港珠澳大桥主体工程桥梁主桥工程施工组织设计方案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
港珠澳大桥主体工程桥梁主桥施工方案
一、工程结构概况
1、青州航道桥:采用半漂浮体系双塔整幅钢箱梁斜拉桥,桥跨布置为110+236+458+236+110=1150m。
青州航道桥主要结构及数量
2、江海直达船航道桥:采用独柱型三塔整幅钢箱梁斜拉桥,桥跨布置为129+258+258+129=994m。
江海直达船航道桥主要结构及数量
3、九洲航道桥:采用双塔整幅正交异性桥面板钢箱梁斜拉桥,桥跨布置为85+127.5+268+127.5+85=693m。
二、工程特点
港珠澳大桥是中国交通建设史上技术最复杂、环保要求最高、建设要求及标准最高的工程之一。
桥位区水文、地质条件复杂、珠江口航道众多、航行密度大、对航行安全要求高;工程方案研究中要满足香港及澳门机场航空限高要求(针对本工程的高度限制要求,青州航道桥小于208米;江海直达船小于158米;九州航道桥小于138米。在施工生产中,施工船机设备及设施高度均需考虑航空限高要求。);桥轴线穿越珠江口中华白海豚保护区,对环保要求高;大桥设计寿命为120年,要同时满足内地、香港、澳门有关技术标准及法律、法规要求;业主提出的建设目标定位高;项目的特点及定位决定了本项目施工工作也将是高标准、高难度的。主桥预制构件重量大、体积大、质量要求严格、预制和安装难度高。
三、施工部署和主要施工手段及设备
考虑到三座主桥中,以青州航道桥最为复杂、最为典型,因此本方案以青州航道桥为主。
1、施工部署
施工拟划分三个工段进行管理、指挥和调度,具体划分如下:
主墩施工工段:主要负责QZ3、QZ4墩基础、索塔混凝土结构、索塔钢结构及钢箱梁施工;
过渡墩及辅助墩施工工段:负责QZ1、QZ2、QZ5、QZ6墩基础及墩身施工;
陆上工段:专门为主墩、辅助墩和过渡墩所需钢构件、混凝土预制构件、钢筋和模板等在陆上预加工、堆存、转运提供支持和服务,负责水上施工工段物资供应。
在满足施工总体进度的前提下,QZ3、QZ4墩基础优先开工,QZ1、QZ2、QZ5、QZ6墩钻孔桩待QZ3、QZ43墩桩基施工完毕后陆续开钻。
将QZ3、QZ43墩钻孔平台作为水上施工基地,布置供电系统、物资仓库、现场施工人员办公及生活设施等。
索塔墩是本工程施工的重点,从总进度计划上看,索塔施工的各环节始终处于本工程的关键线路上;从施工难度上看,临时结构的规模巨大,水流、风浪等诸因素较复杂。
2、施工流程及关键设备
2.1施工流程
本工程索塔、辅助墩、过渡墩施工均采用搭设水上钻孔平台的方法进行基础施工,基础施工完成后,部分拆除和改造施工平台,分块拼装和下沉钢吊箱围堰,钢吊箱封底抽水干施工承台、主塔、墩身。主塔施工完成后开始进行钢箱梁安装和挂索,调整桥面线型。总施工流程如下:
打桩船沉设辅助平台钢管桩→起重船配合搭设施工平台及下沉钢护筒(边施工平台边进行抛填维护)→完成试桩和钻孔桩施工→施工平台改造→钢吊箱围堰安装→浇筑封底混凝土→抽水→施工承台→主塔(墩身)底段浇筑→安装爬模系
统→逐段爬升模板浇筑索塔下塔柱(墩身)、安装横梁现浇支架→逐段爬升浇筑索塔中塔柱、横梁施工→逐段安装钢锚箱、逐段爬升浇筑索塔上塔柱、搭设零号块钢箱梁及辅助墩、过渡墩墩顶钢箱梁安装支架→索塔封顶→安装零号块钢箱梁→安装桥面吊机→逐段对称安装钢箱梁和挂索、斜拉索索力调整→主桥合拢。
2.2关键设备
打桩船:我局现有技术性能优良的打桩船10艘,包括具有全回转功能、外海施工抗风浪能力强的天威号打桩船等4~5艘可以投入本项目施工。
混凝土拌和船:我局现有技术性能优良的各种混凝土拌合船9艘,混凝土拌合能力为60~270m3/h,其中高性能、高效率的天砼号(270m3/h)、拌和7号(160m3/h)等2~3艘可以投入本项目施工。
钻机:采用KP3500型或购置德国产扭矩大于200kn-m、钻深大于130m的顶置式全液压回转钻机,并配置空压机和泥浆分离器以满足钻孔桩施工需要。投入20台左右。
发电机:根据需要配备一定数量的400kW和200kW发电机组。
起重船:(350t全旋转起重船)(100t全旋转起重船)(3500t全旋转起重船),可满足安装起重作业需要。
龙门吊:投入4台100t高架龙门吊。
桅杆吊:投入4台WD70的桅杆吊。
千斤顶:投入200t千斤顶20台左右。
塔吊:投入1台H3/36B改进型塔吊作为主塔及挂索施工起重设备;
液压爬模:投入4套液压爬模作为主塔施工模板系统;
桥面吊机:投入2台3500kN桥面吊机作为钢箱梁安装设备;
振动锤:我局现有从荷兰进口的S-280型液压冲击锤可满足钢管组合桩和部分钢管打入桩的施工
3、影响施工作业的自然因素和有效作业天数的估计
3.1台风
据统计,从1949~2003年共55年间在广东中部(阳江~惠东)一带沿海地区登陆的热带气旋有101个(其中达到台风量级的49个),年平均1.84个,其中13个年份达3个以上,最多的1999年达6个,正面袭击拟建桥位或对桥位会产生严重影响的台风有19个。台风来临时,施工船舶须拖至避风锚地避风。考虑船舶来回拖带时间,每次避风估计耽误时间为10天。假定每年进行3次避风,则台风影响时间为:30天。
3.2雾、雷暴
本区域以澳门观测站记录的雾日最多,年平均达19.3天。雾天主要发生在每年的1~4月,其中以3月为最多,平均7.3天。考虑部分起雾时间发生在夜间,因此雾日影响时间按15天计算。
年平均雷暴日以珠海观测站记录最多,年平均为61.6天。雷暴天气主要集中出现在4~9月,约占全年的89~93%,11月至翌年1月较少出现雷暴天气。考虑雷暴与台风影响叠加,全年雷暴影响按40天计算。
3.3风
对于打桩船和起重设备,考虑风速≥6级风时停止作业,以珠海站统计为例,年平均6级(10分钟最大风速≥10.8米/秒)以上大风日数10.7天,全年影响按11天计算。
3.4浪
根据九澳站1986年~2001年波浪观测资料统计,有效波高大于1m的波出现频率为4.96%。当浪高超过1m时起重及混凝土拌和船应停止作业。
全年浪高≥1m的总天数为365d×(4.96%)=18.104d
影响按18天计算。
3.5 潮流
潮流对作业时间的影响主要在钻孔平台搭设和钢吊箱施工阶段,当潮流流速≥2m/s时,施工作业难度很大。根据下表,潮流流速均小于2m/s。可忽略潮流影响。
工程区附近测站潮流可能最大流速(m/s)