代谢工程与合成生物学作业-生物元件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合成生物学之生物部件

622

(山东大学生命科学学院,济南,250100)

摘要:合成生物学强调“设计”和“重设计”,其目的是通过人工设计和构建自然界中不存在的生物系统来解决能源、材料、健康和环保等问题,其工程化的思想和标准化的工具一经兴起变得到全世界范围的广泛关注。生物系统的层次化结构是合成生物学本质化的典型体现,合成生物学系统中最简单最基本生物模块被称为生物部件(part),它是自下而上的研究策略中基础部分,本文回顾了合成生物学中常用的生物部件级标准化使用方法,着重介绍了启动子和核糖开关的相关研究进展。

关键词:合成生物学生物部件生物元件

1953年,年轻的J.D.Watson和F. Crick从DNA的X射线的X衍射图上解读了双螺旋结构,隐藏了几十亿年的生物密码逐渐露出端倪。2003年人类基因组计划顺利完成,此后包括人类在内的各种生物的图谱纷纷出炉,生物遗传密码的神秘面纱正在被迅速揭开。生物学由定性描述转向定量计算,从分析到设计,进入系统和合成生物学(synthetic biology)的的时代。

目前合成生物学的定义还处于多元化阶段,比较全面地可以概括为:合成生物学是指按照一定的规律和现有的知识,设计和建造新的生物部件、装置和系统,或重新设计已有的天然系统为人类的特殊目的服务。从这个定义来看,合成生物学包含自下而上的研究策略和自上而下的研究策略,对于前者的探索是艰深而富有划时代意义的。合成生物学最终期望是借鉴电子学的方法能能像“搭积木”一样构建基因线路,而这最基本的就是模块化元件。

我们称具有标准接口、功能相对独立生物大分子、信号转导路径、基因线路等为“模块”(module)或生物积块(BioBrick),模块的规模可大可小,大致可分为部件(part)、装置(device)、系统(System)及多细胞体系等几个层次,其中最基础的就是生物部件。模块化设计体现了合成生物学的精髓,模块往往具有信息隐藏,内聚耦合,封闭性开放性的特性。常见的生物部件按照功能可以分为启动子(promoter)、核开关(Riboswithch)、RBS、终止子、操纵子、蛋白编码基因(CDS)、报告基因、标签组件、操纵子等,当然这些分类层侧不是绝对的。

1.启动子

1.1启动子的结构

启动子是RNA聚合酶特异性识别和结合的DNA序列,在原核生物和真核生物中是有差别的。

1.1.1 原核生物中的启动子

原核生物中的启动子通常,RNA聚合酶是依靠б因子识别DNA上的特定序列,б70是发现比较早也是比较常见的б因子,它通常特异识别启动子的-10和-35两个保守DNA 盒子(如图 1)。

图 1 原核生物中的启动子模式图

1.1.2真核生物中启动子结构

相比原核生物的启动子,真核生物的启动子比较复杂,RNA聚合酶Ⅱ核心启动子是一个在转录过程中关键的但又容易被忽略的元件。核心启动子被定义为DNA的延伸,它涵盖了RNA的起始位点,典型的核心启动子大约有40到50核苷酸的长度,它指导基因转录的起始。在过去,人们推测核心启动子在功能上是通用的,转录起始是通过一种共享通用的机制进行的。最近的研究表明,各种核心启动子在结构和功能上都存在相当多的差异。存在大量的DNA元件作用于核心启动子的活性,给定核心启动子的特定性能是由这些核心启动子修饰因子的有无决定的。已知的核心启动子元件包括TATA盒子、Inr(起始子)、BREu{ATA 盒子的上游的BRE [TFⅡB(RNAⅡ聚合酶的转录因子)识别元件]}和BREd(TATA盒子下游的BRE)、MTE(十基序元件)、DCE(下游核心元件)和DPE(下游核心启动子元件)

(如图 2)。

图 2 真核生物中启动子模式图

1.2启动子的种类

在合成生物学以及以前的生物学研究中,我们已经标准化了许多启动子元件(如表格1)。最经典的启动子是乳糖操纵子中的乳糖启动子,它可以被乳糖诱导,实验中我们常用IPTG诱导;色氨酸启动子引人注意的特性是有一段弱化子,可以根据细胞环境中色氨酸的浓度调控后续基因的表达;tac启动子则是上述两种启动子的融合启动子,是典型常用的强启动子;Pl、Pr是噬菌体溶源和裂解生长状态转化及维持中的重要启动子,阻遏蛋白的温度敏感突变可以使其收温度诱导;PtetA基因也是很常用启动子之一,可以被脱水四环素诱导;T7启动子则是比较特殊一种启动子,对RNA聚合酶的种类有特异性。

表格 1 常见启动子的概述

启动子名称英调节基因诱导物备注

色氨酸启动子

p负反馈

(!弱化

子)

tac启动子Pta

c lacIq IPTG、乳糖、温度敏感拼合启

动子

启动子Pl、Pr Pl/

Pr cIts857温度敏感可诱导

负反馈

四环素溢出泵基因启动子

Pte

tA

tetR蛋白

家族

四环素(Tc)

脱水四环素(aTc)

可诱导

负反馈

T7启动子Pt7大肠杆菌的RNA聚合酶不能识别,但噬菌体及真核生

物的RNA聚合酶可以

1.3启动子的调控及意义

为实现一些特定目的,微生物系统工程需要一些设计工具,这些工具以某种可预测的、定量的方式起作用。在合成生物学的领域,基因之间级联调控很多都是发生在转录水平(如图 3),而这些往往是在转录起始阶段起作用,也就是说与启动子有关,因此标准化设计启动子对整个系统的运转有重要意义。

图 3 在转录水平控制基因表达的设计工具

在自下而上的研究策略中,我们往往用基因线路模拟一些电子学上的逻辑开关,从简单逻辑或与非,到双稳态开关,再到震荡子(如图 4)实质上都是上面提到的启动子及其调控基因按照一定次序设计排列的结果。

此外,在合成生物学学术比赛iGEM中,相当多的队伍作品的关键都是发现或者标准化了一些有特殊功能启动子及其相关组件,比如感光、温度敏感、感受重金属离子等。

图 4 双稳态开关(左)及震荡子(右)的逻辑结构

2.核糖开关

在1991年,人们就发现E.coli的btuB基因转录产物5’-UTR存在高度保守序列,并发现Ado-cbl和B12可以使btnB基因表达,但没有发现可以与Ado-cbl结合的蛋白因子;1990年,Andrew从随即合成的RNA序列中筛选出特异性结合有机染料配体的RNA,并命名为“aptamer”(适体);2002年,Breaker受到适体的启发,证明了这种天然适体的存在,命

名为“核糖开关”。到目前(2009年)为至已经发现了不少于 12 个核糖开关(如表格 2

相关文档
最新文档