激光快速成型技术

合集下载

激光快速成形技术

激光快速成形技术
腐蚀能力不强。 4、氦-镉激光管的寿命仅3000小时,价格较昂贵,运行费用高同时需对整个截面进行扫描固化,成型时
间较长,因此制作成本相对较高。
2021/3/2
8
激光快速成型技术
2.选择性激光烧结技术(SLS)
原理:选择性激光烧结技术(SLS技术)与立体光造型技术(SLA技术) 很相似,也是用激光束来扫描各原材料,但用粉末物质代替了液态光聚 合物,并以一定的扫描速度和能量作用于粉末材料 。选择性激光烧结 技术的基本原理如图所示。
新 旧 流 程 图 如 右 图
图7-22 立体光造型技术的原理示意图
主要优点
• 快速性:生产制品的周期较传统加工工艺短。RP对设计的敏感性很低, 制造时几乎不用考虑制品的外形问题,由此可节约大量时间。
• 适合成型复杂零件:不论零件多复杂,都由计算机分解为二维数据进行 成型制作,无简单复杂之分,因此他特别适合成型形状复杂,传统方法 难以制造甚至无法制造的零件。
体离散
面离散
线离散
后处理
有序面 面叠加
有序线

有序点


线叠加
3、激光快速成型与传统工艺比较
由于快速成型技术(包括激光快速成型技术)仅在需要增加材料的地方加上 材料,所以从设计到制造自动化,从知识获取到计算机处理,从计划到 接口、通讯等方面来看,非常适合于CIM、CAD及CAM,同传统的制造 方法相比较,显示出诸多优点。
选 择 性 激 光 烧 结 技 术 基 本 原 理
优点:
1、与其他工艺相比,能生产很硬的模具。有直接金属型的 概念。 2、可以采用多种原料,例如绝大多数工程用塑料、蜡、金属、陶瓷等。 3、 零件的构建时间短,可达到1in/h高度。 4、 无需对零件进行后矫正。

激光增材制造过程数值仿真技术综述

激光增材制造过程数值仿真技术综述

激光增材制造过程数值仿真技术综述激光增材制造(LAM)是一种先进的快速成型技术,它利用激光熔化金属粉末来逐层构建复杂的零件和结构。

这种技术在航空航天、汽车制造、医疗器械等领域有着广泛的应用。

在激光增材制造过程中,数值仿真技术扮演着重要的角色,可以帮助优化工艺参数、预测材料性能和预测构件的变形等问题。

本文将就激光增材制造过程中的数值仿真技术进行综述,包括其基本原理、建模方法、影响因素等方面的内容。

一、激光增材制造的基本原理激光增材制造是一种以激光熔化金属粉末为基础的快速成型技术。

其基本原理是利用激光束瞬间加热金属粉末,使其熔化并与基底材料结合,从而形成复杂的三维结构。

激光增材制造的工艺包括激光熔化、材料沉积和热循环等环节,其中的激光熔化过程是整个工艺中最关键的环节。

在这一过程中,激光功率、扫描速度、层间距离等工艺参数会对成形结构的质量产生重要影响。

二、激光增材制造的数值仿真建模数值仿真是激光增材制造过程中不可或缺的一部分,它可以帮助工程师优化工艺参数、预测材料性能和预测构件的变形等问题。

在激光增材制造中,数值仿真建模主要包括以下几个方面:1.热流体模拟激光增材制造中的热流体模拟是一个复杂的多物理过程,涉及到激光传热、熔化金属粉末和热应力等问题。

采用有限元方法,可以模拟激光熔化过程中的温度场分布、熔池形态等关键参数,从而辅助工程师优化激光功率、扫描速度等工艺参数。

2.相变模拟激光增材制造中的相变过程是影响构件质量的重要因素,通过数值仿真可以模拟金属粉末的熔化和凝固过程,预测构件的组织结构和性能。

3.热应力模拟激光增材制造过程中由于快速加热和冷却会产生较大的热应力,通过数值仿真可以模拟构件的变形和裂纹分布,从而优化工艺参数和提高构件的质量。

三、激光增材制造数值仿真技术的应用激光增材制造数值仿真技术在航空航天、汽车制造、医疗器械等领域有着广泛的应用。

其中,激光增材制造在航空航天领域的应用最为突出,它可以制造复杂的轻质结构零部件,提高整体结构的强度和耐久性。

SLA成型材料的研究概况

SLA成型材料的研究概况

SLA成型材料的研究概况SLA(激光快速成型)是一种三维打印技术,通过使用激光光束扫描光敏树脂,逐层堆积并逐渐硬化,最终形成一个完整的实体模型。

SLA成型材料是确定最终产品质量和性能的关键因素之一、本文将概述当前SLA成型材料的研究概况,包括材料种类、性能以及未来研究方向等。

1.SLA成型材料的种类:目前市场上常见的SLA成型材料主要分为两大类:光敏树脂和复合材料。

其中,光敏树脂是最常用的SLA成型材料。

它具有高度精细的打印分辨率、良好的细节表现能力和较好的机械性能,并且可用于制造高质量的模型和产品。

复合材料是光敏树脂与其他添加剂的混合物,旨在提高材料的机械性能、热稳定性和耐腐蚀性。

2.SLA成型材料的性能:SLA成型材料的性能包括打印精度、机械性能、耐热性、耐腐蚀性等。

打印精度是衡量SLA技术的关键指标之一,它取决于材料的流变性能和硬化速度。

机械性能是指材料的强度和刚度等力学性能,它取决于材料的硬化程度和分子结构。

耐热性和耐腐蚀性是指材料在高温和腐蚀环境下的性能表现。

当前的SLA成型材料在这些性能方面已经有了很大的进展,但仍然存在改进的空间。

3.SLA成型材料的研究进展:近年来,研究人员对SLA成型材料进行了广泛的研究,以改善其性能和提高生产效率。

研究的方向包括材料的合成改性、打印参数的优化、后处理方法的改进等。

例如,通过改变光敏树脂的成分和配比,可以实现不同的打印性能和机械性能。

另外,优化打印参数如激光功率、扫描速度和层厚等,可以提高打印质量和效率。

此外,采用后处理方法如光照固化、温度热处理等,可以进一步提高材料的性能。

4.SLA成型材料的未来研究方向:未来,SLA成型材料的研究方向主要集中在以下几个方面:一是开发新型材料,如高温耐热材料、生物可降解材料等,以满足不同应用领域的需求;二是优化打印参数和工艺方法,以提高打印速度和质量稳定性;三是改进后处理方法,以提高材料的性能和表面质量;四是研究多材料打印和多功能材料的开发,以实现更广泛的应用。

选择性激光烧结快速成形技术

选择性激光烧结快速成形技术

选择性激光烧结快速成形技术摘要:选择性激光烧结快速成形(Selective Laser Sintering Rapid Prototyping)技术使用固体粉末材料,该材料在激光的照射下,能吸收能量。

发生熔融固化,从而完成层信息的成型。

这种方法适用的材料范围广(适用于聚合物、铸造用蜡、金属或陶瓷粉末),特别是在金属和陶瓷材料的成型方面具有独特的优点,有着制造工艺简单,柔性度高、材料选择范围广、材料价格便宜,成本低、材料利用率高,成型速度快等特点。

本文就SLS的原理,优点,以及使用材料的发展做了简要概括,并对金属粉末的进行了重点讨论。

关键字:SLS,原理,材料,金属粉末目录前言 (1)1 选择性激光烧结快速成形技术的应用 (1)2 选择性激光烧结快速成形技术原理 (2)2.1 基本工作原理 (2)2.2 SLS快速成形技术工艺流程 (4)2.3 SLS烧结机理 (4)3SLS技术的特点 (5)4 中北大学SLS方面的成果 (6)5 选择性激光烧结用原材料 (6)5.1 金属材料 (7)5.2 聚合物材料 (8)5.3 陶瓷材料 (8)5.4 新型SLS原料的研制-木塑复合材料 (8)6 金属粉末选择性激光烧结(SLS)技术 (8)6.1 间接法 (9)6.2 直接法 (10)6.3 金属粉末SLS存在的问题 (11)6.4 金属粉末SLS发展趋势 (12)总结 (12)参考文献 (14)前言选择性激光烧结快速成形(Selective Laser Sintering Rapid Prototyping)技术(简称SLS技术)1989年由美国C.R Decard申请专利,DTM公司推向市场,之后因为具有成型材料选择范围宽、应用领域广的突出优点,得到了迅速的发展,受到越来越多的重视。

选择性激光烧结(SLS)也可被称为选区激光烧结,它跟其它的快速成型工艺一样,加工原理也是离散-堆积成型原理。

其以Nd:YAG或CO2激光发射器为加工能源,利用计算机来控制激光束对加工材料(包括高分子材料、金属粉末、预合金粉末材料及纳米材料等)按设定的速度并调整合适的激光能量密度并根据切片截面轮廓的二维数据信息进行烧结,层层堆积,全部烧结完后去掉周围多余的粉末, 再对烧结件进行打磨、烘干等一系列后处理操作便可以获得零件。

快速成型

快速成型

激光增材制造技术(激光 3D 打印技术)是一种低能耗、短流程、高柔性、成形与组织性能控制一体化的先进制造技术,其基本的原理是基于激光熔覆的多层叠加技术,可以直接、快速制备具有复杂结构的实体零件。

光纤激光波长短(λ =1.06um~1.07um)、光束质量好、柔性高、运行成本低,在激光增材制造领域有着显著的优势。

激光增材制造技术基本原理是利用计算机设计软件设计出零件三维模型,然后对模型进行一定分层切片处理,将三维模型离散化为一系列二维层面,然后利用激光逐层扫描、叠加成形的方式添加粉末材料将计算机模型直接转换实体零件。

选择性激光熔化(SLM)技术是上个世纪 90 年代出现的一种新型快速成型(Rapid Prototyping)技术。

它结合了 CAD/CAM、数控、光学及材料科学等技术,以各种纯金属或合金粉末材料作为加工原料,采用中小功率激光器快速、完全熔化选择性金属粉末后,结合快速冷却凝固技术,可以获得非平衡态过饱和固溶体及均匀细小的金相组织,其成型零件致密度近乎 100%,机械性能与锻造零件相当。

并且,SLM 技术具有工艺简单、成型材料范围广泛(单一金属粉末、复合粉末、高熔点难熔合金粉末等)、可以制作出传统工艺方法难以制造的复杂金属零件等特点,因此日益受到国内外专家广泛重视,已成为目前所有快速成型技术中最具发展前景的技术。

快速成型(Rapid Prototyping,RP)技术是 20 世纪 80 年代出现的一种新型制造技术,它以离散化的思想,先将模型划分成一系列具有一定厚度的薄片,再利用二维制造工艺依次制作这些薄片并逐层叠加起来成为最终的三维实体零件。

这种变传统的立体加工为平面加工的新思想,被公认为制造领域的一次重大突破。

由于 RP 技术采用了全新的“增长”加工法,彻底摆脱了传统“去除”加工法的限制,因此它可以在不借助工、模具的情况下,只需传统加工方法 10%~30%的工时和 20%~35%的成本就能直接制造出产品模型或样品。

快速成型技术概述

快速成型技术概述

快速成型技术概述
快速成型技术是一种用于生产快速成型零件的制造技术,它能够使用多种不同的材料,在短时间内产生复杂形状的平面或立体物品。

快速成型技术可以大大减少制造时间,提高生产效率,大大降低成本,并提供更多的可能性来实现复杂的设计。

快速成型技术主要有三类:3D打印,热成型和激光熔融成形。

3D打印技术是一种基于数字模型的直接成型技术,用于制造复杂的塑料零件。

它是一种层层堆积的3D打印技术,通过连续堆积多层薄膜的方式在物料上建立3D零件的模型,从而直接制作出3D零件。

热成型技术是用热力加工膜材,使材料形状发生变形,从而制造出所需的三维形状的一种成型技术。

它是一种快速、简单、经济的加工技术,热成型技术用于制造塑料、橡胶、金属、纤维等多种材料的形状。

激光熔融成型技术是一种采用激光技术,将金属粉末逐层熔融成形的成型加工技术。

它通过激光产生高温熔融,从而将金属粉末熔融到形状模具中,形成三维零件。

快速成型:SLA、LOM、SLS、3DP、FDM

快速成型:SLA、LOM、SLS、3DP、FDM

快速成型:SLA、LOM、SLS、3DP、FDM快速成型技术根据成型方法可分为两类:基于激光及其他光源的成型技术Laser Technology,例如:光固化成型SLA、分层实体制造LOM、选域激光粉末烧结SLS、形状沉积成型SDM 等;基于喷射的成型技术Jetting Technoloy,例如:熔融沉积成型FDM、三维印刷3DP、多相喷射沉积MJD光造型工艺SLASLA,Stereolithogrphy Apparatus工艺,也称光造型或立体光刻,由Charles Hul 于 1984 年获美国专利。

SLA 技术是基于液态光敏树脂的光聚合原理工作的。

这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。

SLA工作原理SLA工作原理:液槽中盛满液态光固化树脂激光束在偏转镜作用下,能在液态表而上扫描,扫描的轨迹及光线的有无均由计算机控制,光点打到的地方,液体就固化。

成型开始时,工作平台在液面下一个确定的深度.聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。

当一层扫描完成后.未被照射的地方仍是液态树脂。

然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新周化的一层牢周地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。

SLA 方法是目前快速成型技术领域中研究得最多的方法.也是技术上最为成熟的方法。

S LA 工艺成型的零件精度较高,加工精度一般可达到 0.1 mm ,原材料利用率近 100 %。

但这种方法也有白身的局限性,比如需要支撑、树脂收缩导致精度下降、光固化树脂有一定的毒性等。

叠层实体制造工艺LOMLOM,Laminated Object Manufacturing,LOM工艺称叠层实体制造或分层实体制造,由美国Helisys公司的Michael Feygin于1986 年研制成功。

激光快速成型技术

激光快速成型技术
英文的名称为StereoLithography,简称SL,
也有时被简称为SLA(StereoLithography
Apparatus),它以光敏树脂为原料,通过计 算机控制紫外激光使其凝固成型。
光固化成型的基本原理
原理:计算机控 制激光束对光敏 树脂为原料的表 面进行逐点扫描, 被扫描区域 的树脂薄层(约十 分之几毫米)产生 光聚合反应而固 化,形成零件的 一个薄层。
五、展望
RP是一种处在发展完善过程的高新技术。目前 我国有多家机构从事RP技术及相关技术的研究, 在当今缩短产品开发周期和减少开发新产品投 资风险, 成为企业赖以生存的关键。因此, 快速成型、制模、制造技术将会得到进一步发 展。
谢 谢
零件在一台设备上即可快速成型出具有 一定精度﹑满足一定功能的零件(若要修改 零件只要修改CAD模型即可)
• 高度集成化:
激光快速成型技术将CAD数据转换成 STL格式后,即可开始快速制作(该过程是 二维操作在CAD中完成的)。
三、几种激光快速成型技术介绍
1、光固化成型技术
光固化成型工艺,也常被称为立体光刻成型,
光固化成型技术的优点:
• 1、成型过程自动化程度高:SLA系统非常稳定,
加工开始后,成型过程可以完全自动化,直至原型制 作完成。 • 2 、尺寸精度高: SLA原型的尺寸精度可以
达到±0.1mm。 • 3 、具有优良的表面质量 :虽然在每层固化 时侧面及曲面可能出现台阶,但上表面仍可得 到玻璃状的效果。 • 4 、可以制作结构十分复杂的模型 。
激光快速成型技术
一、概括
激光快速成型技术是上个世纪80年代发 展起来的一门高新技术。它是利用激光技术、 CAX技术、自动控制技术、新材料技术、直接 造型、快速制造产品模型的一们多学科综合技 术。目前,激光快速成型技术主要应用在航空 航天、汽车、玩具制造等行业。

快速成型技术的种类

快速成型技术的种类

快速成型技术的种类
快速成型技术是一种通过计算机辅助设计和制造的方法,可以快速制造出复杂的三维模型。

这种技术已经被广泛应用于各种领域,包括汽车、医疗、航空航天等。

本文将介绍几种常见的快速成型技术。

1. 光固化技术
光固化技术是一种通过紫外线或激光束将液态光敏树脂固化成固体的方法。

这种技术可以制造出非常精细的模型,适用于制造小型零件和精密零件。

光固化技术的优点是制造速度快,精度高,但成本较高。

2. 熔融沉积技术
熔融沉积技术是一种通过将熔融材料喷射到建模平台上,逐层堆积成三维模型的方法。

这种技术适用于制造大型零件和复杂零件。

熔融沉积技术的优点是制造速度快,成本低,但精度较低。

3. 熔融层压技术
熔融层压技术是一种通过将熔融材料喷射到建模平台上,然后用热压力将其压缩成固体的方法。

这种技术适用于制造大型零件和复杂零件。

熔融层压技术的优点是制造速度快,成本低,精度高。

4. 粉末烧结技术
粉末烧结技术是一种通过将金属或陶瓷粉末喷射到建模平台上,然后用激光束或电子束将其烧结成固体的方法。

这种技术适用于制造金属和陶瓷零件。

粉末烧结技术的优点是制造速度快,成本低,精度高。

快速成型技术已经成为现代制造业中不可或缺的一部分。

随着技术的不断发展,这些技术将会越来越成熟,应用范围也会越来越广泛。

快速成型技术方案

快速成型技术方案

快速成型技术方案
快速成型技术(Rapid Prototyping, RP)是一种快速制作三维
物理模型的方法,用于在产品开发过程中快速验证和优化设计。

以下是一些常见的快速成型技术方案。

1. 基于激光烧结的3D打印:使用激光束将粉末材料逐层烧结,从而构建三维模型。

这种方法适用于金属、塑料和陶瓷等多种材料。

2. 光固化3D打印:利用光敏树脂通过紫外线光束逐层固化,
构建模型。

这种方法适用于制作局部细节较为复杂的模型。

3. 熔融沉积3D打印:将材料加热至熔融状态后通过挤出头喷
射或滴注的方式逐层堆积。

这种方法适用于金属和塑料等材料。

4. 粉末熔融3D打印:将粉末材料通过热源加热至熔融状态后
通过喷头喷射到基板上,逐层堆积。

这种方法适用于金属材料的制作。

5. 线条熔融3D打印:使用金属丝或塑料线条通过加热源加热
至熔化状态,通过控制喷头的移动轨迹逐层堆积。

这种方法适用于金属和塑料等材料。

6. CNC加工:利用数控机床以三维坐标系控制刀具进行切削,将零件从固态材料中削减出来。

这种方法适用于金属和塑料等材料。

7. 快速硅胶模具制作:通过3D打印或其他快速成型技术制作模型原型,再通过注塑或浇铸等方法制作硅胶模具,用于快速复制多个产品原型。

以上是一些常见的快速成型技术方案,具体选择哪种技术要根据零件的要求、材料的特性和制造成本等因素进行综合考虑。

激光快速成型技术原理

激光快速成型技术原理

激光快速成型技术原理1. 引言激光快速成型技术(Laser Rapid Prototyping,简称Laser RP)是一种通过激光熔化或固化材料来逐层构建三维实体的制造技术。

它可以直接从计算机辅助设计(CAD)模型中生成物理模型,无需任何模具或切削工具。

激光快速成型技术的出现,极大地改变了传统制造业的生产方式,为产品研发与制造提供了一种快速、高效、灵活的解决方案。

本文将详细解释激光快速成型技术的基本原理,包括激光熔化成型(Selective Laser Melting,简称SLM)和激光固化成型(Stereolithography,简称SLA)两种常见的激光快速成型技术原理。

2. 激光熔化成型(SLM)原理激光熔化成型是一种通过激光熔化金属粉末来逐层构建金属实体的技术。

其基本原理如下:2.1 扫描路径规划在激光熔化成型过程中,首先需要根据CAD模型生成切片数据,然后使用计算机算法进行扫描路径规划。

扫描路径规划决定了激光在每一层的照射顺序,以及每个点的激光功率和照射时间。

2.2 激光照射在激光熔化成型过程中,使用高能量密度的激光束照射金属粉末,使其迅速熔化。

激光束的功率和照射时间会根据扫描路径规划的要求进行调整,以确保金属粉末被完全熔化。

2.3 层间粘结在每一层金属粉末被熔化后,需要等待熔融池冷却并凝固,形成一层固态金属。

然后,在下一层金属粉末上重复上述过程,直到构建出完整的三维实体。

每一层之间通过熔融池的凝固来实现粘结,确保构建出的实体具有足够的强度。

2.4 支撑结构在激光熔化成型过程中,由于构建过程是逐层进行的,上层的熔化金属会渗入到下层的固态金属中。

为了避免上层结构的变形和下层结构的破坏,通常需要添加支撑结构。

支撑结构可以提供支撑力和热传导,以保持构建过程的稳定性和精度。

2.5 后处理完成激光熔化成型后,需要进行后处理。

后处理包括去除支撑结构、表面处理、热处理等。

去除支撑结构通常需要机械或化学方法,以保持构建物表面的平整度和光洁度。

激光快速成型技术原理

激光快速成型技术原理

激光快速成型技术原理激光快速成型技术(Laser Rapid Prototyping,LRP)是一种以激光为能源源,通过逐层熔化或固化材料,实现三维实物快速制造的先进制造技术。

它是在计算机辅助设计(CAD)的基础上,利用计算机数控技术、激光技术和材料科学等多学科的综合应用。

激光快速成型技术的原理主要包括建模、切片、成型三个步骤。

首先是建模。

在激光快速成型技术中,首先需要进行三维模型的建立。

通常使用计算机辅助设计软件进行建模,将设计好的三维模型输入到激光快速成型设备中。

建模过程需要考虑到设计的形状、尺寸、结构等因素,以及材料的特性和制造工艺的要求。

接下来是切片。

在建模完成后,需要将三维模型切片成多个薄层。

切片过程是将三维模型分解为一系列的二维层,每一层都是一个横截面的投影。

切片的精度和层数的选择会直接影响到最终成型件的质量和精度。

最后是成型。

成型过程中,通过控制激光束的扫描轨迹和功率密度,将激光束照射到材料表面,使其局部熔化或固化。

当一层材料完成后,工作台会相应下降一层,然后再次进行激光照射,逐层累积,最终完成整个成型过程。

激光快速成型技术可以使用多种材料,如金属、塑料、陶瓷等,可以制造出具有复杂形状和内部结构的实物。

激光快速成型技术基于激光熔化或固化材料的原理,具有以下优点:激光快速成型技术具有高度的制造自由度。

通过激光束的精确控制,可以实现各种复杂形状的制造,包括内部空腔、薄壁结构等。

这种自由度对于一些特殊形状的零件制造非常有优势。

激光快速成型技术具有高精度和高质量。

激光束的直径非常小,可以实现微米级别的精度。

而且激光束的能量密度非常高,可以使材料迅速熔化或固化,从而得到高质量的成型件。

激光快速成型技术具有快速制造速度。

相比传统的制造方法,激光快速成型技术可以大大缩短制造周期,提高生产效率。

这对于一些小批量、个性化的生产要求非常适用。

激光快速成型技术还具有材料利用率高、减少了加工工序、降低了生产成本等优点。

激光诱导蚀刻快速成型技术_概述及解释说明

激光诱导蚀刻快速成型技术_概述及解释说明

激光诱导蚀刻快速成型技术概述及解释说明1. 引言1.1 概述激光诱导蚀刻快速成型技术是一种先进的制造方法,通过利用高能激光束对材料表面进行精确的物理和化学处理,实现对复杂结构零件的快速制造。

这项技术在工业界引起了广泛关注,并被广泛应用于各个领域。

1.2 文章结构本文将分为五个主要部分来介绍激光诱导蚀刻快速成型技术。

首先在引言部分将简要介绍该技术的背景和重要性。

接下来,在第二部分中将详细解释这项技术的定义、原理以及其发展历程。

第三部分将探讨激光源与扫描系统、材料选择与准备工作以及制造参数优化与控制策略等关键技术与方法。

然后,我们将通过实际应用案例分析,包括制造行业中的运用、医疗领域中的应用实例以及航空航天及国防领域的实践案例,来说明该技术在不同领域的优势和应用前景。

最后,在结论部分总结概括了本文的主要内容,并展望了未来该技术的发展趋势和前景。

1.3 目的本文的目标是全面介绍激光诱导蚀刻快速成型技术,包括定义、原理、发展历程以及其在不同领域中的应用案例。

通过深入了解这项技术,我们可以认识到其重要性和潜力,在未来的制造业中推动其进一步发展并促进创新。

此外,本文还旨在为相关领域的研究人员和工程师提供指导,以便更好地应用和开发该技术。

2. 激光诱导蚀刻快速成型技术2.1 定义和原理激光诱导蚀刻快速成型技术(Laser-Induced Etching Rapid Prototyping,简称LIEP)是一种基于激光与材料相互作用的三维打印技术。

它通过控制激光在材料表面的扫描路径和能量分布来实现高精度、高效率的零件制造。

该技术基于激光束在材料表面聚焦产生局部加热,在材料与环境之间形成临界温度,使材料发生化学反应或物理改变。

这些反应或改变可以通过调整激光的功率、扫描速度和扫描路径等参数来精确控制。

同时,由于激光束可以非常准确地聚焦并扫描在材料表面,因此LIEP技术具有较高的空间分辨率和制造精度。

2.2 发展历程激光诱导蚀刻快速成型技术最早起源于20世纪90年代初期,随着激光器、计算机控制系统和材料研究的不断进步,该技术得到了快速发展。

快速成型(RP)技术

快速成型(RP)技术

快速成型(RP)技术快速成型(RP)技术简介RP技术是80年代后期发展起来的快速成型(Rapid Prototyping 简称RP)技术,被认为是近年来制造技术领域的一次重大突破,其对制造业的影响可与数控技术的出现相媲美。

RP系统综合了机械工程、CAD、数控技术,激光技术及材料科学技术,可以自动、直接、快速、精确地将设计思想物化为具有一定功能的原型或直接制造零件,从而可以对产品设计进行快速评价、修改及功能试验,有效地缩短了产品的研发周期。

而以RP系统为基础发展起来并已成熟的快速模具工装制造( Quick Tooling)技术,快速精铸技术(Quick Casting),快速金属粉末烧结技术(Quick Powder Sintering),则可实现零件的快速成品。

RP技术,迴异于传统的去除成型(如车、削、刨、磨),拼合成型(如焊接),或受迫成型(如铸、锻,粉末冶金)等加工方法,而是采用基于材料累积制造的思想,把三维立体看成是无数平行的、具有不同形状的层面的叠加,能快速制造出产晶原型。

快速原型制造技术(RP)将计算机辅助设计(CAD)、辅助制造(CAM)、计算机辅助控制(CHC)、精密伺服驱动和新材料等先进技术集于一体,依据计算机上构成的产品三维设计模型,对其进行分层切片,得到各层截面的轮廓,激光选择性的切割一层层的纸(或固化一层层的液态树脂、烧结一层层的粉末材料或热喷头选择快速地熔覆一层层的塑料或选择性地向粉末材料喷射一层层粘结剂等),形成各截面轮廓并逐步叠加成三维产品。

目前,它已成为现代制造业的支柱技术,是实现并行工程、集成制造技术和技术开发的必不可少的手段之一。

与传统的切削加工方法相比,快速原型加工具有以下优点:(1)可迅速制造出自由曲面和更为复杂形态的零件,如零件中的凹槽、凸肩和空心部分等,大大降低了新产品的开发成本和开发周期。

(2)属非接触加工,不需要机床切削加工所必需的刀具和夹具,无刀具磨损和切削力影响。

激光成型技术

激光成型技术

激光成型技术摘要:激光快速成型技术(LPR)是上个世纪80年代发展起来的一门高新技术,他是利用激光技术,CAX技术,自动控制技术,新材料技术,直接造型,快速制造产品模型的一们多学科综合技术。

本文简单介绍激光成型技术的基本原理,特点,应用,及发展现状!关键词:激光成型技术、特点、应用、发展现状。

一:激光成型技术的基本原理。

激光快速成形(Laser Rapid Prototyping:LRP)是将CAD、CAM、CNC、激光、精密伺服驱动和新材料等先进技术集成的一种全新制造技术。

近期发展的LPR主要有:立体光造型(SLA) 技术;选择性激光烧结(SLS) 技术;激光熔覆成形(LCF)技术;激光近形(LENS)技术;激光薄片叠层制造(LOM) 技术;激光诱发热应力成形(LF)技术及三维印刷技术等。

下面将分别介绍以上几种技术!1:立体光造形(SLA)技术SLA技术又称光固化快速成形技术,其原理是计算机控制激光束对光敏树脂为原料的表面进行逐点扫描,被扫描区域的树脂薄层(约十分之几毫米)产生光聚合反应而固化,形成零件的一个薄层。

工作台下移一个层厚的距离,以便固化好的树脂表面再敷上一层新的液态树脂,进行下一层的扫描加工,如此反复,直到整个原型制造完毕。

由于光聚合反应是基于光的作用而不是基于热的作用,故在工作时只需功率较低的激光源。

此外,因为没有热扩散,加上链式反应能够很好地控制,能保证聚合反应不发生在激光点之外,因而加工精度高),表面质量好,原材料的利用率接近100%,能制造形状复杂、精细的零件,效率高。

对于尺寸较大的零件,则可采用先分块成形然后粘接的方法进行制作。

美国、日本、德国、比利时等都投入了大量的人力、物力研究该技术,并不断有新产品问世。

我国西安交通大学也研制成功了立体光造型机LPS600A。

目前,全世界有10多家工厂生产该产品。

汽车车身制造中的应用 SLA技术可制造出所需比例的精密铸造磨具,从而浇铸出一定比例的车身金属模型,利用此金属模型可进行风洞和碰撞等试验,从而完成对车身最终评价,以决定其设计是否合理。

SLS激光快速成型技术基本原理和工艺的优缺点

SLS激光快速成型技术基本原理和工艺的优缺点

SLS激光快速成型技术基本原理和工艺的优缺点华曙高科指出SLS激光快速成型技术是采用铺粉辊将一层粉末材料平铺在已成型零件的上表面,并加热至恰好低于该粉末烧结点的某一温度,控制系统控制激光束按照该层的截面轮廓在粉层上扫描,使粉末的温度升到熔化点,进行烧结并与下面已成型的部分实现粘结。

一层完成后,工作台下降一层厚度,铺料辊在上面铺上一层均匀密实粉末,进行新一层截面的烧结,直至完成整个模型。

这项技术与SLA很相似,也是用激光束来扫描各层材料,但SLS的激光器为CO2激光器,成型材料为粉末物质。

制作时,粉末被预热到稍低于其熔点温度,然后控制激光束来加热粉末,使其达到烧结温度,从而使之固化并与上一层粘结到一起。

目前烧结的材料主要有标准的铸造蜡材,标准的工程热塑性塑料如聚碳酸酯、尼龙、覆膜金属。

现在国内外正在研究陶瓷以及其它工程塑料的烧结成型,下面由华曙高科快速模型给大家分析下SLS激光快速成型技术工艺的优缺点。

优点:(1)可采用多种材料。

理论上讲,可采用加热时黏度降低的任何粉末材料,通过材料或各种含黏结剂的涂层颗粒制造任何造型。

(2)制造工艺简单。

由于可用材料比较多,该工艺按材料的不同可以直接生产复杂形状的原型、型腔模三维构建或部件及工具。

(3)高精度。

该工艺一般能够达到工件整体范围内(0.05-2.5)mm的公差。

(4)无需支撑结构。

叠层过程出现的悬空层可直接由未烧结的粉末来支撑。

(5)材料利用率高。

该工艺不用支撑,不需制作基底支撑,为常见几种RP工艺利用率最高的,且价格较便宜。

缺点:(1)表面粗糙。

由于原材料是粉状的,原型建造是由材料粉层经过加热熔化实现逐层粘结的,因此,原型表面严格讲是粉粒状的,因而表面质量不高。

(2)烧结过程有异味。

SLS工艺中粉层需要激光使其加热达到熔化状态,高分子材料或者粉粒在激光烧结时会挥发异味气体。

(3)有时辅助工艺较复杂。

拿聚酰胺粉末烧结来说,为避免激光扫描烧结过程中材料因高温起火燃烧,需在工作空间加入阻燃气体,多为氮气。

激光快速成型技术在模具设计中的应用

激光快速成型技术在模具设计中的应用
叶 建 刚
( 苏电大 宜兴 学 院,江 苏 宜兴 江 240 ) 12 6
摘 要 :激光快速成型技术是一种新型的添加成型技术。在模具设计中 ,根据离散堆积原理 ,利用 合
适 的材 料 ,采 用 一 种 全 新 的成 型 方 法— — 分层 加 工 、迭 加 成 型 ,可实 现 任 意 复 杂 形 状 的 模 具 样件 的快 速
制 造 。其 应 用 已从 单 一 模 型 制 作 向快 速 模 具 制 造 及 快 速铸 造 等 多用 途 方 向发 展 ,为 实 现 模具 设 计 的短 周
期 、多 品种 、低 费 用 、高精 度 提 供 了一 条 捷 径 。
关 键 词 :激光快速成型 ; 模具设计 ; 三维建模 ; 快速制造 中 图 分 类 号 :T 7 G6 文 献 标 识 码 :A 文 章 编 号 :10 — 04 (00 6 04 — 3 05 68 2 1)0 — 03 0
术 .它 可 以 自动 快 速 地将 设 计 思 想 物 化 为具 有

定 结 构 和 性 能 的 原 型 或直 接 制 造 零 部 件 。应
用 于 模 具 设 计 中 .可 实 现任 意 复 杂 形状 的模 具
ห้องสมุดไป่ตู้
1 激 光 快速 成 型 技 术及 其 成 型原 理
11 激 光快速 成型 技术 .
m o e i g; r pi a i g d ln a dm kn
激 光快 速 成 型技 术 .是在 现 代 C D/ A A C M 技 术 、激 光 技 术 、计 算 机 数控 技 术 、精 密伺 服
驱 动 技 术 以及 新 材 料 技术 的基 础 上 集 成发 展 起
快速模具 制造及快速铸 造等多用途方 向发展 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光快速成型技术综述1、激光快速成型的基本原理激光快速成型技术的原理是用CAD生成的三维实体模型,通过分层软件分层、每个薄层断面的二维数据用于驱动控制激光光束,扫射液体、粉末或薄片材料,加工出要求形状的薄层,逐层积累形成实体模型。

传统的工业成形技术中大部分遵循材料去除法这一方法的,如车削、铣削、钻削、磨削、刨削;另外一些是采用模具进行成形,如铸造、冲压。

而激光快速成形却是采用一种全新的成形原理——分层加工、迭加成形。

而激光快速成型技术快速制造出的模型或样件可以直接用于新产品设计验证、功能验证、工程分析、市场订货一级企业的决策等,缩短新产品开发周期,降低研发成本,提高企业竞争力。

激光快速成型又分为以下几类:(1) 光固化立体造型(SL—Stereolithography,orSLA)将计算机控制下的紫外激光按预定零件各分层截面的轮廓为轨迹对液态光敏树脂逐点扫描,被扫描的树脂薄层产生光聚合反应固化形成零件的一个截面, 再敷上一层新的液态树脂进行扫描加工,如此重复直到整个原型制造完毕[3]。

这种方法的特点是精度高、表面质量好,能制造形状复杂、特别精细的零件,不足是设备和材料昂贵,制造过程中需要设计支撑。

(2) 分层实体制造(LOM—Laminated Object Manufacturing)LOM工艺是根据零件分层得到的轮廓信息用激光切割薄材,将所获得的层片通过热压装置和下面已切割层粘合,然后新的一层纸再叠加在上面,依次粘结成三维实体。

LOM主要特点是设备和材料价格较低,制件强度较好、精度较高。

Helisys公司研制出多种LOM工艺用的成型材料,可制造用金属薄板制作的成型件,该公司还开发基于陶瓷复合材料的LOM工艺。

(3) 选择性激光烧结(SLS —Se1ected Laser Sintering)SLS是采用激光有选择地分层烧结固体粉末,并使烧结成型的固化层层层叠加生成所需形状的零件。

其整个工艺过程包括CAD模型的建立及数据处理、铺粉、烧结以及后处理等。

SLS 最突出的优点在于它所使用的成型材料十分广泛。

从理论上说,任何加热后能形成原子间粘结的粉末材料均可作为其成型材料[4]。

目前,可成功进行SLS 成型加工的材料有石蜡、高分子、金属、陶瓷粉末和它们的复合粉末材料。

由于SLS 成型材料品种多、用料节省、成型件性能分布广泛、适合多种用途以及SLS 无需设计和制造复杂的支撑系统,所以其应用越来越广泛。

但是SLS 采用的是一种金属材料与另一种低熔点材料(可以是低熔点金属或有机粘接材料)的混合物,在加工过程中,低熔点材料熔化或部分熔化,但熔点较高的金属材料并不熔化,而是被熔化或部分熔化的低熔点材料包覆粘结在一起,形成的三维实体为类似粉末冶金烧结的坯件,实体存在一定比例孔隙,不能达到100%密度,力学性能也较差,常常还需要经过高温重熔或渗金属填补孔隙等后处理才能使用。

(4) 激光熔覆成形(LCF - Laser Cladding Forming) [5]LCF是指以不同的方式在基底合金表面上预置或同步送给所选择的熔覆材料,然后经激光照射使之与基底表层同时熔化,并快速凝固成稀释度低、与基底材料呈冶金结合的表面层,从而显著改变基底材料表层的耐磨、耐蚀、耐热及电气等特性的工艺方法。

LCF是以激光为热源在基材的表面熔覆一层材料,形成与基体具有完全不同成分和性能的合金层的表面改性方法。

LCF具有许多优良特性:对工作环境的要求低;可通过计算机控制实现智能化和自动化处理;熔覆层的外观平整,工件变形小,加工后工件可不进行处理而直接使用;适合关键局部区域的处理;由于激光具有近似绝热的快速加热过程,激光熔覆对基体的热影响较小,引起的变形也小;控制激光的输入能量,可以将基体材料对熔覆材料的稀释控制在很低的程度,从而在保证熔覆层与基体形成冶金结合的前提下,保持原选定熔覆材料的优异性能;适用范围广,理论上几乎所有的金属或陶瓷材料都能激光熔覆到任何合金上,因而激光熔覆在航空、汽车、化工、机械等各领域拥有广泛的应用前景,正被越来越多的研究机构和企业所重视,对其研究也越来越广泛深入。

但裂纹是目前大面积激光熔覆技术中最棘手的问题,国内外的科学家正在努力寻求这一问题的解决方案。

2、激光快速成型的特点由于快速成型技术(包含激光快速成型技术)仅仅在需要增加材料的地方增加材料,所以从设计到自动化,从知识获取到计算机处理,从计划到接口、通讯等方面来看,非常适合于CIM、CAD及CAM,因此,同传统的制造方法相比较,激光快速成型显示出诸多的优)点:(1)制造速度快、成本低、节省时间和节约成本,为传统制造方法注入新的活力,而且可实现自由制造,产品制造过程以及产品造价几乎与产品的批量和复杂性无关。

(2)采用非接触加工的方式,没有传统加工的残余应力的问题,没有工具更换和磨损之类的问题,无切割、噪音和振动等,有利于环保。

(3)可实现快速铸造、快速模具制造,特别适合于新产品开发和单间零件生产。

3、激光快速成型的应用不断提高激光快速成型技术的应用水平是推动激光快速成型技术技术发展的重要方面。

目前,激光快速成型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。

并且随着这一技术本身的发展,其应用领域将不断拓展。

激光快速成型技术的实际应用主要集中在以下几个方面:(1)在新产品造型设计过程中的应用激光快速成形技术为工业产品的设计开发人员建立了一种崭新的产品开发模式。

运用激光快速成型技术能够快速、直接、精确地将设计思想转化为具有一定功能的实物模型(样件),这不仅缩短了开发周期,而且降低了开发费用,也使企业在激烈的市场竞争中占有先机。

(2)在机械制造领域的应用由于激光快速成型技术自身的特点,使得其在机械制造领域内,获得广泛的应用,多用于制造单件、小批量金属零件的制造。

有些特殊复杂制件,由于只需单件生产,或少于50件的小批量,一般均可用RP技术直接进行成型,成本低,周期短。

(3)快速模具制造传统的模具生产时间长,成本高。

将激光快速成型技术与传统的模具制造技术相结合,可以大大缩短模具制造的开发周期,提高生产率,是解决模具设计与制造薄弱环节的有效途径。

激光快速成形技术在模具制造方面的应用可分为直接制模和间接制模两种,直接制模是指采用激光快速成型技术直接堆积制造出模具,间接制模是先制出快速成型零件,再由零件复制得到所需要的模具。

(4)在医学领域的应用近几年来,人们对激光快速成型技术在医学领域的应用研究较多。

以医学影像数据为基础,利用激光快速成型技术制作人体器官模型,对外科手术有极大的应用价值。

(5)在文化艺术领域的应用在文化艺术领域,激光快速成形制造技术多用于艺术创作、文物复制、数字雕塑等。

(6)在航空航天技术领域的应用在航空航天领域中,空气动力学地面模拟实验(即风洞实验)是设计性能先进的天地往返系统(即航天飞机)所必不可少的重要环节。

该实验中所用的模型形状复杂、精度要求高、又具有流线型特性,采用激光快速成型技术,根据CAD模型,由激光快速成型设备自动完成实体模型,能够很好的保证模型质量。

(7)在家电行业的应用目前,激光快速成形系统在国内的家电行业上得到了很大程度的普及与应用,使许多家电企业走在了国内前列。

如:广东的美的、华宝、科龙;江苏的春兰、小天鹅;青岛的海尔等,都先后采用快速成形系统来开发新产品,收到了很好的效果。

快速成形技术的应用很广泛,可以相信,随着快速成形制造技术的不断成熟和完善,它将会在越来越多的领域得到推广和应用。

4、激光快速成型的发展现状美国3DSyetems公司1988年生产出世界上第一台SLA250型光固化快速造型机,开创了激光快速成型技术迅速发展和推广的新纪元。

美国在设备研制、生产销售方面占全球主导地位,其发展水平及趋势基本代表了世界的发展水平及趋势。

欧洲和日本也不甘落后,纷纷进行相关技术研究和设备研发。

香港和台湾比内地起步早,台湾大汛拥有LOM设备,台湾各单位及军方安装多台进口SL系列设备。

香港生产力促进局和香港科技大学、香港理工大学、香港城市大学等都拥有RP设备,其重点是有关键技术的应用与推广。

国内自20世纪90年代初开始进行研究,现有西安交通大学、华中科技大学、清华大学、北京隆源公司多所研究单位自主开发了成型设备并实现产业化。

其中,西安交通大学生产的紫外光CPS系列光固化成型系统快速成型机等新技术,引起了国内外的高度重视等等。

激光快速成型技术正在发生巨大的变化 ,主要体现在新技术、新工艺及信息网络化等方面 ,其未来发展方向包括:(1) 研究新的成型工艺方法 ,在现有的基础上 ,拓宽激光快速成型技术的应用 ,开展新的成型工艺的探索。

(2) 开发新设备和开发新材料。

LRP 设备研制向两个方向发展:自动化的桌面小型系统 ,主要用于原型制造;工业化大型系统 ,用于制造高精度、高性能零件。

成型材料的研发及应用是目前LRP技术的研究重点之一。

发展全新材料 ,特别是复合材料 ,如纳米材料、非均质材料、功能材料是当前的研究热点。

激光快速成型技术是多学科交叉融合一体化的技术系统 ,正在不断研究开发和推广应用中 ,与生物科学交叉的生物制造、与信息科学交叉的远程制造、与纳米科学交叉的微机电系统等为它集成制造提供了广阔的发展空间。

随着科学技术和现代工业的发展 ,它对制造业的作用日益重要并趋向更高的综合。

参考文献[1]王秀峰,罗宏杰快速原型制造技术北京:中国轻工业出版社,3001.1[2]王运赣快速成型技术武汉华中科技大学,1999.9[3] 张剑峰.激光快速成形制造技术的应用研究进展[J].航空制造技术,2002, (7):34 – 37[4] 史玉升.常用快速成型系统及其选择原则[J].锻压机械,2001,36(2):1–6[5] 荣烈润.面向21世纪的激光快速成形技术[J].机电一体化,2001,(4):9-12[6] 朱林泉.快速成型与快速制造技术[M].国防工业出版社,2003.172[7] 史玉升.常用快速成型系统及其选择原则[J].锻压机械,2001,36(2):1–6[8] 左铁钏.21世纪的先进制造:激光技术与工程[M].北京:科学出版社,2007.[9] 激光快速成型系统的技术性能描述;中华机械网;2007-04-03[10] 激光快速成型技术研究现状与发展;许勤、张坚;南昌航空工业学院,2005[11] 徐滨士,朱绍华,刘世参.材料表面工程[M].哈尔滨:哈尔滨工业大学出版社,2005.。

相关文档
最新文档