弹簧弹力增大,可知弹簧的伸长量增大,所以选C.]11、对磁现象的研究中有一种“磁荷观点”.人们假定,在N极上聚集着正磁荷,在S极上聚集着负磁荷.由此可以将磁现象与电现象类比,引入相似的概念,得出一系列相似的定律.例如磁的库仑定律、磁场强度、磁偶极矩等.在磁荷观点中磁场强度定义为:磁场强度的大小等于点磁荷在该处所受磁场力与点磁荷所带磁荷量的比值,其方向与正磁荷在该处所受磁场力方向相同.若用H表示磁场强度,F表示点磁荷所受磁场力,q m表示磁荷量,则下列关系式正确的是()A.F=Hq m B.H=Fq mC.H=Fq m D.q m=HFB[题目已经说明磁场强度的大小等于点磁荷在该处所受磁场力与点磁荷所带磁荷量的比值,故:H=Fq m.]12、如图所示,导体杆ab的质量为m,电阻为R,放置在与水平面夹角为θ的倾斜金属导轨上,导轨间距为d,电阻不计,系统处在竖直向上的匀强磁场中,磁感应强度为B,电池内阻不计,问:若导轨光滑,电源电动势E多大才能使导体杆静止在导轨上?解析:由闭合电路欧姆定律得:E=IR导体杆受力情况如图所示,则由共点力平衡条件可得F安=mgtan θF安=BId由以上各式可得出E=mgRtan θBd.答案:mgRtan θBd13、如图所示,在0≤x≤a、0≤y≤a2范围内有垂直于xOy平面向外的匀强磁场,磁感应强度大小为B.坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xOy平面内,与y轴正方向的夹角分布在0°~90°范围内.已知粒子在磁场中做圆周运动的半径介于a2到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做匀速圆周运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时的:(1)速度的大小;(2)速度方向与y轴正方向夹角的正弦.解析:(1)设粒子的发射速度为v,粒子做圆周运动的轨道半径为R,由牛顿第二定律和洛伦兹力公式,得q v B=m v2R①当a2<R<a时,在磁场中运动时间最长的粒子其轨迹是圆心为C的圆弧,圆弧与磁场的上边界相切,如图所示.设该粒子在磁场中运动的时间为t,依题意t=T4,得∠OCA=π2②设最后离开磁场的粒子的发射方向与y轴正方向的夹角为α,由几何关系可得Rsin α=R-a2③Rsin α=a-Rcos α④又sin2α+cos2α=1 ⑤由③④⑤式得R=⎝⎛⎭⎪⎫2-62a ⑥由①⑥式得v=⎝⎛⎭⎪⎫2-62aqBm.(2)由③⑥式得sin α=6-610.答案:(1)⎝⎛⎭⎪⎫2-62aqBm(2)6-610。

高中物理带电粒子在磁场中的运动题20套(带答案)

高中物理带电粒子在磁场中的运动题20套(带答案)

1 2
mv02
可得 v0
2eU m
电子从 Q 点到 M 点,做类平抛运动,
x 轴方向做匀速直线运动, t L L m
v0
2eU
y 轴方向做匀加速直线运动, L 1 eE t2 2 2m
由以上各式可得: E 2U L
电子运动至 M 点时: vM
v02
(
Ee m
t)2
即: vM 2
eU m
设 vM 的方向与 x 轴的夹角为 θ,
cos v0 2 vM 2
解得:θ=45°。 (2)如图甲所示,电子从 M 点到 A 点,做匀速圆周运动,因 O2M=O2A,O1M=O1A, 且 O2A∥MO1,所以四边形 MO1AO2 为菱形,即 R=L
由洛伦兹力提供向心力可得:
evM
B
m
vM2 R
即 B mvM 2 mv eR L e
E
点的试卷比下方粒子中第一个达到
C
的时间滞后 Δt
l0 t0
上方最后的一个粒子从 E 点到达 D 点所需时间为
t
R
Rsin
π 3
1 6
2πR
6

3
3R
2v0
2v0
12v0
要使两质子束相碰,其运动时间满足 t t t
联立解得 l0
π
3 3 12
6
4.如图甲所示,在直角坐标系中的 0≤x≤L 区域内有沿 y 轴正方向的匀强电场,右侧有以点 (2L,0)为圆心、半径为 L 的圆形区域,与 x 轴的交点分别为 M、N,在 xOy 平面内,从 电离室产生的质量为 m、带电荷量为 e 的电子以几乎为零的初速度从 P 点飘入电势差为 U 的加速电场中,加速后经过右侧极板上的小孔 Q 点沿 x 轴正方向进入匀强电场,已知 O、

磁场综合--高中物理模块典型题归纳(含详细答案)

磁场综合--高中物理模块典型题归纳(含详细答案)

磁场综合--高中物理模块典型题归纳(含详细答案)一、单选题1.如图甲所示有界匀强磁场Ⅰ的宽度与图乙所示圆形匀强磁场Ⅱ的半径相等,一不计重力的粒子从左边界的M点以一定初速度水平向右垂直射入磁场Ⅰ,从右边界射出时速度方向偏转了θ角,该粒子以同样的初速度沿半径方向垂直射入磁场Ⅱ,射出磁场时速度方向偏转了2θ角.己知磁场I、Ⅱ的磁感应强度大小分别为B1、B2,则B1与B2的比值为()A.2cosθB.sinθC.cosθD.tanθ2.如图,由均匀的电阻丝组成的等边三角形导体框,垂直磁场放置,将AB两点接入电压恒定的电源两端,通电时电阻丝AB段受到的安培力为F,则此时三根电阻丝受到的合安培力大小为()A.FB.1.5FC.2FD.3F3.如图所示,在充电的平行金属板间有匀强电场和方向垂直纸面向里的匀强磁场。

一带电粒子以速度v从左侧射入,方向垂直于电场方向和磁场方向,当它从右侧射出场区时,动能比射入时小,若要使带电粒子从射入到射出动能是增加的,可采取的措施有(不计重力)()A.可使电场强度增强B.可使磁感应强度增强C.可使粒子带电性质改变(如正变负)D.可使粒子射入时的动能增大4.两个大小不同的绝缘金属圆环如图叠放在一起,小圆环有一半面积在大圆环内,当大圆环通上顺时针方向电流的瞬间,下列叙述正确的是()A.小圆环中产生顺时针方向的感应电流B.小圆环中产生逆时针方向的感应电流C.小圆环中不产生感应电流D.小圆环有向左运动的趋势5.如图所示为研究平行通电直导线之间相互作用的实验装置。

接通电路后发现两根导线均发生形变,此时通过导线M和N的电流大小分别为I1和I2,已知I1> I2,方向均向上。

若用F1和F2分别表示导线M与N受到的磁场力,则下列说法正确的是()A.两根导线相互排斥B.为判断F1的方向,需要知道I l和I2的合磁场方向C.两个力的大小关系为F1> F2D.仅增大电流I2,F1、F2会同时都增大6.如图所示,虚线所围矩形区域abcd内充满磁感应强度为B、方向垂直纸面向外的匀强磁场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理磁场大题一•解答题(共30小题)1. 如图甲所示,建立Oxy 坐标系,两平行极板P 、Q 垂直于y 轴且关于x 轴对称, 极板长度和板间距均为I ,第一四象限有磁场,方向垂直于 Oxy 平面向里.位于 极板左侧的粒子源沿x 轴间右连续发射质量为 m 电量为+q 、速度相同、重力不 计的带电粒子在0〜3t o 时间内两板间加上如图乙所示的电压(不考虑极边缘的 影响).已知t=0时刻进入两板间的带电粒子恰好在 t o 时刻经极板边缘射入磁场.上述m q 、I 、t o 、B 为已知量.(不考虑粒子间相互影响及返回板间的情况)yX X X X X x x X X X X X X X x E x X X图乙2. 如图所示,在xOy 平面内,0v x v 2L 的区域内有一方向竖直向上的匀强电场, 2L v x v 3L 的区域内有一方向竖直向下的匀强电场,两电场强度大小相等. x > 3L 的区域内有一方向垂直于 xOy 平面向外的匀强磁场.某时刻,一带正电的粒 子从坐标原点以沿x 轴正方向的初速度V 0进入电场;之后的另一时刻,一带负 电粒子以同样的初速度从坐标原点进入电场. 正、负粒子从电场进入磁场时速度 方向与电场和磁场边界的夹角分别为 60°和30°,两粒子在磁场中分别运动半 周后在某点相遇.已经两粒子的重力以及两粒子之间的相互作用都可忽略不计, 两粒子带电量大小相等.求:(1) 正、负粒子的质量之比m : m ; (2) 两粒子相遇的位置P 点的坐标;(1) (2) (3) 图甲求电压U 0的大小.求寺t o 时进入两板间的带电粒子在磁场中做圆周运动的半径.何时射入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.3•如图所示,相距为R 的两块平行金属板 M N 正对着放置,s i 、S 2分别为M N 板上的小孔,s i 、S 2、0三点共线,它们的连线垂直 M N,且S 20=R 以0为圆心、 R 为半径的圆形区域内存在磁感应强度为B 、方向垂直纸面向外的匀强磁场.D为收集板,板上各点到 0点的距离以及板两端点的距离都为 2R,板两端点的连 线垂直M N 板.质量为m 带电量为+q 的粒子,经S i 进入M N 间的电场后, 通过S 2进入磁场.粒子在S i 处的速度和粒子所受的重力均不计.(1) 当M N 间的电压为U 时,求粒子进入磁场时速度的大小 u; (2) 若粒子恰好打在收集板D 的中点上,求M N 间的电压值U 0;(3) 当M N 间的电压不同时,粒子从S i 到打在D 上经历的时间t 会不同,求t 的最小值.(1) 带电粒子在磁场中运动时间;(2) 当电场左边界与y 轴重合时Q 点的横坐标; (3)若只改变上述电场强度的大小,要求带电粒子仍能通过Q 点,讨论此电场左边界的横坐标x '与电场强度的大小E'的函数关系.vt —k Xki1I1i1 J i J1i '!\iii i1F1 QX X :S11;x Xr1i»iPb1111E-百i ■: X11111115 •如图所示,两平行金属板AB中间有互相垂直的匀强电场和匀强磁场. A板带正电荷,B板带等量负电荷,电场强度为E;磁场方向垂直纸面向里,磁感应强度为B i.平行金属板右侧有一挡板M中间有小孔O,00是平行于两金属板的中心线.挡板右侧有垂直纸面向外的匀强磁场,磁场应强度为B. CD为磁场IB2边界上的一绝缘板,它与M板的夹角9 =45°,0 C=a现有大量质量均为m 含有各种不同电荷量、不同速度的带电粒子(不计重力),自0点沿00方向进入电磁场区域,其中有些粒子沿直线00方向运动,并进入匀强磁场B2中,求:(1) 进入匀强磁场B的带电粒子的速度;(2) 能击中绝缘板CD的粒子中,所带电荷量的最大值;(3) 绝缘板CD上被带电粒子击中区域的长度.6. 在平面直角坐标系xoy中,第I象限存在沿y轴负方向的匀强电场,第象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B•—质量为m电荷量为q的带正电的粒子从y轴正半轴上的M点以速度V。

垂直于y轴射入电场,经x 轴上的N点与x轴正方向成45°角射入磁场,最后从y轴负半轴上的P点垂直于y 轴射出磁场,如图所示.不计粒子重力,求:IV(1) M N两点间的电势差U;(2) 粒子在磁场中运动的轨道半径r;(3) 粒子从M点运动到P点的总时间t .7. 如图所示的平行板器件中,存在相互垂直的匀强磁场和匀强电场,磁场的磁感应强度B=0.40T,方向垂直纸面向里,电场强度E=2.0 x lO5V/m, PQ为板间中线•紧靠平行板右侧边缘xOy坐标系的第一象限内,有垂直纸面向外的匀强磁场,磁感应强度R=0.25T,磁场边界AO和y轴的夹角/ AOy=45 . 一束带电量q=8.0 x 1019C的正离子从P点射入平行板间,沿中线PQ做直线运动,穿出平行板后从y轴「上坐标为(0,0.2m)的Q点垂直y轴射入磁场区,离子通过x轴时的速(2) 离子的质量应在什么范围内?(3) 现只改变AOy区域内磁场的磁感应强度大小,使离子都不能打到x轴上,磁感应强度大小B 应满足什么条件?8•如图所示,在空间中存在垂直纸面向里的匀强磁场,其竖直边界AB CD 的宽度为d ,在边界AB 左侧是竖直向下、场强为E 的匀强电场•现有质量为 m 带电 量为+q 的粒子(不计重力)从P 点以大小为V o 的水平初速度射入电场,随后与 边界AB 成45°射入磁场•若粒子能垂直 CD 边界飞出磁场,穿过小孔进入如图 所示两竖直平行金属板间的匀强电场中减速至零且不碰到正极板.(1)请画出粒子上述过程中的运动轨迹,并求出粒子进入磁场时的速度大小 V;(2) 求匀强磁场的磁感应强度 B ; (3) 求金属板间的电压U 的最小值.乙最大值为U 0的周期性变化的电压,在 Q 板右侧某个区域内存在磁感应强度大小为B 、方向垂直于纸面向里的有界匀强磁场.在紧靠 P 板处有一粒子源A ,自 t=0开始连续释放初速不计的粒子,经一段时间从 Q 板小孔O 射入磁场,然后射 出磁场,射出时所有粒子的速度方向均竖直向上,知电场变化周期T = 粒子质量为m 电荷量为+q ,不计粒子重力及相互间的作用力.求: (1) t=0时刻释放的粒子在P 、Q 间运动的时间; (2) 粒子射入磁场时的最大速率和最小速率; (3) 有界磁场区域的最小面积.111 * 1 r |1 I 1 I 1卜—1°....................................................... | | 1 | 11 1 1 b 1....................................................... -• ■ -■- ------ ■ ------ -■ ------- *甲乙d 的平行金属板P 、Q 两板间加上如图真空中竖直放置两块相距为 HX X10. “太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为0,外圆弧面AB的半径为L,电势为© 1,内圆弧面CD的半径为寺L,电势为© 2.足够长的收集板MN平行边界ACDB 0到MN板的距离0P=L假设太空中漂浮着质量为m 电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子引力的影响.(2)如图2所示,在边界ACD餉收集板MN之间加一个半圆形匀强磁场,圆心为0,半径为L,方向垂直纸面向内,则发现从AB圆弧面收集到的粒子经0点进感应强度的大小;(3)同上问,从AB圆弧面收集到的粒子经0点进入磁场后均不能到达收集板MN求磁感应强度所满足的条件.试写出定量反映收集板MN上的收集效率n与磁感应强度B的关系的相关式子.11. 如图,静止于A处的离子,经电压为U的加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN进入矩形区域的有界匀强电场,电场方向水平向左.静电分析器通道内有均匀辐向分布的电场,已知圆弧所在处场强为E o,方向如图所示;离子质量为m电荷量为q;QN=2d、画=3d,离子重力不计.(1)求圆弧虚线对应的半径R的大小;(2)若离子恰好能打在NQ的中点上,求矩形区域QNC内匀强电场场强E的值;(3)若撤去矩形区域QNC内的匀强电场,换为垂直纸面向里的匀强磁场,要求入磁场后有能打到MN板上(不考虑过边界ACDB勺粒子再次返回),求所加磁(1)求粒子到达0点时速度的大小;离子能最终打在QN±,求磁场磁感应强度B的取值范围.12•如图甲所示,一对平行金属板M N长为L,相距为d, OO为中轴线•当两板间加电压U=U0时,两板间为匀强电场,忽略两极板外的电场•某种带负电的粒子从0点以速度v o沿OO方向射入电场,粒子恰好打在上极板M的中点,粒子重力忽略不计.3最终所有粒子刚好能全部离开电场而不打在极板上,求U的值;(3)紧贴板右侧建立xOy坐标系,在xOy坐标第I、IV象限某区域内存在一个圆形的匀强磁场区域,磁场方向垂直于xOy坐标平面,要使在(2)问情景下所有粒子经过磁场偏转后都会聚于坐标为(2d, 2d)的P点,求磁感应强度B的大小范围.13. 如图所示,在第一、二象限存在场强均为E的匀强电场,其中第一象限的匀强电场的方向沿x轴正方向,第二象限的电场方向沿x轴负方向.在第三、四象限矩形区域ABCD内存在垂直于纸面向外的匀强磁场,矩形区域的AB边与x轴重合.M点i3(1)求带电粒子的比荷-;m(2)若MN间加如图乙所示的交变电压,其周期2T内UM=- U,大量的上述粒子仍然以速度V o沿OO方向持续射入电场,U M=2U,后Q ____ ____ ____ DI—U —01 m弋甲,从t=0开始,是第一象限中无限靠近y轴的一点,在M点有一质量为m电荷量为e 的质子,以初速度V。

沿y轴负方向开始运动,恰好从N点进入磁场,若0M=20,N 不计质子的重力,试求:(1)N点横坐标d;(2)若质子经过磁场最后能无限靠近M点,则矩形区域的最小面积是多少;(3)在(2)的前提下,该质子由M点出发返回到无限靠近M点所需的时间.14. 如图所示,在xOy平面直角坐标系中,直线MN与y轴成30°角,P 点的坐标为(' ,0),在y轴与直线MN之间的区域内,存在垂直于xOy平面向外、6磁感应强度为B的匀强磁场.在直角坐标系xOy的第W象限区域内存在沿y轴,正方向、大小为E冷Eg的匀强电场,在x=3a处垂直于x轴放置一平面荧光屏,与x 轴交点为Q电子束以相同的速度v o从y轴上0w y< 2a的区间垂直于y轴和磁场方向射入磁场.已知从y=2a点射入的电子在磁场中轨迹恰好经过0点,忽略电子间的相互作用,不计电子的重力.求:(1)电子的比荷旦;m(2)电子离开磁场垂直y轴进入电场的位置的范围;(3)从y轴哪个位置进入电场的电子打到荧光屏上距Q点的距离最远?最远距离为多少?15. 如图(a)所示,水平放置的平行金属板A B间加直流电压U, A板正上方有“V'字型足够长的绝缘弹性挡板•在挡板间加垂直纸面的交变磁场,磁感应强度随时间变化如图(b),垂直纸面向里为磁场正方向,其中B=B, B2未知.现有一比荷为不计重力的带正电粒子从C点静止释放,t=0时刻,粒子刚好从小孔0进入上方磁场中,在t 1时刻粒子第一次撞到左挡板,紧接着在t l+t2时刻粒子撞到右挡板,然后粒子又从0点竖直向下返回平行金属板间.粒子与挡板碰撞前后电量不变,沿板的分速度不变,垂直板的分速度大小不变、方向相反,不16. 如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为I,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连接发射质量为m电量为+q、速度相同、重力不计的带电粒子在0〜3t0时间内两板间加上如图乙所示的电压(不考虑极边缘的影响).(1) 粒子第一次到达0点时的速率;(2) 图中B的大小;(3) 金属板A和B间的距离d.计碰撞的时间及磁场变化产生的感应影响.求:B图yX K x xX X X X X X x xX X x B x X XB 为已知量.(不考虑粒子间相互影响及返回板间的情况) (1) 求电压U 0的大小.(2) 求t o 时刻进入两板间的带电粒子在磁场中做圆周运动的半径. (3) 带电粒子在磁场中的运动时间.17. 电子扩束装置由电子加速器、 偏转电场和偏转磁场组成.偏转电场由加了电 压的相距为d 的两块水平平行放置的导体板形成, 如图甲所示.大量电子(其重 力不计)由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正 中间射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t o ,当在两板间加如图乙所示的周期为 2t o 、幅值恒为U 0的电压时,所有电子均从两板 间通过,然后进入水平宽度为I ,竖直宽度足够大的匀强磁场中,最后通过匀强(1) 电子在刚穿出两板之间时的最大侧向位移与最小侧向位移之比为多少? (2) 要使侧向位移最大的电子能垂直打在荧光屏上,匀强磁场的磁感应强度为 多少?(3) 在满足第(2)问的情况下,打在荧光屏上的电子束的宽度为多少?(已知 电子的质量为m 电荷量为e )團甲已知t=0 时刻进入两板间的带电粒子恰好在 图乙t o 时,刻经极板边缘射入磁场.上 述m q 、 rr磁场打在竖直放置的荧光屏上.问:光甲-4-18. 如图所示xOy平面内,在x轴上从电离室产生的带正电的粒子,以几乎为零的初速度飘入电势差为U=200V的加速电场中,然后经过右侧极板上的小孔沿x轴进入到另一匀强电场区域,该电场区域范围为- I <x<0 (l=4cm),电场强度大小为E=l:x 104V/m,方向沿y轴正方向.带电粒子经过y轴后,将进入一与y 轴相切的圆形边界匀强磁场区域,磁场区域圆半径为r=2cm,圆心C到x轴的距离为d=4 :;cm磁场磁感应强度为B=8x 10「2T,方向垂直xoy平面向外.带电粒子最终垂直打在与y轴平行、到y轴距离为L=6cm的接收屏上.求:(1) 带电粒子通过y轴时离x轴的距离;(2) 带电粒子的比荷;(3) 若另一种带电粒子从电离室产生后,19. 如图所示,在竖直平面内,虚线MC与水平线PQ相交于O,二者夹角9 =30°, 在MOP范围内存在竖直向下的匀强电场,电场强度为E, MOQh方的某个区域有垂直纸面向里的匀强磁场,磁感应强度为B, O点处在磁场的边界上,现有一群质量为m电量为+q的带电粒子在纸面内以速度v (0W v wL)垂直于MO从OE点射入磁场,所有粒子通过直线MO时,速度方向均平行于PQ向左,不计粒子的重力和粒子间的相互作用力.求:(1) 速度最大的粒子在磁场中的运动时间;(2) 速度最大的粒子打在水平线POQh的位置离O点的距离;(3) 磁场区域的最小面积.20. 如图所示为某一仪器的部分原理示意图,虚线OA OB关于y轴对称,/ AOB=90,OA OB将xOy平面分为I、U、川三个区域,区域I、川内存在水平方向最终打在接收屏上cm处,则该的匀强电场,电场强度大小相等、方向相反.质量为m电荷量为q的带电粒子自x轴上的粒子源P处以速度vO沿y轴正方向射出,经时间t到达OA上的M点,且此时速度与OA垂直.已知M到原点O的距离OM=L不计粒子的重力.求:(1)匀强电场的电场强度E的大小;(2)为使粒子能从M点经U区域通过OB上的N点,M N点关于y轴对称,可在区域U内加一垂直xOy平面的匀强磁场,求该磁场的磁感应强度的最小值和粒子经过区域川到达x轴上Q点的横坐标;(3)当匀强磁场的磁感应强度取(2)问中的最小值时,且该磁场仅分布在一个圆形区域内.由于某种原因的影响,粒子经过M点时的速度并不严格与OA垂直,成散射状,散射角为但速度大小均相同,如图所示,求所有粒子经过OB时的区域长度.21. 在xoy平面直角坐标系的第I象限有射线OA OA与x轴正方向夹角为30°,如图所示,OA与y轴所夹区域存在y轴负方向的匀强电场,其它区域存在垂直坐标平面向外的匀强磁场;有一带正电粒子质量m电量q,从y轴上的P点沿着x轴正方向以大小为v o的初速度射入电场,运动一段时间沿垂直于OA方向经过Q点进入磁场,经磁场偏转,过y轴正半轴上的M点再次垂直进入匀强电场.已知OP=h不计粒子的重力.(1)求粒子垂直射线OA经过Q点的速度V Q;(2)求匀强电场的电场强度E与匀强磁场的磁感应强度B的比值;(3)粒子从M点垂直进入电场后,如果适当改变电场强度,可以使粒子再次垂直0A 进入磁场,再适当改变磁场的强弱,可以使粒子再次从 y 轴正方向上某点 垂直进入电场;如此不断改变电场和磁场,会使粒子每次都能从y 轴正方向上某 点垂直进入电场,再垂直 OA 方向进入磁场…,求粒子从 P 点开始经多长时间能I 、U 两区域•区域I 有方向竖直向上的匀强电场和方向垂直图面的匀强磁场 B(图中未画出);区域U 有固定在水平面上高h=2l 、倾角a 二的光滑绝缘斜面,4斜面顶端与直线DD 距离s=4l ,区域U 可加竖直方向的大小不同的匀强电场 (图 中未画出);C 点在DD 上,距地面高H=3I .零时刻,质量为 m 带电荷量为q 的小球P 在K 点具有大小v o =匚、方向与水平面夹角9=—的速度,在区域I 内做半径r=—的匀速圆周运动,经CD 水平进入区域U.某时刻,不带电的绝缘} I小球A 由斜面顶端静止释放,在某处与刚运动到斜面的小球 P 相遇.小球视为质 点,不计空气阻力及小球 P 所带电量对空间电磁场的影响.I 已知,g 为重力加 速度. (1) 求匀强磁场的磁感应强度 B 的大小;(2) 若小球A P 在斜面底端相遇,求释放小球 A 的时刻t A ;(3) 若小球A P 在时刻t= B 1 (P 为常数)相遇于斜面某处,求此情况下区 域U 的匀强电场的场强E,并讨论场强E 的极大值和极小值及相应的方向.23•如图,在x 轴上方存在匀强磁场,磁感应强度大小为 B ,方向垂直于纸面向 外;DD ,过DD 且垂直于图面的平面将空间分成在x轴下方存在匀强电场,电场方向与xOy平面平行,且与x轴成45°夹角•一质量为m电荷量为q (q>0)的粒子以速度v o从y轴上P点沿y轴正方向射出,一段时间后进入电场,进入电场时的速度方向与电场方向相反;又经过一段时间T o,磁场方向变为垂直纸面向里,大小不变,不计重力.(1)求粒子从P点出发至第一次到达x轴时所需的时间;24. 一半径为R的薄圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的中心轴线平行,筒的横截面如图所示•图中直径MN的两端分别开有小孔,筒可绕其中心轴线转动,圆筒的转动方向和角速度大小可以通过控制装置改变. 一不计重力的负电粒子从小孔M沿着MN方向射入磁场,当筒以大小为3 o的角速度转过90°时,该粒子恰好从某一小孔飞出圆筒.(1)若粒子在筒内未与筒壁发生碰撞,求该粒子的荷质比和速率分别是多大?(2)若粒子速率不变,入射方向在该截面内且与MN方向成30°角,则要让粒子与圆筒无碰撞地离开圆筒,圆筒角速度应为多大?\ X X [ K X /25.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b , 小车质量M=3kg AO 部分粗糙且长L=2m 动摩擦因数卩=0.3 , 0B 部分光滑.另 一小物块a .放在车的最左端,和车一起以 v o =4m/s 的速度向右匀速运动,车撞 到固定挡板后瞬间速度变为零,但不与挡板粘连•已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为 m=1kg 碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/€)求:(1) 物块a 与b 碰后的速度大小;(2) 当物块a 相对小车静止时小车右端B 到挡板的距离; (3) 当物块a 相对小车静止时在小车上的位置到 O 点的距离.26. 如图所示,在光滑的水平面上有一长为 L 的木板B,上表面粗糙,在其左端 有一光滑的丄圆弧槽C,与长木板接触但不相连,圆弧槽的下端与木板上表面相 平,B C 静止在水平面上.现有滑块 A 以初速V 0从右端滑上B,并以丄V 0滑离B , 恰好能到达C 的最高点.A B C 的质量均为m 试求: (1) 木板B 上表面的动摩擦因素 卩; (2) 丄圆弧槽C 的半径R; (3) 当A 滑离C 时,C 的速度.NL yxX ox27•如图所示,一质量M=0.4kg的小物块B在足够长的光滑水平台面上静止不动,其右侧固定有一轻质水平弹簧(处于原长)•台面的右边平滑对接有一等高的水平传送带,传送带始终以u =1m/s的速率逆时针转动.另一质量m=0.1kg的小物块A以速度u o=4m/s水平滑上传送带的右端.已知物块A与传送带之间的动摩擦因数卩=0.1,传送带左右两端的距离l=3.5m,滑块A、B均视为质点,忽略空气阻力,取g=10m/s2.(1)求物块A第一次到达传送带左端时速度大小;(2)求物块A第一次压缩弹簧过程中弹簧的最大弹性势能Bm;(3)物块A会不会第二次压缩弹簧?28. 历史上美国宇航局曾经完成了用“深度撞击”号探测器释放的撞击器“击中”坦普尔1号彗星的实验.探测器上所携带的重达370kg的彗星“撞击器”将以1.0 x 104m/s的速度径直撞向彗星的彗核部分,撞击彗星后“撞击器”融化消失,这次撞击使该彗星自身的运行速度出现 1.0 x10「7m/s的改变.已知普朗克常量h=6.6 X10「34J?s.(计算结果保留两位有效数字).求:①撞击前彗星“撞击器”对应物质波波长;②根据题中相关信息数据估算出彗星的质量.29. 如图,ABD为竖直平面内的轨道,其中AB段是水平粗糙的、BD段为半径R=0.4m 的半圆光滑轨道,两段轨道相切于B点.小球甲从C点以速度u 0沿水平轨道向右运动,与静止在B点的小球乙发生弹性碰撞.已知甲、乙两球的质量均为m2小球甲与AB段的动摩擦因数为卩=0.5,C B距离L=1.6m, g取10m/s .(水平轨道足够长,甲、乙两球可视为质点)(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D,求乙在轨道上的首次落点到B点的距离;(2)在满足(1)的条件下,求的甲的速度u 0;(3)若甲仍以速度u 0向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B点的距离范围.30. 动量定理可以表示为△ p=F A t,其中动量p和力F都是矢量.在运用动量定理处理二维问题时,可以在相互垂直的x、y 两个方向上分别研究.例如,质量为m的小球斜射到木板上,入射的角度是碰撞后弹出的角度也是碰撞前后的速度大小都是u,如图所示.碰撞过程中忽略小球所受重力.a. 分别求出碰撞前后x、y方向小球的动量变化△ p x、A p y;b. 分析说明小球对木板的作用力的方向.参考答案与试题解析一•解答题(共30小题)1. (2017?吉林模拟)如图甲所示,建立 Oxy 坐标系,两平行极板P 、Q 垂直于 y 轴且关于x 轴对称,极板长度和板间距均为I ,第一四象限有磁场,方向垂直 于Oxy 平面向里.位于极板左侧的粒子源沿 x 轴间右连续发射质量为 m 电量为 +q 、速度相同、重力不计的带电粒子在 0〜3t o 时间内两板间加上如图乙所示的 电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在 t o 时刻经极板边缘射入磁场.上述 m q > I 、t o 、B 为已知量.(不考虑粒子间相互影响及返回板间的情况)图甲1 11 1 1 1tn3向'i图乙*时进入两板间的带电粒子在磁场中做圆周运动的半径. (3)何时射入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.【解答】解:(1) t=0时刻进入两极板的带电粒子在电场中做匀变速曲线运动, t 0时刻刚好从极板边缘射出, 则有 y=^l ,x=l ,Un电场强度:E=.…①,由牛顿第二定律得:Eq=ma-②, 偏移量:y 」~at °2…③(1) 求电压U 0的大小.由①②③解得:□=」•••④.(2)丄t o时刻进入两极板的带电粒子,前一t o时间在电场中偏转,后丄t o时间两极板没有电场,带电粒子做匀速直线运动.带电粒子沿x轴方向的分速度大小为:V x=V o=-…⑤带电粒子离开电场时沿y轴负方向的分速度大小为:v y=a?丄t o…⑥带电粒子离开电场时的速度大小为:v=...打’…⑦设带电粒子离开电场进入磁场做匀速圆周运动的半径为R,丨2|由牛顿第二定律得:qvB=m_…⑧,由③⑤⑥⑦⑧解得:R= ⑨;t0(3)在t=2t o时刻进入两极板的带电粒子,在电场中做类平抛运动的时间最长,飞出极板时速度方向与磁场边界的夹角最小,而根据轨迹几何知识可知,轨迹的圆心角等于粒子射入磁场时速度方向与边界夹角的2倍,所以在t=2t o时刻进入两极板的带电粒子在磁场中运动时间最短.带电粒子离开磁场时沿y轴正方向的分速度为:V y' =at o…⑩,设带电粒子离开电场时速度方向与y轴正方向的夹角为a,则:由③⑤⑩解得:a二——,带电粒子在磁场运动的轨迹图如图所示,4圆弧所对的圆心角为:2a==-,所求最短时间为:t min= T,4带电粒子在磁场中运动的周期为:m,联立以上两式解得:t min=- ■—;zqD答:(1)电压u o的大小为」;。

相关文档
最新文档