软开关技术综述
《软开关技术》课件
03
CHAPTER
软开关技术在不同领域的应 用
电力电子领域
软开关技术介绍
在电力电子领域,软开关技术是一种用于控制开关电源的先进技术。它通过在开关过程中引入谐振原 理,实现了开关器件的零电压或零电流开通与关断,从而减小了开关损耗和电磁干扰,提高了电源的 效率。
应用实例
在逆变器、直流-直流转换器、不间断电源等电力电子设备中,软开关技术被广泛应用于减小开关损耗 、提高电源效率、降低电磁干扰等方面。
智能电网
在智能电网建设中,软开关技术将发挥重要作用,保障电网的稳定 运行和节能减排。
轨道交通
在轨道交通领域,软开关技术的应用将提升列车运行的稳定性和安 全性。
产业前景
市场规模
随着软开关技术的广泛应用,其 市场规模将不断扩大,吸引更多 企业投入研发和生产。
产业链完善
软开关技术的产业链将逐渐完善 ,形成完整的研发、生产、销售 和服务体系。
降低电磁干扰有助于提高电子设备的性能稳定性,减少对周 围其他设备的干扰,同时也符合现代电子产品绿色环保的要 求。
延长设备寿命
软开关技术能够减小开关过程中产生的应力,从而降低对设备中元器件的损耗, 延长了设备的使用寿命。
设备寿命的延长有助于减少维修和更换成本,同时也减少了电子废弃物的产生, 有利于环境保护。
元器件选择
01
02
03
电力电子器件
如绝缘栅双极晶体管( IGBT)、功率MOSFET等 ,具有高耐压、大电流、 低导通电阻等优点。
无源元件
如电容、电感等,用于实 现能量的储存和转换。
控制电路
用于产生控制信号,调节 开关的导通和关断时间。
电路设计
01
02
第六章 软开关技术
带有辅助开关管的谐振 电路与主开关并联,谐振电 路只是在主开关管开关时工 作,其他时候不工作,这样 辅助谐振电路的损耗很小。
b)ZCT开关
含有ZCT开关的电路叫零电流转换PWM变换器
比如:降压型ZCT PWM变换器等。
S L VD3 Lr Uo Co Ui VD2 VD1
(b) 降压型 图5-56 ZCT PWM变换器的基本电路结构
当S1关断时,Cr限制S1上电压的上升率,从而实现 S1的零电压关断; S1导通之前,Lr和Cr谐振工作先使Cr的电压回到零时, 才开通S1,从而实现S1的零电压 开通。
ZVS(零电压)谐振开关应用在各种开关变换器中 :
S1 Lr VD1 S1 Lr VD1 RL
RL
Ui
Cr
L Co
+
Ui
L Cr Co
含有ZVS准谐振开关的变换器叫准谐振变换器,是最早 出现的软开关电路。 比如:零电压开关准谐振降压型变换器、半桥式 零电压准谐振变换器、零电压开关准谐振升压型变换 器等等。
特点: 谐振电压峰值很高,要求器件耐压必须提高; 谐振电流有效值很大,电路中存在大量无功功率 的交换,电路导通损耗加大; 谐振周期随输入电压、负载变化而改变,因此电 路只能采用脉冲频率调制(Pulse Frequency Modulation—PFM)方式来控制。
5.1.3 软开关---零电流开关、零电压开关 一、零电流开关(ZCS开关)
改变开关管在开关过程中的电流波形, 使电流和电压的没有交叠或减少交叠区. 零电流关断:在开关管关断前,使其电流减 小到零,然后关断,这就是零电流关断。
● ●
ube uce ic
t
0
P
Pon 开通
《软开关技术》课件
混合型软开关电路
结合电压型和电流型电路的特点,实现更高效的软开关。
控制策略
恒定电压控制
保持输出电压恒定,通过调节占空比或频率来实现软 开关。
恒定电流控制
保持输出电流恒定,通过调节占空比或频率来实现软 开关。
恒功率控制
保持输出功率恒定,通过调节占空比或频率来实现软 开关。
软开关技术
CATALOGUE
目 录
• 软开关技术概述 • 软开关技术的优点 • 软开关技术的应用领域 • 软开关技术的实现方式 • 软开关技术的发展趋势 • 软开关技术的前景展望
01
CATALOGUE
软开关技术概述
软开关技术的定义
软开关技术是指在电力电子变换器中 ,利用控制技术实现功率开关管的零 电压开通和零电流关断的一种新型开 关技术。
01
通过调节脉冲宽度来控制开关的导通和关断时间,实现软开关
。
脉冲频率调制(PFM)
02
通过调节脉冲频率来控制开关的导通和关断时间,实现软开关
。
脉冲相位调制(PPM)
03
通过调节脉冲相位来控制开关的导通和关断时间,实现软开关
。
电路拓扑结构
电压型软开关电路
通过在开关管两端并联电容来实现软开关。
电流型软开关电路
高效率的电源能够减小散热需求,降低散热成本,同时减小电源体积和重 量,提高电源的便携性和可靠性。
降低电磁干扰
01
软开关技术能够减小开关过程 中电压和电流的突变,从而降 低电磁干扰(EMI)。
02
降低电磁干扰有助于提高电子 设备的电磁兼容性(EMC),使 其在复杂电磁环境中稳定工作 。
03
降低电磁干扰还可以减小对周 围电子设备的干扰,提高整个 系统的稳定性。
电力电子课件西安交大第8章软开关技术
03
软开关技术能够提高装置的抗电磁干扰能力,保证装置 在复杂电磁环境下的稳定运行。
04 软开关技术的实际应用案例
基于软开关技术的电源设计
开关电源
软开关技术应用于开关电源中,能够降低开关损耗,提高电源效 率,减小体积和重量。
不间断电源
在UPS(不间断电源)中应用软开关技术,可以改善输出电压的波 形,提高供电质量。
谢谢聆听
伺服系统
伺服系统中应用软开关技术,可以减 小系统体积和重量,提高伺服系统的 动态性能和稳定性。
基于软开关技术的电力电子变压器
1 2 3
固态变压器
软开关技术在固态变压器中得到广泛应用,能够 实现高效、灵活的电能转换和传输。
分布式电源系统
在分布式电源系统中,软开关技术可以提高电力 电子变压器的转换效率和可靠性,减小系统的体 积和重量。
适用于中大功率的电源转换,具有较高的输 出电压和较低的效率。
02
01
半桥式
适用于中大功率的电源转换,具有较低的输 出电压和较高的效率。
04
03
软开关技术的控制策略
恒频控制
保持开关频率恒定,通过改变占空比来调节输出 电压或电流的大小。
变频控制
改变开关频率,通过调节占空比来保持输出电压 或电流的大小恒定。
分布式电源系统
软开关技术为分布式电源系统提供高效、可靠的并网控制策略,提 高系统的稳定性和可靠性。
基于软开关技术的电机驱动系统
电机控制器
电动汽车驱动系统
软开关技术应用于电机控制器中,能 够减小电机启动电流和转矩脉动,提 高电机的控制精度和动态响应性能。
在电动汽车驱动系统中应用软开关技 术,能够提高驱动系统的效率和可靠 性,延长电动汽车的续航里程。
软开关技术综述
软开关技术综述摘要:软开关是电力变换领域的重要分支,本文分析了软开关专利方面中关于专利申请量、申请人和技术分布等信息,并简单分析了丰田自动车株式会社在软开关方面的专利申请。
关键词:软开关;申请;专利在电力电子中,开关元件在电压很高或电流很大的条件下,在门级驱动下进行导通或关断的过程称为硬开关,在开关的导通与关断瞬间会产生很大的开关损耗和电磁干扰,同时,为了提升开关变换器的功率密度,需要提高开关元件工作时的频率,但由此又会增加开关损耗,所以为了在减小变换器的体积和重量,实现高频化的同时,减小开关过程的开关损耗,软开关应运而生。
软开关通常以零电压开关ZVS或零电流开关ZVS进行换流,其开关损耗和产生的EMI比传统的PWM变换器小得多。
一、专利申请量、申请人申请量:下图给出了软开关技术相关的专利申请量的发展趋势,从图中可以看出软开关在申请量上处于增长的状态。
申请人:通过数据分析,发现华为、丰田、南航、三星和浙江大学关于软开关方面的申请量较多,说明软开关在理论和实践应用中都处于发展状态。
二、技术脉络根据发展路程,直流软开关技术分为:全谐振变换器、准谐振变换器、零开关PWM变换器、零转移PWM变换器和无源无损软开关技术。
其中,全谐振和准谐振软开关技术由于采用频率控制,应用范围受到了限制,但是其具有很小的EMI又为其开阔了应用前景。
零开关PWM变换器和零转移PWM变换器由于是恒定频率控制,应用范围很广,但减小辅助开关数量和实现辅助开关的软开关成为了关注的焦点。
无源无损软开关技术由于其较低的成本和控制复杂度受到了欢迎,被认为是未来软开关电路的发展趋势。
1997年8月28日TRW公司提出了申请号为CN971175195的一种带有PWM软切换的双正向转换器,与上述仅利用谐振电路实现固态开关软切换不同,本申请的主开关和辅助开关均带有用于将固态开关的切换损耗减小到最小的无损耗阻尼器,这样能够减小电路的复杂度,并消除电路的切换损耗和倒向恢复损耗,从而使软开关在DC-DC隔离电路中的应用更广泛。
软开关
软开关技术综述摘要软开关技术是利用在零电压、零电流条件下控制开关器件的导通和关断,有效地降低了电路的开关损耗和开关噪声因而在电力电子装置中得到广泛应用。
本文在讲述软开关技术的原理及分类的基础上,主要回顾了软开关技术的由来和发展历程,以及发展现状和未来的发展趋势。
关键词:软开关技术原理发展历程发展趋势一.引言:根据开关元件的工作状态,可以把开关分成硬开关和软开关两类。
硬开关是指开关元件在导通和关断过程中,流过器件的电流和元件两端的电压在同时变化;软开关是指开关元件在导通和关断过程中,电压或电流之一先保持为零,一个量变化到正常值后,另一个量才开始变化直至导通或关断过程结束。
由于硬开关过程中会产生较大的开关损耗和开关噪声。
开关损耗随着开关频率的提高而增加,使电路效率下降,阻碍了开关频率的提高;开关噪声给电路带来了严重的电磁干扰问题,影响周边电子设备的正常工作。
为了降低开关的损耗和提高开关频率,软开关的应用越来越多。
电力电子装置中磁性元件的体积和重量占很大比例,从电机学相关知识知道,使变压器、电力电子装置小型化、轻量化的途径是电路的高频化。
但是, 传统的开关器件工作在硬开关状态,在提高开关频率的同时,开关损耗和电磁干扰也随之增加。
所以,简单地提高开关频率显然是不行的。
软开关技术是使功率变换器得以高频化的重要技术之一, 它应用谐振的原理, 使开关器件中的电流(或电压) 按正弦或准正弦规律变化。
当电流自然过零时, 使器件关断(或电压为零时, 使器件开通) , 从而减少开关损耗。
它不仅可以解决硬开关变换器中的硬开关损耗问题、容性开通问题、感性关断问题及二极管反向恢复问题, 而且还能解决由硬开关引起的EMI 等问题。
当开关频率增大到兆赫兹级范围, 被抑制的或低频时可忽视的开关应力和噪声, 将变得难以接受。
谐振变换器虽能为开关提供零电压开关和零电流开关状态, 但工作中会产生较大的循环能量, 使导电损耗增大。
为了在不增大循环能量的同时, 建立开关的软开关条件, 发展了许多软开关PWM技术。
软开关技术介绍
7.3.1
零电压开关准谐振电路
谐振过程定量分析
• 求解式(7-2)可得uCr(即开关S的电压uS)的表达式:
Lr uCr (t ) I L sin r (t t1 ) U i , Cr
Up
• uCr的谐振峰值表达式(即开关S承受的峰值电压):
1 r , Lr Cr
软开关:
• 在电路中增加了小电感、电容等谐振元件,在开关过程 前后引入谐振,使开关条件得以改善。 • 降低开关损耗和开关噪声。 • 软开关有时也被成为谐振开关。
工作原理:
• 软开关电路中S关断后Lr 与Cr 间发生谐振,电路中电压 和电流的波形类似于正弦半波。谐振减缓了开关过程中 电压、电流的变化,而且使S两端的电压在其开通前就 降为零。
S1 A Ui
CS1 S 3 Lr B
C S3
+ L VD 1 uR VD 2
O S3 O ur O uT1 O uR
t
S 2 C S2 S 4
C S4
t
t
图 7-14 移相全桥零电压开关PWM电路
– 互 为 对 角 的 两 对 开 关 S1-S4 和 S2-S3,S1 的 波 形 比 S4 超 前 0~TS/2时间,而S2的波形比S3超前0~TS/2时间,因此称S1和 S2为超前的桥臂,而称S3和S4为滞后的桥臂。
7.3.3
移相全桥型零电压开关PWM电路
S1 O S2 O S4 t t t t t
Lr
Ui
S Cr
图 7-11 谐振直流环电路原理图
VDS
7.3.2
谐振直流环
uCr
电路的工作过程:
iLr Lr Cr Ui S VD S + u Cr L
开关电源 软开关技术
通过减小电压和电流的突变,软开关技术可以有效降低电 磁干扰,提高电源的电磁兼容性。
减小开关损耗
软开关技术可以减小开关过程中的电压和电流变化率,从 而降低开关损耗。
提高电源效率
开关损耗的减小可以提高电源效率,使得电源在转换效率 上有更好的表现。
软开关技术的应用与发展
应用
软开关技术广泛应用于各种开关电源领域,如通信电源、电 力电子、电动汽车等。通过采用软开关技术,可以提高电源 的性能和可靠性,满足各种高效率、高功率密度的应用需求 。
功率波形
分析软开关技术中功率波 形的变化规律,研究功率 波形与电路参数之间的关 系。
04 软开关技术的优势与挑战
软开关技术的优势
高效节能
软开关技术能够减少开 关损耗,提高电源效率,
从而降低能源消耗。
降低噪声
软开关技术可以降低电 源产生的电磁干扰和噪 声,提高电源的电磁兼
容性。
延长寿命
软开关技术能够减少开 关器件的应力,降低其 温度,从而延长其使用
脉冲频率调制(PFM)
通过调节脉冲频率,控制开关管导通和截止时间,实现电压和电流 的软切换。
混合调制
结合PWM和PFM的优点,通过优化控制方式,提高软开关技术的 性能。
软开关技术的波形分析
01
02
03
电压波形
分析软开关技术中电压波 形的变化规律,研究电压 波形与电路参数之间的关 系。
电流波形
分析软开关技术中电流波 形的变化规律,研究电流 波形与电路参数之间的关 系。
特点
高效节能、体积小、重量轻、可 靠性高、稳压范围宽等。
开关电源的应用与发展
应用
广泛应用于计算机、通信、家电、工 业控制等领域。
第7章软开关技术
第7章软开关技术一. 软开关技术:降低开关损耗和开关噪声、进一步提高开关频率。
1.硬开关:开关过程中电压和电流均不为零,出现了重叠。
●电压、电流变化很快,波形出现明显得过冲,导致开关噪声。
2.软开关:在原电路中增加了小电感、电容等谐振元件,在开关过程前后引入谐振,消除电压、电流的重叠。
●降低开关损耗和开关噪声。
3.零电压开关和零电流开关●零电压开通:开关开通前其两端电压为零——开通时不会产生损耗和噪声。
●零电流关断:开关关断前其电流为零——关断时不会产生损耗和噪声。
●零电压关断:与开关并联的电容能延缓开关关断后电压上升的速率,从而降低关断损耗。
●零电流开通:与开关串联的电感能延缓开关开通后电流上升的速率,降低了开通损耗。
4.当不指出是开通或是关断,仅称零电压开关和零电流开关。
靠电路中的谐振来实现。
5.软开关电路的分类●根据开关元件开通和关断时电压电流状态,分为零电压电路和零电流电路两大类。
●根据软开关技术发展的历程可以将软开关电路分成准谐振电路、零开关PWM电路和零转换PWM电路。
●每一种软开关电路都可以用于降压型、升压型等不同电路,可以从基本开关单元导出具体电路。
6.准谐振电路:准谐振电路-准谐振电路中电压或电流的波形为正弦半波,因此称之为准谐振。
是最早出现的软开关电路。
●特点:●谐振电压峰值很高,要求器件耐压必须提高;●谐振电流有效值很大,电路中存在大量无功功率的交换,电路导通损耗加大;●谐振周期随输入电压、负载变化而改变,因此电路只能采用脉冲频率调制PFM方式来控制。
分类:零电压开关准谐振电路、零电流开关准谐振电路、电压开关多谐振电路、用于逆变器的谐振直流环节电路7.零开关PWM电路●引入了辅助开关来控制谐振的开始时刻,使谐振仅发生于开关过程前后。
●零开关PWM电路可以分为:零电压开关PWM电路零电流开关PWM电路●特点:●电路在很宽的输入电压范围内和从零负载到满载都能工作在软开关状态。
●电路中无功功率的交换被削减到最小,这使得电路效率有了进一步提高。
软开关技术简介
零电压开关脉宽调制变换器(ZVSPWM)和 ZVS-QRC 电路比较 C
r
Tr1
L + R Vo -
Tr Vs
Lr D C
Io
ZVS-PWM电路
Lr L
ILr Vs Cr C R
ZVS-QRC电路
ZVS-PWM变换器工作逻辑
Cr Tr1 L + R Vo Tr Vs Lr D C Io
VGS(Tr) VGS(Tr1) Vds
Io
VGS(Tr) VGS(Tr1) Vds Vs ILr VCr
Vds1 t T0 T2 T1 T3 T5 T4 T0'
T4-T5:二极管D导通续流,电路工作在PWM关断 状态 L
Lr ILr Tr Vs Vds1 + Cr + - VCr D C Tr1 Io + R Vo -
VGS(Tr) VGS(Tr1) Vds Vs ILr VCr
T2-T3:正常的PWM导通状态,二极管D反向阻断
Lr ILr Tr Vs Vds1 + Cr + - VCr D C Tr1 L + R Vo -
Io
VGS(Tr) VGS(Tr1) Vds Vs ILr VCr
Vds1 t T0 T2 T1 T3 T5 T4 T0'
T3-T4:辅助开关管导通,LC谐振,电容Cr放电。 当Ilr为零时控制关断开关管Tr
Lr L
Vs Cr
C
R
VGS
Ids Io VCr Vs
t
t
T0 T1
T2T3 T4 T0'
t
T2-T3-T4:电容放电后线性充电,直到二 极管导通 Lr L
BOOST软开关技术综述
BOOST软开关技术综述BOOST软开关技术综述O引言近二十年来电力电子技术得到了飞速的发展,已广泛应用到电力、冶金、化工、煤炭、通讯、家电等领域。
多数电力电子装置通过整流器与电力网接口,经典的整流器是一个由二极管或晶闸管组成的非线性电路,它会在电网中产生大量电流谐波和无功功率,污染电网,成为电力公害。
在20世纪80年代中后期,开关电源有源功率因数校正技术引起了国内外许多学者的重视,进行了许多专题研究并取得了大量成果。
有源功率因数校正技术在整流器与滤波电容之间增加一个DC/DC开关变换器。
在各种单相PFC电路拓扑结构中,Boost升压型功率因数校正电路由于具有主电路结构简单,变换效率高,控制策略易实现等优点而得到广泛应用。
高频化可以减小有源功率因数校正电路的体积、重量,提高电路的功率密度。
为了使电路能够在高频下高效率地运行,有源功率因数校正电路的软开关技术成为重要的研究方向。
本文对单相Boost有源功率因数校正电路软开关技术进行了分类,并对每一类型的电路的拓扑结构、工作方式及工作特点做出了分析。
1.零电压开关(ZVS)PWM功率因数校正电路ZVS工作方式是指利用谐振现象及有关器件的箝位作用,使开关变换器中开关管的电压在开启或关断过程中维持为零。
图1电路为ZVS功率因数校正电路,也称扩展周期准谐振功率因数校正电路。
在辅助开关S1开通时,电感Lr抑制二极管Dr的反向恢复。
电感Lr与电容Cf发生谐振至流过开关S1的电流降至输入电流大小。
开关S2导通后,电感Lr与电容Cf再次谐振至流过开关S1的电流为O,电容Cr两端电压为Vo,使开关S1、开关S2实现ZV—ZCS关断。
电路的不足之处是开关的电流应力比较大。
2.零电压转换(ZVT)PWM功率因数校正电路在ZVT工作方式中,谐振网络拓扑与主电路是并联的。
零转换PWM功率因数校正电路的导通损耗和开关损耗很小,能实现零开关特性而不增大开关的电流或电压应力,适用于较高电压和大功率的变换器。
《软开关技术 》课件
基于电容的软开关技术
电容器:用于存储电能,实现 电能的平滑过渡
开关原理:通过改变电容器的 充放电状态,实现开关功能
应用领域:广泛应用于电力电 பைடு நூலகம்、新能源等领域
优点:开关速度快、损耗低、 可靠性高
基于变压器的软开关技术
原理:通过控制变 压器的初级和次级 绕组,实现电压和 电流的平滑过渡
优点:可以实现高 功率因数、低谐波、 高效率等优点
硬开关技术:开关的切换过程是瞬间完成的,开关损耗较大
软开关技术:开关的导通时间可以控制,可以实现更精确的电流控制
硬开关技术:开关的切换过程无法控制,电流控制精度较低
软开关技术:开关的导通时间可以控制,可以实现更稳定的电压输出
硬开关技术:开关的切换过程无法控制,电压输出稳定性较差
软开关技术在电力电子领域的应用优势
软开关技术的实现方式
零电压开关 (ZVS):在开 关管两端电压为 零时进行开关操 作,实现零电压 开关。
零电流开关 (ZCS):在开 关管电流为零时 进行开关操作, 实现零电流开关。
谐振开关:利用 谐振电路实现开 关管的开关操作, 提高开关效率。
软开关技术在电 力电子设备中的 应用:如逆变器、 整流器、直流电 源等。
软开关技术的分类
零电压开关(ZVS)
零电流开关(ZCS)
零电压零电流开关 (ZVZCS)
谐振开关(RCS)
软开关技术在电力电 子领域的应用
软开关技术的应用场景
电动汽车:如电机驱动、电 池管理系统等
电力系统:如高压直流输电、 柔性交流输电等
电力电子设备:如开关电源、 逆变器、电机驱动等
太阳能和风能发电系统:如 逆变器、功率调节器等
04 软开关技术的优势
最新整理软开关专利技术综述.docx
最新整理软开关专利技术综述软开关专利技术综述在电力电子中,通过在原来开关电路中增加辅助谐振元件,形成新的辅助换流回路,通过引入谐振过程,降低电压和电流的变换率,减小或消除开关损耗和EMI,而具有这样开关过程的开关称为软开关。
软开关的专利申请正在逐年增加。
本文主要从涉及软开关的专利申请量、国内外申请人和关键技术等方面进行分析,为以后提高审查效率奠定基础。
1 专利申请现状作者在中英文库、全文库利用关键词和分类号等多种检索手段对相关专利进行检索。
其中,涉及的主要分类号有H02M1/34(缓冲电路),H02M1/36,H02M20xx/342,H02M20xx/344,H02M20xx/346,并且在检索中发现一些关于软开关的电路是依照其所适用的相关变换器进行分类的,此时可以采用关键词对软开关进行限定,而常用的关键词包括有软开关、软切换、零电压、零电流、ZCS、ZVS、谐振、缓冲、吸收等。
软开关技术在2000年以前申请量较少,属于一种新兴的技术,可以看出,其申请量在20xx年到20xx年突然增加,并在20xx年达到高峰,虽然在20xx 年有小幅回落,但总体维持在增长的状态。
从申请人的分布来看,大学的申请量占主要部分。
但是,随着技术的发展,作者预测软开关的公司申请量将是软开关技术以后的主要增长力量。
从技术分布来看,涉及软开关的技术主要分布在隔离型直流-直流变换中,占申请量的39%,这是因为隔离型变换电路是软开关的研究热点,在以后的申请量中还将会成为主力军。
2 技术发展软开关的提出引起了各种技术的改进,同时软开关本身也提出了各种变换电路,其关键技术主要集中在拓扑结构和与之相关的控制方法。
下面分别列出各主要技术的核心专利并进行分析。
(1)隔离型的DC-DC电路隔离型DC-DC电路是指利用变压器进行功率传输,实现输入与输出之间的隔离,早期提出涉及软开关的隔离型DC-DC电路的专利申请是美国的一家软件公司WISC提出的申请号为US198904xxxx78A的关于带有软开关的DC-DC变换器,申请日为1989年09月29日,涉及的是一种带有软开关的DC-AC-DC 电路,本申请将软开关应用到了带隔离的DC-DC电路中,并结合的MOS管的特性,利用LC谐振电路实现软开关,为软开关与DC-DC电路拓扑结构的结合奠定了基础。
软开关技术及其应用
软开关技术及其应用1.软开关技术的简介1.1软开关技术的基本概念软开关:在原电路中增加了小电感、电容等谐振元件,在开关过程前后引入谐振,消除电压、电流的重叠。
降低开关损耗和开关噪声。
近年来开展的软开关技术研究为克服上述缺陷提供了一条有效的途径。
和硬开关工作不同,理想的软关断过程是电流先降到零,电压在缓慢上升到断态值,所以关断损耗近似为零。
由于器件关断前电流已下降到零,解决了感性关断问题。
理想的软开通过程是电压先降到零,电流在缓慢上升到通态值,所以开通损耗近似为零,器件结电容的电压亦为零,解决了容性开通问题。
同时,开通时,二极管反向恢复过程已经结束,因此二极管方向恢复问题不存在。
1.2软开关技术的工作原理图一软开关的开关、关断过程通过在开关过程前后引入谐振,使开关开通前电压先降到零,关断前电流先降到零,就可以消除开关过程中电压、电流的重叠,降低他们的变化率,从而大大减小甚至消除开关消耗。
同时,谐振过程限制了开关过程中电压电流的变化率,这使得开关噪声显著减小。
理想开关过程:零压导通零压关断,开通和关断零损耗零噪声。
2.软开关电路的种类及特点根据电路中主要的开关元件是零电压开通还是零电流关断,可以将软开关电路分成零电压电路和零电流电路两大类。
通常,一种软开关电路要么属于零电压电路,要么属于零电流电路。
但也有个别电路中,有些开关是零电压开通,另一些开关是零电流关断的。
根据软开关技术发展的历程,可以将软开关电路分成以下三种:1)准谐振电路. 是最早出现的软开关电路。
准谐振电路中电压或电流的波形为正弦半波,谐振的引入使得电路的开关损耗和开关噪声大大下降,谐振周期随输入电压、负载变化而改变,因此电路只能采用脉冲频率调制方式来控制。
准谐振电路可以分为零电压开关准谐振电路、零电流开关准谐振电路、零电压开关多谐振电路和用于逆变器的谐振直流环。
2) 零开关PWM电路.电流和电压基本上是方波。
开关承受的电压明显降低。
电路不采用开关频率固定的PWM控制方式。
dcdc全桥软开关仿真文献综述
dcdc全桥软开关仿真文献综述随着电子技术的不断发展,DC-DC变换器在现代电子电路中得到了广泛应用。
其中,全桥拓扑结构的DC-DC变换器具有高效、高稳定性、高可靠性等优点,因此在工业、航空、军事等领域得到了广泛应用。
但是,在全桥拓扑结构中,由于开关管的开关动作会产生电磁干扰、温度升高等问题,因此需要采用软开关技术来解决这些问题。
本文将对DC-DC全桥软开关仿真方面的研究进行综述。
一、DC-DC全桥软开关技术研究现状1.1 DC-DC全桥软开关技术的发展历程DC-DC全桥软开关技术的研究可以追溯到上世纪80年代。
当时,由于硅管的开关速度较慢,且在高频率下易产生开关损耗,因此研究人员开始探索采用软开关技术来解决这些问题。
随着功率电子器件的发展,如IGBT、MOSFET等,软开关技术得到了广泛应用。
在全桥拓扑结构中,采用软开关技术可以有效降低开关损耗,提高系统效率和可靠性。
1.2 DC-DC全桥软开关技术的研究方向目前,DC-DC全桥软开关技术的研究方向主要集中在以下几个方面:(1)软开关技术的研究和应用:包括软开关的原理、软开关技术的实现方法、软开关控制策略等方面的研究。
(2)拓扑结构的研究和优化:针对全桥拓扑结构的特点,研究如何优化拓扑结构,提高系统效率和可靠性。
(3)电路参数的研究和优化:包括电感、电容等参数的选择和优化,以及电路布局和散热等方面的研究。
1.3 DC-DC全桥软开关技术的应用领域DC-DC全桥软开关技术在工业、航空、军事等领域得到了广泛应用。
其中,应用最为广泛的领域包括电力电子、通信、计算机等。
在电力电子领域,DC-DC全桥软开关技术被广泛应用于电机驱动、电力变换器、UPS等领域。
在通信领域,DC-DC全桥软开关技术被广泛应用于光纤通信、无线通信、卫星通信等领域。
在计算机领域,DC-DC 全桥软开关技术被广泛应用于服务器、工作站、笔记本电脑等领域。
二、DC-DC全桥软开关仿真技术研究现状2.1 DC-DC全桥软开关仿真技术的研究意义DC-DC全桥软开关仿真技术可以在不需要实际硬件的情况下,对电路进行仿真分析,快速评估电路性能和优化设计方案。
开关电源 软开关技术
对元件性能要求高
软开关技术要求电路元件具有 更高的耐压和耐流能力,以及
更快的开关速度。
兼容性问题
在某些应用中,软开关技术可 能与现有硬件或标准不兼容,
需要进行适配或修改。
05
软开关技术的实际应用案例
案例一:LED驱本
详细描述
降低开关损耗
通过控制开关的电压和 电流,软开关技术可以 有效地降低开关过程中 的电压和电流应力,从 而减小开关损耗,提高
电源效率。
减小电磁干扰
由于软开关技术可以控 制开关过程中的电压和 电流波形,因此可以减 小开关过程中产生的电 磁干扰,提高电源的电
磁兼容性。
延长开关寿命
通过降低开关过程中的 电压和电流应力,软开 关技术可以延长开关器 件的寿命,降低电源维
03
软开关技术的工作原理
软开关技术的电路结构
电路组成
软开关技术通常由主电路、控制电路和辅助电路组成。主电路负责实现电能转 换,控制电路负责调节开关状态,辅助电路则提供必要的支持功能。
工作模式
根据电路结构和控制方式的不同,软开关技术有多种工作模式,如零电压开通、 零电流关断、零电压关断等。
软开关技术的控制方式
01
脉冲宽度调制(PWM)
通过调节脉冲宽度来控制开关的占空比,从而实现电压和电流的调节。
PWM控制方式简单、易于实现,但可能会产生较高的开关损耗。
02
脉冲频率调制(PFM)
通过调节脉冲频率来控制输出电压或电流,PFM控制方式具有较低的开
关频率,可以减小电磁干扰和开关损耗,但可能会影响输出性能。
03
混合调制(PWM+PFM)
开关电源的应用与发展
应用
电力电子软开关技术综述
电力电子软开关技术综述摘要:电力电子软开关技术是一种应用于电力电子系统的关键技术,具有提高系统性能、降低开关损、增强系统可靠性的优点。
本文对电力电子软开关技术的应用现状和发展趋势进行了综述,探讨了不同软开关技术的优缺点,并提出了未来的研究方向。
引言:电力电子软开关技术是一种新型的电力电子变换技术,旨在减少开关器件的开关损,提高系统效率,同时降低系统噪声和电磁干扰。
随着电力电子技术的不断发展,软开关技术已成为研究热点之一。
本文旨在对电力电子软开关技术的应用现状和发展趋势进行综述,以推动该技术的进一步发展。
电力电子软开关技术的基本概念是利用电容或电感等储能元件实现开关器件的软化。
通过合理控制开关器件的导通和关断时间,以及储能元件的充放电过程,可以实现开关器件在导通和关断过程中的损耗最小化。
电力电子软开关技术的实现方法主要包括谐振变换、准谐振变换、多脉冲变换等。
虽然软开关技术具有降低开关损、提高效率等优点,但也会导致系统复杂度增加、成本提高等问题。
电力电子软开关技术在电力系统中的应用主要包括电力电子变换器、直流输电、柔性交流输电等方面。
其中,电力电子变换器是最为广泛的应用之一,可以用于电源、负载、储能等设备的控制和调节。
在控制策略方面,软开关技术可以用于改善系统的性能和稳定性,例如在PWM控制中引入软开关技术可以降低系统的谐波含量。
在设备制造方面,软开关技术也被广泛应用于各种电力电子设备中,例如开关电源、不间断电源等。
随着电力电子技术的不断发展,电力电子软开关技术的未来发展趋势主要包括以下几个方面:新型电力电子软开关技术的研发:随着技术的不断进步,将会有更多新型的电力电子软开关技术出现,例如更为高效的软开关技术、新型的谐振变换技术等。
这些新型的软开关技术将会在更广泛的领域得到应用,例如新能源、智能电网等领域。
集成化和模块化:未来电力电子软开关技术将更加注重集成化和模块化,通过将多个器件和电路集成在一起,实现更高效、更可靠、更小型化的电力电子系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
软开关技术综述1 引言开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开元件的占空比来调整输出电压。
开关电源的构成框图如图1所示,它由输入电路、变换电路、输出电路和控制电路等组成。
功率变换是其核心部分,主要由开关电路和变压器组成。
为了满足高功率密度的要求,变换器需要工作在高频状态,开关晶体管要采用开关速度高、导通和关断时间短的晶体臂,最典型的功率开关晶体管有功率晶体管(CTR)、功率场效应管(MOSFET)和绝缘型双极型晶体管(IGBT)等3种。
控制方式分为脉宽调制、脉频调制、脉宽和频率混合调制等3种,其中最常用的是脉宽调制(PWM)方式。
图1 开关电源构成框图从60年代开始得到发展和应用的DC-DC PWM功率变换技术是一种硬开关技术。
为了使开关电源在高频状态下也能高效率地运行,国内外电力电子界和电源技术界自70年代以来,不断研究开发高频软开关技术。
软开关和硬开关波形比较如图2所示。
图2 软开关和硬开关波形从图可以看出,软开关的特点是功率器件在零电压条件下导通(或关断),在零电流条件下关断(或导通)。
与硬开关相比,软开关的功率器件在零电压、零电流条件下工作,功率器件开关损耗小。
与此同时,du/dt和di/dt大为下降,所以它能消除相应的电磁干扰(EMI)和射频干扰(RFI),提高了变换器的可靠性。
同时,为了减小变换器的体积和重量,必须实现高频化。
要提高开关频率,同时提高变换器的变换效率,就必须减小开关损耗。
减小开关损耗的途径就是实现开关管的软开关,因此软开关技术软开关技术已经成为是开关变换技术的一个重要的研究方向。
本文对软开关和硬开关的工作特性进行比较,并对软开关技术进行了详细阐述。
2 硬开关的工作特性图3是开关管开关时的电压和电流波形。
开关管不是理想器件,因此在开关管开关工作时,要产生开通损耗和关断损耗,统称为开关损耗(Switching Loss)。
开关频率越高,总的开关损耗越大,变换器的效率就越低。
开关损耗的存在限制了变换器开关频率的提高,从而限制了变换器的小型化和轻量化。
图3 开关管开关时的电压和电流波形传统PWM变换器中的开关器件工作在硬开关状态,硬开关工作的四大缺陷妨碍了开关器件工作频率的提高, 它存在如下问题:(a)开通和关断损耗大:在开通时,开关器件的电流上升和电压下降同时进行;关断时,电压上升和电流下降同时进行。
电压、电流波形的交叠致使器件的开通损耗和关断损耗随开关频率的提高而增加。
(b)感性关断问题:电路中难免存在感性元件(引线电感、变压器漏感等寄生电感或实体电感)、当开关器件关断时,由于通过该感性元件的di/dt很大,和dv/dt,从而产生大的电磁千扰(Electromagnetic Interference,EMI),而且产生的尖峰电压加在开关器件两端,易造成电压击穿。
(c)容性开通问题:当开关器件在很高的电压下开通时,储藏在开关器件结电容中的能量将全部耗散在该开关器件内,引起开关器件过热损坏。
(d)二极管反向恢复问题:二极管由导通变为截止时存在着反向恢复期,在此期间内,二极管仍处于导通状态,若立即开通与其串联的开关器件,容易造成直流电源瞬间短路,产生很大的冲击电流,轻则引起该开关器件和二极管耗急剧增加,重则致其损坏。
图4给出了接感性负载时,开关管工作在硬开关条件下的开关的开关轨迹,图中虚线为双极性晶体管的安全工作区(Safety operation area,SOA),如果不改善开关管的开关条件,其开关轨迹很可能会超出安全工作区,导致开关管的损坏。
图4 开关管工作在硬开关条件下的开关轨迹3 软开关技术的特性和实现策略从前面的分析可以知道,开关损耗包括开通损耗和关断损耗。
利用软开关技术可以减小变换器的开通损耗和关断。
软开关的开通和关断波形如图5所示。
(a)零电流开通和关断(b)零电压开通和关断图5 软开关开通和关断波形软开关的开通有以下几种方法:(a)零电流开通:在开关管开通时,使其电流保持在零,或者限制电流的上升率,从而减小电流与电压的交叠区。
从图5(a)可以看出,开通损耗大大减小。
(b)零电压开通:在开关管开通前,便其电压下降到零。
从图5(b)可以看出,开通损耗基本减小到零。
(c)同时做到(a)和(b),在这种情况下,开通损耗为零。
这种情况最为理想。
同理,软开关的关断有以下几种方法::(a)零电流关断:在开关管关断前,使其电流减小到零。
从图5(a)可以看出关断损耗基本减小到零。
(b)零电压关断:在开关管关断时,使其电压保持在零,或者限制电压的上升率,从而减小电流与电压的交叠区。
从图5(b)可以看出,关断损耗大大减小。
(c)同时做到(a)和(b),在这种情况下,关断损耗为零。
图6给出了开关管工作在软开关条件下的开关轨迹,从图中可以看出,此时开关管的工作条件很好,不会超出安全工作区。
图6 开关管工作在软开关条件下的开关轨迹4 软开关技术的实现及其类型变换器的软开关技术实际上是利用电感和电容来对开关的开关轨迹进行整形,最早的方法是采用有损缓冲电路来实现。
从能量的角度来看,它是将开关损耗转移到缓冲电路消耗掉,从而改善开关管的开关条件。
这种方法对变换器的变换效率没有提高,甚至会便效率有所降低。
目前所研究的软开关技术不再采用有损缓冲电路,而是真正减小开关损耗,而不是开关损耗的转移。
软开关变换器有谐振型变换器、零开关PWM变换器、零转换PWM变换器三种类型,以下将对其进行详细分析:(1)谐振型变换器利用谐振现象,使电子开关器件上电压或电流按正弦规律变化,以创造零电压开通或零电流关断的条件,以这种技术为主导的变换器称为谐振变换器。
它又可以分为全谐振型变换器、准谐振变换器和多谐振变换器三种类型。
(a)全谐振型变换器一般称之为谐振变换器(Resonant converters)。
该类变换器实际上是负载谐振型变换器,按照不同的分类方式,它又可以分为不同的类型。
按照谐振元件的谐振方式,分为串联谐振变换器(Series resonant converters, SRCs)和并联谐振变换器(Parallel resonant converters, PRCs)两类。
按载与谐振电路的连接关系,谐振变换器可分为两类:一类是负载与谐振回路相串联,称为串联负载(或串联输出)谐振变换器(Series load resonant converters, SLRCs,);一类是负载与谐振回路相并联,称为并联负载(或并联输出)谐振变换器(Parallel load resonant converters, PLRCs),在谐振变换器中,谐振元件一直谐振工作,参与谐振工作的全过程。
该变换器与负载关系很大,对负载的变化很敏感,一般采用频率调制方法。
(b)准谐振变换器(Quasi-resonant converters, QRCs):它开关技术的一次飞跃,其特点是谐振元件参与能量变换的某一个阶段,不是全程参与。
由于正向和反向LC回路值不一样,即振荡频率不同,电流幅值不同,所以振荡不对称。
一般正向正弦半波大过负向正弦半波,所以常称为准谐振。
无论是串联LC或并联LC 都会产生准谐振。
利用准谐振现象,使电子开关器件上的电压或电流按正弦规律变化,从而创造了零电压或零电流的条件,以这种技术为主导的变换器称为准谐振变换器。
准谐振变换器分为零电流开关准谐振变换器(Zero-current-switching Quasi-resonant converters, ZCS QRCs)和零电压开关准谐振变换器(Zero-voltage-switching Quasi-resonant converters, ZVS QRCs)。
(c)多谐振变换器(Multi-resonant converters, MRCs):它和准谐振变换器一样,也是开关技术的一次飞跃,其特点是谐振元件参与能量变换的某一个阶段,不是全程参与。
多谐振变换器的谐振回路、参数可以超过两个,例如三个或更多,称为多谐振变换器。
多谐振变换器一般实现开关管的零电压开关。
这类变换器需要采用频率调制控制方法。
为保持输出电压不随输入电压变化而变化,不随负荷变化而变化(或基本不变),谐振、准谐振和多谐振变换器主要靠调整开关频率,所以是调频系统。
调频系统不如PWM开关变换器那样易控,这是因为调频系统是依靠L、C振荡使得电路产生谐振和准谐振的,L、C振荡所产生的正弦波具有较高的电压或电流的有效值,通常会使导电损耗有所增加,功率器件所受的电压与电流的应力都要比相应的硬开关PWM变换电路功率器件承受的压力大,并且该应力随电路的Q值和负载变化而变化。
调频系统是依靠改变开关频率来改变变换器的输出,开关频率大范围变化使得滤波器、变压器设计难以优化,干扰难以抑制,而且由于调频来调节输出,负载变化大时,相应的电压和电流调节范围比相应PWM变换电路窄,超前一定范围后,变换电路不能达到零电压或零电流开关条件,不能达到满载或空载。
因此为了克服调频系统的缺点和充分发挥PWM的优点,出现了零开关-PWM变换器和零转换-PWM变换器。
(2)零开关PWM变换器(Zero switching PWM converters):它可分为零电压开关PWM变换器(Zero-voltage-switching PWM converters)和零电流开关PWM 变换器(Zero-current-switching PWM converters)。
该类变换器是在准谐振变换器的基础上,加上一个辅助开关管,来控制谐振元件的谐振过程,实现恒定频率控制,即实现PWM控制。
这样,变换器已有电压过零(或电流过零)控制的软开关特点,又有PWM恒频调宽的特点。
这时谐振网络中的电感是与主开关串联的。
与准谐振变换器不同的是,谐振元件的谐振工作时间与开关周期相比很短,一般为开关周期的1/10~1/5。
(3)零转换PWM变换器(Zero transition converters):零转换-PWM变换器,与零开关-PWM变换器并无本质上的差别,也是软开关与PWM的结合。
只不过谐振网络与主电子开关是相并联的。
它可分为零电压转换PWM变换器(Zero-voltage-transition PWM converters, ZVT PWM converters)和零电流开关PWM变换器(Zero-current-transition PWM converters, ZVT PWM converters)。
这类变换器是软开关技术的又一个飞跃。
它的特点是变换器工作在PWM方式下,辅助谐振电路只是在主开关管开关时工作一段时间,实现开关管的软开关,在其他时间则停止工作,这样辅助谐振电路的损耗很小。