第七章-维生素--王镜岩《生物化学》第三版笔记(完美打印版)文库教学内容

合集下载

生物化学王镜岩版第七章生物氧化

生物化学王镜岩版第七章生物氧化

• 一对电子流经NADH-Q还原酶产生1个 ATP,流经细胞色素还原酶产生0.5个 ATP,流经细胞色素氧化酶产生1个 ATP,故一个NADH分子通过氧化磷酸 化形成2.5个ATP,1个FADH2只形成 1.5个ATP。
• 氧化磷酸化的解偶联和抑制—— 见下 图
( 四)高能磷酸键的储存与释放
ATP循环: • ATP是生物界普遍使用的供能物质,
ATP合酶:含有F0和F1单位,质子流 回基质通过F0通道,而ATP的合成 部位在F1。
当质子从膜间腔返回基质中时,这种“势 能”可被位于线粒体内膜上的ATP合酶利 用以合成ATP。
3. 影响氧化磷酸化的因素
A、ATP/ADP比值: • ATP/ADP比值是调节氧化磷酸化速
度的重要因素。ATP/ADP比值下降, 可致氧化磷酸化速度加快; ATP/ADP比值升高时,则氧化磷酸 化速度减慢。
ATP中。
二、氧化还原电势
氧化还原反应——凡是反应中有电子从一种 物质转移到另一种物质的化学反应称为氧化 还原反应。即电子转移反应就是氧化还原反 应。
如: Fe 3+ + e
Fe 2+
氧化型
还原型
电子受体
电子供体
氧化还原电势——还原剂失掉电子或氧化剂 得到电子的倾向称氧化还原电势。
• 标准电势——任何的氧化-还原物质即氧还电对都
ATP的生成方式:
底物磷酸化 氧化磷酸化 光合磷酸化(植物体内或某些微生物)
• (二)氧化磷酸化作用机制
• 在生物氧化反应中,氧化与还原总是 相互偶联的。在线粒体呼吸链中,推 动电子从NADH传递到O2的力,是由 于NAD+ / NADH + H+ 和1/2 O2 / H2O 两个半反应之间存在很大的电势差。

《生物化学》(王镜岩,第三版)课后习题解答

《生物化学》(王镜岩,第三版)课后习题解答

《生物化学》(王镜岩,第三版)课后习题解答《生物化学》(王镜岩,第三版)课后习题解答全部试卷材料收费下载第一章糖类概要糖类是四大类生物分子之一,普遍具有于生物界,特殊是动物界。

糖类在生物体内不只作为构造身分跟次要动力,复合糖中得糖链作为细胞辨认得信息分子参加许多性命进程,并因而浮现一门新得学科,糖生物学。

少数糖类存在(CH2O)n得试验式,其化学本色是多羟醛、多羟酮及其衍生物。

糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。

同多糖是指仅含一种单糖或单糖衍生物得多糖,杂多糖指含一种以上单糖或加单糖衍生物得多糖。

糖类与卵白质或脂质共价联合构成得联合物称复合糖或糖复合物。

单糖,除二羟丙酮外,都含有错误称碳原子(C*)或称手性碳原子,含C*得单糖都是错误称分子,固然也是手性分子,因此都存在旋光性,一个C*有两种构型D-跟L-型或R-跟S-型。

因而含n个C*得单糖有2n个旋光异构体,组成2n-1对于没有同得对于映体。

任一旋光异构体惟独一个对于映体,其余旋光异构体是它得非对于映体,仅有一个C*得构型没有同得两个旋光异构体称为差向异构体。

单糖得构型是指离羧基碳最远得谁人C*得构型,假如与D-甘油醛构型雷同,则属D系糖,反之属L系糖,大少数自然糖是D系糖Fischer E论证了己醛糖旋光异构体得破体化学,并提出了在纸面上表现单糖链状破体构造得Fischer投影式。

许多单糖在水溶液中有变旋征象,这是由于开涟得单糖分子内醇基与醛基或酮基产生可逆亲核加成构成环状半缩醛或半缩酮得缘故。

这种反响常常产生在C5羟基跟C1醛基之间,而构成六元环砒喃糖(如砒喃葡糖)或C5经基跟C2酮基之间构成五元环呋喃糖(如呋喃果糖)。

成环时因为羰基碳成为新得错误称核心,浮现两个异头差向异构体,称α跟β异头物,它们经由过程开链情势产生互变并处于均衡中。

在尺度定位得Hsworth式中D-单糖异头碳得羟基在氧环面下方得为α异头物,上方得为β异头物,实际上没有像Haworth式所示得那样氧环面上得全部原子都处在统一个立体,吡喃糖环普通实行椅式构象,呋喃糖环实行信封式构象。

《生物化学》第三版 上册(王镜岩) 课后习题答案 高等教育出版社

《生物化学》第三版 上册(王镜岩) 课后习题答案 高等教育出版社

6、向 1L1mol/L 的处于等电点的甘氨酸溶液加入 0.3molHCl,问所得溶液的 pH 是多少?如果加入 0.3mol NaOH 以代替 HCl 时,pH 将是多少?[pH:2.71;9.23]
7、将丙氨酸溶液(400ml)调节到 pH8.0,然后向该溶液中加入过量的甲醛,当所得溶液用碱反滴定 至 Ph8.0 时,消耗 0.2mol/L NaOH 溶液 250ml。问起始溶液中丙氨酸的含量为多少克?[4.45g]
和苯丙氨酸各在哪一号分溶管中含量最高?(2)在这样的管中每种氨基酸各为多少毫克?[(1)第 4 管和第 3 管;(2)51.2mg Gly+24mg Phe 和 38.4mgGly+36mg Phe] 解:根据逆流分溶原理,可得: 对于 Gly:Kd = CA/CB = 4 = q(动相)/p(静相) p+q = 1 = (1/5 + 4/5)
天冬氨酸(aspartic acid)
Asp
D 苯丙氨酸(phenylalanine)
Phe
F
Asn 和/或 Asp
Asx
B
半胱氨酸(cysteine)
Cys
C 脯氨酸(praline)
Pro

P
谷氨酰氨(glutamine)
Gln
Q 丝氨酸(serine)
Ser
S
谷氨酸(glutamic acid)
12、标出异亮氨酸的 4 个光学异构体的(R,S)构型名称。[参考图 3­15]
13、甘氨酸在溶剂 A 中的溶解度为在溶剂 B 中的 4 倍,苯丙氨酸在溶剂 A 中的溶解度为溶剂 B 中的两 倍。利用在溶剂 A 和 B 之间的逆流分溶方法将甘氨酸和苯丙氨酸分开。在起始溶液中甘氨酸含量为 100mg ,苯丙氨酸为 81mg ,试回答下列问题:(1)利用由 4 个分溶管组成的逆流分溶系统时,甘氨酸

王境岩《生物化学》(第三版)精要速览

王境岩《生物化学》(第三版)精要速览

沈同《生物化学》(第三版)精要第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。

二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。

2.动态生物化学阶段:是生物化学蓬勃发展的时期。

就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。

3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。

三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。

2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。

其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。

3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。

4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。

5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。

第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。

构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。

2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。

生物化学(王镜岩版)第七章 生物氧化

生物化学(王镜岩版)第七章 生物氧化
复合体Ⅰ 复合体Ⅰ
FMN; Fe-SN-1a,b; Fe-SN-4; Fe-SN-3; Fe-SN-2 NADH→ →CoQ
NAD+和NADP+的结构
R=H: NAD+;
R=H2PO3:NADP+
NAD+(NADP+)和NADH(NADPH)相互转变 ( )
氧化还原反应时变化发生在五价氮和三价氮之间。 氧化还原反应时变化发生在五价氮和三价氮之间。
NADH
NADH-Q 还原酶
琥珀酸-Q 还原酶
FADH2
FMN、Fe-S
辅酶Q
FAD、Fe-S
细胞色素 b-562
细胞色素还原酶 细胞色素c 血红素a 血红素a3 CuA和 CuB 细胞色素氧化酶 O2
细胞色素b-566 细胞色素c1 Fe-S
1. 复合体Ⅰ: NADH-泛醌还原酶 复合体Ⅰ NADH功能: 将电子从NADH传递给泛醌 (ubiquinone) 功能 将电子从 传递给泛醌
二、氧化还原电势 氧化还原反应——凡是反应中有电子从一种 物质转移到另一种物质的化学反应称为氧化 还原反应。即电子转移反应就是氧化还原反 应。 如: Fe 3+ + e
氧化型 电子受体
Fe 2+
还原型 电子供体
氧化还原电势——还原剂失掉电子或氧化剂 得到电子的倾向称氧化还原电势。
标准电势——任何的氧化-还原物质即氧还电对都 有其特定的电动势,称标准电势。用E0或ε0表示。 氧还电对的标准电势值越大,越倾向于获得电子。 例如,异柠檬酸/α-酮戊二酸 + CO2电对在浓度均 为1.0mol/L时,其标准电势为-0.38V, 这个氧化电对倾向于将电子传递给氧还电对 NADH/NAD+,因为其标准电势为-0.32V。

王镜岩《生物化学》第三版考研笔记(提要版本071页)

王镜岩《生物化学》第三版考研笔记(提要版本071页)

王镜岩《生物化学》第三版考研笔记(提要版本071页)内容提要:1、氨基酸与蛋白质氨基酸分类:常见蛋白质氨基酸,不常见蛋白质氨基酸,非蛋白氨基酸;氨基酸的酸碱化学,氨基酸两性解离,氨基酸的等电点;氨基酸的旋光性和紫外吸收。

蛋白质的共价结构:蛋白质的化学组成和分类,蛋白质功能,蛋白质的形状和大小,蛋白质构象和组织层次。

肽:肽键结构,肽的物理化学性质,活性多肽。

蛋白质一级结构测定:Sanger试剂,DNS及Edman降解,二硫桥位置确定。

蛋白质的三维结构:XRD原理;稳定蛋白质三维结构的作用力,肽平面和两面角;蛋白质的二级结构:α-螺旋,β-折叠片,β-转角;超二级结构和结构域;球状蛋白的三级结构;亚基缔合和四级结构。

蛋白质结构与功能的关系:肌红蛋白和血红蛋白的结构与功能,镰刀状细胞贫血病;免疫球蛋白。

蛋白质的分离、纯化和表征:蛋白质分子量测定,沉降分析及沉降系数,沉降系数单位,凝胶过滤及SDS-PAGE法测分子量;蛋白质的沉淀;电泳:区带电泳、薄膜电泳、等电聚焦电泳、毛细管电泳。

2、酶和辅酶酶催化作用特点:反应温合、高效、专一、可调节控制;酶活性调节控制:调剂酶浓度、激素调节、反馈抑制调节、抑制剂激活剂调节、别构调控、酶原激活,可逆共价修饰;酶的化学本质及其组成,辅酶和辅基,单体酶,寡聚酶和多酶复合体。

酶的命名和分类:习惯命名法;国际系统命名法及酶的编号,六大类酶的特征。

酶的专一性:“锁与钥匙”学说;诱导楔合假说;过渡态理论,过渡态类似物与医药和农药的设计,催化抗体。

酶的活力测定:酶活力单位,比活力。

酶工程:化学修饰酶,固定化酶,人工模拟酶。

酶促反应动力学:底物浓度与酶反应速度,酶促反应动力学方程式及推导,米氏常数的意义和求法。

酶的抑制作用:不可逆抑制和可逆抑制及动力学判断,一些重要的抑制剂,有机磷农药和磺胺药作用机制。

温度、PH、激活剂对酶反应影响。

酶的作用机制:酶活性部位及研究方法;影响酶催化效率的有关因素:临近和定向效应、底物形变和诱导契合、酸碱催化、共价催化、金属离子催化、多元催化和协同效应、微环境影响;溶菌酶作用机制和胰凝乳蛋白酶。

王镜岩《生物化学》(第3版)(下册)笔记和课后习题(含考研真题)详解

王镜岩《生物化学》(第3版)(下册)笔记和课后习题(含考研真题)详解

内容简介王镜岩主编的《生物化学》(第3版)是我国高校生物类广泛采用的权威教材之一,也被众多高校(包括科研机构)指定为考研考博专业课参考书目。

为了帮助参加研究生入学考试指定参考书目为王镜岩主编的《生物化学》(第3版)的考生复习专业课,我们根据该教材的教学大纲和名校考研真题的命题规律精心编写了王镜岩《生物化学》(第3版)辅导用书(均可免费试读,阅读全部内容需要单独购买):1.王镜岩《生物化学》(第3版)(上册)笔记和课后习题(含考研真题)详解2.王镜岩《生物化学》(第3版)(下册)笔记和课后习题(含考研真题)详解3.王镜岩《生物化学》(第3版)(上册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】4.王镜岩《生物化学》(第3版)(下册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】本书是王镜岩主编的《生物化学》(第3版)(下册)的学习辅导电子书,主要包括以下内容:(1)梳理知识脉络,浓缩学科精华。

本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。

因此,本书的内容几乎浓缩了该教材的所有知识精华。

(2)详解课后习题,巩固重点难点。

本书参考大量相关辅导资料,对王镜岩主编的《生物化学》(第3版)(下册)的课后思考题进行了详细的分析和解答,并对相关重要知识点进行了归纳和延伸。

(3)精编考研真题,培养解题思路。

本书精选详析了部分名校近年来的相关考研真题,这些高校均以该教材作为考研参考书目。

所选考研真题基本涵盖了每章的考点和难点,考生可以据此了解考研真题的命题风格和难易程度,并检验自己的复习效果。

(4)免费更新内容,获取最新信息。

本书定期会进行修订完善。

对于完善的内容,均可以免费升级获得。

目录第19章代谢总论19.1复习笔记19.2课后习题详解19.3名校考研真题详解第20章生物能学20.1复习笔记20.2课后习题详解20.3名校考研真题详解第21章生物膜与物质运输21.1复习笔记21.2课后习题详解21.3名校考研真题详解第22章糖酵解作用22.1复习笔记22.2课后习题详解22.3名校考研真题详解第23章柠檬酸循环23.2课后习题详解23.3名校考研真题详解第24章生物氧化—电子传递和氧化磷酸化作用24.1复习笔记24.2课后习题详解24.3名校考研真题详解第25章戊糖磷酸途径和糖的其他代谢途径25.1复习笔记25.2课后习题详解25.3名校考研真题详解第26章糖原的分解和生物合成26.1复习笔记26.2课后习题详解26.3名校考研真题详解第27章光合作用27.1复习笔记27.2课后习题详解27.3名校考研真题详解第28章脂肪酸的分解代谢28.1复习笔记28.2课后习题详解28.3名校考研真题详解第29章脂类的生物合成29.1复习笔记29.2课后习题详解29.3名校考研真题详解第30章蛋白质降解和氨基酸的分解代谢30.1复习笔记30.2课后习题详解30.3名校考研真题详解第31章氨基酸及其重要衍生物的生物合成31.1复习笔记31.2课后习题详解31.3名校考研真题详解第32章生物固氮32.1复习笔记32.2课后习题详解32.3名校考研真题详解第33章核酸的降解和核苷酸代谢33.1复习笔记33.2课后习题详解33.3名校考研真题详解第34章DNA的复制和修复34.2课后习题详解34.3名校考研真题详解第35章DNA的重组35.1复习笔记35.2课后习题详解35.3名校考研真题详解第36章RNA的生物合成和加工36.1复习笔记36.2课后习题详解36.3名校考研真题详解第37章遗传密码37.1复习笔记37.2课后习题详解37.3名校考研真题详解第38章蛋白质合成及转运38.1复习笔记38.2课后习题详解38.3名校考研真题详解第39章细胞代谢与基因表达调控39.1复习笔记39.2课后习题详解39.3名校考研真题详解第40章基因工程及蛋白质工程40.1复习笔记40.2课后习题详解40.3名校考研真题详解第19章代谢总论19.1复习笔记一、新陈代谢概述1.定义(1)新陈代谢(metabolism)简称代谢,是营养物质在生物体内所经历的一切化学变化总称,是生物体表现其生命活动的重要特征之一。

《生物化学》王镜岩(第三版)课后习题解答

《生物化学》王镜岩(第三版)课后习题解答

《生物化学》王镜岩(第三版)课后习题解答第一章糖类提要糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。

糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。

多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。

糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。

同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。

糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。

单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。

因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。

任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。

单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L 系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。

许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。

这种反应经常发生在C5羟基和C1醛基之间,而形成六元环吡喃糖(如吡喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。

成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。

在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。

王镜岩《生物化学》笔记(完整版)

王镜岩《生物化学》笔记(完整版)

王镜岩《生物化学》笔记(完整版)第一章蛋白质化学教学目标:1.掌握蛋白质的概念、重要性和分子组成。

2.掌握α-氨基酸的结构通式和20种氨基酸的名称、符号、结构、分类;掌握氨基酸的重要性质;熟悉肽和活性肽的概念。

3.掌握蛋白质的一、二、三、四级结构的特点及其重要化学键。

4.了解蛋白质结构与功能间的关系。

5.熟悉蛋白质的重要性质和分类导入:100年前,恩格斯指出“蛋白体是生命的存在形式”;今天人们如何认识蛋白质的概念和重要性?1839年荷兰化学家马尔德(G.J.Mulder)研究了乳和蛋中的清蛋白,并按瑞典化学家Berzelius的提议把提取的物质命名为蛋白质(Protein,源自希腊语,意指“第一重要的”)。

德国化学家费希尔(E.Fischer)研究了蛋白质的组成和结构,在1907年奠立蛋白质化学。

英国的鲍林(L.Pauling)在1951年推引出蛋白质的螺旋;桑格(F.Sanger)在1953年测出胰岛素的一级结构。

佩鲁茨(M.F.Perutz)和肯德鲁(J.C.kendrew)在1960年测定血红蛋白和肌红蛋白的晶体结构。

1965年,我国生化学者首先合成了具有生物活性的蛋白质——胰岛素(insulin)。

蛋白质是由L-α-氨基酸通过肽键缩合而成的,具有较稳定的构象和一定生物功能的生物大分子(biomacromolecule)。

蛋白质是生命活动所依赖的物质基础,是生物体中含量最丰富的大分子。

单细胞的大肠杆菌含有3000多种蛋白质,而人体有10万种以上结构和功能各异的蛋白质,人体干重的45%是蛋白质。

生命是物质运动的高级形式,是通过蛋白质的多种功能来实现的。

新陈代谢的所有的化学反应几乎都是在酶的催化下进行的,已发现的酶绝大多数是蛋白质。

生命活动所需要的许多小分子物质和离子,它们的运输由蛋白质来完成。

生物的运动、生物体的防御体系离不开蛋白质。

蛋白质在遗传信息的控制、细胞膜的通透性,以及高等动物的记忆、识别机构等方面都起着重要的作用。

生物化学(王镜岩第三版)经典笔记

生物化学(王镜岩第三版)经典笔记

生物化学 王镜岩第三版 完整笔记
第一章 一、 糖的概念 糖类物质是多羟基 (2 个或以上 ) 的醛类 (aldehyde) 或酮类 (Ketone)化合物, 以及它们的衍生物或聚合物。 据此可分为醛糖 (aldose)和酮糖 (ketose)。 糖 糖
还可根据碳层子数分为丙糖 (triose),丁糖 (terose),戊糖 (pentose)、己糖 (hexose)。 最简单的糖类就是丙糖 (甘油醛和二羟丙酮 ) 由于绝大多数的糖类化合物都可以用通式 Cn (H2O)n 表示,所以过去人们一直认为糖类是碳与水的 化合物,称为碳水化合物。现在已经这种称呼并恰当,只是沿用已久,仍有许多人称之为碳水化合物。 二、 糖的种类 根据糖的结构单元数目多少分为: ( 1)单糖:不能被水解称更小分子的糖。 ( 2)寡糖: 2-6 个单糖分子脱水缩合而成,以双糖最为普遍,意义也较大。 ( 3)多糖: 均一性多糖:淀粉、糖原、纤维素、半纤维素、几丁质 (壳多糖 ) 不均一性多糖:糖胺多糖类 (透明质酸、硫酸软骨素、硫酸皮肤素等 ) ( 4)结合糖 (复合糖,糖缀合物, glycoconjugate):糖脂、糖蛋白 (蛋白聚糖 )、糖 -核苷酸等 ( 5)糖的衍生物:糖醇、糖酸、糖胺、糖苷 三、 糖类的生物学功能 (1) 提供能量。植物的淀粉和动物的糖原都是能量的储存形式。 (2) 物质代谢的碳骨架,为蛋白质、核酸、脂类的合成提供碳骨架。 (3) 细胞的骨架。纤维素、半纤维素、木质素是植物细胞壁的主要成分,肽聚糖是细胞壁的主要成分。 (4) 细胞间识别和生物分子间的识别。 细胞膜表面糖蛋白的寡糖链参与细胞间的识别。一些细胞的细胞膜表面含有糖分子或寡糖链,构成 细胞的天线,参与细胞通信。 红细胞表面 ABO 血型决定簇就含有岩藻糖。
静态生物化学时期静态生物化学时期静态生物化学时期静态生物化学时期1920年以前年以前年以前年以前动态生物化学时期动态生物化学时期动态生物化学时期动态生物化学时期1950年以前年以前年以前年以前这是一个飞速发展的辉煌时期随着同位素示踪技术色谱技术等物理学手段的广泛应用生物化学从单纯的组成分析深入到物质代谢途径及动态平衡能量转化光合作用生物氧化糖的分解和合成代谢蛋白质合成核酸的遗传功能酶维生素激素抗生素等的代谢都基本搞清

生物化学 第三版 笔记

生物化学 第三版 笔记

生物化学笔记第一章氨基酸与蛋白质1. 1 氨基酸(一)蛋白质水解最后成为氨基酸混合物酸水解得19种 L-AA,色氨酸破坏。

碱水解得色氨酸,其余氨基酸消旋破坏。

酶水解不消旋破坏,但水解不彻底。

(二)α-氨基酸的一般结构生物体内已发现氨基酸180种,常见氨基酸20种1. 2 氨基酸的分类:常见蛋白质氨基酸,不常见蛋白质氨基酸,非蛋白氨基酸(一)常见蛋白质氨基酸,或称基本氨基酸。

每个氨基酸可用三个字母或单字母简写表示。

按侧链R基不同进行分类。

(1)按R基化学结构分类1.脂肪族氨基酸15个①. 中性氨基酸5个甘氨酸 Glycine 氨基乙酸 Gly G 无旋光丙氨酸 Alanine α-氨基丙酸 Ala A缬氨酸 Valine α-氨基-β-甲基丁酸 Val V亮氨酸 Leusine α-氨基-γ-甲基戊酸 Leu L异亮氨酸 Isoleucine α-氨基-β-甲基戊酸 Ile I②. 含羟基或硫氨基酸4个丝氨酸 Serine α-氨基-β-羟基丙酸 Ser S苏氨酸 Threonine α-氨基-β-羟基丁酸 Thr T半胱氨酸 Cysteine α-氨基-β-基丙酸 Cys C甲硫氨酸 Methionine α-氨基-γ-甲硫基丁酸 Met M③.酸性氨基酸及其酰胺4个天冬氨酸 Aspartic acid α-氨基丁二酸 Asp D谷氨酸 Glutamic acid α-氨基戊二酸 Glu E天冬酰胺 Asparagine α-氨基丁二酸一酰胺 Asn N谷氨酸胺 Glutamine α-氨基戊二酸一酰胺 Gln Q④. 碱性氨基酸2个赖氨酸 Lysine α,ε-二氨基已酸 Lys K精氨酸 Arginine α-氨基-δ-胍基戊酸 Arg R2.芳香族氨基酸3个苯丙氨酸 Phenylalanine α-氨基-β-苯基丙酸 Phe F酪氨酸 Tyrosine α-氨基-β-对羟苯基丙酸 Tyr Y色氨酸 Tryptophan α-氨基-β-吲哚基丙酸 Trp W3.杂环族氨基酸2个组氨酸 Histidine α-氨基-β-咪唑基丙酸 His H脯氨酸 Proline α-吡咯烷羧酸 Pro P(2)按R基极性性质分类1.非极性R基8个Ala(A) Val(V) Leu(L) Ile(I) Pro(P)Phe(F) Trp(W) Met(M)2.极性不带电R基7个Gly(G) Ser(S) Thr(T) Cys(C) Tyr(Y)Asn(N) Gln(Q)3.带正电荷R基3个Lys(K) Arg(R) His(H)4.带负电荷R基2个Asp(D) Glu(E)另外 Asx(B):Asp(D),Asn(N)Glx(Z): Glu(E),Gln(Q)两个Cys常氧化形成胱氨酸Cystie(二)不常见蛋白质氨基酸 P128为相应常见氨基酸修饰而来,如:5-羟赖氨酸,4-羟哺氨酸,γ-羧基谷氨酸,焦谷氨酸,磷酸丝氨酸,甲状腺素等。

封面、目录、概要王镜岩《生物化学》第三版笔记(打印版)

封面、目录、概要王镜岩《生物化学》第三版笔记(打印版)

封⾯、⽬录、概要王镜岩《⽣物化学》第三版笔记(打印版)⽣物化学笔记王镜岩等《⽣物化学》第三版适合以王镜岩《⽣物化学》第三版为考研指导教材的各⾼校的⽣物类考⽣备考⽬录第⼀章概述------------------------------01 第⼆章糖类------------------------------06 第三章脂类------------------------------14 第四章蛋⽩质(注1)-------------------------21 第五章酶类(注2)-------------------------36 第六章核酸(注3)--------------------------------------45 第七章维⽣素(注4)-------------------------52 第⼋章抗⽣素------------------------------55 第九章激素------------------------------58 第⼗章代谢总论------------------------------63 第⼗⼀章糖类代谢(注5)--------------------------------------65 第⼗⼆章⽣物氧化------------------------------73 第⼗三章脂类代谢(注6)--------------------------------------75 第⼗四章蛋⽩质代谢(注7)-----------------------------------80 第⼗五章核苷酸的降解和核苷酸代谢--------------86 第⼗六章 DNA的复制与修复(注8)---------------------------88 第⼗七章 RNA的合成与加⼯(注9)---------------------------93 第⼗⼋章蛋⽩质的合成与运转--------------------96 第⼗九章代谢调空------------------------------98第⼆⼗章⽣物膜(补充部分)---------------------102(1)对应⽣物化学课本上册第3、4、5、6、7章。

第七章 维生素-生物化学课件

第七章 维生素-生物化学课件

参与其他代谢
保护巯基酶,维持巯基在还原状态
协助GSH还原细胞膜过氧化脂质,保护细胞膜
具有解毒作用,即辅助GSH将重金属离子如 Hg2+排出体外,防治其破坏巯基酶 参与免疫球蛋白分子中二硫键形成,促进抗体 合成
促进造血:它既能将Fe3+还原成Fe2+,便于 铁的吸收、储存和利用,又不能促使叶酸还原 成四氢叶酸 能将高铁血红蛋白还原血红蛋白,恢复其运 输O2的能力 可以保护Vit A和Vit E免遭氧化 可能有抗病毒和防治肿瘤的作用
尚未发现典型的泛酸缺乏症,但在治疗其他B
族维生素缺乏同时给予适量泛酸常可提高疗效
七、生物素
生物素:α生物素和β生物素。生物素在常
温下相当稳定,但高温下易被氧化
来源:分布广泛,肝脏、肾脏、蛋黄、谷物、
蔬菜和酵母均含有生物素,肠道菌也能合成生 物素
活性形式:羧基生物素
生理功能及缺乏症
烟酰胺腺嘌呤二核苷酸磷酸(NADP)
生理功能及缺乏症
NAD和NADP是多种脱氢酶的辅助因子。 NAD主要在生物氧化过程中发挥递氢作用 NADP则在还原性合成代谢中发挥递氢作用
Vit PP缺乏症称为癞皮病,主要症状有皮炎、
腹泻和痴呆等
五、维生素B6
Vit B6即抗皮炎维生素,包括吡哆醇、吡哆 醛和吡哆胺,对光和碱敏感,高温下迅速分 解 来源:分布广泛,在蛋黄、肉类、鱼、乳制 品、谷物和豆类中含量丰富,在酵母和米糠中
维生素与辅酶
维生素 维生素B1 维生素B2 维生素PP 维生素B6 辅酶形式 TPP 主要作用 α-酮酸氧化脱羧 缺乏症 脚气病 口角炎等 癞皮病 妊娠呕 吐等
FMN、FAD NAD+、NADP+

生物化学王镜岩第三版

生物化学王镜岩第三版

生物化学的发展历程
01
02
03
早期探索
自古以来,人类就对生物 体内的物质变化产生了兴 趣,如酿酒、制药等。
学科形成
19世纪末,随着生物学和 化学的独立发展,生物化 学逐渐形成一门交叉学科。
现代发展
随着科学技术的发展,生 物化学在分子生物学、遗 传学等领域取得了重要突 破。
生物化学的应用领域
医学研究
酶的活性中心
酶分子中与底物结合并催化反应的区域。
酶的活性调节
酶的活性受到多种因素的调节,如抑制剂、 激活剂等。
03 生物代谢途径与调控
糖代谢途径与调控
糖酵解
葡萄糖在无氧条件下被分解为丙酮酸, 产生少量ATP。
糖异生
由非糖物质转变为葡萄糖或糖原的过 程。
磷酸戊糖途径
葡萄糖氧化分解的一种方式,主要产 生NADPH和戊糖。
蛋白质的二级结构
指蛋白质中局部主链的折叠方式, 如α-螺旋、β-折叠等。
蛋白质的三级结构
指整条肽链中全部氨基酸残基 的相对空间位置,由二级结构 单元的排列顺序和连接方式决 定。
蛋白质的性质
蛋白质具有两性解离、沉淀、 变性、结晶等性质。
核酸的结构与性质
01
02
03
04
DNA的结构
DNA由两条反向平行的多核 苷酸链组成,通过碱基配对形
成双螺旋结构。
DNA的理化性质
DNA具有紫外吸收、热变性 、酸碱稳定性等。
RNA的结构
RNA由单链核糖核酸组成, 分为mRNA、tRNA和rRNA
等类型。
RNA的理化性质
RNA具有碱基配对、热不稳 定性和水解性质等。
酶的结构与性质
酶的化学本质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章维生素--王镜岩《生物化学》第三版笔记(完美打印版)文库.txt女人谨记:一定要吃好玩好睡好喝好。

一旦累死了,就别的女人花咱的钱,住咱的房,睡咱的老公,泡咱的男朋友,还打咱的娃。

第七章维生素第一节概述一、定义维生素是机体必需的多种生物小分子营养物质。

1894年荷兰人Ejkman用白米养鸡观察到脚气病现象,后来波兰人Funk从米糠中发现含氮化合物对此病颇有疗效,命名为vitamine,意为生命必须的胺。

后来发现并非所有维生素都是胺,所以去掉词尾的e,成为Vitamin。

维生素有以下特点:1.是一些结构各异的生物小分子;2.需要量很少;3.体内不能合成或合成量不足,必需直接或间接从食物中摄取;4.主要功能是参与活性物质(酶或激素)的合成,没有供能和结构作用。

水溶性维生素常作为辅酶前体,起载体作用,脂溶性维生素参与一些活性分子的构成,如VA构成视紫红质,VD 构成调节钙磷代谢的激素。

二、分类维生素的结构差异较大,一般按溶解性分为脂溶性和水溶性两大类。

脂溶性维生素不溶于水,易溶于有机溶剂,在食物中与脂类共存,并随脂类一起吸收。

不易排泄,容易在体内积存(主要在肝脏)。

包括维生素A(A1,A2)、D(D2,D3)、E(α,β,γ,δ)、K(K1,K2,K3)等。

水溶性维生素易溶于水,易吸收,能随尿排出,一般不在体内积存,容易缺乏。

包括B族维生素和维生素C。

三、命名维生素虽然是小分子,但结构较复杂,一般不用化学系统命名。

早期按发现顺序及来源用字母和数字命名,如维生素A、维生素AB2等。

同时还根据其功能命名为"抗...维生素",如抗干眼病维生素(VA)、抗佝偻病维生素(VD)等。

后来又根据其结构及功能命名,如视黄醇(VA1)、胆钙化醇(VD3)等。

四、人体获取维生素的途径1.主要由食物直接提供维生素在动植物组织中广泛存在,绝大多数维生素直接来源于食物。

少量来自以下途径:2.由肠道菌合成人体肠道菌能合成某些维生素,如VK、VB12、吡哆醛、泛酸、生物素和叶酸等,可补充机体不足。

长期服用抗菌药物,使肠道菌受到抑制,可引起VK等缺乏。

3.维生素原在体内转变能在体内直接转变成维生素的物质称为维生素原。

植物食品不含维生素A,但含类胡萝卜素,可在小肠壁和肝脏氧化转变成维生素A。

所以类胡萝卜素被称为维生素A原。

4.体内部分合成储存在皮下的7-脱氢胆固醇经紫外线照射,可转变成VD3。

因此矿工要补照紫外线。

人体还可利用色氨酸合成尼克酰胺,所以长期以玉米为主食的人由于色氨酸不足,容易发生糙皮病等尼克酰胺缺乏症。

五、有关疾病机体对维生素的需要量极少,一般日需要量以毫克或微克计。

维生素缺乏会引起代谢障碍,出现维生素缺乏症。

过多也会干扰正常代谢,引起维生素过多症。

因水溶性维生素容易排出,所以维生素过多症只见于脂溶性维生素,如长期摄入过量维生素A、D会中毒。

第二节脂溶性维生素一、维生素A维生素A又称抗干眼醇,有A1、A2两种,A1是视黄醇,A2是3-脱氢视黄醇,活性是前者的一半。

肝脏是储存维生素A的场所。

植物中的类胡萝卜素是VA前体,一分子β胡萝卜素在一个氧化酶催化下加两分子水,断裂生成两分子VA1。

这个过程在小肠粘膜内进行。

类胡萝卜素还包括α、γ胡萝卜素、隐黄质、番茄红素、叶黄素等,前三种加水生成一分子VA1,后两种不生成VA1。

维生素A与暗视觉有关。

维生素A在醇脱氢酶作用下转化为视黄醛,11-顺视黄醛与视蛋白上赖氨酸氨基结合构成视紫红质,视紫红质在光中分解成全反式视黄醛和视蛋白,在暗中再合成,形成一个视循环。

维生素A缺乏可导致暗视觉障碍,即夜盲症。

食用肝脏及绿色蔬菜可治疗。

全反式视黄醛主要在肝脏中转变成11-顺视黄醛,所以中医认为"肝与目相通"。

维生素A的作用很多,但因缺乏维生素A的动物极易感染,所以研究很困难。

已知缺乏维生素A时类固醇激素减少,因为其前体合成时有一步羟化反应需维生素A参加。

另外缺乏维生素A时表皮黏膜细胞减少,角化细胞增加。

有人认为是因为维生素A与细胞分裂分化有关,有人认为是因为维生素A与粘多糖、糖蛋白的合成有关,可作为单糖载体。

维生素A还与转铁蛋白合成、免疫、抗氧化等有关。

维生素A过量摄取会引起中毒,可引发骨痛、肝脾肿大、恶心腹泻及鳞状皮炎等症状。

大量食用北极熊肝或比目鱼肝可引起中毒。

二、维生素D又称钙化醇,是类固醇衍生物,含环戊烷多氢菲结构。

可直接摄取,也可由维生素D原经紫外线照射转化。

植物油和酵母中的麦角固醇转化为D2(麦角钙化醇),动物皮下的7-脱氢胆固醇转化为D3(胆钙化醇)。

维生素D与动物骨骼钙化有关。

钙化需要足够的钙和磷,其比例应在1:1到2:1之间,还要有维生素D的存在。

维生素D3先在肝脏羟化形成25-羟维生素D3,然后在肾再羟化生成1,25-(OH)2-D3。

第二次羟化受到严格调控,平时只产生无活性的24位羟化产物,只有当血钙低时才有甲状旁腺素分泌,使1-羟化酶有活性。

1,25-(OH)2-D3是肾皮质分泌的一种激素,作用于肠粘膜细胞和骨细胞,与受体结合后启动钙结合蛋白的合成,从而促进小肠对钙磷的吸收和骨内钙磷的动员和沉积。

食物中维生素D含量少,同时又缺乏紫外线照射的人易发生骨折。

肝胆疾病、肾病、或某些药物也会抑制羟化。

摄入过多也会引起中毒,发生迁移性钙化,导致肾、心、胰、子宫及滑膜粘蛋白钙化。

高血钙也会导致肾结石,而骨骼却因钙被抽走而疏松软化。

三、维生素E又称生育酚,含有一个6-羟色环和一个16烷侧链,共有8种其色环的取代基不同。

α生育酚的活性最高。

存在于蔬菜、麦胚、植物油的非皂化部分,对动物的生育是必需的。

缺乏时还会发生肌肉退化。

生育酚极易氧化,是良好的脂溶性抗氧化剂。

可清除自由基,保护不饱和脂肪酸和生物大分子,维持生物膜完好,延缓衰老。

维生素E很少缺乏,毒性也较低。

早产儿缺乏会产生溶血性贫血,成人回导致红细胞寿命短,但不致贫血。

四、维生素K天然维生素K有K1、K2两种,都由2-甲基-1,4-萘醌和萜类侧链构成。

人工合成的K3无侧链。

K1存在于绿叶蔬菜及动物肝脏中,K2由人体肠道细菌合成。

维生素K参与蛋白质谷氨酸残基的γ-羧化。

凝血因子Ⅱ、Ⅶ、Ⅸ、Ⅹ肽链中的谷氨酸残基在翻译后加工过程中,由蛋白羧化酶催化,成为γ-羧基谷氨酸(Gla)。

这两个羧基可络合钙离子,对钙的输送和调节有重要意义。

有关凝血因子与钙结合,并通过钙与磷脂结合形成复合物,发挥凝血功能。

这些凝血因子称为维生素K依赖性凝血因子。

缺乏维生素K时常有出血倾向。

新生儿、长期服用抗生素或吸收障碍可引起缺乏。

第三节水溶性维生素一、硫胺素(VB1)由一个取代的噻唑环和一个取代的嘧啶环组成,因噻唑环含硫,嘧啶环有氨基取代而得名。

他就是Funk发现的vitamine。

硫胺素与ATP反应,生成其活性形式:硫胺素焦磷酸(TPP),即脱羧辅酶。

其分子中氮和硫之间的碳原子性质活泼,易脱氢。

生成的负碳离子有亲核催化作用。

羧化辅酶作为酰基载体,是α酮酸脱羧酶的辅基,也是转酮醇酶的辅基,在糖代谢中起重要作用。

缺乏硫胺素会导致糖代谢障碍,使血液中丙酮酸和乳酸含量增多,影响神经组织供能,产生脚气病。

主要表现为肌肉虚弱、萎缩,小腿沉重、下肢水肿、心力衰竭等。

可能是由于缺乏TPP而影响神经的能源与传导。

硫胺素在糙米、油菜、猪肝、鱼、瘦肉中含量丰富。

但生鱼中含有破坏B1的酶,咖啡、可可、茶等饮料也含有破坏B1的因子。

二、核黄素(VB2)核黄素是异咯嗪与核醇的缩合物,是黄素蛋白的辅基。

它有两种活性形式,一种是黄素单核苷酸(FMN),一种是黄素腺嘌呤二核苷酸(FAD)。

这里把核黄素看作核苷,即把异咯嗪看作碱基,把核醇看作核糖。

异咯嗪的N1、N10能可逆地结合一对氢原子,所以可作为氧化还原载体,构成多种黄素蛋白的辅基,在三羧酸循环、氧化磷酸化、α酮酸脱羧、β氧化、氨基酸脱氨、嘌呤氧化等过程中起传递氢和电子的作用。

主要从食物中摄取,如谷类、黄豆、猪肝、肉、蛋、奶等,也可由肠道细菌合成。

冬季北方缺少阳光,植物合成V-B2也少,常出现口角炎。

缺乏V-B2还可引起唇炎、舌炎、贫血等。

三、泛酸(VB3)也叫遍多酸,广泛存在,极少缺乏。

由一分子β丙氨酸与一分子羧酸缩合而成。

泛酸可构成辅酶A,是酰基转移酶的辅酶。

也可构成酰基载体蛋白(CAP),是脂肪酸合成酶复合体的成分。

四、吡哆素(VB6)包括吡哆醇、吡哆醛和吡哆胺3种,可互相转化。

吡哆素是吡啶衍生物,活性形式是磷酸吡哆醛和磷酸吡哆胺,是转氨酶、氨基酸脱羧酶的辅酶。

磷酸吡哆醛的醛基作为底物氨基酸的结合部位,醛基的邻近羟基和对位氮原子还参与催化部位的构成。

在转氨反应中,磷酸吡哆醛结合氨基酸,释放出相应的α酮酸,转变为磷酸吡哆胺,再结合α酮酸释放氨基酸,又变成磷酸吡哆醛。

缺乏V-B6可引起周边神经病变及高铁红细胞贫血症。

因为5-羟色胺、γ-氨基丁酸、去甲肾上腺素等神经递质的合成都需要V-B6(氨基酸脱羧反应),而血红素前体的合成也需要V-B6。

肉、蛋、蔬菜、谷类中含量较多。

新生婴儿易缺乏。

五、尼克酰胺(VPP)尼克酰胺和尼克酸分别是吡啶酰胺和吡啶羧酸,都是抗糙皮病因子,又称VPP。

其活性形式有两种,尼克酰胺腺嘌呤二核苷酸(NAD)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP)。

在体内先合成去酰胺NAD,再接受谷氨酰胺提供的氨基成为NAD,再磷酸化则成为NADP。

NAD和NADP是脱氢辅酶,分别称为辅酶Ⅰ和辅酶Ⅱ。

二者利用吡啶环的N1和N4可逆携带一个电子和一个氢原子,参与氧化还原反应。

辅酶Ⅰ在分解代谢中广泛接受还原能力,最终传给呼吸链放出能量。

辅酶Ⅱ则只从葡萄糖及葡萄糖酸的磷酸酯获得还原能力,用于还原性合成及羟化反应。

需要尼克酰胺的酶多达百余种。

人体能用色氨酸合成尼克酸,但合成率极低(60:1),而且需要B1、B2、B6,所以仍需摄取。

抗结核药异烟肼的结构与尼克酰胺类似,两者有拮抗作用,长期服用异烟肼时应注意补充尼克酰胺。

花生、豆类、肉类和酵母中含量较高。

尼克酸或烟酸肌醇有舒张血管的作用,可用于冠心病等,但可降低cAMP水平,使血糖及尿酸升高,有诱发糖尿病及痛风的风险。

长期使用大量尼克酸可能损害肝脏。

六、生物素(biotin)由杂环与戊酸侧链构成,又称维生素H,缺乏可引起皮炎。

在生鸡蛋清中有抗生物素蛋白(avidin),能与生物素紧密结合,使其失去活性。

生物素侧链羧基可通过酰胺键与酶的赖氨酸残基相连。

生物素是羧基载体,其N1可在耗能的情况下被二氧化碳羧化,再提供给受体,使之羧化。

如丙酮酸羧化为草酰乙酸、乙酰辅酶A 羧化为丙二酰辅酶A等都由依赖生物素的羧化酶催化。

花生、蛋类、巧克力含量最高。

以上六种维生素都与能量代谢有关。

下面两种维生素与生血有关。

七、叶酸(folic acid,FA)又称维生素M,由蝶酸与谷氨酸构成。

相关文档
最新文档