材料力学内部习题集及答案

合集下载

材料力学习题册_参考答案(1-9章)

材料力学习题册_参考答案(1-9章)

第一章 绪 论一、选择题1.根据均匀性假设,可认为构件的( C )在各处相同。

A.应力B. 应变C.材料的弹性系数D. 位移2.构件的强度是指( C ),刚度是指( A ),稳定性是指( B )。

A.在外力作用下构件抵抗变形的能力B.在外力作用下构件保持原有平衡 状态的能力C.在外力作用下构件抵抗强度破坏的能力3.单元体变形后的形状如下图虚线所示,则 A 点剪应变依次为图(a) ( A ),图(b)( C ),图(c) ( B )。

A. 0B. 2rC. rD.1.5 r4.下列结论中( C )是正确的。

A.内力是应力的代数和; B.应力是内力的平均值; C.应力是内力的集度; D.内力必大于应力; 5. 两根截面面积相等但截面形状和材料不同的拉杆受同样大小的轴向拉力,它们的应 力是否相等( B )。

A.不相等; B.相等; C.不能确定; 6.为把变形固体抽象为力学模型,材料力学课程对变形固体作出一些假设,其中均匀性假设是指( C )。

A. 认为组成固体的物质不留空隙地充满了固体的体积; B. 认为沿任何方向固体的力学性能都是相同的; C. 认为在固体内到处都有相同的力学性能; D. 认为固体内到处的应力都是相同的。

二、填空题1.材料力学对变形固体的基本假设是 连续性假设 , 均匀性假设 , 各向同性假设 。

2.材料力学的任务是满足 强度 , 刚度 , 稳定性 的要求下,为设计经济安全的构-1-件提供必要的理论基础和计算方法。

3.外力按其作用的方式可以分为 表面力 和 体积力 ,按载荷随时间的变化情况可以分为 静载荷 和 动载荷 。

4.度量一点处变形程度的两个基本量是 (正)应变ε 和 切应变γ。

三、判断题1.因为构件是变形固体,在研究构件平衡时,应按变形后的尺寸进行计算。

( × )2.外力就是构件所承受的载荷。

(×)3.用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。

材料力学第3版习题答案

材料力学第3版习题答案

材料力学第3版习题答案第一章:应力分析1. 某材料在单轴拉伸下的应力-应变曲线显示,当应力达到200 MPa 时,材料发生屈服。

若材料在该应力水平下继续加载,其应力将不再增加,但应变继续增加。

请解释这一现象,并说明材料的屈服强度是多少?答案:这种现象表明材料进入了塑性变形阶段。

在单轴拉伸试验中,当应力达到材料的屈服强度时,材料的晶格结构开始发生滑移,导致材料的变形不再需要额外的应力增加。

因此,即使继续加载,应力保持不变,但应变会因为材料内部结构的重新排列而继续增加。

在本例中,材料的屈服强度是200 MPa。

第二章:材料的弹性行为2. 弹性模量是描述材料弹性行为的重要参数。

若一块材料的弹性模量为210 GPa,当施加的应力为30 MPa时,其应变是多少?答案:弹性模量(E)与应力(σ)和应变(ε)之间的关系由胡克定律描述,即σ = Eε。

要计算应变,我们可以使用公式ε =σ/E。

将给定的数值代入,得到ε = 30 MPa / 210 GPa =1.43×10^-4。

第三章:材料的塑性行为3. 塑性变形是指材料在达到屈服点后发生的永久变形。

如果一块材料在单轴拉伸试验中,其屈服应力为150 MPa,当应力超过这个值时,材料将发生塑性变形。

请解释塑性变形与弹性变形的区别。

答案:塑性变形与弹性变形的主要区别在于材料在去除外力后是否能够恢复原状。

弹性变形是指材料在应力作用下发生的形状改变,在应力移除后能够完全恢复到原始状态,不留下永久变形。

而塑性变形是指材料在应力超过屈服点后发生的不可逆的永久变形,即使应力被移除,材料的形状也不会恢复到原始状态。

第四章:断裂力学4. 断裂韧性是衡量材料抵抗裂纹扩展的能力。

如果一块材料的断裂韧性为50 MPa√m,试样的尺寸为100 mm×100 mm×50 mm,试样中存在一个长度为10 mm的初始裂纹。

请计算在单轴拉伸下,材料达到断裂的临界应力。

材料力学_考试习题集(含答案)

材料力学_考试习题集(含答案)

欢迎阅读《材料力学》考试题集一、单选题1. 构件的强度、刚度和稳定性________。

(A)只与材料的力学性质有关 (B)只与构件的形状尺寸有关(C)与二者都有关 (D)与二者都无关2. 一直拉杆如图所示,在P 力作用下 。

(A)(C) 3. (A)(C)4. (A) (C) (D)5. (A)(C)6. (A)(C)7. (A)(C)8.(A)ab (B)cb (C)lb (D)lc9. 微单元体的受力状态如下图所示,已知上下两面的剪应力为τ则左右侧面上的剪应力为 。

(A)τ/2 (B )τ (C)2τ (D)0P10. 下图是矩形截面,则m—m线以上部分和以下部分对形心轴的两个静矩的。

(A)绝对值相等,正负号相同(B)绝对值相等,正负号不同(C)绝对值不等,正负号相同(D)绝对值不等,正负号不同11. 平面弯曲变形的特征是。

(A)弯曲时横截面仍保持为平面(B)弯曲载荷均作用在同—平面内;(C)弯曲变形后的轴线是一条平面曲线(D)弯曲变形后的轴线与载荷作用面同在—个平面内12. 图示悬臂梁的AC段上,各个截面上的。

(A)剪力相同,弯矩不同(B)剪力不同,弯矩相同(C)剪力和弯矩均相同(D)剪力和弯矩均不同13. 当横向力作用于杆件的纵向对称面内时,关于杆件横截面上的内力与应力有以下四个结论。

其中是错误的。

(A)(C)14.(A)215.(A)挠度16.(A)应力17.(A)等直18.(A)(B)(C)(D)19.(A)N=20.(A)(C)21.(A)(C)22. 图示杆件受到大小相等的四个方向力的作用。

其中段的变形为零。

(A)AB (B)AC (C)AD (D)BC23. 在连接件剪切强度的实用计算中,剪切许用应力是由得到的。

(A)精确计算(B)拉伸试验(C)剪切试验(D)扭转试验24. 剪切虎克定律的表达式是。

(A)τ=Eγ(B)τ=Εg(C)τ=Gγ(D)τ=G/A25. 在平面图形的几何性质中,的值可正、可负、也可为零.(A)静矩和惯性矩(B)极惯性矩和惯性矩(C)惯性矩和惯性积(D)静矩和惯性积26. 图示梁(c为中间铰)是。

材料力学考试题及答案

材料力学考试题及答案

材料力学考试题及答案一、选择题(每题2分,共10分)1. 材料力学中,下列哪项不是应力的分类?A. 正应力B. 剪应力C. 拉应力D. 扭应力答案:C2. 材料力学中,下列哪项不是材料的基本力学性质?A. 弹性B. 塑性C. 韧性D. 硬度答案:D3. 在拉伸试验中,下列哪项是正确的?A. 弹性模量是应力与应变的比值B. 屈服强度是材料开始发生塑性变形的应力C. 抗拉强度是材料在拉伸过程中的最大应力D. 所有选项都是正确的答案:D4. 根据胡克定律,下列哪项描述是错误的?A. 弹性范围内,应力与应变成正比B. 弹性模量是比例极限C. 应力是单位面积上的力D. 应变是单位长度的变形量答案:B5. 材料力学中,下列哪项不是材料的失效形式?A. 屈服B. 断裂C. 疲劳D. 腐蚀答案:D二、填空题(每空1分,共10分)1. 材料在受到拉伸力作用时,其内部产生的应力称为________。

答案:正应力2. 材料在受到剪切力作用时,其内部产生的应力称为________。

答案:剪应力3. 材料力学中,材料在外力作用下发生形变,当外力去除后,材料能够恢复原状的性质称为________。

答案:弹性4. 材料力学中,材料在外力作用下发生形变,当外力去除后,材料不能恢复原状的性质称为________。

答案:塑性5. 材料力学中,材料在外力作用下发生形变,当外力去除后,材料部分恢复原状的性质称为________。

答案:韧性三、简答题(每题5分,共20分)1. 简述材料力学中应力和应变的关系。

答案:材料力学中,应力和应变的关系可以通过胡克定律来描述,即在弹性范围内,应力与应变成正比,比例系数即为弹性模量。

2. 描述材料力学中材料的屈服现象。

答案:材料力学中,屈服现象指的是材料在受到外力作用时,从弹性变形过渡到塑性变形的临界点,此时材料的应力不再随着应变的增加而增加。

3. 解释材料力学中的疲劳破坏。

答案:材料力学中的疲劳破坏是指材料在循环加载下,即使应力水平低于材料的静态强度极限,也会在经过一定循环次数后发生破坏的现象。

材 料 力 学 习 题 集 _ 【有 答 案】

材 料 力 学 习 题 集 _ 【有 答 案】

习题2-1图 习题2-2图习题2-3图 习题2-4图 习题2-5图 习题2-6图 材料力学习题集第1章 引 论1-1 图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M 。

关于固定端处横截面A -A 上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。

正确答案是 C 。

1-2 图示带缺口的直杆在两端承受拉力F P 作用。

关于A -A 截面上的内力分布,有四种答案,根据弹性体的特点,试判断哪一种答案是合理的。

正确答案是 D 。

1-3 图示直杆ACB 在两端A 、B 处固定。

关于其两端的约束力有四种答案。

试分析哪一种答案最合理。

正确答案是 D 。

1-4 等截面直杆在两端承受沿杆轴线的拉力F P 。

关于杆中点处截面A -A 在杆变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试判断哪一种答案是正确的。

正确答案是 D 。

1-5 图示等截面直杆在两端作用有力偶,数值为M ,力偶作用面与杆的对称面一致。

关于杆中点处截面A -A 在杆变形后的位置(对于左端,由A A '→;对于右端,由A A ''→),有四种答案,试判断哪一种答案是正确的。

正确答案是 C 。

1-6 等截面直杆,其支承和受力如图所示。

关于其轴线在变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试分析哪一种是合理的。

正确答案是 C 。

第2章 杆件的内力分析习题2-1图习题2-2图习题2-3图习题2-4图2-1 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox 坐标取向如图所示。

试分析下列平衡微分方程中哪一个是正确的。

(A d Q F d M(B (C (D 2-2 对于图示承受均布载荷q 的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种答案中。

2-3 已知梁的剪力图以及a 、e 截面上的弯矩M a 和M e ,如图所示。

为确定b M 、M ,现有下列四种答案,试分析哪一种 (A (B (C (D 之间剪力图的面积,以此类推。

材料力学的试题及答案

材料力学的试题及答案

材料力学的试题及答案一、选择题1. 材料力学中,下列哪个选项不是材料的基本力学性质?A. 弹性B. 塑性C. 韧性D. 硬度答案:D2. 根据材料力学的理论,下列哪个选项是正确的?A. 材料在弹性范围内,应力与应变成正比B. 材料在塑性变形后可以完全恢复原状C. 材料的屈服强度总是高于其抗拉强度D. 材料的硬度与弹性模量无关答案:A二、填空题1. 材料力学中,应力是指_______与_______的比值。

答案:单位面积上的压力;受力面积2. 在材料力学中,材料的弹性模量E与_______成正比,与_______成反比。

答案:杨氏模量;泊松比三、简答题1. 简述材料力学中材料的三种基本变形类型。

答案:材料力学中材料的三种基本变形类型包括拉伸、压缩和剪切。

2. 描述材料的弹性模量和屈服强度的区别。

答案:弹性模量是指材料在弹性范围内应力与应变的比值,反映了材料的刚性;屈服强度是指材料开始发生永久变形时的应力值,反映了材料的韧性。

四、计算题1. 已知一材料的弹性模量E=200 GPa,杨氏模量E=210 GPa,泊松比ν=0.3,试计算该材料的剪切模量G。

答案:G = E / (2(1+ν)) = 200 / (2(1+0.3)) = 200 / 2.6 ≈ 76.92 GPa2. 某材料的抗拉强度为σt=300 MPa,若该材料承受的应力为σ=200 MPa,试判断材料是否发生永久变形。

答案:由于σ < σt,材料不会发生永久变形。

五、论述题1. 论述材料力学在工程设计中的重要性。

答案:材料力学是工程设计中的基础学科,它提供了对材料在力作用下行为的深入理解。

通过材料力学的分析,工程师可以预测材料在各种载荷下的响应,设计出既安全又经济的结构。

此外,材料力学还有助于新材料的开发和现有材料性能的优化。

2. 讨论材料的疲劳寿命与其力学性能之间的关系。

答案:材料的疲劳寿命与其力学性能密切相关。

材料的疲劳寿命是指在循环载荷作用下材料能够承受的循环次数。

材料力学试题及答案

材料力学试题及答案

材料力学试题及答案一、选择题(每题5分,共25分)1. 下列哪个选项是材料力学的基本假设之一?A. 材料是各向同性的B. 材料是各向异性的C. 材料是均匀的D. 材料是线弹性的答案:A2. 在材料力学中,下列哪个公式表示杆件的正应力?A. σ = F/AB. τ = F/AC. σ = F/LD. τ = F/L答案:A3. 当材料受到轴向拉伸时,下列哪个选项是正确的?A. 拉伸变形越大,材料的强度越高B. 拉伸变形越小,材料的强度越高C. 拉伸变形与材料的强度无关D. 拉伸变形与材料的强度成正比答案:B4. 下列哪种材料在拉伸过程中容易发生断裂?A. 钢材B. 铸铁C. 铝合金D. 塑料答案:B5. 下列哪个选项表示材料的泊松比?A. μ = E/GB. μ = G/EC. μ = σ/εD. μ = ε/σ答案:C二、填空题(每题10分,共30分)6. 材料力学研究的是材料在______作用下的力学性能。

答案:外力7. 材料的强度分为______强度和______强度。

答案:屈服强度、断裂强度8. 材料在受到轴向拉伸时,横截面上的正应力公式为______。

答案:σ = F/A三、计算题(每题25分,共50分)9. 一根直径为10mm的圆钢杆,受到轴向拉伸力F=20kN 的作用,求杆件横截面上的正应力。

解:已知:d = 10mm,F = 20kNA = π(d/2)^2 = π(10/2)^2 = 78.5mm^2σ = F/A = 20kN / 78.5mm^2 = 255.8N/mm^2答案:杆件横截面上的正应力为255.8N/mm^2。

10. 一根长度为1m的杆件,受到轴向拉伸力F=10kN的作用,已知材料的弹性模量E=200GPa,泊松比μ=0.3,求杆件的伸长量。

解:已知:L = 1m,F = 10kN,E = 200GPa,μ = 0.3ε = F/(EA) = 10kN / (200GPa × π(10mm)^2) =0.025δ = εL = 0.025 × 1000mm = 25mm答案:杆件的伸长量为25mm。

《材料力学》习题册附答案

《材料力学》习题册附答案

F12312练习 1 绪论及基本概念1-1 是非题(1) 材料力学是研究构件承载能力的一门学科。

( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。

(是)(3) 构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。

( 是 ) (4) 应力是内力分布集度。

(是 )(5) 材料力学主要研究构件弹性范围内的小变形问题。

(是 ) (6) 若物体产生位移,则必定同时产生变形。

(非 ) (7) 各向同性假设认为,材料沿各个方向具有相同的变形。

(F ) (8) 均匀性假设认为,材料内部各点的力学性质是相同的。

(是)(9) 根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。

(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。

(非 )1-2 填空题(1) 根据材料的主要性质对材料作如下三个基本假设:连续性假设、均匀性假设 、各向同性假设 。

(2) 工程中的强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。

(3) 保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性三个方面。

3(4) 图示构件中,杆 1 发生 拉伸 变形,杆 2 发生 压缩 变形,杆 3 发生 弯曲 变形。

(5) 认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设。

根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。

(6) 图示结构中,杆 1 发生 弯曲变形,构件 2发生 剪切 变形,杆件 3 发生 弯曲与轴向压缩组合。

变形。

(7) 解除外力后,能完全消失的变形称为 弹性变形,不能消失而残余的的那部分变形称为 塑性变形 。

(8) 根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。

1-3选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。

材料力学习题集 (有答案)

材料力学习题集  (有答案)

绪 论一、 是非题1.1 材料力学主要研究杆件受力后变形与破坏的规律。

( ) 1.2 内力只能是力。

( )1.3 若物体各点均无位移,则该物体必定无变形。

( ) 1.4 截面法是分析应力的基本方法。

( ) 二、选择题1.5 构件的强度是指( ),刚度是指( ),稳定性是指( )。

A. 在外力作用下构件抵抗变形的能力B. 在外力作用下构件保持其原有的平衡状态的能力C. 在外力作用下构件抵抗破坏的能力1.6 根据均匀性假设,可认为构件的( )在各点处相同。

A. 应力 B. 应变C. 材料的弹性常数D. 位移1.7 下列结论中正确的是( ) A. 内力是应力的代数和 B. 应力是内力的平均值 C. 应力是内力的集度 D. 内力必大于应力参考答案:1.1 √ 1.2 × 1.3 √ 1.4 × 1.5 C,A,B 1.6 C 1.7 C轴向拉压一、选择题1. 等截面直杆CD 位于两块夹板之间,如图示。

杆件与夹板间的摩擦力与杆件自重保持平衡。

设杆CD 两侧的摩擦力沿轴线方向均匀分布,且两侧摩擦力的集度均为q ,杆CD 的横截面面积为A ,质量密度为ρ,试问下列结论中哪一个是正确的? (A) q gA ρ=;(B) 杆内最大轴力N max F ql =; (C) 杆内各横截面上的轴力N 2gAlF ρ=;(D) 杆内各横截面上的轴力N 0F =。

2. 低碳钢试样拉伸时,横截面上的应力公式N F A σ=适用于以下哪一种情况? (A) 只适用于σ≤p σ; (B) 只适用于σ≤e σ; (C)3. 在A 和B和点B 的距离保持不变,绳索的许用拉应力为[]σ取何值时,绳索的用料最省? (A) 0; (B) 30; (C) 45; (D) 60。

4. 桁架如图示,载荷F 可在横梁(刚性杆)DE 为A ,许用应力均为[]σ(拉和压相同)。

求载荷F 的许用值。

以下四种答案中哪一种是正确的?(A)[]2A σ; (B) 2[]3Aσ;(C) []A σ; (D) 2[]A σ。

材料力学试题含答案

材料力学试题含答案

材料力学试题及答案一、选择题(每题10分,共40分)1. 材料力学研究的主要内容是()A. 材料的力学性能B. 材料在外力作用下的变形和破坏规律C. 材料的制备工艺D. 材料的微观结构答案:B2. 下列哪种材料属于塑性材料()A. 钢B. 铝C. 玻璃D. 碳纤维答案:A3. 在材料力学中,下列哪个公式表示胡克定律()A. σ = EεB. σ = F/AC. τ = F/AD. σ = F·l/A答案:A4. 下列哪个现象属于弹性变形()A. 钢筋的拉伸B. 铅笔的弯曲C. 橡皮的压缩D. 玻璃的破碎答案:C二、填空题(每题10分,共40分)1. 材料力学中的基本假设之一是材料是各向______的。

答案:同性2. 在弹性范围内,材料的应力与应变之间的关系称为______。

答案:胡克定律3. 材料在受到拉伸或压缩时,单位面积上的内力称为______。

答案:应力4. 材料在受到剪切力作用时,单位面积上的内力称为______。

答案:剪应力三、计算题(每题20分,共60分)1. 一根直径为10mm的圆形截面低碳钢杆,受到轴向拉力F=10kN的作用。

已知材料的弹性模量E=200GPa,泊松比ν=0.3。

求杆的伸长量。

解:首先,计算杆的横截面积:A = πd^2/4 = π(10×10^-3)^2/4 = 7.85×10^-5 m^2根据胡克定律,杆的伸长量可以表示为:δ = Fl/AE代入已知数据,得到:δ = 10×10^3 × 7.85×10^-5 / (200×10^9 × 7.85×10^-5) = 5×10^-5 m = 0.5mm答案:杆的伸长量为0.5mm。

2. 一根矩形截面木梁,宽b=100mm,高h=200mm,受到弯矩M=10kN·m的作用。

已知木材的弹性模量E=10GPa。

材料力学习题及参考答案

材料力学习题及参考答案
答案: 截面法。
2.工程构件在实际工作环境下所能承受的应力称 为( ),工件中最大工作应力不能超过此应力, 超过此应力时称为( )。
答案: 许用应力 ,失效 。
3.金属拉伸标准试件有( )和( )两种。
答案: 圆柱形,平板形 。
4.在低碳钢拉伸曲线中,其变形破坏全过程可分为( ) 个变形阶段,它们依次是 ( )、( )、( )、和 ( )。
答案: 连续性、均匀性、各向同性。
3 .构件所受的外力可以是各式各样的,有时是很复杂的。 材料力学根据构件的典型受力情况及截面上的内力分量 可分为( )、( )、( )、( )四种基本变形。
答案: 拉伸或压缩、剪切、扭转、弯曲。
二、计算
1. 试求下列杆件中指定截面上内力分量,并指出相应的
变形形式。
I

P
P
I
解: 根据轴向拉伸杆件斜截面上正应力和剪力公式,
各自的容许条件为

x cos2

P cos2
A
0a

x sin cos

P sin cos
A
0b
式(b)除以式(a),得
C

NC A2

12.98103 4 104
36.8MPa
所以
max B 41.4MPa
C l2 2
B l1 1
A P
aБайду номын сангаас
x
N2
22
x2
N1
11
x1 A1
A2 B A1
o
A
A
PP
b
2)作轴力图 取1-1截面(AB段,见图(b))

材料力学试题及参考答案精选全文

材料力学试题及参考答案精选全文

可编辑修改精选全文完整版材料力学试题及参考答案1.灰铸铁的硬度测定方法是() [单选题] *A.布氏硬度(正确答案)B.洛氏硬度C.维氏硬度2.下列物质属于晶体的是() [单选题] *A.松香B.水晶(正确答案)C.石蜡3.冷塑性变形的金属晶粒重新结晶为均匀的等轴晶粒需进行的热处理是( ) [单选题] *A.去应力退火B.完全退火C.再结晶退火(正确答案)4.下列情况属于相变过程的是() [单选题] *A.液态金属的结晶(正确答案)B.晶粒长大C.冷变形金属的再结晶5.在铁碳合金的基本组成相中,属于金属化合物是() [单选题] *A.铁素体B.渗碳体(正确答案)C.奥氏体6.调质是() [单选题] *A.淬火+低温回火B.淬火+中温回火C.淬火+高温回火(正确答案)7.下列关于合金元素在钢中的作用论述错误的是() [单选题] *A.合金元素的加入使铁素体产生固溶强化B.合金元素的加入使奥氏体相区的大小发生改变C.除钴外,合金元素的加入使C曲线左移(正确答案)8.阻止石墨化的元素有() [单选题] *A.硅B.磷C.硫(正确答案)9.属于软基体上分布硬质点的轴承合金有() [单选题] *A.锡基巴氏合金(正确答案)B.铝基轴承合金C.珠光体灰铸铁10.碳以片状石墨形式存在的铸铁是() [单选题] *A.灰铸铁(正确答案)B.白口铸铁C.球墨铸铁11. 截面上的全应力的方向( ) [单选题] *A、平行于截面(正确答案)B、垂直于截面C、可以与截面任意夹角D、与截面无关12. 脆性材料的延伸率( ) [单选题] *A、小于5%(正确答案)B、小于等于5%C、大于5%D、大于等于5%13.危险截面是()所在的截面。

[单选题] *A、最大面积B、最小面积C、最大应力(正确答案)D、最大内力14. 描述构件上一截面变形前后的夹角叫() [单选题] *A、线位移B、转角(正确答案)C、线应变D、角应变15. 塑性材料的名义屈服应力使用() [单选题] *A、σS表示(正确答案)B、σb表示C、σp表示D、σ0.2表示16. 描述构件上一截面变形前后的夹角叫() [单选题] *A、线位移B、转角(正确答案)C、线应变D、角应变17.塑性材料的名义屈服应力使用() [单选题] *A、σS表示(正确答案)B、σb表示C、σp表示D、σ0.2表示18. 构件在外力作用下()的能力称为稳定性。

材料力学考试试题及答案

材料力学考试试题及答案

材料力学考试试题及答案一、选择题(每题2分,共20分)1. 材料力学中,下列哪一项不是材料的基本力学性能?A. 弹性B. 塑性C. 韧性D. 硬度2. 材料在拉伸过程中,若应力超过屈服点后继续增加,材料将进入:A. 弹性阶段B. 塑性阶段C. 断裂阶段D. 疲劳阶段3. 材料的弹性模量E表示的是:A. 材料的硬度B. 材料的韧性C. 材料的弹性程度D. 材料的屈服强度4. 根据材料力学理论,下列哪一项不是材料的疲劳破坏特点?A. 疲劳破坏是局部的B. 疲劳破坏是突然的C. 疲劳破坏是可预测的D. 疲劳破坏是累积的5. 在材料力学中,下列哪一项不是材料的失效模式?A. 屈服B. 断裂C. 腐蚀D. 疲劳6. 材料的屈服强度和抗拉强度之间的关系是:A. 屈服强度总是大于抗拉强度B. 屈服强度总是小于抗拉强度C. 屈服强度等于抗拉强度D. 两者之间没有固定关系7. 材料的疲劳寿命与下列哪一项无关?A. 应力水平B. 材料的微观结构C. 环境温度D. 材料的密度8. 材料的冲击韧性通常用下列哪一项来表示?A. 抗拉强度B. 屈服强度C. 硬度D. 冲击吸收能量9. 材料的疲劳寿命与加载频率的关系是:A. 正相关B. 负相关C. 无关D. 先正相关后负相关10. 在材料力学中,下列哪一项不是材料的应力-应变曲线的特点?A. 弹性阶段B. 屈服阶段C. 塑性阶段D. 线性阶段二、简答题(每题10分,共20分)1. 请简述材料的弹性模量和屈服强度的区别和联系。

2. 材料的疲劳破坏与静载下的破坏有何不同?三、计算题(每题15分,共30分)1. 已知一材料的弹性模量E=200 GPa,泊松比ν=0.3。

若材料受到拉伸力F=10 kN,试计算材料的应变ε和应力σ。

2. 某材料的疲劳寿命S-N曲线已知,当应力水平为σ=200 MPa时,疲劳寿命N=1000次。

若应力水平降低到150 MPa,根据Basis Goodman关系,计算新的疲劳寿命。

材料力学1 (答案)

材料力学1 (答案)

材料力学请在以下五组题目中任选一组作答,满分100分。

第一组:计算题(每小题25分,共100分)1. 梁的受力情况如下图,材料的a。

若截面为圆柱形,试设计此圆截面直径。

10kNq/m2. 求图示单元体的:(1)图示斜截面上的应力;(2)主方向和主应力,画出主单元体;(3)主切应力作用平面的位置及该平面上的正应力,并画出该单元体。

60x解:(1)、斜截面上的正应力和切应力:MPa MPa o 95.34,5.6403030=-=--τσ(2)、主方向及主应力:最大主应力在第一象限中,对应的角度为0067.70=α,则主应力为:MPa MPa 0.71),(0.12131-==σσ(3)、主切应力作用面的法线方向:0/20/167.115,67.25==αα 主切应力为:/2/104.96ααττ-=-=MPa此两截面上的正应力为:)(0.25/2/1MPa ==αασσ,主单元体如图3-2所示。

x图3-10.MPa0.25图3-23. 图中所示传动轴的转速n=400rpm,主动轮2输入功率P2=60kW,从动轮1,3,4和5的输出功率分别为P1=18kW,P3=12kW,P4=22kW,P5=8kW。

试绘制该轴的扭矩图。

4. 用积分法求图所示梁的挠曲线方程和转角方程,并求最大挠度和转角。

各梁EI均为常数。

第二组:计算题(每小题25分,共100分)1. 简支梁受力如图所示。

采用普通热轧工字型钢,且已知= 160MPa。

试确定工字型钢型号,并按最大切应力准则对梁的强度作全面校核。

(已知选工字钢No.32a:W = 692.2 cm3,Iz = 11075.5 cm4)解:1.FRA = FRB= 180kN(↑)kN·mkN·mkNm3由题设条件知:W = 692.2 cm2,Iz = 11075.5 cm4cmE截面:MPaMPa2. A+、B-截面:MPaMPa3.C-、D+截面:MPaMPa∴选No.32a工字钢安全。

材料力学内部习题集及答案

材料力学内部习题集及答案

材料⼒学内部习题集及答案第⼆章轴向拉伸和压缩2-1⼀圆截⾯直杆,其直径d =20mm,长L =40m ,材料的弹性模量E =200GPa ,容重γ=80kN/m 3 ,杆的上端固定,下端作⽤有拉⼒F =4KN ,试求此杆的:⑴最⼤正应⼒;⑵最⼤线应变;⑶最⼤切应⼒;⑷下端处横截⾯的位移?。

解:⾸先作直杆的轴⼒图⑴最⼤的轴向拉⼒为232N,max 80100.024*********.8N 44d F V F L F ππγγ=+=+=+= 故最⼤正应⼒为:N,maxN,maxN,maxmax 222445004.8=15.94MPa 3.140.024F F F Addσππ?====?⑵最⼤线应变为:64maxmax915.94100.7971020010E σε-?===?? ⑶当α(α为杆内斜截⾯与横截⾯的夹⾓)为45?时,maxmax 7.97MPa 2ασττ===⑷取A 点为x 轴起点,2N (25.124000)N 4d F Vx F x F x πγγ=+=+=+故下端处横截⾯的位移为:240N 0025.1240001d d (12.564000)2.87mm LL F x x x x x EA EA EA+?===?+=?2-2试求垂直悬挂且仅受⾃重作⽤的等截⾯直杆的总伸长△L 。

已知杆横截⾯⾯积为A ,长度为L ,材料的容重为γ。

解:距离A 为x 处的轴⼒为所以总伸长2N 00()L d d 2LL F x Ax L x x EA EA Eγγ?===2-3图⽰结构,已知两杆的横截⾯⾯积均为A =200mm 2,材料的弹性模量E =200GPa 。

在结点A 处受荷载F 作⽤,今通过试验测得两杆的纵向线应变分别为ε1=4×10-4,ε2=2×10-4,试确定荷载P 及其⽅位⾓θ的⼤⼩。

解:由胡克定律得相应杆上的轴⼒为取A 节点为研究对象,由⼒的平衡⽅程得解上述⽅程组得2-4图⽰杆受轴向荷载F 1、F 2作⽤,且F 1=F 2=F ,已知杆的横截⾯⾯积为A ,材料的应⼒-应变关系为ε=c σn,其中c 、n 为由试验测定的常数。

材料力学-习题集(含答案)

材料力学-习题集(含答案)

《材料力学》课程习题集西南科技大学成人、网络教育学院 版权所有习题【说明】:本课程《材料力学》(编号为06001)共有单选题,计算题,判断题,作图题等多种试题类型,其中,本习题集中有[判断题]等试题类型未进入。

一、单选题1. 构件的强度、刚度和稳定性________。

(A)只与材料的力学性质有关(B)只与构件的形状尺寸有关 (C)与二者都有关(D)与二者都无关 2. 一直拉杆如图所示,在P 力作用下 。

(A) 横截面a 上的轴力最大(B) 横截面b 上的轴力最大 (C) 横截面c 上的轴力最大(D) 三个截面上的轴力一样大 3. 在杆件的某一截面上,各点的剪应力 。

(A)大小一定相等(B)方向一定平行 (C)均作用在同一平面内 (D)—定为零 4. 在下列杆件中,图 所示杆是轴向拉伸杆。

(A) (B)(C)(D) 5. 图示拉杆承受轴向拉力P 的作用,斜截面m-m 的面积为A ,则σ=P/A 为 。

(A)横截面上的正应力(B)斜截面上的剪应力 (C)斜截面上的正应力(D)斜截面上的应力 6. 解除外力后,消失的变形和遗留的变形 。

(A)分别称为弹性变形、塑性变形(B)通称为塑性变形 (C)分别称为塑性变形、弹性变形(D)通称为弹性变形 7. 一圆截面轴向拉、压杆若其直径增加—倍,则抗拉 。

(A)强度和刚度分别是原来的2倍、4倍(B)强度和刚度分别是原来的4倍、2倍 (C)强度和刚度均是原来的2倍 (D)强度和刚度均是原来的4倍8. 图中接头处的挤压面积等于 。

P P(A)ab (B)cb (C)lb (D)lc9.微单元体的受力状态如下图所示,已知上下两面的剪应力为τ则左右侧面上的剪应力为。

(A)τ/2(B)τ(C)2τ(D)010.下图是矩形截面,则m—m线以上部分和以下部分对形心轴的两个静矩的。

(A)绝对值相等,正负号相同(B)绝对值相等,正负号不同(C)绝对值不等,正负号相同(D)绝对值不等,正负号不同11.平面弯曲变形的特征是。

材料力学的试题及答案

材料力学的试题及答案

材料力学的试题及答案一、选择题(每题2分,共20分)1. 材料力学研究的对象是什么?A. 材料的化学性质B. 材料的力学性质C. 材料的热学性质D. 材料的电学性质2. 材料力学中,下列哪一项不是基本力学性质?A. 弹性B. 韧性C. 硬度D. 塑性3. 材料力学中,应力的定义是什么?A. 力与面积的比值B. 力与体积的比值C. 力与长度的比值D. 面积与力的比值4. 材料力学中,下列哪一项不是材料的基本变形形式?A. 拉伸B. 压缩C. 扭转D. 膨胀5. 材料力学中,弹性模量表示什么?A. 材料的硬度B. 材料的韧性C. 材料的弹性D. 材料的塑性二、简答题(每题10分,共30分)6. 简述材料力学中材料的三种基本力学性质。

7. 解释材料力学中的应力-应变曲线,并说明其各阶段的意义。

8. 什么是材料的屈服强度,它在工程设计中的重要性是什么?三、计算题(每题25分,共50分)9. 一根直径为20mm,长度为200mm的圆杆,在两端受到100kN的拉伸力。

如果材料的弹性模量为200GPa,求圆杆的伸长量。

10. 一个直径为50mm,长为100mm的空心圆筒,内径为40mm,受到一个扭矩为500N·m。

如果材料的剪切模量为80GPa,求圆筒的最大剪切应力。

答案一、选择题1. B. 材料的力学性质2. C. 硬度3. A. 力与面积的比值4. D. 膨胀5. C. 材料的弹性二、简答题6. 材料力学中材料的三种基本力学性质包括弹性、塑性和韧性。

弹性是指材料在受到外力作用后能恢复原状的能力;塑性是指材料在达到一定应力后,即使撤去外力也不会完全恢复原状的性质;韧性是指材料在断裂前能吸收和分散能量的能力。

7. 应力-应变曲线是描述材料在受力过程中应力与应变之间关系的曲线。

它通常包括弹性阶段、屈服阶段、强化阶段和颈缩阶段。

弹性阶段表示材料在受力后能够完全恢复原状;屈服阶段是材料开始产生永久变形的点;强化阶段是材料在屈服后继续承受更大的应力而不断裂;颈缩阶段是材料接近断裂前发生的局部变细现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 轴向拉伸和压缩2-1 一圆截面直杆,其直径d =20mm, 长L =40m ,材料的弹性模量E =200GPa ,容重γ=80kN/m 3, 杆的上端固定,下端作用有拉力F =4KN ,试求此杆的:⑴最大正应力; ⑵最大线应变; ⑶最大切应力;⑷下端处横截面的位移∆。

题 2 - 1 图+5004.8N4000N解:首先作直杆的轴力图⑴最大的轴向拉力为232N,max 80100.024*********.8N 44d F V F L F ππγγ=+=+=⨯⨯⨯⨯+= 故最大正应力为:N,maxN,maxN,maxmax 222445004.8=15.94MPa 3.140.024F F F Ad d σππ⨯====⨯⑵最大线应变为:64maxmax915.94100.7971020010E σε-⨯===⨯⨯ ⑶当α(α为杆内斜截面与横截面的夹角)为45︒时,maxmax 7.97MPa 2ασττ===⑷取A 点为x 轴起点,2N (25.124000)N 4d F Vx F x F x πγγ=+=+=+故下端处横截面的位移为:240N 0025.1240001d d (12.564000)2.87mm LL F x x x x x EA EA EA+∆===⋅+=⎰⎰2-2 试求垂直悬挂且仅受自重作用的等截面直杆的总伸长△L 。

已知杆横截面面积为A ,长度为L,材料的容重为γ。

AB题 2-2 图A B解:距离A 为x 处的轴力为N ()F x Ax γ=⋅ 所以总伸长 2N 00()L d d 2LL F x Ax L x x EA EA Eγγ∆===⎰⎰ 2-3 图示结构,已知两杆的横截面面积均为A =200mm 2,材料的弹性模量E =200GPa 。

在结点A 处受荷载F 作用,今通过试验测得两杆的纵向线应变分别为ε1=4×10-4,ε2=2×10-4,试确定荷载P 及其方位角θ的大小。

题 2 - 3 图解: 由胡克定律得945112001041080010Pa E σε-=⨯=⨯⨯⨯=⨯945222001021040010Pa E σε-=⨯=⨯⨯⨯=⨯相应杆上的轴力为11N A σ=g 22N A σ=g561800102001016N KN -=⨯⨯⨯=11182N N KN == 取A 节点为研究对象,由力的平衡方程得1212sin 30sin 30sin cos30cos30cos N N P N N P θθ⎧=+⎪⎨++⎪⎩o o o o g g g g g g解上述方程组得10.8921.17P KNθ⎧=⎨=⎩o2-4 图示杆受轴向荷载F 1、F 2作用,且F 1=F 2=F ,已知杆的横截面面积为A ,材料的应力-应变关系为ε=c σn,其中c 、n 为由试验测定的常数。

(1) 试计算杆的总伸长;(2) 如果用叠加法计算上述伸长,则所得的结果如何? (3) 当n =1时,上述两解答是否相同?由此可得什么结论?+FFF N 图(a )F N 图F+(b )F N 图F+(c )题 2 - 4 图解:(1)轴力图如图(a )所示。

根据nc ε=σ: 112()n l l F c l a A ∆∆== 12n n n F l ac A∆=22()nl l F c l a A ∆∆== 2n n F l ac A∆=则 12(21)n nnacF l l l A +∆=∆+∆=(2)采用叠加法。

单独作用F 1时,轴力图如图(b )所示。

1()nl F c a A ∆= 1n n F l ac A ∆=单独作用F 2时,轴力图如图(c )所示。

2()2nl F c a A ∆= 22n n F l ac A ∆=则 3nnacF l A ∆=(3)当n =1时,上述两解答相同。

结论:只有当ε与σ成线性关系时,叠加法才适用于求伸长。

2-5 试求图示构架点C 的铅垂位移和水平位移,已知两根杆的抗拉刚度均为EA 。

(a)(c)题 2 - 5 图(b)F CDF BCCC'Δl CD解: 取C 点分析受力情况,如图(b )所示,得,0CD BC F F F == 因此只有CD 杆有伸长 CD FLl EA=变形几何图如图(c )所示 ,得FL x y EA∆=∆=。

2-6 刚性梁ABCD 在B 、D 两点用钢丝绳悬挂,钢丝绳绕过定滑轮G 、H 。

已知钢丝的E =210GPa ,绳横截面面积A =100mm 2,荷载F =20KN ,试求C 点的铅垂位移(不计绳与滑轮间的摩擦)。

解:首先要求绳的内力T 。

刚性梁ABCD 的受力分析如图()b ,由平衡方程:0AM=∑解得: 80KN 7T =绳的原长 2428m L =++= 绳的伸长量为3396801087 4.3510m 2101010010TL L EA --⨯⨯∆===⨯⨯⨯⨯ 在F 作用下结构变形如图()c , 可得:(a)34.3510m B D L L L -∆+∆=∆=⨯ (1)再由三角几何关系得:59B D L AB L AD ∆==∆ (2) 由 (1)、(2)式联立可得:31.5510m B L -∆=⨯又因为:58B C L AB L AC ∆==∆ 所以,32.4910m 2.49mm C L -∆=⨯=2-7 图示结构中AB 杆为刚性杆,杆AC 为钢质圆截面杆,直径d 1=20mm ,E 1=200GPa ;杆BD 为铜质圆截面杆,直径d 2=25mm ,E 2=100GPa ,试求:(1) 外力F 作用在何处(x =?)时AB 梁保持水平?(2) 如此时F =30kN ,则两拉杆横截面上的正应力各为多少? 解:(1). 容易求得AC 杆、BD 杆的轴力分别为122,22N N x x F F F F -=⋅=⋅从而AC 杆、BD 杆的伸长量()11111122111111222222222222224444N N N Fl l x F l Fl l E A E d E d lF l F l Fl xl E A E d E d lππππ-∆===∆===若要AB 梁保持水平,则两杆伸长量应相等,即12l l ∆=∆.于是,()1222112244.Fl l x Fl xE d lE d lππ-=2921222292921222111.5100100.02521.5100100.025*******.0201.08l E d l x l E d l E d m⨯⨯⨯⨯∴==+⨯⨯⨯+⨯⨯⨯=(2).当30, 1.08F kN x m ==时,两拉杆横截面上的正应力分别为()311221132222222230102 1.082443.140.02423010 1.082333.140.0254N N x F F MPad A xF F MPa d A σπσπ-⋅⨯⨯-====⨯⋅⨯⨯⨯====⨯题 2 - 7 图2-8 图示五根杆的铰接结构,沿其对角线AC 方向作用两力F =20 kN ,各杆弹性模量E =200GPa ,横截面面积A =500mm 2,L =1m ,试求:(1) AC 之间的相对位移△AC ,(2) 若将两力F 改至BD 点,则BD 点之间的相对位移△BD 又如何? 解:(1)取A 节点为研究对象,受力分析如图(b)由平衡方程:0AXF=∑,cos450AB F F ︒-=0,sin 450AYAD FF F =︒-=∑得AB AD F F === 同理,可得:CD CB F F == B 节点受力分析如图(c)0XF=∑,20cos45ABBD F F kN -==-︒AB ,BC ,CD ,DA 四杆材料相同,受力大小相同,所以四个杆的应 变能相同,可求得整个杆件应变能为:224 6.8222AB BD F LJ EA EAεν=⨯+=力F 作的功为: 12AC W F =∆ 由弹性体的功能原理得: W εν=16.822AC F ∆= 36.8220.6822010AC mm ⨯∆==⨯()2当两力F 移至.B D 两点时,可知,只有BD 杆受力,轴力为F所以12BD F εν∆=从而0.283BDmm ∆=2-9 图示结构,已知三根杆AF 、CD 、CE 的横截面面积均为A =200mm 2, E =200GPa,试求每根杆横截面上的应力及荷载作用点B 的竖向位移。

题 2 - 9 图F题 2 - 8 图(b)(c)(d)解:取AB 为研究对象,选取如图所示坐标轴, 故0xF=∑,即ND NE F F =,0yF=∑,即2sin300NA ND F F F +-︒=,于是得 NA ND F F F +=,0AM=∑ ,即32sin3060ND F F ⨯︒-=,于是 221020KN ND F F ==⨯=, 解得:20KN NE F =,10KN NA F = 所有构件的应变能为*23max10030460202010160202360430468011270100.7MPa<1MPa 240.580.3A B B S z S z z F F F F S F h b I b I b τ+⨯--⨯--=⨯--⨯⨯-⨯+⨯⨯-=⨯⨯==⋅==⨯⨯由功能原理得,F 作的功在数值上等于该结构的应变能 即:12B F V ε⋅∆= 所以 32242.58.5mm 1010B V F ε⨯∆===⨯. 2-10 图示结构,已知四根杆AC 、CB 、AD 、BD 的长度均为a ,抗拉刚度均为EA ,试求各杆轴力,并求下端B 点的位移。

CD(a )题 2 - 10 图C(b )(d )2F 3解:(1)以B 结点为研究对象,受力图如图(a )所示 由0xF=∑ 得34F F =得34F F ==以刚性杆为研究对象,受力图如图(b )所示由0xF=∑ 得12F F =由0yF=∑得12F F ==(2)由于1,2杆的伸长变形,引起CD 刚性杆以及B 结点的下降(如图(c ))112B l l l ∆====由于3,4杆的伸长引起B 点的继续下降(如图(d ))23B Fal l EA ∆===则12B B B l l l ∆∆+∆==2-11 重G =500N,边长为a =400mm 的箱子,用麻绳套在箱子外面起吊如图所示。

已知此麻绳在290N 的拉力作用下将被拉断。

(1) 如麻绳长为1.7m 时,试问此时绳是否会拉断? (2) 如改变ɑ角使麻绳不断,则麻绳的长度至少应为多少?解:(1)取整体作为研究对象,经分析得本受力体系为对称体系.由于箱子重G =500N,由竖直方向的受力平衡可知,每根绳子竖直方向受力为F=250N.即cos 250F α⨯=而cos 0.9722α== 则2502572900.972F N N ==< 于是,此时绳子不会被拉断. (2)绳子被拉断时cos 250u F α⨯=其中290u F N =则250cos 0.8622902α=== 解得:0.789L m =答:(1)N =417N (2)L =1.988m题 2 - 11 图题 2 - 12 图2-12 图示结构,BC 为刚性杆, 长度为L , 杆1、2的横截面面积均为A ,其容许应力分别为[σ1]和[σ2],且[σ1]=2[σ2],荷载可沿梁BC 移动, 其移动范围0<x <L , 试从强度方面考虑,当x 取何值时,F 的容许值最大,F max 等于多少?解:分析题意可知,由于1、2两杆横截面积均为A ,而1杆的容许应力为2杆的二倍,则由公式[]F A σ=⨯可知,破坏时2杆的轴力也为1杆的二倍。

相关文档
最新文档