七年级数学上册上册数学压轴题专题练习(word版

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册上册数学压轴题专题练习(word 版

一、压轴题

1.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。如图的“等和格”中,每行、每列及对角线上的3个代数式的和都等于15.

(1)图1是显示部分代数式的“等和格”,可得a=_______(含b 的代数式表示); (2)图2是显示部分代数式的“等和格”,可得a=__________,b=__________; (3)图3是显示部分代数式的“等和格”,求b 的值。(写出具体求解过程)

2.阅读下列材料:

根据绝对值的定义,|x| 表示数轴上表示数x 的点与原点的距离,那么,如果数轴上两点P 、Q 表示的数为x 1,x 2时,点P 与点Q 之间的距离为PQ=|x 1-x 2|. 根据上述材料,解决下列问题:

如图,在数轴上,点A 、B 表示的数分别是-4, 8(A 、B 两点的距离用AB 表示),点M 、N 是数轴上两个动点,分别表示数m 、n.

(1)AB=_____个单位长度;若点M 在A 、B 之间,则|m+4|+|m-8|=______; (2)若|m+4|+|m-8|=20,求m 的值;

(3)若点M 、点N 既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______. 3.如图,相距10千米的A B 、两地间有一条笔直的马路,C 地位于A B 、两地之间且距A 地

4千米,小明同学骑自行车从A 地出发沿马路以每小时5千米的速度向B 地匀速运动,当

到达B 地后立即以原来的速度返回,到达A 地停止运动,设运动时间为(时),小明的位置为点P .

(1)当0.5 t 时,求点P C 、间的距离

(2)当小明距离C 地1千米时,直接写出所有满足条件的t 值

(3)在整个运动过程中,求点P 与点A 的距离(用含的代数式表示)

4.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点

A ,P 是数轴上的一个动点.

(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;

(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的

数;

(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?

5.如图,A 、B 、C 三点在数轴上,点A 表示的数为10-,点B 表示的数为14,点C 为线段AB 的中点.动点P 在数轴上,且点P 表示的数为x .

(1)求点C 表示的数;

(2)点P 从点A 出发,向终点B 运动.设BP 中点为M .请用含x 的整式表示线段MC 的长.

(3)在(2)的条件下,当x 为何值时,2AP CM PC -=?

6.(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解. ①求线段AB 的长;

②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由; (2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PB

PC

+的值不变.

7.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:已知点A ,B ,C 在一条直线上,若AB =8,BC =3则AC 长为多少?

通过分析我们发现,满足题意的情况有两种:情况 当点C 在点B 的右侧时,如图1,此

时,AC =11;

情况②当点C 在点B 的左侧时, 如图2此时,AC =5.

仿照上面的解题思路,完成下列问题:

问题(1): 如图,数轴上点A 和点B 表示的数分别是-1和2,点C 是数轴上一点,且BC =2AB ,则点C 表示的数是.

问题(2): 若2x =,3y =求x y +的值.

问题(3): 点O 是直线AB 上一点,以O 为端点作射线OC 、OD ,使060AOC ∠=,

OC OD ⊥,求BOD ∠的度数(画出图形,直接写出结果).

8.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),

COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,

请补全图形并加以说明.

9.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°: (1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;

(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?

10.(1)探究:哪些特殊的角可以用一副三角板画出?

在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)

(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.

①当OB 平分EOD ∠时,求旋转角度α;

②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 11.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)

(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:

(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求

PQ

AB

的值.

(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1

CD AB 2

=

,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MN

AB

的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.

12.观察下列各等式:

第1个:2

2

()()a b a b a b -+=-;

相关文档
最新文档