y发光材料的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章稀土发光材料的制备及应用
近几十年来,稀土发光材料在国内外得到惊人的发展,形成了相当大的生产规模和客观的市场,其产值和经济效益都很高[1-3]。到 90 年代,依然以一定的速度增长。国内外在稀土新材料方面几乎每隔 3~5 年就有一次突破,而稀土发光材料则是这宝库中五光十色的瑰宝。据美国商业信息公司最近统计,在美国稀土各应用高技术领域中,光存储器的年增长率达 50%,灯用稀土荧光粉 20%,名列第二位,电视荧光粉为 3.4%,仅电视用荧光粉1998 年在美国的消费量居稀土消费量第五位,为 104.3 吨,价值 2700 万美元,到 1995 年达 131.5 吨。我国彩电荧光粉及紧凑型荧光灯用稀土荧光粉在 80年代增长速率更快,工业生产规模相当可观,且有部分出口。这表明,稀土发光材料的发展及在稀土各应用领域中占有举足轻重地位。随着新型平板显示器、固态照明光源的发展,对新型高效发光粉体的需求日益增多。由于纳米材料具有其他大颗粒材料所不具有的结构及各种性质如电性质、光性质等,研究纳米稀土发光材料已成为目前引人注目的课题。以钒酸盐、磷酸盐为基质的纳米稀土发光材料都是很具有研究意义及应用价值的稀土荧光粉,比如纳米级 YVO4:Eu,作为一种很好的红光粉体,已经广泛应用于荧光灯以及彩色显像管(CRT)中[4-6]。另外,近来的研究表明纳米级 Y(V,P)O4:Eu,YPO4:Tb在真空紫外区(VUV)有较好的吸收,是很有前途的等离子体平板显示器(PDPs)用的发光材料[7-11]。在纳米尺度的YBO3:Eu3+中,由于表面Eu3+对称性低,使得5D0-7F2 的跃迁几率增加,这改善了YBO3:Eu3+体材料中色纯度低的问题[12 ]。总之,随着科技的发展和人们生活的需要,稀土发光材料的研究面临着新的挑战:这主要包括激发波长的变化,如PDP用荧光粉需真空紫外激发,固态照明用荧光粉需近紫外激发;材料尺寸形态的变化等。这就要求人们改善材料的发光性质或开发新的发光体系。§2-1影响发光的主要因素
目前,稀土掺杂发光体系主要包括:稀土氧化物、硼酸盐、钒酸盐、磷酸盐、铝酸盐等体系,不同的体系有着不同的应用背景。比如说,Eu3+、Tb3+掺杂的硼酸盐、磷酸盐体系可用作PDP荧光材料[13,14];Eu2+、Dy3+共掺的铝酸盐体系可用作长余辉材料[15]。
影响稀土掺杂发光材料发光性质的因素有很多,主要包括基质晶格、发光中
心在基质晶格中所处的格位及周围环境、材料的尺寸和形状等[16,17]。因此,基质材料、激活剂的选择,合成方法、合成条件的选择,材料的后处理工艺等是获得新型高效发光材料的关键[18-20]。§2-1-1基质晶格对发光性质的影响
一般说来,对于给定的某发光中心,在不同基质中它的发光行为是不同的,因为发光中心的直接环境发生了改变。如果理解了基质晶格是如何决定发光中心的发光性质的,那么就可以非常容易地预测所有发光材料。
共价键效应:共价键越强,电子间的相互作用越弱,因为这些电子被分散到更宽阔的轨道上。因此,电子跃迁的能级差由共价键的性质决定。共价键越强,多重项之间的能量间距越小,电子跃迁所需能量越低。这就是电子云膨胀(nephelauxetic希腊语,云膨胀的意思)效应。化学键的共价性越强,则成键原子(离子)双方的电负性差异就越小,这使得两原子之间的电荷迁移态跃迁向低能量区域移动[21,22]。举个例子,氟化物YF3中Eu3+的吸收带要比Y2O3中的处在能量更高的位置,这是因为Y2O3的共价性要比YF3的强。
晶体场效应:基质晶格影响离子的发光性质的另一个因素是晶体场,晶体场就是给定离子的
周围环境所产生的电场。某一发光跃迁的光谱位置由晶体场的强度决定。另外,晶体场还能使某些光跃迁产生劈裂。下面的因果关系是很显然的:不同的基质晶格→不同的晶体场→不同的谱线劈裂模式。通过这种方法,发光中心可以作为监测化学环境的探针,即“荧光探针”。它是根据某个离子的发光特性,推断出该离子自身电子结构以及它在基质晶格中所处的化学环境。近年来,有关利用稀土荧光探针来研究无机固体材料、有机固体化合物和液相生物大分子的结构的报道很多[23]。特别是利用Eu3+的能级和荧光特性,可以很灵敏地提供有关Eu3+周围环境地对称性、所处格位及不同对称性的格位数目和有无反演中心等结构信息[16,17]。这是由于周围晶体场作用和化学环境对称性的改变,可使稀土离子的谱线发生不同模式的劈裂。一般说来,对称性越低,越能解除一些能级的简并度而使谱线劈裂越多。文献[23]给出了不同对称性晶场中Eu3+的7Fj能级的劈裂和5D0-7Fj跃迁所产生的荧光谱线的数目。根据Eu3+的荧光光谱的谱线数目,可以了解其临近环境的对称性。
另外,发光效率还与基质的结构密切关联。相同的基质组分和掺杂浓度,但
基质的晶体结构不一样,发光效率呈现显著的差别。比如,采用固相法制备的LaVO4:Eu多为单斜相,Eu3+离子占据C1格位,对称性与四方相YVO4中的Eu3+不同,因此其发光也较弱。C. J. Jia等利用水热法合成四方相纳米晶LaVO4:Eu,他们对四方相纳米晶LaVO4:Eu 和单斜相LaVO4:Eu的发射强度进行比较,发现四方相纳米晶LaVO4:Eu的发光强度要远远大于单斜相的LaVO4:Eu,而且与含有相同Eu3+掺杂浓度的YVO4:Eu具有可比性[18]。同时,由于其尺寸处于纳米尺度,四方相纳米晶LaVO4:Eu的荧光猝灭浓度达到10%,远高于体材料YVO4:Eu的猝灭浓度,所以四方相LaVO4:Eu纳米晶是一种很有前途的发光材料。同时,这也表明了合成方法、合成条件对材料结构和性质具有可控性,这有利于材料的开发与应用。§2-1-2尺寸效应
当材料的尺寸达到纳米尺度时,会出现一些异于体材料的特性,如量子尺寸效应、小尺寸效应、表面效应、宏观量子隧道等效应。这些效应往往同时起作用,控制纳米材料的性能。当前,科学工作者的任务是,通过材料设计和合成方法的可控,合理利用纳米效应,使纳米材料的性能向人们所需要的方向转化,最大限度地挖掘材料的新功能特性。主要采取的措施是维度的控制、尺寸限域、异质掺杂和外场。
纳米发光材料是指基质的粒子尺寸在 1~100nm 的发光材料,它包括纯的纳米半导体发光材料以及稀土离子和过渡金属离子掺杂的纳米氧化物、硫化物、复合氧化物和各种无机盐发光材料。当纳米粒子的粒径与超导相干波长,玻尔半径以及电子的德布罗意波长相当时,小颗粒的量子尺寸效应十分的显著。与此同时,大的比表面使处于表面态的原子、电子与处于小颗粒内部的原子、电子的行为有很大的差别。这种表面效应和量子尺寸效应对纳米微粒的光学特性有很大的影响,甚至使纳米微粒具有相同材质的宏观大块体不具备的新的光学特性[26,27]。
在这方面已有人做了大量工作,结果表明,当基质的颗粒尺寸小到纳米级范围时,其物理性质会发生改变,从而影响其中掺杂的激活剂离子的发光和动力学性质,如光吸收,激发态寿命,能量传递,发光量子效率和浓度猝灭等性质。纳米颗粒的光吸收与其本体材料相比表现出蓝移,如纳米 MnO光吸收谱表现出蓝移特征,理论认为这是由于小尺寸效应和量子尺寸效应引起的。小尺寸效应使得